
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Compressing and Fine-tuning DNNs for Efficient Inference in Mobile Device-Edge Continuum / Singh, Gurtaj; Chukhno,
Olga; Campolo, Claudia; Molinaro, Antonella; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2024). (Intervento
presentato al convegno IEEE MeditCom 2024 tenutosi a Madrid (Spain) nel July 2024).

Original

Compressing and Fine-tuning DNNs for Efficient Inference in Mobile Device-Edge Continuum

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988279 since: 2024-05-04T10:34:34Z

IEEE

Compressing and Fine-tuning DNNs for Efficient
Inference in Mobile Device-Edge Continuum

Gurtaj Singh∗†, Olga Chukhno∗†, Claudia Campolo∗†, Antonella Molinaro∗†, Carla Fabiana Chiasserini§†
∗University Mediterranea of Reggio Calabria, Italy. E-mail: name.surname@unirc.it

†Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy
§Politecnico di Torino, Italy. E-mail: carla.chiasserini@polito.it

Abstract—Pruning deep neural networks (DNN) is a well-
known technique that allows for a sensible reduction in inference
cost. However, this may severely degrade the accuracy achieved
by the model unless the latter is properly fine-tuned, which may,
in turn, result in increased computational cost and latency. Thus,
upon deploying a DNN in resource-constrained edge environ-
ments, it is critical to find the best trade-off between accuracy
(hence, model complexity) and latency and energy consumption.
In this work, we explore the different options for the deployment
of a machine learning pipeline, encompassing pruning, fine-
tuning, and inference, across a mobile device requesting inference
tasks and an edge server, and considering privacy constraints on
the data to be used for fine-tuning. Our experimental analysis
provides insights for an efficient allocation of the pipeline tasks
across network edge and mobile device in terms of energy and
network costs, as the target inference latency and accuracy vary.
In particular, our results highlight that the higher the edge server
load and the number of inference requests, the more convenient
it becomes to deploy the entire pipeline at the mobile device
using a pruned model, with a cost reduction of up to a factor
two compared to deploying the whole pipeline at the edge.

Index Terms—Edge computing, Edge-mobile device contin-
uum, Machine learning pipeline, ML model compression.

I. INTRODUCTION

Machine Learning (ML) is becoming pervasive and crucial
to the provisioning of a plethora of intelligent services and
applications in several domains, ranging from smart manufac-
turing to autonomous driving, healthcare and smart agriculture.
Many of them rely on the execution of computation-intensive
and resource-hungry Deep Neural Network (DNN) models,
which can achieve high inference accuracy by relying on the
training of a huge number of parameters.

In parallel, Sixth Generation (6G) networks envision a
paradigm shift, moving away from reliance on traditional
cloud-based, resource-rich services towards distributed intelli-
gence in resource-constrained edge environments, dominated
by the presence of mobile and embedded devices [1]. This
transition helps address the privacy concerns raised by several
smart applications with humans in the loop, as well as the
growing demand for pervasive, low-latency DNN inference
execution. However, implementing DNN models at the edge
requires careful consideration to balance the model size,
latency, energy consumption, and accuracy.

Model pruning is a widely used technique for compressing
DNNs and facilitating inference in resource-limited envi-
ronments [2]. By removing, e.g., the low-magnitude model

parameters, hence, reducing the model size and complexity,
pruning can help match the capabilities of mobile devices with
the DNNs resource demand [3]. On the other hand, pruned
DNNs may achieve lower accuracy. To mitigate this issue,
the pruned DNN can be fine-tuned and customized using data
locally collected by a mobile device to trade off model size
with accuracy [4], [5].

Importantly, fine-tuning is also known for its inherent
complexity, which may require a substantial amount of data
and computational resources, and it may take quite a long
time to be executed, namely, from minutes to hours [6],
[7]). Additionally, although offloading model fine-tuning to
the edge may be an option to save the limited resources of
end-devices, transferring data to the edge may (i) lead to
privacy leakage, thus necessitating encryption, (ii) require a
large bandwidth, and (iii) increase inference latency whenever
the edge computational load is high.

