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Social and economic variables 
explain COVID‑19 diffusion 
in European regions
Christian Cancedda 1, Alessio Cappellato 1, Luigi Maninchedda 2, Leonardo Meacci 2, 
Sofia Peracchi 3, Claudia Salerni 4, Elena Baralis 1, Flavio Giobergia 1* & Stefano Ceri 4

At the beginning of 2020, Italy was the country with the highest number of COVID‑19 cases, not only 
in Europe, but also in the rest of the world, and Lombardy was the most heavily hit region of Italy. The 
objective of this research is to understand which variables have determined the prevalence of cases in 
Lombardy and in other highly‑affected European regions. We consider the first and second waves of 
the COVID‑19 pandemic, using a set of 22 variables related to economy, population, healthcare and 
education. Regions with a high prevalence of cases are extracted by means of binary classifiers, then 
the most relevant variables for the classification are determined, and the robustness of the analysis 
is assessed. Our results show that the most meaningful features to identify high‑prevalence regions 
include high number of hours spent in work environments, high life expectancy, and low number of 
people leaving from education and neither employed nor educated or trained.

Abbreviations
AUC:  Area under the curve
AWU:  Annual work units
COVID-19:  Coronavirus disease 2019
EU:  European Union
GDP:  Gross domestic product
GVA:  Gross value added
JRC:  Joint research centre
LR:  Logistic regression
NEET:  Not engaged in education, employment or training
NUTS:  Nomenclature of territorial units for statistics
NUTS2:  Nomenclature of territorial units for statistics, level 2
RF:  Random forest
ROC curve:  Receiver operating characteristic curve
SMOTE:  Synthetic minority over-sampling technique
SVM:  Support vector machine
UAA:  Utilized agricultural area

At the end of 2019, the COVID-19 disease started spreading around the world. The first case of COVID-19 in 
Italy was confirmed in Lombardy on February 20, 2020. The first patient was admitted to a hospital in Codogno 
(Lombardy, Italy) with a “mild pneumonia resistant to therapy, no relevant travel history and no apparent expo-
sure to diseased contacts”1. In the following week, the Codogno area saw a rapid increase of COVID-19 cases, 
as well as other areas in the southern part of  Lombardy1. At the beginning of 2020, Italy was the nation with the 
highest number of cases among not only European countries, but the rest of the  world2. Lombardy, with its 10 
million inhabitants, was the most heavily hit region in Italy, with one third of all cases and half of all  deaths2.

The main objective of this work is to identify the main variables that explain the spreading of the virus in 
the European regions. We collected variables belonging to six categories: education, demography, healthcare, 
mobility, primary sector, economy. Specific variables were selected on the basis of their availability on an adequate 
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spatial scale. We characterized European regions at a sub-national granularity that has allowed to reach a good 
balance between the research goals and data availability.

The adopted methodology consists in using several machine learning algorithms to learn about the main 
associations between the collected variables and the risk of exposure of each European region (quantified by the 
density of COVID-19 cases registered during the first and second waves). Next, we analyze the machine learning 
models that have been trained to extract useful insights in terms of the importance that each model assigns to 
the various available features. Since we study both the first and the second COVID-19 waves, we additionally 
make comparisons between the role that the features played in both situations.

As proximity is key to viral  diffusion3, several works study the spreading of COVID-19 in space and time. 
Focusing on Italy, De  Angelis4 and  Bontempi5 analyzed Lombardy data at the municipality level, while  Coccia6 
and Cartenì7 considered the whole Italian territory, either at the provincial level or at the regional one. Other 
studies addressed several European countries:  Bontempi8 focused on Italy, Spain and France, while  Kapitsinis9 
included 9 European countries. For what concerns the temporal dimension, some works focused on the initial 
period of the first wave (between January and April 2020)4–6,9, other works concentrated on the second wave 
(between September and December 2020)7, and other works focused on discontinuous short intervals: for exam-
ple,  Bontempi8 focused on April 2020, November 2020 and January 2021, the peaks of COVID-19 diffusion in 
Europe. Such strategy of analysis of epidemiological phenomena has its roots in mathematical  epidemiology10–12, 
in which the spread of the disease under study is modeled by means of susceptible-infected-recovered (in short 
SIR)11,13 models at a chosen geographic granularity, separately for each time-period based on the employment 
of pharmacological or non-pharmacological containment measures. The standard SIR model and its variations 
of increasing complexity(e.g. SIRV, SEIR, SEIRS) have already been applied at different geographic scales, from 
 region14, to  country15,16 and continent  level17,18 in order to develop a thorough understanding on the risk of 
transmission of COVID-19. To this end, risk estimation of COVID-19 spread has been studied from the per-
spective of time-varying SIR  models19. Nonetheless, following studies showed that SIR is an ineffective modeling 
 strategy20 for the COVID-19 epidemic, as such technique does not account for the contributing factors which 
have been shown to be greatly correlated with the spread of COVID-19, such as pollution, social norms and 
cultural context of each  population20.

