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AdaptFormer: An Adaptive Hierarchical Semantic
Approach for Change Detection on

Remote Sensing Images
Teng Huang , Yile Hong , Yan Pang , Member, IEEE, Jiaming Liang , Jie Hong , Lin Huang ,

Yuan Zhang , Yan Jia , and Patrizia Savi , Senior Member, IEEE

Abstract— Change detection (CD) in remote sensing (RS) aims
to consistently track alterations in specific regions over time.
While current methods employ hierarchical architectures to
analyze semantic details, they often miss crucial changes across
different semantic levels, resulting in partial representations of
environmental shifts. Addressing this, we propose AdaptFormer,
uniquely designed to adaptively interpret hierarchical semantics.
Instead of a one-size-fits-all approach, it strategizes differ-
ently across three semantic depths: employing straightforward
operations for shallow semantics, assimilating spatial data for
medium semantics to emphasize detailed interregional changes,
and integrating cascaded depthwise attention for in-depth seman-
tics, focusing on high-level representations. The experimental
evaluations reveal that AdaptFormer surpasses many leading
benchmarks, showcasing exceptional accuracy on LEVIR-CD
and DSIFN-CD datasets. AdaptFormer showcases impressive
performance with F1 and intersection over union (IoU) scores
of 92.65% and 86.31% on the LEVIR-CD dataset, and 97.59%
and 95.29% on the DSIFN-CD dataset, respectively. The datasets
are available at https://github.com/aigzhusmart/AdaptFormer.

Index Terms— Change detection (CD), deep learning, hierar-
chical representation learning, remote sensing (RS), representa-
tion fusion.

I. INTRODUCTION

CHANGE detection (CD) has emerged as a crucial field
of remote sensing (RS), primarily focusing on the sys-

tematic identification of alterations within a region [1], [2].
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This identification is realized through the comparative anal-
ysis of images captured at distinct temporal intervals [3].
By leveraging the concept of binary labeling for each pixel,
CD techniques facilitate the automated extraction of pertinent
information [4]. The strength of contemporary CDs largely
stems from their ability to extract and compare semantic
information [5]. This process empowers the techniques to iden-
tify, characterize, and comprehend changes within RS data.
The insights gleaned from this process are invaluable, driving
informed decision-making across a plethora of applications,
including urban development [6], disaster management [7],
deforestation [8], environmental surveillance [9], [10], etc.

The CD in RS represents a significant challenge due
to the need for meticulous analysis and comparison of
coregistered images obtained at different time points. Exist-
ing methodologies [11], [12] employ complex hierarchical
architectures, where semantic information is dissected and
compared across various levels. A common category of CD
techniques emphasizes detecting changes predominantly at the
deepest levels [13], [14]. Although this approach yields a
detailed understanding of advanced-level changes, it may over-
look critical alterations at more rudimentary layers, potentially
resulting in an incomplete depiction of overall environmental
transformations.

An alternative set of CD techniques involves a systematic
and repeated extraction of semantic information at each hier-
archical level, followed by an exhaustive comparison of this
data [15], [16]. However, this method tends to lack nuanced
interpretation across the levels and may result in inaccuracies.
Specifically, the simplistic and repeated comparison process
might fail to detect intricate inter-level relationships, or it
might disproportionately emphasize certain changes, thereby
affecting the overall quality and accuracy of change detection
(CD). The existing challenges highlight the urgent need for
an efficient investigative manner for ensuring accurate and
comprehensive analysis across all semantic levels in RS appli-
cations.

