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Abstract: One of today’s main concerns is to bring artificial intelligence capabilities to embedded
systems for edge applications. The hardware resources and power consumption required by state-of-
the-art models are incompatible with the constrained environments observed in edge systems, such
as IoT nodes and wearable devices. Spiking Neural Networks (SNNs) can represent a solution in
this sense: inspired by neuroscience, they reach unparalleled power and resource efficiency when
run on dedicated hardware accelerators. However, when designing such accelerators, the amount of
choices that can be taken is huge. This paper presents SpikExplorer, a modular and flexible Python
tool for hardware-oriented Automatic Design Space Exploration to automate the configuration of
FPGA accelerators for SNNs. SpikExplorer enables hardware-centric multiobjective optimization,
supporting target factors such as accuracy, area, latency, power, and various combinations during the
exploration process. The tool searches the optimal network architecture, neuron model, and internal
and training parameters leveraging Bayesian optimization, trying to reach the desired constraints
imposed by the user. It allows for a straightforward network configuration, providing the full
set of explored points for the user to pick the trade-off that best fits their needs. The potential of
SpikExplorer is showcased using three benchmark datasets. It reaches 95.8% accuracy on the MNIST
dataset, with a power consumption of 180 mW/image and a latency of 0.12 ms/image, making it a
powerful tool for automatically optimizing SNNs.

Keywords: neuromorphic; Spiking Neural Networks; hardware accelerators; FPGA; Design Space
Exploration; network architecture search; hyperparameter optimization

1. Introduction

The field of Artificial Intelligence (AI), particularly of Artificial Neural Networks
(ANNs), proliferates, with different solutions tailored for diverse computational tasks. In
the plethora of available ANN models, we can include Multi Layer Perceptrons (MLPs)
that are well suited for pattern recognition; Recurrent Neural Networks (RNNs), such as
Long Short Term Memory (LSTM) that can efficiently process time series, Convolutional
Neural Networks (CNNs) for image analysis, and Transformers for Natural Language
Processing (NLP). Amidst this variety, Spiking Neural Networks (SNNs) [1] emerge as a
new computing paradigm, shaped by neuroscience models exploring networks of biological
neurons [2]. Differently from other types of ANNs, SNNs mimic the behavior of biological
neurons more faithfully, trying to reach the extreme energy efficiency observed in our
brain. Although this goal is still far, SNNs are already able to outperform State of Art
(SoA) ANN models in many different applications, in particular those for which the energy
consumption is somewhat constrained [3]. SNNs become particularly interesting when
implemented through dedicated hardware co-processors. Indeed, the intrinsic efficiency
of these models makes them especially suitable to be implemented on digital Application-
Specific Integrated Circuits (ASICs) [4], Field Programmable Gate Arrays (FPGAs) [5], and
analog dedicated circuits [6].
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In this context, one of the main challenges is determining how to construct the SNN to
fit the target application best: there are many different neuron models with varying degrees
of biological plausibility and computing efficiency; a single model has a lot of internal
parameters to tune; the network architecture itself can be modified depending on the task
to perform. A manual selection of all these hyperparameters can be very complex and
could bring a nonoptimal solution. At the same time, an exhaustive search for the best
configuration would require too much time, given the search space size. Automatic Design
Space Exploration (ADSE) can represent a solution. However, while the literature is rich in
works about ADSE in the field of CNNs [7,8] and other ANN models [9], this is not true
for SNNs. The few existing works on the topic focus on a single-objective optimization
directed towards the improvement of the accuracy [10] or concentrate the search on a
particular aspect of the network, like the input data encoding, using fixed neuron models
and parameters and performing only a tiny grid search between a limited set of network
architectures [11].