In this work, we tackle the above issues and aim to assess
(i) whether the ML pipeline to be deployed for executing
inference tasks required by a mobile device should include
DNN pruning (and, if so, by which factor) and fine-tuning,
and (ii) how the tasks of a DNN inference pipeline should be
distributed between the resource-constrained end device and
the more capable edge server, looking at crucial aspects such
as latency, accuracy, energy consumption, network load, and
privacy preservation. Specifically, the main contributions of
our work are as follows:

• We characterize the DNN inference pipeline, including
pruning, fine-tuning, and inference, executed either at the
edge or at the mobile device, in terms of latency and
accuracy, when considering different pruning factors;

• We compare different DNN inference pipelines and work-
flows across the edge and the mobile device in terms of
overall and per-operation latency, amount of transferred
data, and energy consumption. The analysis provides
guidelines for selecting the most convenient option under
different conditions, such as computational load at the
edge server and number of requests to be executed using
a given DNN.

The rest of the paper is organized as follows. After dis-
cussing some relevant literature and the work motivation in
Sec. II, we introduce the reference scenario and the considered
DNN inference workflows in Sec. III. We then present our

experimental analysis and results in Sec. IV. Finally, we draw
our conclusions and highlight the major lessons learned in
Sec. V.

II. RELATED WORK AND MOTIVATION

Pruning of Neural Networks (NNs) aims to reduce model
complexity while maintaining the model predictive capabili-
ties. It consists in removing non-essential neural connections
and/or neurons, thereby reducing the network size and opti-
mizing computational resources [8]. One prominent technique
is magnitude-based pruning [9], which removes the neural
connections associated with the least relevant weights [10].
The underlying assumption is that such NN weights have
a negligible impact on the overall model performance, and
eliminating them does not significantly lower the accuracy
level. Magnitude-based pruning methodologies range from the
simple removal of weights below a predefined threshold to
complex iterative strategies that consider sensitivity variations
towards specific weights to preserve critical information [11].

In our previous study [12], we characterized the cost and
performance of edge inference by considering pruned versions
of different ML models with varying pruning factor values.
Our results show that executing a pruned model at a device
can yield time and energy savings of up to 40% and 53%,
respectively, w.r.t. a full-size model. Also, executing inference
at the end device may speed up decision-making by 60%
compared to the execution at a highly loaded edge.

On the negative side, pruning may not preserve model
accuracy for high values of pruning factor. Hence, whenever
lightweight model variants are needed to match the limited
resource availability of the network edge and mobile devices,
fine-tuning is needed [13]. This involves additional training of
the pruned model, allowing the remaining weights to adapt
to information previously overlooked during pruning. The
critical issue in fine-tuning is to ensure that a pruned NN
maintains its predictive performance, by ensuring effective
specialization without overfitting. Importantly, fine-tuning may
require the use of private data [4], [5], which may pose sig-
nificant challenges in terms of privacy preservation. It follows
that fine-tuning may imply either using the resource-limited
hardware and energy reserve of mobile devices or encrypting
data before transferring it to the edge server. It is worth
noting, however, that dataset encryption cannot entirely pre-
vent malicious attacks, and additional techniques for privacy
preservation may be needed [14]. It follows that, despite the
inherent benefits of retaining a competitive accuracy, the costs
of fine-tuning have to be assessed carefully upon deploying a
DNN pipeline, wisely distributing fine-tuning and inference
operations between edge and end-devices, which motivates
our work.

III. DNN PIPELINE OPTIONS

A. Reference scenario

We consider a mobile device within the coverage area of a
base station (BS) that needs to perform inference tasks over
its own input data. The BS is connected to an edge server,

Base station

Base station

Edge server

Fig. 1: DNN inference pipeline options and associated work-
flows.

denoted with e. The device can either request the edge server
for a DNN model for local inference execution or offload a task
to the edge server. As data distribution and requirements may
evolve over time, ML models may yield reduced accuracy, thus
necessitating periodic retraining or replacement. We denote
with Q the number of inference requests generated by the
mobile device before a DNN update is required [15].

The edge server stores multiple DNN models, denoted
by M={1, . . . ,M}. Due to limited storage capabilities, we
assume that only the most popular models are stored at server
e. Furthermore, DNNs can be pruned on demand at the
edge server to better match the resource-constrained capability
of requesting mobile devices, or to ensure fast inference at
the edge while requiring fewer computational resources – a
crucial issue under loaded edge conditions. We refer to a
DNN model pruned with a given pruning factor (pf) as a
configuration option and denote the set of such options by
K={1, . . . ,K}. Pruned DNN models can be fine-tuned to
improve their accuracy by using a dedicated dataset already
labeled to improve the performance of the DNN on more
specific inputs [5], [16].