The hierarchical structure of RS image analysis allows for
the extraction of semantic information at various depths, each
possessing distinct characteristics and challenges [17], [18],
[19]. Shallow semantic information, gleaned from the initial
layers of the hierarchy, is adept at identifying rudimentary
features such as edges and basic shapes but may struggle with
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intricate details, particularly when considering the tiny objects
frequently found in RS images [20], [21]. Medium seman-
tic information, sourced from intermediate layers, recognizes
complex shapes and patterns with increased accuracy but can
overlook subtler details or minor objects. Conversely, deep
semantic information from advanced layers can comprehend
broader contextual relationships and substantial structures but
can neglect smaller objects or nuanced changes [22], [23].
Given the unique challenges presented by the numerous small
objects common in RS images, it is crucial to develop an
adaptive method that efficiently extracts semantic information
at different levels based on their inherent properties. Such an
approach to CD would improve accuracy and efficiency and
would be of particular value in RS applications.

In order to solve the above challenges, we present Adapt-
Former, a novel framework that probes into hierarchical
semantic interpretations. The AdaptFormer deviates from the
conventional method by systematically and repetitively investi-
gating semantic information at each hierarchical level. Instead,
it adopts an adaptive technique for interpreting hierarchical
representations at three distinct semantic stages: shallow,
medium, and deep, as illustrated in Fig. 1. This framework pro-
gressively captures salient semantic representations, aligning
with the idiosyncrasies of different hierarchical architecture
states in RS imagery. For shallow semantics associated with
small objects, AdaptFormer employs straightforward opera-
tions to identify local representations. In contrast, for medium
semantics, it assimilates spatial information to accentuate finer
interregional details across different temporal intervals. Fur-
thermore, it introduces cascaded depthwise attention for deep
semantics, thereby enabling the effective learning of high-
level representations. Rigorous testing against 11 established
benchmarks on popular CD datasets, including LEVIR-CD
and DSIFN-CD, attests to the superior performance of Adapt-
Former, marking it as a trailblazer in the realm of CD.
In addition, AdaptFormer holds significant potential value in
the industrial domain, with applications extending to areas
such as agricultural CD [24], land use change analysis [25],
deforestation monitoring [8], flood monitoring [26], climate
change impact assessment [27], and water body CD [28].

The main contributions in this article are summarized as
follows.

1) We present an innovative, end-to-end approach called
AdaptFormer enables the adaptive interpretation of hier-
archical representations for CD on RS imagery.

2) Designed for precise and differentiated semantic inter-
pretation at multiple hierarchical levels, AdaptFormer
implements unique strategies across shallow, medium,
and deep semantic layers, showcasing its versatility and
specificity.

3) The AdaptFormer outperforms various established CD
baselines, setting new records on two benchmark
datasets, LEVIR-CD and DSIFN-CD.

II. RELATED WORK

In the field of CD, techniques have emerged in tandem
with the rise of aerial imagery technology, increasingly gaining

importance in managing large-scale image data [1], [29]. The
FC series approaches, encompassing FC-EF, FC-Siam-DI, and
FC-Siam-Conc, first incorporate the fully convolutional neural
network architecture into CD tasks [30]. These methodologies
are remarkable for their ability to be applied to any RS CD
dataset. However, their performance is often compromised by
disruptive elements like shadows and backgrounds, leading to
misinterpretation of image features. Responding to these chal-
lenges, newer techniques such as DTCDSCN, STANet, and
DASNet [6], [31], [32] integrate attention modules into their
frameworks, leveraging interdependencies between channels
and spatial positions to enhance feature perception.

As we transition into a newer era of CD, the robust
representational capabilities of the Transformer model have
received increased attention, showcasing comparable perfor-
mance to convolutional models in various visual tasks. In fact,
BiT [33] integrates the Transformer model with convolution
layers. The ChangeFormer [15] supports the idea that the
Transformer encoder on its own is capable of extracting
fundamental features, analyzing intricate details from dual-
temporal images, and integrating feature differences at various
scales. Then, Changer [34] introduces feature interaction to
allow the sharing of feature information between two branches
of a network, thereby improving the perception of contextual
semantic information differences. Despite these advancements,
both ChangeFormer and Changer fall short in differentiating
cross-level feature information due to their uniform module
usage for semantic extraction at varying levels. Addressing
these limitations, our proposed AdaptFormer emphasizes the
differences in semantic information between different lev-
els and adaptively employs selective modules for shallow,
medium, and deep semantic layers, thereby demonstrating its
versatility and specificity.