For what concerns the choice of the factors which may have contributed to COVID-19 diffusion, some studies 
focused on environmental and meteorological  data5,21,22, other studies focused on mobility:  Sannigrahi23 analysed 
how the volume of international commerce influenced the spread of COVID-19, while Cartenì7 analyzed how 
public transport influenced the spreading of COVID-19 in the second wave. Differently from these works, we 
consider a larger set of European regions and contributing factors.

Several works take into consideration a variety of contributing factors. The most common macro areas ana-
lysed regard demography, economy or the healthcare  system23–26, sometimes integrated with  environmental6 or 
political  factors27. Some studies argued that the strongest correlated factors with COVID-19 are socio-economic 
(population, poverty, income, GDP)8,25,28; other studies assessed a major correlation of environmental factors 
such as air  quality5,9 or air  pollution22. In other cases, spatial and geometrical properties (e.g. of cities) have been 
studied to understand their relationship with the spread of COVID-1929.

Some studies disagree, perhaps due to the difference in datasets and methods: for instance,  Amdaoud25 
argued that better hospitals and medical services were strongly correlated with lower mortality rates, but  Lupu24 
stated that they did not affect at all the number of deaths. Most of the studies agreed that factors such as life 
 expectancy9,25,26,30 or population  density22,31 are highly correlated both with mortality and number of COVID-
19 cases. What is crucial to understand is how these factors correlate to other socio-economic and healthcare 
elements, in order to create a more encompassing model, that takes in consideration the various aspects of our 
society. Hence, this work has the objective to explore, from both a temporal and a geographical perspective, how 
these various socio-economic and healthcare elements have had an effect on the spread of COVID-19.

Materials
The dataset used for this study includes a subset of European regions, as defined by the NUTS2 classification. The 
NUTS (Nomenclature of Territorial Units for Statistics) is a hierarchical system for dividing the economic terri-
tory of the European Union (EU)32. The NUTS nomenclature identifies regions at three different levels (NUTS 
1, 2, 3), moving from larger to smaller territorial units. In particular, the second NUTS level (NUTS2) identifies 
regions within countries (for example, in Italy NUTS2 identifies regions such as Lombardy or Tuscany). As a 
general representation, each NUTS2 region is identified by a code that concatenates the NUTS1 identifier and 
an incremental region identifier. For example, Italian regions Lombardy and Tuscany are identified by ITC4 and 
ITI1 respectively. In this case, ITC and ITI are the NUTS1 representations for north-west and central Italy. A 
full list of all NUTS levels is openly  available32.

The regions considered for this study belong to a total of 20 European countries. The total population living 
in these regions is of 357 million people.

For each of the regions under study we collected a total of 22 variables from the Eurostat data repositories. 
Eurostat is the statistical office of the European  Union33. The variables span six macro areas that have been found 
in literature to be relevant in relation to the spread of viruses: economy, education, population, healthcare, pri-
mary sector and mobility.

Although the data is made available by Eurostat, this Office does not generally engage in direct data collec-
tion. Instead, data is gathered in individual European countries by their respective national statistical authori-
ties, adhering to standardized European statistical regulations and standards, overseen by Eurostat. National 
authorities are responsible for verifying and analyzing their data, which is subsequently transmitted to Eurostat. 
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The organization performs validation and quality control checks on the received data. These data sets are sys-
tematically published in accordance with a predefined publication  calendar34.

We additionally gathered information on the impact that the first and second COVID-19 waves had on the 
various regions, based on data gathered from the Joint Research Centre  Repository35. The data has been col-
lected at the sub-national level and includes the numbers of infections by COVID-19, collected directly from 
the National Authoritative sources (more specifically, on the National monitoring websites)36.  Following37, we 
characterized the first wave as having occurred between February 20 and August 20, 2020, and the second wave 
between August 20, 2020 and February 20, 2021.

For each pandemic wave, we studied the density of cases and deaths per hundred thousands inhabitants. The 
number of deaths is strongly dependent on the preparedness of the local health systems to react to and manage 
the virus effects. Instead, the number of cases allows for a more precise characterisation of the diffusion envi-
ronment in the regions under analysis. Based on the goal of trying to understand how viruses spread and what 
factors might influence future waves (or similar pandemic events), we consider the number of cases occurred 
as being a more interesting target.