While we consider that model pruning is executed at the
edge server, fine-tuning and inference can be performed either
at the mobile device or at the edge server. Thus, the following
DNN inference pipelines are possible: (i) fine-tuning and
inference execution at the edge server (E-FT,E-Inf for short);
(ii) fine-tuning execution at the edge server, inference at
the device (E-FT,D-Inf for short); and (iii) fine-tuning and
inference execution at the device (D-FT,D-Inf for short).

B. Workflows

The workflows corresponding to the considered inference
pipelines are detailed below and depicted in Fig. 1.

E-FT, E-Inf. If both fine-tuning and ML inference are
performed at the edge, the device has just to send its sample
data to the edge and wait for the inference result. Thus, the
steps to be performed are: 1 a sample is transmitted from
the device to the BS and, consequently, to the edge server

where 2 pruning is executed; 3 the edge server requests the
dataset to the device, which 4 encrypts and then 5 transmits
the dataset to the edge server; the edge server executes 6

fine-tuning and 7 inference, and 8 returns the inference
result to the device. If the device requests subsequent inference
tasks using the same model, after the first inference request is
fulfilled, the workflow includes only sample data transmission,
inference execution, and inference result delivery.

E-FT, D-Inf. Performing fine-tuning at the edge and in-
ference at the device needs encrypted customized1 dataset
transfer for model fine-tuning at the edge. Thus, it consists of
the following steps: 1 the device requests the DNN model
from the edge server; 2 the edge server prunes the DNN
and 3 requests the dataset from the device; 4 the device
encrypts and 5 transfers the dataset to the edge. Then, 6 the
edge server fine-tunes and 7 sends the model to the device.
Finally, 8 the device executes the inference task. Once the
device obtains the model, it can use it locally for subsequent
inference tasks until the model needs to be updated.

D-FT, D-Inf. When fine-tuning and inference are both ex-
ecuted at the device, the workflow entails: 1 the device
requests the pruned model to the edge server; 2 the edge
prunes and 3 transmits the model; 4 the device executes
fine-tuning and 5 inference. As in the E-FT, D-Inf workflow,
when the device has to perform inference for multiple subse-
quent sample data and the same model can be reused, only
local inference (step 5) needs to be performed.

C. Performance metrics

We now characterize the three DNN inference pipelines in
terms of the following metrics:

• ML pipeline latency, defined as the time from when
the device generates the first inference request until it
receives the result of the last inference request, given the
total number of inference requests Q;

• Energy consumption incurred by the device from the first
to the last inference request.

E-FT, E-Inf. The ML pipeline latency is given by:

T (E-FT,E-Inf) =QT req,res+T pr
m,k+T req,dataset+T enc

+T dataset+T ft,e
m,k +QT inf,e

m,k +QT res
m,k, (1)

where the latency components related to communication in-
clude the latency contributions due to the transmission of the
data sample, lreq,res, and the inference result, lresm,k, at a data
rate D, i.e.,

T req,res =
lreq,res

D
and T res

m,k =
lresm,k

D
. (2)

Similarly, the contributions from the dataset request,
lreq,dataset, and the dataset transfer, ldataset, are given by:

T req,dataset =
lreq,dataset

D
and T dataset =

ldataset

D
. (3)

1More sophisticated methods can be applied to better preserve privacy [14],
which is beyond the scope of this study. Moreover, they are expected to add
negligible overhead compared to the encryption operation we consider.

T pr
m,k accounts for the time needed to perform pruning of

the ML model m with configuration option k at the edge,
whereas T enc is the time required to encrypt the dataset at
the device. T ft,e

m,k and T inf,e
m,k represent the time required to

perform, respectively, fine-tuning and inference at the edge. In
our computation, the values for executing pruning, encryption,
fine-tuning, and inference are obtained through experimental
measurements under the settings presented in Sec. IV.

The energy consumption at the mobile device is given by:

Ed(E-FT,E-Inf)=QP txT req,res+(P rx+PE)T req,dataset

+P encT enc+P txT dataset+Q(P rx+PE)T res
m,k, (4)

where P rx (P tx) represents the power spent by the device in
receiving (transmitting), PE denotes the power consumed by
the baseband electric circuit of the device, and P enc is the
power consumed for encrypting the dataset (all these values
are expressed in Watts).