This paper presents SpikeExplorer, a flexible hardware-oriented ADSE framework to
automatically optimize SNN models for their deployment on digital hardware accelerators
targeting FPGA implementations. The tool supports multiobjective ADSE driven by power
consumption, latency, area, and accuracy, leveraging Bayesian optimization. It empowers
users to fine-tune network architecture, neuron models, and internal settings, explicitly
tailoring them for FPGA deployment. SpikeExplorer can be specialized for whatever neuron
model and hardware implementation, allowing to easily customize SNN co-processors
depending on the user requirements. This can help leverage the benefits of SNNs in power
and resource-constrained edge applications [12], simplifying the configuration and tuning
of these new networks in various problems.

The paper is organized as follows: Section 2 provides the required SNN background
and Section 3 overviews related work on ADSE for SNNs. Section 4 overviews the proposed
method and Section 5 shows its capabilities on a set of case studies. Finally, Section 6
concludes the paper and highlights future extensions.

2. Background

AI is reaching unparalleled performance, matching human capabilities in complex
tasks like pattern recognition, NLP, and object detection. However, it still stands orders of
magnitude behind human intelligence regarding energy efficiency [13]. When it comes to
optimization, nature excels, and its solution to minimize brain power consumption is to
make neurons communicate through asynchronous sequences of spikes. SNNs are based
on the same communication approach, drawing inspiration from biology to model how
neurons react to these spikes. In an SNN, the information is encoded in the timing of the
spikes, regarding them as binary events. Therefore, from a computational perspective,
neurons in an SNN handle streams of single-bit data, strongly reducing the overall required
complexity. Different neuron models can react to spikes in various ways. Neurons can
be interconnected differently, and training algorithms can tune the resulting network on
a specific problem. This leads to a huge design space that requires proper techniques to
be analyzed and reduced. The following sections show a subset of all the possible design
choices that can be considered in the search.

2.1. Network Architecture

Neurons can be interconnected in various patterns to construct complex networks.
One widely used connection scheme is the Fully-Connected (FC) architecture, which can
extract complex features from input data. Neural network connections typically adhere to
either a Feed Forward (FF) architecture that facilitates a linear information flow from inputs
to outputs or adopts recurrent structures with feedback connections, allowing information
to loop back. Figure 1a shows the two alternative architectures. Spiking neurons inherently
exhibit recurrence since their state is computed starting from the previous one. Hence,
the architecture retains information from previous states even in the context of FF SNNs.
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However, explicit feedback connections might be necessary to capture longer dependencies
or complex dynamics. SpikeExplorer aims to optimize FC architectures organized in layers,
interconnected both in an FF and recurrent manner. These architectures are general enough
to address most Machine Learning (ML) problems.

Figure 1. SNN Design Space: (a) different network architectures; (b) different neuron models;
(c) graph unrolling during training and example of possible surrogate curves to smooth the Heaviside
function, replacing it with a differentiable altrernative.

2.2. Neuron Models

The first computational models of biological neurons were developed starting from
the accurate observation of electrical propagation inside neural cells [14]. Nonetheless,
for practical computational tasks, such a high level of biological fidelity is unnecessary
and overly complex. Different simplified alternatives have been developed in the last
decades [15]. The most used one is the family of Integrate and Fire (IF) models [16], able to
describe neuron dynamics with limited computational complexity. Essentially, an IF neuron
functions as an integrator, accumulating spikes over time, and subsequently fires itself a
spike if the cumulative value surpasses a predefined threshold. Inputs are transmitted to the
neuron via synapses, where they undergo preprocessing before reaching their destination.
The most complex IF neuron model is the conductance-based Leaky Integrate and Fire (LIF)
model, described, in discrete time, by Equations (1)–(3). The synaptic current generated by
the synapse has a dynamic response to the input spikes. The i-th synapse weights the input
spikes through its synaptic weight wi. Without stimuli, the current decays exponentially
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toward a rest value. Equation (1) shows a compact description of the total net synaptic
current Isyn received by the neuron: each synapse has its weight and the product W · sin[n]
represents the weighting operation performed by N synapses on as many inputs. All the
synapses share the exponential decay rate α (with α < 1).