The rest of this section presents a better characterization of the data used, with information about the data 
cleaning performed, the variables considered and the discretization that has been applied to the problem.

Data cleaning
After collecting the socio-economic variables and the COVID-19 outcomes, we applied an initial data cleaning 
step. From the pool of all available regions, Eurostat data were available only for 205 NUTS2 regions. Coronavi-
rus data collected from the JRC repository were available only for 154 and 152 regions, for the first and second 
wave respectively. Thus, only regions for which both the covariates and coronavirus cases data were available 
could be considered. Furthermore, we note that the information on the population of a region is necessary to 
preprocess the data (e.g. compute the various densities). For this reason, 3 regions have been removed due to 
absence of this value. After applying all of these constraints, a total of 151 and 149 regions have been analyzed 
for the first and second wave.

Consequently, since Sweden did not adopt pandemic containment procedures, all its 8 regions were removed 
from the analysis: the dynamics that occurred there are distant from those of the other European regions, which 
are the main focus of this study.

Additional attention has been paid to 6 NUTS2 regions which had missing values for covariates which, even 
if filled with the aggregate national statistic (computed considering the regions in the dataset), would result in 
extreme outlier values (unlikely with respect to the sampled distribution of the respective missing feature) after 
normalization by their populations. Hence, the regions BG32, BG42 (in Bulgaria), ES63, ES64 (in Spain), FI20 (in 
Finland) and FRY5 (in France), which presented the above stated anomalous behaviors, have also been removed.

We thus obtained a dataset of 137 NUTS2 regions for the first COVID-19 wave, and 135 NUTS2 regions for 
the second one.

Variables
The 22 variables collected from Eurostat can be divided into six different categories, which, according to litera-
ture, are relevant in their relation to the spread of viruses: education, population, healthcare, mobility, primary 
sector and economy.

• Education variables include information about early leavers from education and training, NEET rate (people 
Not engaged in Education, Employment or Training), students enrolled in education, students in tertiary 
education and participation rate in education and training.

• Population variables regard life expectancy, crude death rate, population density and total deaths.
• Healthcare variables considered for this study include those related to long-term care beds, hospital beds, 

hospital discharges for respiratory diseases and health personnel.
• Mobility variables cover the volumes of vehicles and air passengers.
• Primary sector variables consider data about farm labour force and utilized agricultural area.
• Economic variables include unemployment rate, thousands of hours worked, GDP (Gross Domestic Prod-

uct), compensation per employee and regional GVA (Gross Value Added – the total value of all goods and 
services produced subtracted of the value of goods and services used for intermediate consumption in their 
production).

For each variable, we select the latest available measurement before the outset of the pandemic, representing the 
pre-pandemic condition. When meaningful, the variables have been typically normalized per 100,000 inhabit-
ants. A full description of each variable is available in Table 1.

The dataset collected in this way contains some missing values. Figure 1a and b show the distribution of miss-
ing variables for each region and the distribution of missing regions for each variable, respectively. The region 
with the majority of missing variables is “Northern and Eastern Finland”, with all but one feature missing. The 
feature with the highest number of missing values is instead “longterm care beds”, whose information is missing 
from 54 regions ( ≈ 39% of regions). The missing values have been filled by using each region’s national average 
for the selected feature.
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Table 1.  Brief description for each of the 22 variables used for the study.

Category Variable Description Unit of measure

Education

Early leavers from education and training
Percentage of young people (between 18 and 24 years old) who left school, university or 
training classes after having started them, over the total number of people who joined 
schools, universities and training

Percentage

Students enrolled in tertiary education Total number of students (independent from sex and age) enrolled in tertiary school 
education Absolute number

NEET rate Percentage of people from 15 to 24 who are Not engaged in Education, Employment or 
Training (NEET) over the total number of people of that age Percentage

Participation in education and training Percentage of people between 25 and 64 years old who, in the last 4 weeks, has partici-
pated in educational and training activities Percentage

Pupils and students enrolled Total number of students (independent from sex and age) enrolled in school Absolute number

Population

Life expectancy Life expectancy for a person Years

Population density Density of population in each region People/km2

Crude death rate Mortality in relation to the total population, Expressed in deaths per 100,000 inhabitants Per 100,000 population

Deaths Number of deaths in each region Absolute number

Healthcare

Hospital discharges for respiratory diseases Number of people who left the hospital after having suffered from respiratory diseases Absolute number

Long-term care beds Number of long term beds available in a region for every 100,000 inhabitants Per 100,000 population

Health personnel Health care staff, the “manpower” active in the health care sector (e.g. doctors, dentists, 
nurses) Absolute number

Available hospital beds Number of available hospital beds in a region, expressed as average per 100,000 inhabit-
ants Per 100,000 population