E-FT, D-Inf. The ML pipeline latency is as follows:

T (E-FT,D-Inf)=T req,model+T pr
m,k+T req,dataset+T enc

+T dataset+T ft,e
m,k +Tmodel

m,k +QT inf,d
m,k , (5)

which accounts for the communication latency for requesting
and receiving the ML model of size lmodel

m,k given, respec-
tively, by:

T req,model=
lreq,model

D
and Tmodel

m,k =
lmodel
m,k

D
. (6)

T ft,e
m,k and T inf,d

m,k refer to the time required to perform fine-
tuning at the edge and inference at the device, respectively.

The energy consumption at the device can be written as:

Ed(E-FT,D-Inf)=T req,modelP tx+(P rx+PE)T req,dataset+P enc

·T enc+P txT dataset+(P rx+PE)Tmodel
m,k +QP infT inf,d

m,k , (7)

where P inf is the power consumption to perform the inference
at the device (in Watts).

D-FT, D-Inf. In this case, we have:

T (D-FT,D-Inf)=T req,model+T pr
m,k+Tmodel

m,k +T ft,d
m,k+QT inf,d

m,k ,

(8)

where T ft,d
m,k denotes the time to perform fine-tuning at the

device. The energy consumption at the device is then given
by:

Ed(D-FT,D-Inf)=T req,modelP tx+(P rx+PE)Tmodel
m,k

+P infT ft,d
m,k +QP ftT inf,d

m,k , (9)

where P ft is the device power consumption (in Watts) for
fine-tuning the pruned model locally.

IV. PERFORMANCE EVALUATION

A. Experimental settings

We consider a 5G New Radio BS operating at a frequency of
3.5GHz and evaluate the communication latency contributions
as per (2), (3), and (6). The transmission power of the BS

and the device are, respectively, 23 dBm and 10 dBm. The
available bandwidth is 100MHz, and both the transmitter and
receiver use an antenna array with 4×4 antenna elements. The
sub-6 GHz channel is modeled using the Urban Micro (UMi)
street canyon model [17], while the data rate is estimated using
Shannon’s theorem.

An Oracle VirtualBox virtual machine (VM) with 4 virtual
CPUs acts as edge server, using an Intel(R) Xeon(R) Platinum
8370 C physical processor with 16GB of RAM. The perfor-
mance metrics are reported for the tasks running as Docker
containers, with the hosting VM operating at maximum CPU
power, either without additional load (case denoted with “edge,
no load” in the following) or with 50 active Docker containers
for inference tasks (case denoted with “edge, loaded”); all
containers in the background also run inference tasks. The
mobile device has 1 physical core (Intel Core i7-9750H), 4GB
of RAM, and 30GB of disk space.

We use MobileNet [18] as a DNN model and a 412-MB
subset of ImageNet-10002 dataset, including samples for 100
classes, as private dataset for fine-tuning. This mimics the case
in which the device operates in a specific environment, and
the number of classes it can detect is limited [5]. The size
of an image sample is 300 kB, and the DNN output size is
2 kB. We use Tensorflow Model Garden, Tensorflow Model
Optimization, and Keras Surgeon for pruning. Other settings
are as follows: PE=5.34W, P tx=0.01W, P rx=0.1W, and
P inf/ft=2.8W [19].

We use magnitude-weight pruning, which removes the least
relevant neural connections [9], [10]. For fine-tuning, the
loss function is extended to include validation data. The
process uses incremental backpropagation, updating weights
incrementally and applying regularization techniques such as
dropout to prevent overfitting. The learning rate is set to
0.001, and detailed evaluation of the performance on a test
dataset followed. For best fine-tuning, the process is iterated
with parameter tuning, balancing computational efficiency, and
prediction accuracy. Regarding dataset encryption, we use
the public and private key Rivest–Shamir–Adleman (RSA)
scheme.

B. Results

The first set of results evaluates the impact of the pruning
factor (pf) on the target performance metrics. Fig. 2 highlights
the trade-off between model accuracy (Top-1) and model size

2https://www.image-net.org/

as the pruning factor varies. Notice that, according to the Top-
1 metric, a prediction is considered as correct only if the top
prediction corresponds to the correct class. Beyond a prun-
ing factor of 40%, the accuracy level degrades significantly,
indicating the need for fine-tuning.