Isyn[n] = α · Isyn[n − 1] + W · sin[n] (1)

The input current is then integrated by the neuron into its membrane potential Vm. If
the result stays below a threshold value Vth, Vm follows a temporal dynamic similar to the
synaptic one, so it decays exponentially with a decay rate β (with β < 1). If, instead, Vm
exceeds Vth, it is reset by the function R, and an output spike sout is generated.

Vm[n] = β · (Vm[n − 1]− sout[n − 1] · R[n]) + Isyn[n] (2)

Equation (3) shows two possible mechanisms for the reset operation. In the first case,
called hard reset, Vm is always reset to zero when the threshold is exceeded, i.e., when a
spike is generated. In the subtractive reset alternative, the threshold is subtracted by Vm.

Rhard[n] = Vm[n − 1]

Rsub[n] = Vth
sout[n] =

{
1, if Vm > Vth

0, if Vm ≤ Vth
(3)

In the rest of the paper, what was just described will be called the synaptic model
(abbreviated as syn), following the terminology used in [17]. The synaptic model can
be simplified by removing the dynamic response of the synapse, considering only the
synaptic weight, as is generally performed in ANNs. This is equivalent to setting α = 0
in Equation (1). The result is a simple LIF model, referenced in the rest of the paper as lif.
Finally, the neuron’s dynamic response could also be neglected, transforming the neuron
into a simple integrator with memory. This can be obtained by setting β = 1. The result is a
basic IF model (referred to as if ). Figure 1b summarizes these three behaviors, showing
an example of their temporal response to spikes. Therefore, even considering only the IF
family of models, it is clear that a lot of knobs can be tuned during design. For example, α
and β determine how fast the exponential decay is, influencing the capability of the neuron
to keep the memory of past information, while Vth and R affect the firing rate of the neuron
and the timing of the output spikes.

2.3. Training

Training SNNs remains an active area of research, drawing inspiration from both bio-
logical observations [18] and classical supervised approaches in ML. However, a significant
challenge arises when using supervised approaches with SNNs due to the nondifferentiable
nature of the output spike function sout concerning the neuron’s state Vm, as illustrated
in Equation (2). Consequently, the traditional backpropagation training algorithm [19]
and its derivatives are impractical. To address this issue, a commonly adopted approach
involves substituting the spike function with a differentiable surrogate during the back-
ward pass [20]. Various options exist for this surrogate, typically encompassing smoothed
versions of the step function, such as the sigmoid and its derivatives, arc, or hyperbolic
tangents. Once the nondifferentiability is mitigated, training proceeds akin to that of RNNs:
the network can be unrolled and trained using the Back-Propagation Through Time (BPTT)
algorithm, propagating the output error across both space (layers of the network) and time
(unrolled states of the network). Figure 1c shows the unrolling process and a graphical
example of surrogate spike functions used during the backward pass. Subsequently, select-
ing and fine-tuning an appropriate surrogate function and backpropagation parameters,
including learning rate, regularization parameters, optimizer settings, etc., are essential
steps in the training process.
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2.4. Automatic Design Space Exploration

When working with complex systems such as SNNs, the numerous degrees of free-
dom make a comprehensive exploration of the design space impractical. This challenge
is compounded when crafting specific hardware implementations, where synthesizing
and simulating architectures can consume significant time. Over the past few decades,
researchers have sought ways to optimize and speed up the search for optimal architectures
in electronic systems, a pursuit intensified by the proliferation of AI and ANNs. One
approach to reducing the search space involves randomly selecting a subset of points and
focusing exploration solely on them. Despite its simplicity, this can prove effective in
many cases [21]. Nevertheless, structured and systematic alternatives abound in the litera-
ture, many drawing inspiration from biological evolution, like evolutionary and genetic
algorithms [22], extremal optimization [23], and Reinforcement Learning (RL) [24].