Mobility
Air passengers Number of passengers carried, in that region, per thousand of inhabitants Per 1,000 population

Stock of vehicles Total number of vehicles present in a region Absolute number

Primary sector
Farm labour force

Regular labor force involved in farm work.
Expressed in Annual Work Units (AWU), where 1 AWU corresponds to the work per-
formed in a year by one full-time person

AWU 

Utilized agricultural area Share of the utilizied agricultural area (UAA) occupied by the main agricultural land uses 
(arable land, permanent grassland and land under permanent crops) Percentage

Economy

Unemployment rate Unemployment rate in a region Percentage

Thousands of hours worked Sum of the hours worked by employees in a certain area Absolute number

Real growth rate of regional GVA
GVA (Gross Value Added) is an indicator of the economic activity of a country or region. 
It reflects the total value of all goods and services produced minus the value of goods and 
services used for intermediate consumption in their production

Percentage change
w.r.t. previous period

Compensation of employees Sum of the compensations of all employees of a certain area Millions of euros

GDP Gross Domestic Product (GDP) at current market prices Millions of euros

Figure 1.  Analysis of missing values in the adopted dataset. (a) shows the distribution of the fraction of missing 
features for each region. (b) shows the distribution of the fraction of missing regions for each feature.
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Risk classes of COVID‑19 diffusion
We are interested in building classes of risk for the various regions, according to their risk of exposure in terms 
of COVID-19 cases. This helps define a clearer narrative for the general public: because of this, several countries 
have already adopted similar risk-based classes to provide different guidelines and enforce different policies (e.g. 
in Italy, yellow, orange and red zones have been defined based on each region’s risk).

We build risk classes according to each region’s risk of exposure to COVID-19 cases by performing a 1-dimen-
sional k-means38 unsupervised clustering algorithm on the number of cases for each wave, with a varying number 
of clusters: we found that two clusters is an optimal choice, in terms of silhouette  score39,40 and of numerosity of 
each risk class. To obtain a more robust choice of clusters, we used multiple centroids initialization and selected 
the cluster assignment with the lowest sum of square distances from the points to their cluster’s centroids. It 
should be noted that applying k-means to a 1D dataset has the same effect as defining k − 1 thresholds to use 
to group the data points. We still used k-means instead of manually defining the thresholds both to obtain a 
meaningful value for k (from a k-vs-silhouette plot) and to automate the selection of the threshold value. The 
COVID-19 cases density and the resulting discretized risk classes are separately shown for the two waves in Fig. 2.

Figure 2.  ROC curves for the different predictive models with respect to the first (left) and second (right) 
waves. Curves close to the (0, 1) corner achieve better performance. (a) shows the ROC curve for the first wave: 
the random forest generally achieves better performance. (b) shows the ROC curve for the second wave: in 
this case, all models obtain similar results. All results have been obtained using leave-one-out validation. The 
positive class is considered to be the high risk one. The blue dotted line represents random guess.
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Methods
The objective of this work is to identify and quantify the effect that various socio-economic variables have in 
determining the risk class associated with each European region. To achieve this goal we opted for a classification-
based machine learning approach, using models that provide some kind of interpretation of the results obtained. 
The machine learning pipeline adopted is comprised of the following steps: minority class rebalancing, model 
training, tuning and evaluation; followed by a final interpretation of the results. The rest of this section presents 
each of these steps in additional detail.

All experiments have been performed using a machine running Ubuntu 20.04, equipped with an Intel Xeon 
X5650 (6 cores, 12 threads) @ 2.66 GHz and 32 GB of memory. The source code has been developed using Python 
3.8 and the scikit-learn42 library for the main proposed models. A link to the source code repository is made 
available as a part of the Data availability statement.

Minority class rebalancing
The two classes (high and low risk) are not well-balanced for the two waves. For this reason, we use  SMOTE43 
(Synthetic Minority Over-sampling Technique), a commonly adopted technique to rebalance the problem. We 
have found the best performance in terms of downstream classification task for a number of neighbors for the 
interpolation N = 6 . This choice is found to be a stable one, since we also achieve similar performance for other 
similar values of N.

Model training and tuning
We trained various classifiers that can be inspected to extract meaningful considerations on the importance of the 
input features. Hence, we used a subset of interpretable methods from the statistical learning literature, namely: 
logistic regression (LR), Support Vector Machine (SVM)44 with a linear kernel and random forest45 (RF). Logistic 
regression allows to infer from the available data, the relationship that exists between the features of an input 
sample and the respective predicted class, based on the odds of membership to one class with respect to all others.

Random Forest is an ensemble learning method which achieves similar goals by means of majority vote 
prediction from multiple separately trained decision trees, each fit on a subset of features(features bagging).