III. METHOD

In this section, we introduce the architecture of a pioneer-
ing framework designated as AdaptFormer, devised for the
purpose of CD. This framework harnesses the power of an
adaptive, transformer-based model arranged in a hierarchical
fashion, which is described in detail in Section III-A.

A. Hierarchical Adaptive Mechanism

AdaptFormer is a cutting-edge architecture that prioritizes
adaptive feature learning and comparative analysis. Designed
to cater to the intrinsic hierarchical semantic features, it delves
into various representation levels: shallow, medium, and deep.
This methodical approach to feature learning unfolds across
three distinct stages, with the pivotal difference module bol-
stering each stage’s unique operations. The intricate details
of its structure, inclusive of the operational nuances and the
integral role of the difference module, are depicted in Fig. 1.

AdaptFormer’s operational flow begins with the intake of
two sets of images, which represent the same geographical
region captured at different time intervals, referred to as
pre-change and post-change images. These images are pro-
cessed through a sequence of three differentiated stages. Each
stage involves the essential tasks of downsampling and feature
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Fig. 1. Schematic representation of the AdaptFormer architecture. The proposed AdaptFormer employs distinct strategies from straightforward operations
for shallow levels, spatial data assimilation for medium levels, to cascaded depthwise attention for deeper semantics.

selection, applied in a manner that respects the semantic
depth associated with each stage. As a culmination of these
stages, the differences in the resulting outputs are fused by the
difference module. This module computes the dissimilarities
between the stage outputs and then undergoes an upsampling
process to match the size of the original input images. This
systematic approach ensures a comprehensive analysis and
comparison of changes at various semantic levels, reinforcing
the accuracy of the CD process.

Our proposed AdaptFormer implements an ingenious design
to facilitate adaptive feature learning and comparison, effec-
tively catering to the varied levels of representation, i.e.,
shallow, medium, and deep, inherent in hierarchical semantic
features. In essence, the system integrates a local merge
module at each stage, enhancing the model’s feature extrac-
tion capabilities, and thus optimizing the utility of semantic
information across different levels in RS images. These stages
also encompass the introduction of stage-specific modules,
such as the spatial exchange module in stage 2, designed
to augment the model’s performance by bolstering precise
semantic interpretations.

Moving deeper into the system, stage 3 benefits from the
addition of the channel exchange module [34] and the hierar-
chical collaborative attention (HCA) module. These modules
are instrumental in adapting to more abstract information
encapsulated within deeper-level semantics, leading to favor-
able segmentation results. Remarkably, AdaptFormer’s design
provides for the relative independence of the encoders that
process pre-change and post-change images, contributing to
the system’s robustness. Each stage within an encoder oper-
ates on a distinct set of images, employing the difference
module to facilitate difference detection of image processing
results across various time domains. Such a methodology,
harnessing both the independence of image processing and
the interconnectedness of module application, contributes to
AdaptFormer’s superior performance in CD.

1) Stage 1—Shallow Semantic: As the initiating phase
of the AdaptFormer, stage 1 is integral for the selection
and extraction of rudimentary, or shallow, semantic fea-
tures. The image being processed, denoted as X in with
dimensions W × H × C (representing width, height, and
channels, respectively), is subjected to downsampling by the
Downsample module. The Downsample module, employ-
ing a 3 × 3 convolution operation and group normalization

Fig. 2. Structure of local merge.

with a stride of 2, modifies X in to a dimensionality of
(W/2) × (H/2) × C . The output tensor, consequent to the
downsampling process, primarily encapsulates basic shallow
semantic information such as shapes and textures. To effi-
ciently manage these features, we integrate the local merge
module at this juncture of the framework.