Among optimization techniques, Bayesian optimization [25] stands out as a robust
solution, particularly for its ability to converge rapidly even with complex models. It
effectively addresses the exploration–exploitation dilemma [26], balancing exploring new
solutions and exploiting known ones. Instead of directly interacting with the objective
function (e.g., accuracy of the network), which might be computationally expensive to
evaluate, Bayesian optimization builds a simpler, approximate model. It is typically based
on Gaussian processes or other probabilistic models. Initially, this surrogate model makes
some assumptions about the objective function based on the limited information available.
As more data points are collected through evaluations of the actual objective, the surrogate
model becomes refined and better approximates the actual function. A Bayesian optimizer
relies on an acquisition function, considering both exploration and exploitation aspects
to decide which point in the search space to evaluate next. Exploration involves trying
out points in the search space that are uncertain or have yet to be explored to gain more
information about the objective function and potentially discover better solutions. More-
over, exploitation involves focusing on areas of the search space likely to yield good results
based on the current knowledge provided by the surrogate model. The acquisition func-
tion balances these two aspects to guide the search effectively. Thanks to this methodical
approach, Bayesian optimization demonstrates efficacy in converging to solutions, even
in scenarios involving numerous parameters in the search, rendering it a valuable tool for
optimizing SNNs. Interested readers may refer to [27] for a broader topic overview.

3. Related Works

Among the large plethora of ANNs models, SNNs are the ones that mostly require
dedicated hardware co-processors. Indeed, SNNs are characterized by high computational
parallelism, lightweight communication channels exchanging asynchronous spikes, and
co-location of memory and computing. This fits poorly with the Von-Neumann computing
paradigm adopted in general-purpose computers, which relies on a limited number of
computational units exchanging data and instructions with a centralized memory. Even
specialized architectures, such as Graphic Processing Units (GPUs) and Tensor Processing
Units (TPUs), optimized for standard ANN workloads, struggle to process SNNs effi-
ciently [28]. Consequently, employing dedicated neuromorphic hardware emerges as the
most efficient solution, especially in contexts where efficiency is the primary concern [28].

In this landscape, one of the solutions that is gaining attention is to exploit the reconfig-
urability of FPGAs to design application-specific FPGA-based SNNs co-processors [29–33].
The advantage of using FPGAs is their intrinsic reconfigurability, which reduces design
time and makes network customization easier. This enables the fine-tuning of hardware
implementations for SNNs according to specific problem requirements, configuring the
hardware to deploy the most optimized solution. Automatic optimization for SNN architec-
tures is critical when considering these dedicated hardware implementations, particularly
for resource-constrained edge applications. In such scenarios, the optimization of the
network targets multiple objectives: together with the fine-tuning of the model on a specific
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problem, minimizing power consumption, area occupancy, and latency become integral
parts of the optimization goals.

Within this framework, tools are available to support FPGA hardware designs. For
instance, E3NE [34] provides a library of elementary blocks to build Register Transfer
Level (RTL) descriptions of SNN architectures. On the other hand, Spiker+ [33] provides a
framework to automatize the generation of the SNN RTL models starting from a high-level
network description, providing a library of possible models and network architectures.
However, a crucial gap remains: given the availability of various neuron blocks and archi-
tectures, how can the network be optimized to achieve the highest possible accuracy while
constraining other metrics such as latency, power consumption, or area? Some works on
Network Architecture Search (NAS) for SNNs exist. For example, authors in [35] propose an
ADSE methodology to perform a single-objective search, targeting the optimization of SNN
accuracy only. They mainly focus on convolutional architectures targeting image datasets,
such as CIFAR-10, CIFAR-100, and TinyImageNet, applying a NAS strategy to select be-
tween different convolutional kernel and pooling sizes. Therefore, the target application is
particular, and the work considers the software model only without considering the actual
hardware implementation. On the other hand, reference [10] proposes NeuroXplorer, a
hardware-oriented ADSE tool to optimize SNN deployment on existing neuromorphic
hardware. There is no search for the network structure, neuron model, and parameters.
Conversely, starting from a trained SNN model, the tool tries to organize computations to
fit the target platform at best, for example, clustering groups of neurons to minimize the
transport of spikes over long distances. It focuses on the computational paradigms used
within existing neuromorphic processors, such as the Dynap-se1 [36]. Eventually, the first
attempt at creating an FPGA-oriented optimizer was performed in [11]. However, the work
is focused on finding the optimal encoding for the input data and on the fast evaluation of
the optimization metrics (such as power, area, and latency) performed with a novel system
C simulator of the hardware accelerator called NAXT. The optimal SNN search is a grid
search conducted within a small set of predefined architectures with a fixed IF neuron
model without using any specific optimization algorithm.