The Support Vector Machine instead solves the classification problem by finding the hyper-plane that best 
separates the data points according to the respective classes. This fact is then used to predict the class associated 
with a test sample, based on the side of the found plane it is located.

We are mainly interested in studying the “high risk” class, i.e. the most alarming of the two classes. Because of 
this, we measure precision and recall of all classifiers obtained for the high risk class. To find a balanced model, 
we additionally consider the F1 score (i.e. the harmonic mean between precision and recall). We use this metric 
for the choice of hyperparameters and overall evaluation because both minimizing the false positives and false 
negatives is important for the purpose of our classification problem: a large number of false positives implies 
over-estimating the importance of features that are not indicative of high risk, whereas high false negatives would 
result in under-estimating the features that might instead be relevant for the high risk class.

To find the optimal hyperparameters we adopted a 5-fold cross validation technique, choosing for each model 
the configuration that maximizes the average F1 score on the high risk class, across all folds. The following are 
the hyperparameters that have been considered for each model.

For the logistic regression, we considered using either an L1 or an L2 regularization term (with regularization 
coefficient ∈ {0.1, 0.5, 1, 5, 10, 20, 50} , as well as no regularization at all. For the random forest we trained models 
using 100 trees and a maximum depth that ranged from 2 to 10, as well as not enforcing any depth regulation. 
For the SVM we adopted a linear kernel (to obtain weights that can be easily interpreted), with a regularization 
parameter ∈ {0.1, 0.5, 1, 5, 10, 20, 50} . We also tune the class weight assigned to the low and high risk categories; 
for this parameter, the following combinations are selected (notation is high risk weight : low risk weight): 
{1 : 1, 4 : 1, 8 : 1, 32 : 1,

#samples
#classes·#sampleshigh_risk

:
#samples

#classes·#sampleslow_risk
}.

Model evaluation
The models are evaluated by computing the leave-one-out F1 score on the dataset of each wave. The leave-one-
out validation strategy has not been used during the hyperparameter tuning phase because of its computational 
complexity. However, it provides a good estimate of the model’s performance on new data points.

As the tuning choices have been made on the dataset through k-fold cross validation, the overall performance 
metrics reported for leave-one-out are not independent of the performance obtained during validation. We are 
aware of this, but still opted for this evaluation technique due to the limited data availability – which would only 
allow for a small test set to be set aside.

Feature selection and interpretation
Three ML methods (logistic regression, linear SVM, random forests) have been used for feature selection. Each 
model has been trained with its best hyperparameter configuration and used to establish the relationships 
between the 22 variables and the risk class prediction. Each model has its means to quantify the relevance of the 
relationship between a variable and the risk classes, according to the available data. For both linear SVM and 
logistic regression, each of the parameters of the models provides a measure of the degree by which each feature 
skews the likelihood that a test sample should be classified with a given label or not.

Hence, the risk class prediction is the result of the weighted contribution of each variable of the test sample. In 
the case of Random Forest instead, a measure of absolute relevance, namely the feature importance, is attributed 
to each variable as a means to quantify its impact in the class prediction procedure. Although it is not directly 
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employed for inference by the model (as is the case of the coefficient of LR and SVM), it allows to measure 
the influence of each variable in the overall majority vote class prediction. Next, we discuss in more detail the 
interpretation of each algorithm.

Logistic regression provides the means to both classify regions and estimate the influence of each feature 
on the odds of the risk  class46 of any given NUTS2 region. The optimization objective defined below allows us 
to find the set of coefficients W ∈ R

d which define the relevance of all features for the purpose of classification. 
Here, xi ∈ R

d represents the set of features of the i-th sample of our dataset.

In the case of L1 penalty term, the 12 ||W ||22 is substituted by the L1 norm ||W ||1 . For the logistic regression, 
the quantity WTxi + b represents the logarithm of the predicted odds ratio. As such, the coefficients in W have 
a direct relationship with the predicted probability of the positive class (high risk).

Similar considerations hold for linear SVM, which separates samples of the two risk classes by determining 
an hyperplane that maximizes the margin between two classes. Such separation frontier is defined by a set of 
coefficients obtained through an optimization routine: their values determine the relationship between each 
feature and the risk  classes47. In the linear case, the optimization objective used to determine the optimal set of 
coefficients W ∈ R

d is:

Both of these models provide an indication of the direct or inverse influence that the features have on the 
identification of the low or high risk class.

Finally, random forests can be used to extract the importance that each feature has for the  classifier48. This 
feature importance can be computed for each decision tree that comprises the random forest: this information 
can then be aggregated to compute an overall feature importance.

