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edges and shapes, proving instrumental for the identification
of minor changes. However, this stage is limited in its ability
to unravel more intricate details. Advancing to stage 2, the
model deepens its semantic exploration to intermediate levels,
thereby refining its detection capabilities to encompass moder-
ate changes through the discernment of more complex shapes
and patterns, albeit with remaining challenges in capturing the
finest nuances. The culmination occurs in stage 3, where an
intensive dive into deep semantic realms enables the model to
grasp comprehensive contextual relationships and substantial
structural shifts, thus extending its detection acumen to sub-
stantial changes. This graduated approach aligns closely with
GT data, indicating minimal discrepancies and highlighting the
model’s adaptability and scalability. The framework effectively
addresses the diverse requirements of CD in RS imagery,
accommodating changes across a wide range of magnitudes.

3) Error Maps: We employ error maps as a visual tech-
nique to rigorously assess the effectiveness of CD on RS
images, highlighting discrepancies between predicted and true
values. Fig. 8 elucidates the confidence visualization results for
various CD models when applied to the LEVIR-CD dataset.
Primarily, the majority of the figures—columns 1 to 6—
display error analysis from several mainstream models on their
respective test images, whereas the concluding column distinc-
tively represents the outcomes of our AdaptFormer approach.
A unique measurement system was employed wherein the
differences between the model outputs and the GT were
visualized on a scale from 0 to 1. A shade closer to blue
(indicating a value nearer to 0) epitomizes high confidence in
detection, while a hue leaning toward red (signifying a value
approaching 1) designates lesser assurance.

In this visualization, AdaptFormer’s adeptness is consis-
tently evident across various test images. Particularly notable
is its proficiency in small object detection, where the near
absence of the red hue in the first row suggests its enhanced
capability to identify scattered minor entities. For medium-
sized objects, many contemporary models manifest continuous
red zones, indicating lapses in their detection confidence.
In stark contrast, AdaptFormer’s results, especially in the
fourth row, underscore its superiority by almost flawlessly
identifying these areas. This prowess extends to large object
detection as well, as observed in the fifth row, where the dearth
of red regions in our method’s visualization stands testament
to its exceptional confidence and accuracy in recognizing
substantial object changes.

V. CONCLUSION

This study presents AdaptFormer, a groundbreaking solu-
tion to CD in RS imagery. Distinctly adaptive, AdaptFormer
systematically interprets hierarchical semantics, tailoring its
operations across three depth levels: simple techniques for
shallow semantics, spatial data assimilation for medium
details, and cascaded depthwise attention for in-depth insights.
Our experimental evaluations, particularly on the LEVIR-CD
and DSIFN-CD datasets, showcase AdaptFormer’s superior
accuracy and performance over other models, underscore its
potential in applications from urban development to environ-
mental surveillance. In essence, AdaptFormer emerges as a

benchmark in CD, ushering in new avenues for future research
and development in the domain. In future work, we aim
to enhance the computational efficiency of the AdaptFormer
model to better support real-time analysis, while maintaining
its accuracy and effectiveness in CD tasks.
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