4. Materials and Methods

SpikeExplorer has been designed as a modular Python tool with different components
connected in a closed loop. Figure 2 shows a high-level view of the complete framework.

The Design Space Exploration (DSE) engine is the core of the optimization framework.
It aims at finding the optimal SNN architecture and its related parameters for a given
problem within a user-defined design space. The user imposes constraints by specifying
which parameters must remain fixed and which require optimization. An infinite search
space risks prolonged search duration and potential converging failure. Hence, users are
prompted to define search limits for each optimized parameter. This ensures that the search
remains bounded and manageable. For instance, limits can be set on the maximum network
size, considering the available hardware resources on the target platform.

The optimization process follows a multiobjective Bayesian approach. The user can
select a set of optimization targets: accuracy, area, latency, and power. While Figure 2
illustrates an exploration encompassing all four potential metrics, the optimization can
focus solely on a subset, or even just one in the extreme case. Once the optimization
objectives are defined, the DSE engine constructs a surrogate model for each of them and
starts an iterative optimization process. The surrogate models determine the next point to
explore at each iteration, aiming to optimize all required metrics. A point within the search
space is defined by a set of values associated with the parameters used for the optimization.

For each explored design option, the specific SNN architecture and configuration
is forwarded to the Network Evaluator (NE), responsible for the network construction,
training, and performance evaluation. This, in turn, requires providing a training dataset.
This block closes the loop by giving the DSE engine the characterization of the selected
observation points in terms of accuracy, area, latency, and power required to update the
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internal surrogate models. This task requires comprehensively characterizing the various
neuron models and computing their individual area occupancy, power consumption, and
latency. SpikeExplorer has been intentionally designed to be versatile and compatible
with any user-defined neuron characterization model. However, this paper utilizes a
comprehensive characterization library derived from open-source experiments, leveraging
the Spiker+ framework [33]. Given the framework’s complexity, the following sections
overview each component separately.

POWER
ESTIMATOR

LATENCY
ESTIMATOR

AREA
ESTIMATOR

ACCURACY
ESTIMATOR

SEARCH LIMITS

... ... ...

FUNCTIONAL
MODEL

POWER LATENCY AREA

LIBRARY OF HARDWARE NEURONS

NETWORK EVALUATOR

TRAINING

DSE ENGINE

NETWORK
GENERATOR

Figure 2. SpikeExplorer general architecture, including (i) a library of hardware neurons, (ii) a
network evaluator estimating the performance of selected implementations, and (iii) a Bayesian
DSE engine.

4.1. Network Generator and Hardware Neurons

The Network Generator (NG) is the submodule of the NE block in charge of build-
ing the SNN network models required for performance evaluations. It involves a set of
functional models of the available neurons that can be incorporated into the network archi-
tecture. Each functional model must be characterizable for the considered optimization
targets. For instance, if the optimization target is area minimization, the user must provide
a characterization detailing the area occupation of each considered neuron model. This
facilitates fine-tuning the search process with specific neuron implementations, which will
be integrated into the customized SNN co-processor on FPGA.