When fine-tuning and inference get faster at the mobile
device. Table I shows that fine-tuning and inference times
generally decrease with higher pruning factors (i.e., smaller
models). Also, while they get larger at the edge with an
increased traffic load, their increase with the pruning factor
becomes more evident at the edge in the case of high load.
As expected, the execution of fine-tuning and inference gets
faster when moving from a loaded edge to the device.

Achieving high accuracy by fine-tuning a pruned model.
The model can be significantly pruned while still achieving
high accuracy if properly fine-tuned. Specifically, at a pruning
factor of 70%, fine-tuning enhances the accuracy, increasing
it from 70% to 85% (with the latter value corresponding to
the accuracy of the full model). Henceforth, we will focus on
this pruning factor and consider fine-tuning after pruning.

Impact of the number of inference instances (Q) on ML
pipeline efficiency. 1) Latency: Figures 3(a)–(b) illustrate the
ML pipeline latency when the number of inference requests
for the three DNN pipeline options varies. In addition, the
plots show the curves denoted with “E-Inf, full model” and
“D-Inf, full model”, which represent the baseline approaches
for the execution of the full model at the edge and device,
respectively, with no pruning and fine-tuning procedures.

In the case of no loaded edge (see Fig. 3(a)), the faster
option is to execute the full DNN model at the edge. This is

0 10 20 30 40 50 60 70 80 90

Pruning factor [%]

50

60

70

80

90

100

A
c
c
u
ra

c
y
 [

%
]

0

5

10

15

20

M
o
d
e
l
s
iz

e
 [

M
B

]

Accuracy Model size

Fig. 2: Accuracy and model size vs. pruning factor.

TABLE I: Performance metrics vs. pruning factor

Pruning
factor [%]

Accuracy [%] Fine-tuning time [min] Inference time [s]

w/o fine-tuning w fine-tuning edge, no load edge, loaded device edge, no load edge, loaded device
50 79 87 11.09 21.53 15.35 0.3 3.156 2.121
60 74 86 10.10 21.13 14.52 0.187 2.932 1.954
70 70 85 09.22 19.54 12.22 0.143 2.135 1.34
80 65 82 08.54 16.14 10.15 0.11 1.982 0.5
85 62 79 08.32 15.01 10.09 0.091 1.75 0.32

100 200 300 400 500 600

Number of inference requests, Q

500

1000

1500

2000

2500

3000

3500

M
L
 p

ip
e
li
n
e
 l
a
te

n
c
y
 [

s
]

E-Inf, full model E-FT,E-Inf, pf=70% E-FT,

(a) ML pipeline latency (edge, no load)

100 200 300 400 500 600

Number of inference requests, Q

500

1000

1500

2000

2500

3000

3500

M
L
 p

ip
e
li
n
e
 l
a
te

n
c
y
 [

s
]

D-Inf, full model D-FT,D-Inf, pf=70%D-Inf, pf=70%

(b) ML pipeline latency (edge, loaded)

50 100 150 200 250 300

Number of inference requests, Q

100

200

300

400

500

To
ta

l
e
x
c
h
a
n
g
e
d
 d

a
ta

 [
M

B
]

E-Inf, full model E-FT,E-Inf, pf=70% E-FT,

(c) Total exchanged data

D-Inf, full model D-FT,D-Inf, pf=70%D-Inf, pf=70%

50 100 150 200 250 300

Number of inference requests, Q

0

500

1000

1500

2000

2500

3000

3500

4000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n
 [

Jo
u
le

]

(d) Energy consumption at the device

Fig. 3: Metrics vs. number of inferences executed through the same ML model (Q).

TABLE II: Contributions to the ML pipeline latency

Result Model Pruning Encryption Dataset Inference Fine-tuning ML pipeline
exchange exchange exchange latency [s]