Local merge prioritizes dual learning in spatial and channel
dimensions of the data, as shown in Fig. 2. Utilizing depthwise
separable convolution, it aggregates local features across both
domains, enriching data analysis. This approach promotes the
integration of channel-specific information into input features,
thereby elevating the predictive accuracy of the CD model.
Equation (1) provides an in-depth mathematical insight into
the local merge module’s operations

X1 = PW(BN(PE(X in)))

X2 = DW(X1)

X3 = PW(BN(DW(X2))

Y = PW(ϕ(PW(X3))) (1)

where BN and ϕ denote batch normalization and GELU activa-
tion functions [35]. Y represents the output of the local merge
module that employs a position-wise (PW) and a depth-wise
(DW) convolutional layer, designed for effective local feature
aggregation. The PW convolves input data across spatial
dimensions, while DW focuses on local feature aggregation.
This structure is augmented by a depthwise convolution layer,
or PE, extracting relative positional information to enhance
image understanding. Through this configuration, the local
merge module efficiently generates rich semantic features, vital
for precise CD.

2) Stage 2—Medium Semantic: In stage 2 of our model,
the emphasis is placed on the adept extraction and process-
ing of intermediate-level semantics, characterized by their
abstract and semantically rich attributes. This contrasts with
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the more rudimentary characteristics inherent to shallow-level
semantics. In order to address the challenges associated with
extracting these complex features, we have integrated the
spatial exchange module into stage 2. This module is an
enhancement over stage 1, capitalizing on the associational
strength inherent to intermediate-level semantics by evaluating
diverse spatial perspectives present in data channels. Conse-
quently, this strategic augmentation facilitates a more robust
capability for the extraction and interpretation of abstract
features synonymous with intermediate-level semantics. The
details of spatial exchange are as follows.

Spatial exchange plays a pivotal role in CD models by
adeptly integrating change region features. These features are
learned through a dual-encoder system, highlighting the intri-
cate interplay of correlations across varied temporal domains.
A defining characteristic of this integration is the exchange of
grayscale images stemming from the double temporal domain
processing outcomes, all while operating at half the spatial
dimension. This strategic inclusion bolsters the CD model’s
proficiency and amplifies its capability to forge spatial object
associations [34]. Specifically, the execution flow of spatial
exchange is shown in the following equation:

Mi =

{
1, if i mod α = 0
0, otherwise

Ye = Xe ⊙ M + X̂ e ⊙ (1 − M)

Ŷ e = Xe ⊙ (1 − M) + X̂ e ⊙ M (2)

where e represents the dimension that the input feature needs
to be exchanged, α represents the channel exchange mask
displacement, Mi represents the i th element of the 1-D mask
M , and Xe, X̂ e, Ye, Ŷ e represent the representation of X , X̂ ,
Y , Ŷ in the channel dimension, respectively.

In stage 2, we designate e as the width (W ) dimension of
the input features and α = 2. This deliberate selection enables
the effective comparison and fusion of middle-level semantic
features across distinct temporal instances, effectively captur-
ing the relational information between diverse spatial regions.

Subsequently, the exchanged feature vectors continue to
undergo further processing through the Downsample module
and the local merge module. The resulting processed feature
vectors are then fed into the difference module and subse-
quently passed on to the next stage for subsequent analysis or
utilization.

3) Stage 3—Deep Semantic: After stage 2, stage 3 pro-
cesses semantic features related to objects, scenes, or advanced
concepts. These features’ global information is vital for quality
CD results. Understanding the interplay between encoders
representing the same region at different times enhances the
model’s grasp of temporal relations between spatial elements
in a scene. Consequently, we integrated channel exchange
and HCA modules in stage 3. Details of these modules are
presented below.

Channel exchange contrasts with spatial exchange by oper-
ating in the channel dimension, where it swaps half of the
input images from both sides based on (2) with e set as the
channel (C) dimension. This approach avoids the potential
spatial ambiguity that might arise from exchanging features in

Fig. 3. Overview of HCA.

the plane dimension. Exchanging along the channel dimension
enhances the capture of deep semantic interactions across
temporal instances within a specific region. Following this
exchange, the feature vectors proceed to the local merge and
HCA modules.