In its current implementation, SpikeExplorer supports a set of default neuron func-
tional models based on the IF variants described in Section 2.2. From a functional point
of view, the models are defined using the snnTorch framework [17]. This facilitates the
creation of a range of networks suitable for various problems where IF models are applica-
ble. snnTorch enables the modeling and approximation of the hardware neuron behavior
without a precise knowledge or description of all internal details.
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Each available neuron model is associated with hardware-related information obtained
using the open-source hardware models provided by the Spiker+ framework [33]. These
models are synthesized on a Xilinx XC7Z020 reference FPGA board, and the corresponding
performance metrics are extracted, such as area, power, and latency. The following sections
outline the techniques to characterize the default SpikeExplorer neuron models. This
presentation aims to provide insight into the available estimates and to explain how neurons
can be described to fine-tune the search on a specific implementation.

4.2. Area

The neuron area estimation consists of two primary components: (i) the area occupied
by the computational elements and (ii) the memory utilized by the synaptic connections.
Both are estimated through hardware synthesis of available implementations. Figure 3a
shows an example of the synthesis of a simple LIF model, reporting the corresponding
Look Up Table (LUT) count and the amount of memory required by synaptic weights, in
this case, stored in FPGA Block RAM (BRAM).

LIF

CONTROL

LIF

CONTROL

SCAN SKIP

LUT LUT LUT

BRAM LUT BRAM

LUT LUT LUT

CU

>

>>

+ / -

I

F

L

DP

BRAM

LUT

392 Byte

60

AREA ESTIMATION LATENCY ESTIMATION

POWER ESTIMATION

(a) (b)

(c)

1

2

3

Figure 3. Metrics estimation: the figure graphically showcases how the different metrics considered
by SpikeExplorer are estimated. (a) The area is estimated by synthesizing the target neuron and
measuring the required number of LUTs and memory cells; (b) optimized latency estimation: if no
spike is present in input, no scan is performed, avoiding wasting time; (c) the neuron is analyzed
to understand its state: (1) if it generated an output spike it means the membrane must be reset,
(2) if input spikes are present, they will be integrated into the membrane potential, (3) check if the
membrane underwent changes and consider power consumption only if it did.

Quantization is a well-known technique exploited to reduce the memory footprint of
SNN models, and several quantization frameworks exist [37–39]. To avoid overlap with
existing solutions, the default neuron library provided by SpikeExplorer does not aim at
optimizing quantization, focusing on higher-level architectural optimizations. Therefore,
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the default neuron characterization uses 32-bit data representations. Experimental results
later show that this data representation preserves full-precision accuracy without intro-
ducing bias from precision reductions across different models. Although the resulting
architecture may appear oversized, what truly influences the optimization process is the
relative dimensions of the neurons. Nevertheless, the user can enlarge the library of avail-
able neurons, including architectures with different quantization levels, to drive the search
toward smaller neurons with more aggressive quantization.

The total number of weights is computed at run-time after defining the SNN architec-
ture and integrated into the area estimation to account for different architectural structures
and their impact on the area. This allows us to consider the diverse memory footprints of
different architectural choices. For instance, in fully connected architectures with identical
neuron count on each layer, a deeper network featuring smaller layers will incorporate
fewer synaptic weights, thus necessitating less memory. Moreover, recurrent architec-
tures introduce an area overhead due to FC recurrent connections that can be computed
according to Equation (4).

R =
Recurrent layer area

FF layer area
=

Nin · Nneurons + Nneurons · Nneurons

Nin · Nneurons
=

Nin + Nneurons

Nin
(4)

Here, Nin denotes the number of inputs, and Nneurons signifies the number of neurons
within a specific layer.

SpikeExplorer measures the overall area occupancy in terms of Equivalent Look Up
Table (ELUT) count:

NELUT =

Nlayers

∑
l=0

Nl
neurons ·

(
NLUT32 + Nl

in · r
)

(5)

where l denotes the layer index, Nlayers the total number of layers, NELUT represents the
total number of ELUTs occupied by the network, NLUT32 is the number of LUTs required
by a single neuron with a 32-bit precision, and

r =

{
R, if l is recurrent
1, if l is FF

(6)

For clarity in visualization, the distinction between FF and recurrent architectures is
expressed using the neuron model nomenclature. The default supported models encompass
if, rif, lif, rlif, syn, and rsyn, where the prefix r signifies a recurrent architecture.