At any node of a decision tree, we can identify the set of samples to be processed as D and the two splits 
produced as DL and DR , such that D = DL ∪ DR and DL ∩ DR = ∅ . For any of these sets of points we can com-
pute an impurity value, which represents how “impure” they are with respect to the target class. We refer to this 
impurity score as ι(D) . In this paper, we will discuss the impurity in terms of Gini index. The contribution of the 
split towards the overall separation of the classes in the dataset can be quantified as:

denoting the decrease in impurity achieved when passing from the parent to the children. Each impurity is 
weighted by the number of samples contained within the respective split. For each split, there is exactly one fea-
ture that is used for that split. As such, the contribution of the split can be assigned to the corresponding feature. 
It follows that for each feature f we can build a set Df  of all nodes that use that feature for the split. The overall 
contribution of feature f (or its feature importance), for tree T is then computed as:

Where F is the set of all available features. The term at the denominator is used to normalize the result so that the 
sum of all feature importances is 1. For a random forest, the overall feature importance of any feature is given by 
the mean feature importance for that feature across all the trees T  . Once again, the feature importances obtained 
in this way are normalized so as to sum to 1.

Results
In this section we present the results achieved for the models built, in terms of both performance and notions 
learned.

Models performance
In Table 2 we include the performance for both waves in terms of F1 score, precision and recall on the “high 
risk” class. The first conclusion that can be drawn from this data is that all models have better predictive capa-
bilities for the second wave – additionally all models are more consistent in terms of results achieved. Multiple 
reasons may be the cause of this: among them, we note that there has generally been a more accurate counting 
of COVID-19 infections during the second wave. This is the result of a general better preparedness w.r.t. the one 
shown by most countries for the first wave. The ROC (Receiver Operating Characteristic) curves for the best 

min
W∈Rd ,b∈R

C

N∑

i

log(1+ e−yi(W
Txi+b))+

1

2
||W ||22

min
W∈Rd ,b∈R

C

N∑

i

max(0, 1− yi(W
Txi + b))+

1

2
||W ||22

C(D) = |D|ι(D)− |DL|ι(DL)− |DR|ι(DR)

fiT (f ) =

∑
D∈Df

C(D)

∑
φ∈F

∑
D∈Dφ

C(D)

fi(f ) =

∑
T∈T

fiT (f )

∑
φ∈F

∑
T∈T

fiT (φ)
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performing models are shown in Figure 3. Once again we observe a general consistency for the second wave, 
and an improved performance achieved by the random forest for the first wave.

Predictive variables
We are mainly interested in extracting the importance assigned by each classifier to the variables under study. 
Since the models are characterized by different learning mechanisms, we first try to assess whether the models 
are consistent with one another in terms of importance assigned to the various variables under study.

To quantify the consensus of the classifiers in terms of the relevance of each feature, we first compute the 
Pearson correlation among the importances learned by each model. The results are shown in Table 3. To compare 
the feature importance of random forests (positive, larger for more important features) with that of SVM and 

Table 2.  Performance of different predictive models with respect to both waves. All metrics are computed on 
the “high risk” class, using leave-one-out validation. In bold are the best performing models for each wave and 
metric.

First wave Second wave

F1 score Precision Recall F1 score Precision Recall

Logistic regression 0.5217 0.4444 0.6316 0.8659 0.8353 0.8987

SVM 0.4706 0.375 0.6316 0.859 0.8701 0.8481

Random forest 0.5957 0.5 0.7368 0.8447 0.8293 0.8608

Figure 3.  Coefficients learned by the linear SVM model for the first and second wave. Positive coefficients 
imply a positive weight of the respective feature toward the prediction of the “high risk” class, whereas negative 
coefficients characterize features more related to the “reduced risk” class. The magnitude of the coefficients 
is proportional to how impactful the respective feature is in the prediction. The coefficients are sorted by 
descending importance (in absolute value). (a) shows the coefficients learned by the linear SVM for the first 
wave, (b) shows the coefficients for the second wave.

Table 3.  Correlation coefficient between each model’s feature importances. Feature importances for SVM and 
logistic regression are obtained as the absolute value of the learned weights. Cells containing “ns” represent 
situations when the correlation between models is not significant (p-value ≥ 0.05).

First wave Second wave

LR SVM RF LR SVM RF

First wave

LR – 0.8917 ns 0.8423 0.5919 ns

SVM 0.8917 – 0.5065 0.5876 0.4938 ns

RF ns 0.5065 – ns ns 0.4585

Second wave

LR 0.8423 0.5876 ns – 0.7834 ns

SVM 0.5919 0.4938 ns 0.7834 – ns

RF ns ns 0.4585 ns ns –
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logistic regression (positive or negative, larger in absolute value for more important features), the absolute value 
of the weights of SVM and logistic regression have been used.