[s] [%] [s] [%] [s] [%] [s] [%] [s] [%] [s] [%] [s] [%] Q=1 Q>1
Full model, no load at the edge
E-Inf 0.017 1.7 - - - - - - - - 0.98 98.3 - - 1 1
D-Inf - - 0.5203 9.3 - - - - - - 5.04 90.7 - - 5.56 5.04
Full model, edge loaded
E-Inf 0.017 0.3 - - - - - - - - 5.86 99.7 - - 5.88 5.88
D-Inf - - 0.5203 9.3 - - - - - - 5.04 90.7 - - 5.56 5.04
Pruned model, pf=70%, no load the the edge
E-FT,E-Inf 0.017 0.003 - - 0.15 0.026 0.12 0.02 23.75 4.113 0.14 0.025 553 95.81 577 0.16
E-FT,D-Inf - - 0.195 0.034 0.15 0.026 0.12 0.02 23.75 4.103 1.34 0.232 553 95.58 579 1.34
D-FT,D-Inf - - 0.195 0.027 0.15 0.020 - - - - 1.34 0.182 733 99.77 735 1.34
Pruned model, pf=70%, edge loaded
E-FT,E-Inf 0.017 0.001 - - 0.75 0.063 0.12 0.01 23.75 1.981 2.14 0.178 1172 97.77 1201 2.16
E-FT,D-Inf - - 0.195 0.016 0.75 0.063 0.12 0.01 23.75 1.981 1.34 0.112 1172 87.82 1198 1.34
D-FT,D-Inf - - 0.195 0.027 0.75 0.102 - - - - 1.34 0.182 733 99.69 735 1.34

no longer valid for inference requests higher than 600. After
that, a lighter version of the DNN model with fine-tuning
and inference at the edge becomes a more convenient option.
Executing the full model at the device is also more convenient
than executing the pruned version either at the edge or device,
but just until Q=120 and Q=200, respectively. This is because
fine-tuning takes a considerable time, namely, in the order of
10 minutes. As shown in Fig. 3(b), the load at the edge server

also affects the decision on where to perform fine-tuning and
inference, making it preferable to execute both at the device
in the case of a loaded edge. As expected, the latency for the
case of fine-tuning at the edge and inference at the device lies
between the extreme E-FT,E-Inf and D-FT,D-Inf cases.

The individual latency contributions and their corresponding
percentages are detailed in Table II, which also reports in
the last column: (i) the ML pipeline latency for the first

inference request (Q=1), which accounts for pruning and fine-
tuning whenever pruning is part of the ML pipeline, and (ii)
the latency for subsequent inference requests (Q>1), which
consists of an inference task execution using the already
pruned and fine-tuned model.

2) Bandwidth consumption: Fig. 3(c) depicts the amount
of data exchanged in all considered DNN inference pipeline
options. We observe that for Q values lower than 50, per-
forming inference at the edge using the full model is always
advantageous, as in this case, the device only needs to transmit
the data samples, and the edge returns the inference result (less
than 1MB exchanged in total). This no longer holds for higher
values of Q. In this case, the network burden is reduced if
either the full model or a pruned version thereof is retrieved
(only once) and executed at the device. The execution of the
pruned model at the edge is the most expensive option in terms
of exchanged data since it implies transferring the encrypted
dataset (encryption accounts for only an additional 0.193MB).
The same holds for fine-tuning at the edge.

3) Energy consumption: Fig. 3(d) presents the energy
consumption of the device as the number of inference re-
quests varies. As expected, performing inference at the edge
is consistently preferable because all computational load is
offloaded, and the device incurs the lowest energy cost of
transmitting and receiving data. However, this option may not
be convenient in terms of latency when the edge is loaded,
and offloading the execution of model fine-tuning proves to be
the most energy-efficient choice. Furthermore, it is interesting
to note that when more than Q=200 inference tasks can be
executed with the same model, the energy spent in fine-tuning
at the device becomes lower than that experienced if the
inference tasks are executed locally using the full DNN. The
energy consumption due to the execution of the ML pipeline
at the device remains within the device’s energy budget (i.e.,
3.7Wh [12]) for up to 3, 000 inference tasks executed with
the pruned model.

V. CONCLUSIONS AND MAJOR LESSONS LEARNED

We addressed the efficient deployment of DNN inference
models across the mobile device-edge continuum. First, we
explored the extent to which fine-tuning can help increase the
accuracy of pruned DNN models when inference tasks are
requested by applications running at a mobile device. We then
experimentally investigated the performance of different DNN
inference pipeline configurations, distributing the required
operations across the edge and mobile device, in terms of
latency, amount of transferred data, and energy consumption.
Our results show that using a full-size DNN is the best option
in terms of latency and energy consumption in the case of a
limited number of requested inference tasks. Conversely, on-
device execution is to be preferred in the case of a loaded
edge server.

