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Abstract

This is the online supplementary materials for the paper, “Degree evolution in a general growing
network”. Appendix 1 is the simulation study that was conducted to numerically demonstrate the
asymptotic behavior described in the main results, Proposition 2.1 and Proposition 2.2. Appendix
2 contains the proofs of the preliminary results, Lemma 3.2 and Lemma 3.3, which are used in the
proofs of Propositions 2.1 and 2.2.

Appendix 1. Simulation study for the main results

Three independent graph processes were simulated under three different deletion probabilities. The
number of time steps for each process is set as t = 104. The probabilities of vertex addition and edge
addition at each time step were set as p1 = 1/2 and p2 = 1− p1 − p3, respectively, for all three processes.
Note that p3 is the parameter we tune in the simulation below. More precisely, p3 is the probability of
an edge being deleted and each process was generated under a different deletion probability p3. One of
the three processes was generated using the critical value of p3 = 1/3. The other two processes were
generated under p3 = 1/5 and p3 = 1/10, respectively.

Figure 1 shows the vertices degree of the three processes that were simulated under the critical case
p3 = 1/3 (red lines), p3 = 1/5 (blue lines) and p3 = 1/10 (green lines), respectively. Vertices that
were approximately born at the same time s are plotted in the same figure. In each figure, the solid
lines represent the asymptotic rescaled degree given by Propositions 2.1 and 2.2, whilst the dotted lines
represent the simulated degree of the vertices.

It is noted that the convergence for the critical case, p3 = 1/3, is not apparent in the figures in
comparison to that of p3 < 1/3. This is due to the relatively small range of values for the asymptotic
degree in the critical case of p3 = 1/3 given by Proposition 2.1. For example, the asymptotic degrees of
the vertices at time step t = 104 in Figure 1 (a) with s = 1 under the cases of p3 = 1/3, p3 = 1/5 and
p3 = 1/10 are ≈ 3,≈ 22 and ≈ 56, respectively. However, the asymptotic degrees of the vertices in Figure
1 (c) with s ≈ 70 under the cases of p3 = 1/3, p3 = 1/5 and p3 = 1/10 are ≈ 2,≈ 5 and ≈ 8, respecitvely.
This uneven scale of the y−axis results in the lack of visible growth of the red curves in comparison to
the cases of p3 < 1/3.

Appendix 2. Proof of supporting lemmas for the main results

Since Hoeffding’s inequality is used for the proof of Lemma 3.2 below, it is provided here for the conve-
nience of the readers.

Lemma (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables. Assume that, for
every i ∈ {1, . . . , n}, one can find two constants ai and bi with ai < bi such that ai ≤ Xi ≤ bi almost
surely for every i ∈ {1, . . . , n}. Define Sn :=

∑n
i=1 (Xi − E(Xi)). Then, for every x > 0, setting

Dn :=
∑n

i=1(bi − ai)
2 we have P (Sn ≥ x) ≤ exp

{
−2x2/Dn

}
and P (Sn ≤ −x) ≤ exp

{
−2x2/Dn

}
.
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(a) s = 1 (b) s ≈ 15

(c) s ≈ 70 (d) s ≈ 105

Figure 1: Vertices degree against time t = 104.

Proof of Lemma 3.2

Lemma 3.2 was used in the proof of Proposition 2.1 and is provided here for the convenience of the readers.

Lemma 3.2. Let p3 ∈ (0, 1/2), and let λ = λt be such that C ≤ λ = o(t) as t → ∞, for some finite
constant C > 1. Then there exists a t0 ∈ N such that, for all t ≥ t0, we have

P(|Et − t(1− 2p3)| > λ) ≤ 3e−
λ2(1−1/C)2

8t . (1)

Proof of Lemma 3.2. Let (Ut)t≥1 be a sequence of independent and identically distributed random vari-

ables taking values in {−1, 1} with P(U1 = 1) = p3 = 1− P(U1 = −1). Define Ê0 := 1 and, iteratively,

Êt = Êt−1 + 1− 21{Ut=1}1{Êt−1≥1} (2)

for t ≥ 1. Then Êt
d
= Et for every t ≥ 0 (this can be seen e.g. using induction on t). Note that,

defining Xi := 1{Ui=1}1{Êi−1≥1} for i ≥ 1, from (2) we see that Êt = 1 +
∑t

i=1(1 − 2Xi). Then, since

Xi ≤ 1{Ui=1}, we see that Êt ≥
∑t

i=1(1− 21{Ui=1}) for all t and by Hoeffding’s inequality we obtain

P (Et ≤ t(1− 2p3)− λ) ≤ P

(
t∑

i=1

(1− 21{Ui=1}) ≤ t(1− 2p3)− λ

)

= P

(
t∑

i=1

(1{Ui=1} − p3) ≥ λ/2

)
≤ e−λ2/2t. (3)