It can be observed that SVM and logistic regression make similar choices in terms of feature weighting, as 
denoted by large correlation values. An interesting fact is that, across the two waves, all models maintain a large 
positive correlation. This denotes that, although the two waves present many differences (as discussed next), all 
models make reasonably consistent choices in the selection of the relevance of the features.

From Table 3 we can infer that the SVM has large correlation with both the random forest and the logistic 
regression. Because of this, we further analyze the coefficients learned by this model. These weights are shown 
in Fig. 4, separately for the first and second waves.

For a more expressive representation of the distribution of values, Fig. 5 shows the violin plots, separately for 
high and reduced risks, for both waves. The difference in distribution of values between the various features is 
the main drive of the magnitude of the weights learned. In other words, the more the distributions for a specific 
feature diverge, the larger the associated weight learned by the classification model will be.

Figure 4.  Feature distribution ordered from top to bottom by increasing p-value for an F-test applied on the 
data of the first (left) and second (right) waves. A lower p-value represents a more significant difference in 
means between the distributions of values between the high and reduced risk classes. A larger divergence may 
be leveraged by the classification models to identify differences between the two classes. All features have been 
standardized. (a) shows the distributions for the first wave, (b) shows the distribution for the second wave.
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The first wave
Considering the order of decreasing relevance from top to bottom of the graph, it can be observed that the eco-
nomic variables such as compensation of employees, GDP and number of hours worked are some of the features 
which mainly affect the odds of a NUTS2 region to be at high risk of exposure to COVID-19 spread.

The number of hours worked and the population density are also relevant predictors which increase the 
odds of a region to be at high risk. On the other hand, employee compensation is inversely correlated with the 
risk classes.

Next, information about healthcare and demographic features have a considerable influence for the first 
wave. In particular, a high life expectancy and a high population density can be seen to have a positive effect 
on the prediction of a high risk class. The number of long-term care beds is instead negatively correlated with 
it. Although no causality can be inferred, we can hypothesise that an aging population has been affected more 
substantially by the first COVID-19 wave, that more densely populated areas can result in more widely spread 
infections, whereas a strong healthcare system can be assumed to have been useful to prevent many cases from 
further spreading.

The second wave
Similarly to the first wave, we observe that economic and socio-demographic indicators provide the greatest 
contributions to the classification models, together with those related to education; all the others only marginally 
improve odds in favor of either the low or the high risk class.

Figure 5.  Side-by-side comparison of the continuous density of reported COVID-19 cases normalized per 
100,000 inhabitants (left) and of the resulting discretization in binary severity classes (right), separately for first 
(top) and second (bottom) waves. Data obtained form the COVID-19  cases35. Borders have been defined using 
the NUTS2 GeoJSON  definitions41. Python 3.8, GeoPandas 0.8 and Matplotlib 3.7 have been used to produce 
the images.
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More specifically, the GDP and the number of hours worked have a positive impact on the prediction of the 
high risk class, whereas employee compensation is once again inversely proportional to the odds of being at 
high risk.

It is peculiar that life expectancy becomes much less impactful, while the crude death rate, the number of 
enrolled students in primary and in tertiary education now become relevant for classification.

While in general the most predictive features are consistent across waves, there are some cases that can be 
observed where inconsistent behaviors can be observed: most notably the NEET rate and the number of stu-
dents enrolled in primary education change from positively to negatively correlated. Furthermore, the number 
of students in tertiary education changes from uncorrelated to highly positively correlated in the second wave. 
We can in this case advance the hypothesis that this change in effect for education variables can be explained 
in terms of the different roles that education has played in the two waves: the first wave has been characterized 
by students being prevented from attending schools and universities, whereas the second wave has often seen 
students being allowed to resume in-presence activities.

Discussion
Both the first and second wave are characterized by a high similarity of the selected most relevant features. Socio-
economic variables are ranked as highly relevant, with compensation of employees deemed to be the most influ-
ential factor with negative correlation to the high risk of the exposure to COVID-19 spread. The number of hours 
worked and GDP have also been determined as important, with positive proportional relationship to the increase 
in number of infections. This result is aligned to other studies that stated that the strongest correlation with the 
virus has to be associated to socio-economic  metrics5, mainly in relation to the quality of life and the  GDP25,28.