As for the cost of fine-tuning a pruned model, this is offset
when the DNN model can be reused for multiple inference
tasks, and swift inference results at the device are required. In
this case, the decision about where to perform fine-tuning and

inference should also account for the level of computational
load at the edge and bandwidth availability. The following
findings hold: (i) If the edge is loaded, inference at the device
reduces latency by nearly a factor 4 w.r.t. the local execution of
the full-size model; (ii) Fine-tuning at the edge saves precious
energy resources at the end device at the cost of transferring
a very large amount of data over the radio link; (iii) Although
being the fastest option with a latency reduction of up to a
factor 6 compared to the full-size model execution on the
device, inference at the edge is convenient only when the edge
is lighted loaded.

Future work will focus on the optimization of the DNN
pipeline and of its deployment across edge servers and end-
devices, as well as on extending the experimental analysis to
a larger set of use cases.

REFERENCES

[1] C. Campolo et al., “Network for Distributed Intelligence: a Survey and
Future Perspectives,” IEEE Access, vol. 11, pp. 52840 – 52861, 2023.

[2] Y. Jiang et al., “Model Pruning Enables Efficient Federated Learning on
Edge Devices,” IEEE Trans. on Neural Networks and Learning Systems,
vol. 94, no. 12, pp. 10374 – 10386, 2022.

[3] M. Zhu et al., “To Prune, or Not to Prune: Exploring the Efficacy
of Pruning for Model Compression,” arXiv preprint arXiv:1710.01878,
2017.

[4] P. Guo et al., “Mistify: Automating DNN Model Porting for On-Device
Inference at the Edge,” in 18th USENIX Symposium on Networked
Systems Design and Implementation, pp. 705–719, 2021.

[5] Y.-D. Ma et al., “OCAP: On-device class-aware pruning for person-
alized edge DNN models,” Journal of Systems Architecture, vol. 142,
p. 102956, 2023.

[6] H. Kim et al., “A Framework for Fast and Efficient Neural Network
Compression,” CoRR, vol. abs/1811.12781, 2018.

[7] B. J. Eccles et al., “DNNShifter: An efficient DNN pruning system
for edge computing,” Future Generation Computer Systems, vol. 152,
pp. 43–54, 2024.

[8] T. Liang et al., “Pruning and Quantization for Deep Neural Network
Acceleration: A Survey,” Neurocomputing, vol. 461, pp. 370–403, 2021.

[9] T. Gale et al., “The State of Sparsity in Deep Neural Networks,” arXiv
preprint arXiv:1902.09574, 2019.

[10] J. Frankle et al., “Pruning Neural Networks at Initialization: Why Are
We Missing the Mark?,” arXiv preprint arXiv:2009.08576, 2020.

[11] M. Zullich et al., “Speeding-up Pruning for Artificial Neural Networks:
Introducing Accelerated Iterative Magnitude Pruning,” in 2020 ICPR.

[12] O. Chukhno et al., “Machine Learning Performance at the Edge: When
to Offload an Inference Task,” in Workshop on Networked Sensing
Systems for a Sustainable Society, pp. 180–186, 2023.

[13] P. Molchanov et al., “Importance Estimation for Neural Network Prun-
ing,” in Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11264–11272, 2019.

[14] B. Liu et al., “Pmc: A privacy-preserving deep learning model cus-
tomization framework for edge computing,” ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 4, pp. 1–25, 2020.

[15] K. Rahmani et al., “Assessing the Effects of Data Drift on the Perfor-
mance of Machine Learning Models Used in Clinical Sepsis Prediction,”
International Journal of Medical Informatics, vol. 173, p. 104930, 2023.

[16] Y. Mao et al., “A privacy-preserving deep learning approach for face
recognition with edge computing,” in HotEdge Workshop, pp. 1–6, 2018.

[17] 3GPP, “Technical Specification Group Radio Access Network; Study on
channel model for frequencies from 0.5 to 100 GHz (Release 17),” tech.
rep., 3GPP TR 38.901 V17.0.0, March 2022.

[18] A. Howard et al., “Mobilenets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” arXiv preprint arXiv:1704.04861,
2017.

[19] Q. Liang et al., “AI on the Edge: Rethinking AI-based IoT Ap-
plications Using Specialized Edge Architectures,” arXiv preprint
arXiv:2003.12488, 2020.