HCA is designed to discern spatial relationships in the input
image through feature clipping and attention computations.
It extracts refined global features from a feature vector rich
in temporal and abstract semantic information. The HCA’s
workflow is depicted in Fig. 3, with its computational details
provided in the following equation:

[X1, X2, . . . , X i−1, X i , . . . , Xn]d = X in

X i = X̃ i−1 + X i

X̃ i = Attn
(
X i W

Q
i , X i W K

i , X i W V
i

)
Y = X̃1 ∥ X̃2, . . . , ∥ X̃ i−1 ∥ X̃ i , . . . , ∥ X̃n (3)

where n denotes the number of segments and Y represents
the output, with X i as the i th segment of input X in. After
the Attn operation, X i yields X̃ i . Here, W Q

i , W K
i , and W V

i
are projection layers mapping input features into distinct
subspaces, and the ∥ indicates the concatenation.

The HCA is designed to enhance the handling of feature
vectors. By partitioning data along the channel dimension,
C , it allows for individualized attention computations on
each segment, streamlining the computational process and
boosting model parallelism. The model’s understanding of
local structures in input images is further enriched by incorpo-
rating a sequence of convolution, batch normalization, and the
GELU activation function after the query phase. To preserve
information throughout the process, a residual connection is
integrated.

A significant trait of HCA is its feedback mechanism. The
output from one attention computation serves as the input for
the subsequent one, reinforcing feature representation. Given
the depth of semantic feature analysis, the model determines
that a partition count (n) of four is optimal for extracting global
features. Within stage 3, the combination of three HCAs with
local merge modules forms the backbone, drawing out deep
semantic features and enhancing the model’s proficiency in
CD.
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4) Difference Module: The difference module calculates the
variance between pre-change and post-change image encod-
ings produced at each stage. By merging the two outputs in
the channel CC dimension, their distinctions are discerned
using convolutional operations. This computation procedure
is detailed in the following equation:

X = DW(X1 ∥ X2)

D = DW(BN(σ (X)) (4)

where X1 and X2, respectively, represent the output of two
encoders in the same stage, the σ is the RELU function [36],
and D represents the output of the difference module.

B. Loss Function

To facilitate the CD task, we consider employing the
cross-entropy loss function [37] for training the model, which
is expressed by the following equation:

Lce(G, Y ) = −
1
N

N∑
i=1

[
Y (i) log(G(i))

+ (1 − Y (i)) log(1 − G(i))
]

(5)

where N represents the number of pixels in the input binary
masks, G represents the real binary masks of the changed
region, and Y represents the predicted CD mask.

Since the outputs of different levels contain feature repre-
sentations with different levels of abstraction, by using the
multilayer output to calculate the loss, these features can be
considered comprehensively, thereby improving the modeling
ability of the target task. This loss calculation can be expressed
by the following equation:

L3 = Lce(G, Up(fuse(D3))

L2 = Lce(G, Up(fuse(D2 + D3))

L1 = Lce(G, Up(fuse(D1 + D2 + D3)))

Ltotal = λ1L1 + λ2L2 + λ3L3 (6)

where D1, D2, and D3 represent the results of each stage after
passing through the difference modules. The Up operation is
to upsample the input tensor size to G size. The details of the
fuse operation are as follows:

D = BN(σ (DW(Din)))

fuse(Din) = DW(D) (7)

where L j indicates that the output of the j th stage is
cross-entropy calculated with G, and the coefficient λ j before
each layer loss (λ j > 0) j ∈ {1, 2, 3}. We use the total loss
Ltotal to measure model capability.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

We evaluate the performance of the CD task using two
large-scale remote building CD sensing datasets.