These factors are usually associated with modern developed economies, high ratio of urban population, the 
people’s inclusion in the service industry, high health system maturity and solid international migrant stocks. 
Thanks to this result it is possible to state that a high level of economic wellness is associated with a higher 
possibility to fight against the virus but, at the same time, it increases the possibilities for COVID-19 to spread, 
because the community is more dynamic and people interact more with each other. Indeed, the impact of the 
dynamicity of NUTS2 regions on the spread of COVID-19 can be observed by the change in relevance of some 
features that appear as highly relevant in one wave but not on the other.

Such distinctive characteristic is remarked by the increase in relevance of the number of hours worked, from 
fifth to second most relevant feature for risk classification during the second wave, as well as the major increase 
in importance of the number of students in primary education(represented by “students enrolled”) and tertiary 
education (“students tertiary education”). Both are only slightly correlated to the risk classes in the first wave, 
while instead they become negatively and positively correlated respectively, during the second wave. On the other 
hand life expectancy, population density and number of long-term care beds are shown as highly influential only 
for classification on the first wave.

The negative correlation shown by the latter is supported also by the documented struggle of the European 
healthcare systems in managing the number of COVID-19 cases during the first months of the pandemic, espe-
cially if patients were to manifest severe  symptoms49. Not all the patients affected by the virus were automatically 
admitted to local hospitals, due to the shortage of available beds and rooms, and since from March to May 2020 
the majority of European citizens were in full-lockdown50, ill people were more likely to infect the other people 
living with them, therefore leading to a growth in the number of cases. As already shown in previous  works9,25,26, 
life expectancy, strongly correlated with demographic factors such as number of elders within a population or 
quality of life in a specific area, is strongly linked to the number of COVID-19 cases (as well as deaths caused 
by the virus).

Moreover, given the particular lockdown conditions imposed during the first wave of the epidemic, popula-
tion density and the NEET rate showed as crucial factors, because the higher the number of citizens, the easier 
COVID-19 transmission becomes, in both lockdown and non-restricted  contexts22,31, since nations’ ability to 
maintain safe distances between citizens is  jeopardized51. It is necessary to note that although lockdowns were 
imposed as soon as the virus had been detected in Europe in late February, the high positive correlation of the 
thousand hours worked, hence time spent in office environments, can only be explained by the research of Ref.52,53 
that provides evidence for the presence of COVID-19 in Europe as early as January of 2020 or the last months 
of 2019, as social dynamics had been limited soon after February 2020.

As demographics and healthcare related features partially characterize the first wave of COVID-19, socio-
economic variables become predominant for the second wave. The major importance of socio-economic dynam-
ics for the second wave is shown by features such as the thousand hours worked, compensation of employees, 
NEET rate, which proxy the characteristics of the working population and the ones associated to the demograph-
ics of primary and tertiary education. It can be observed that crude death rate becomes relevant, with negative 
proportionality relationship, during the second wave. The case of the NEET (Not in Education, Employment, or 
Training) rate is rather peculiar, as it changes from positively to negatively correlated, to the odds of high risk of 
COVID-19 spread from the first to the second wave. As this slice of the total population is not an active part of 
the workforce, a greater NEET rate is shown to be associated to lower risk of the spread of COVID-19 during the 
second wave, while it is instead positively correlated for the first wave, in which, to most of the workforce was 
imposed smart-working modality. Thus, COVID-19 infection was facilitated regardless of the employment status.

This might also suggest that countries have provided a more adequate response, from the healthcare stand-
point, in managing the ongoing pandemic during the second wave. In spite of this, the partial return to on-site 
working modalities during the second period of the epidemic resulted in an increase of COVID-19 diffusion due 
to the increase in human-to-human interactions that characterizes the professional world.
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Conclusions
This study analyzed the impact of various social and economic factors on the spread of COVID-19 across 
European regions during the first and second waves of the pandemic. Machine learning models were able to 
identify key variables that influenced the risk classification of regions into high or low prevalence of cases. For 
both waves, socio-economic variables such as hours worked, GDP, and unemployment proved most important. 
However, the influence of specific factors differed between waves. For the first wave, demographic traits like life 
expectancy and healthcare capacity also played a role. For the second wave, education levels and crude death 
rates became more predictive. This suggests countries adapted their responses over time. Overall, our results 
provide insight into how regional characteristics combined with containment measures shaped COVID-19 
transmission dynamics across Europe.

There are several avenues for continuing and expanding this research. First, additional waves of data could be 
analyzed to see how predictive factors evolve as the pandemic progresses. Demographic and behavioral changes 
over time may influence transmission risks. Second, incorporating mobility and social contact network data 
could yield a more granular understanding of spread. Third, performing similar analyses at finer geographic 
scales, such as the municipality level, may reveal localized transmission patterns.

Data availibility
The source code and the data used for this study are openly available at https:// github. com/ Chris 1nexus/ covid- 
eu- analy sis.
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