4.3. Accuracy and Latency

Since quantization is not the primary focus of SpikeExplorer, the accuracy estimation of
various network configurations used to drive the DSE process is based on full-precision 64-
bit floating-point software models constructed by the NG using the snnTorch framework.
These estimations are crucial for guiding the optimization process but should not be
regarded as precise accuracy measurements for the target hardware co-processor. They
represent an upper bound on the final accuracy that depends on the quantization applied
when deploying the model on a real FPGA.

In terms of latency, a clock-driven reference model is considered. In particular, Spike-
Explorer implements two different latency estimation models: a fixed latency model, in
which each neuron is characterized by a single latency value, independent of the spiking
activity, which accounts for the time required to integrate spikes and to decay or reset the
neuron; and an optimized latency model, following a computational methodology like that
described in [33]. In this case, two latency values are considered: a high latency occurs
when at least one input spike is present, prompting neurons to scan all inputs to identify
the active ones, and a low value occurs without spikes, where the scanning process is
omitted. Figure 3b shows the two considered cases. Since all the inputs are processed se-
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quentially, the larger the number of inputs to a neuron, the higher will be the latency of that
neuron in case it receives input spikes. The computational process is considered entirely
parallel, making the overall latency independent of the overall number of neurons. The
approach is highly tailored to fully parallel clock-driven implementations. Alternatively,
an activity-based methodology resembling the one utilized for power consumption (refer
to Section 4.4) could be adopted to accommodate event-driven approaches.

4.4. Power

The neurons’ power consumption generally depends on their activity levels. This
holds for clock-driven architectures, as evidenced in [33], and is even more pronounced
in event-driven alternatives. To understand how SpikeExplorer estimates the overall
power consumption, it is convenient to analyze the operations involved in updating a LIF
neuron. Equation (7) shows the mathematical operations involved, obtained by merging
Equations (1) and (2), setting α = 0 and reordering the terms.

Vm[n] = β · Vm[n − 1]︸ ︷︷ ︸
(3) Leak

+ W · sin[n]︸ ︷︷ ︸
(2) Integrate

− β · sout[n − 1] · R[n]︸ ︷︷ ︸
(1) Fire

(7)

As the name of the model suggests, the neuron executes three primary operations:
leakage (3), integration (2), and firing (1). The equation defines the evolution of the
membrane potential in its discrete-time form. SpikeExplorer examines the state of each
neuron at every time step to evaluate the instantaneous power consumption. It expects
a characterization of the power consumed by the neuron when executing each of the
reported operations. The overall power consumption is then computed by averaging
the instantaneous values over the entire sequence of time steps. To accomplish this task,
SpikeExplorer must monitor (i) the presence of an output spike, (ii) the presence of input
spikes, and (iii) the value of the state variables that change dynamically during the network
operations. With LIF and IF models, the only state variable involved is Vm, while with
a synaptic model, Isyn is monitored as well. Using these, SpikeExplorer understands
the current state of the neuron and infers the relative consumed power, as illustrated in
Figure 3c.

Observing the neuron’s output reveals whether the neuron has “fired” a spike. If a
spike is generated due to the threshold potential being exceeded, the membrane is reset;
this is associated with a first power contribution. Inspecting the inputs, if spikes are present,
they are weighted and integrated into the membrane potential, implying an additional
power contribution. Eventually, without spikes, the membrane decays toward its resting
value, consuming extra power. This condition happens when the membrane potential at
time step n differs from that at time step n − 1. This approach facilitates a highly adaptable
evaluation. For instance, in clock-driven update policies, decay consumes power at every
time step, which can be factored into the leak contribution. Conversely, in an event-driven
approach, computations occur solely in the presence of input spikes, potentially resulting
in zero power consumption for the leak term. In this case, the decay power can be merged
into the “integrate” term. Alternatively, a custom functional model can be used for the
neuron, in which the membrane is updated only when input spikes are received. Here,
by checking whether the membrane has changed value, the decay contribution can be
considered only in the presence of input stimuli. Lastly, depending on factors like recent
resetting or reaching asymptotic decay values due to finite precision platforms, the neuron
may remain in a constant state without necessitating significant power-consuming updates.
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4.5. DSE Engine