LEVIR-CD [6], a benchmark dataset for building CD, com-
prises 637 bitemporal image patch pairs sourced from Google

Earth, each having a very high resolution of 0.5 m/pixel and
dimensions of 1024 × 1024 pixels. Spanning a time frame of
5–14 years, these images vividly capture significant land-use
transformations, especially construction growth. The dataset
encompasses a variety of building morphologies, from villa
residences and tall apartments to small garages and large
warehouses. Primarily emphasizing building-related dynam-
ics, it specifically categorizes changes as building growth or
decline. Expert RS interpreters annotated these images with
binary labels, denoting change (1) or no change (0), with
every annotation undergoing a rigorous double-check process
to ensure accuracy. For experimental divisions, patches of size
256 × 256 yielded 7120, 1024, and 2048 samples for training,
validation, and testing sets, respectively.

DSIFN-CD [38] dataset comprises six large, bitemporal,
high-resolution images that span six Chinese cities, namely
Beijing, Chengdu, Shenzhen, Chongqing, Wuhan, and Xian.
Initially obtained manually from Google Earth, the images are
pre-processed into default pairs with dimensions of 512 ×

512 pixels. For experimental consistency, these are further
segmented into non-overlapping 256 × 256 blocks, yielding
14 400 training, 1360 validation, and 192 test samples.

B. Evaluation Metrics

F1-score (F1) [39] is a statistical measure used in the
context of binary and multiclass classification to evaluate
a model’s accuracy. The F1-score combines recall, which
gauges correct change identification, with the minimization
of false detection, serving as an overall indicator of a model’s
accuracy in detecting RS image changes [40]. Metric formu-
lations are as follows:

F1 =
2 TP

2 TP + FN + FP
(8)

where TP represents true positives, FP denotes false positives,
TN signifies true negatives, and FN refers to false negatives.

Intersection over union (IoU) [41] is a widely adopted
metric in the domain of CD using RS imagery to gauge the
agreement between predicted change areas and ground-truth
(GT) annotations [40]. It quantifies the ratio of the intersecting
area to the union area of the predicted and actual change
regions, providing a value ranging from 0 (no overlap) to 1
(complete overlap). Metric formulations are as follows:

IoU =
Y ∩ G
Y ∪ G

. (9)

Overall accuracy (OA) [42] serves as a performance metric
to evaluate the proportion of correctly classified pixels relative
to the total number of pixels in RS imagery. It provides
a comprehensive measure of the model’s effectiveness in
accurately detecting both changed and unchanged areas across
the entire spatial extent of the image under the CD task [43].
Metric formulations are as follows:

OA =
TP + TN

TP + TN + FP + FN
. (10)

Recall [44] evaluates the fraction of true positive changes
that were correctly identified by a model relative to the
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total actual changes [45]. This metric is crucial to gauge the
model’s proficiency in capturing all pertinent alterations within
the satellite images, ensuring that no significant changes are
overlooked [46]. Metric formulations are as follows:

Recall =
TP

TP + FN
. (11)

C. Implementation Details

AdaptFormer is trained on eight NVIDIA A100-PCIE-40G.
Each GPU has a batch size of 24 with a patch size of 256 ×

256. The AdamW optimizer is utilized with a cosine annealing
strategy, setting an initial learning rate of 0.0006 and a weight
decay of 0.05. The training procedure is configured for a total
of 600 epochs. Additionally, we have configured the weights
for model multilayer output and label calculation loss in a ratio
of 5:5:5:8 during training, and our data loader utilizes four
subprocesses to load data in parallel, improving data loading
speed and efficiency.

D. CD Performance

Our experimental evaluation benchmarked AdaptFormer’s
performance on the LEVIR-CD and DSIFN-CD datasets,
as shown in Table I. Performance was assessed using four
critical metrics: F1, IoU, OA, and Recall, and juxtaposed
with 11 established CD methods, including notable performers
such as ChangeFormer, P2V-CD, and Changer. Each of these
employed unique strategies for CD: ChangeFormer utilized the
difference module to gauge the variance in decoder output fea-
ture maps, P2V-CD resolved the problem via temporal–spatial
transformations, and Changer integrated feature interaction
strategies, achieving metrics of 92.24%, 85.59%, 99.20%, and
91.20%, respectively.