Next, let H = Ht ∈ N with H ≪ t to be specified later, and define the event EH = {Êk ≥ 1 ∀ H ≤ k ≤
t− 1}. Then, since Et

d
= Êt, we can write

P (Et ≥ t(1− 2p3) + λ) ≤ P

(
{Êt ≥ t(1− 2p3) + λ} ∩ EH

)
+ P (Ec

H) .
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Since Xi ≥ 0, we clearly have ÊH = 1 +
∑H

i=1(1 − 2Xi) ≤ H + 1. Because, on the event EH we have
1− 2Xi = 1− 21{Ui=1} for H + 1 ≤ i ≤ t, we then obtain

P

(
{Êt ≥ t(1− 2p3) + λ} ∩ EH

)
= P

({
ÊH +

t∑
i=H+1

(1− 2Xi) ≥ t(1− 2p3) + λ

}
∩ EH

)

≤ P

(
t∑

i=H+1

(1− 21{Ui=1}) ≥ t(1− 2p3) + λ−H − 1

)

= P

(
t∑

i=H+1

(1{Ui=1} − p3) ≤ Hp3 −
λ

2

(
1− 1

λ

))
. (4)

Taking H := ⌊ λ
4p3

(1− 1/λ)⌋ we see that the probability in (4) is at most

P

(
t∑

i=H+1

(1{Ui=1} − p3) ≤ −λ

4
(1− 1/λ)

)
≤ e−2

λ2(1−1/λ)2

16(t−H) ≤ e−
λ2(1−1/C)2

8t ,

where the first inequality follows again from Hoeffding’s inequality. To bound P (Ec
H) we note that, by a

union bound,

P (Ec
H) = P

(
∃k ∈ [H, t− 1] : Êk = 0

)
≤

t−1∑
k=H

P

(
1 +

k∑
i=1

(1− 2Xi) = 0

)
.

Since 1− 2Xi ≥ 1− 21{Ui=1} we have that
∑k

i=1(1− 2Xi) ≥
∑k

i=1(1− 21{Ui=1}) and hence we arrive at

t−1∑
k=H

P

(
k∑

i=1

(1− 21{Ui=1}) ≤ 0

)
≤

t−1∑
k=H

P

(
k∑

i=1

(1{Ui=1} − p3) ≥
k

2
(1− 2p3)

)
≤

t−1∑
k=H

e−
k(1−2p3)2

2 , (5)

where the last inequality follows once more from Hoeffding’s inequality. Using the formula for the geo-
metric sum, we obtain

t−1∑
k=H

e−
k(1−2p3)2

2 =
1− e−

t(1−2p3)2

2

1− e−
(1−2p3)2

2

− 1− e−
H(1−2p3)2

2

1− e−
(1−2p3)2

2

≤ e−
H(1−2p3)2

2

1− e−
(1−2p3)2

2

.

We recall that H = ⌊ λ
4p3

(1− 1/λ)⌋ and then

H(1− 2p3)
2

2
≥ λ

8

(
1− 1

C

)2
(1− 2p3)

2

p3
.

Thus, setting c1 :=

(
1− e−

(1−2p3)2

2

)−1

and c2 :=
(
1− 1

C

)2 (1−2p3)
2

8p3
, we finally obtain P (Ec

H) ≤ c1e
−c2λ.

Summarizing,

P(Et ≥ t(1− 2p3) + λ) ≤ e−
λ2(1−1/C)2

8t + c1e
−c2λ, (6)

and since λ ≪ t, the desired result follows.

Proof of Lemma 3.3

Lemma 3.3 is an auxiliary estimate which was used to bound Lt, the function that appears in the proof
of Proposition 2.2. Lemma 3.3 and its elementary proof is provided here for completeness.

Lemma 3.3. There exists f : N × N 7→ R+ with f(s, t) → 0 as s, t → ∞ such that (1 − f(s, t))Gs(t) ≤
Lt ≤ (1 + f(s, t))Gs(t).
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Proof of Lemma 3.3. Recall that a, λ ≪ h. Setting

g(h) = g(h, p1, p2, p3) :=
1− 3p3 − p2/(hp1 − 1 + a)

2h(1− 2p3)− 2λ

we see that |g(h)| < 1. By a Taylor series expansion we immediately see that

Lt = exp

{
t∑

h=s

log (1 + g(h))

}
= exp

{
t∑

h=s

log
(
g(h) +O

(
g2(h)

))}

Observe that

t∑
h=s

g(h) =
1− 3p3

2h(1− 2p3)

t∑
h=s

1

h

(
1 +O

(
1/h
))

+O

(
t∑

h=s

1

h2

)

=
1− 3p3

2h(1− 2p3)

t∑
h=s

1

h
+O

(
t∑

h=s

h−2

)
.

Therefore, since we also have that g(h) = h−2, we obtain

Lt = exp

{
1− 3p3

2h(1− 2p3)

t∑
h=s

1

h

}
exp

{
O

(
t∑

h=s

h−2

)}
= (t/s)

1−3p3
2h(1−2p3) exp

{
O

(
t∑

h=s

h−2

)}
,

where the last equality follows from the asymptotic
∑k

i=1 1/i ∼ log k as k → ∞. Finally, note that if
s, t → ∞, then the sum within the exponential converges to zero.
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