AdaptFormer, however, through its innovative methodolo-
gies, presents an evident advancement in the performance
metrics across both datasets. Specifically, on the LEVIR-CD
dataset, AdaptFormer manifests scores of 92.65%, 86.31%,
99.19%, and 92.59% for the F1, IoU, OA, and Recall metrics,
respectively. Despite a marginal decrement of 0.01% in the OA
metric compared to Changer, the F1, IoU, and Recall metrics
exhibit enhancements of 0.41%, 0.72%, and 1.39%, respec-
tively. The superiority of AdaptFormer is further emphasized
in the DSIFN-CD dataset. Here, it significantly surpasses P2V-
CD, the runner-up, with an impressive F1-score of 97.59%—a
striking 5.77% advancement.

E. Ablation Study

1) Stage Depth Setting: This section is dedicated to assess-
ing the impact of depth at each model stage, denoted as N1,
N2, and N3, for the first, second, and third stages, respectively.
As shown in Fig. 4 with an initial configuration of [3, 3,
3], the F1, IoU, OA, and Recall values register at 92.65%,
86.31%, 99.19%, and 92.59%. It is notable that any decrease
in depth at each stage reflects in a consequent decrease in all
performance metrics, exemplified when N1, N2, and N3 are
set to [1, 1, 3], causing decreases of 1.31%, 2.25%, 0.12%,
and 2.31% in F1, IoU, OA, and Recall, respectively. This

Fig. 4. Quantitative comparison with different stage depths of AdaptFormer
on the LEVIR-CD dataset.

scenario implies a shortfall in feature extraction by shallow
models, thereby negatively affecting accuracy. Conversely,
an attempt to increase depth also instigates similar metric
decreases, such as when N1, N2, and N3 are set to [3, 3,
6], resulting in decreases of 0.62%, 1.07%, 0.12%, and 1.71%
in F1, IoU, OA, and Recall, respectively. Interestingly, with
the configuration [4, 4, 4], the F1-value slightly elevates to
99.25%, outperforming the base by 0.06%, yet other metrics
underperform, suggesting an over-extraction of deep semantic
features due to excessive stages. After a thorough examination
of all these dynamics, the configuration of [3, 3, 3] is retained
as the optimal choice.

2) Feature Splits: Splitting input features into a specified
number affects the model performance. The goal of this
section is to evaluate the impact of feature splits on the
model performance. As shown in Fig. 5(a), we notice that
the model achieves the best performance when the feature
splits are set to 4, with F1, IoU, OA, and Recall of 92.65%,
86.31%, 99.19%, and 92.59%, respectively. When the feature
splits are less than 4, the model’s performance decreases. For
example, when the feature splits are 1, the model’s F1, IoU,
OA, and Recall decrease by 0.82%, 1.42%, 0.11%, and 1.42%,
respectively. This is because fewer feature hierarchies are not
conducive to the model learning feature representations from
multiple perspectives, which leads to performance degradation.
On the other hand, when the feature splits are greater than 4,
the model’s performance also decreases. For example, when
the feature splits are set to 16, the four indicators of the model
decreased by 0.50%, 0.87%, 0.05%, and 0.73%, respectively.
This is due to an excessive number of feature splits causing the
model to easily overfit the training data, leading to a decrease
in generalization performance. Considering the above factors,
we believe that setting the feature hierarchy to 4 is a reasonable
choice.

3) Spatial Exchange Setting: The objective of this section
is to evaluate the impact of spatial swapping positions on the
model’s performance for the spatial exchange module. The
experimental results are shown in Fig. 5(b). When perform-
ing spatial swaps only in the h-dimension, the model’s F1
and IoU are 92.45% and 85.97%, respectively. When swap-
ping in the w-dimension, the model’s performance improves,
with F1 increasing by 0.20% and IoU increasing by 0.34%.