As detailed in Section 2.4, Bayesian optimization emerges as the preferred method
for DSE in SNNs. This preference stems from several factors, including the abundance
of tunable hyperparameters, inherent noise in the objective function due to the spiking
information encoding, and the long training times associated with large SNNs. Bayesian
optimization is advantageous for its rapid convergence, facilitated by a simplified surrogate
model, and its inherently parallelizable nature, accelerating the exploration process.

The DSE engine of SpikeExplorer is built resorting to the Adaptive eXperimentation
(AX) optimization package, an open-source solution developed at MetaTM [40]. It provides
high-level Application Programming Interfaces (APIs) that SpikeExplorer uses to iterate
through the optimization efficiently. Listing 1 shows a summarized version of the code
used to perform the optimization. The DSE engine receives in input a set of configuration
parameters, indicating the number of iterations involved in the optimization (line 7), the
objectives of the search (line 8), the metrics to optimize, each associated with the range in
which to perform the search (line 9), and the set of candidate neuron architectures, includ-
ing the functional models and their characterization (line 10). The optimization process
(lines 12–40) starts initializing the Bayesian surrogate model using the AX APIs (lines 14–20)
and then performs an iterative procedure (lines 24–38). A set of parameters is selected
at each iteration, following the predictions performed with the surrogate model (line 27).
The network is configured with the chosen parameters (line 29), and its performance is
evaluated (line 30). The results are then provided to the optimizer (line 33), which uses
them to update the surrogate model (line 36). The process continues until the required
number of iterations is completed (line 24). The full set of explored points (line 38) is
returned (line 40). This can be used to find the best configurations on the Pareto frontier
and select the configuration that best fits the desired requirements.

Listing 1. Summarized code of SpikeExplorer.

1 from ax . s e r v i c e . a x _ c l i e n t import AxClient
2
3 c l a s s SpikExplorer :
4
5 def _ _ i n i t _ _ ( s e l f , conf ig : d i c t ) :
6
7 s e l f . num_tr ia ls = conf ig . get ( " num_tr ia ls " )
8 s e l f . o b j e c t i v e s = conf ig . get ( " o b j e c t i v e s " )
9 s e l f . search_param = conf ig . get ( " search_param " )

10 s e l f . neurons = conf ig . get ( " neurons " )
11
12 def optimize ( s e l f ) :
13
14 dse_engine = AxClient ( )
15
16 # I n i t i a l i z e Bayesian opt imizat ion
17 dse_engine . create_exper iment (
18 parameters= s e l f . search_params ,
19 o b j e c t i v e s = s e l f . o b j e c t i v e s ,
20 )
21
22 search_points = [ ]
23
24 f o r _ in range ( s e l f . num_tr ia ls ) :
25
26 # S e l e c t i n i t i a l point in the search space
27 net_conf ig = dse_engine . g e t _ n e x t _ t r i a l ( )
28
29 snn = s e l f . net_generator ( ne t_conf ig )
30 r e s u l t s = s e l f . t r a i n _ e v a l u a t e ( snn )
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31
32 # Give the r e s u l t s to the optimizer
33 dse_engine . c o m p l e t e _ t r i a l ( r e s u l t s )
34
35 # Update the Bayesian surrogate model
36 dse_engine . update ( )
37
38 search_points . append ( ( net_conf ig , r e s u l t s ) )
39
40 return search_points

Table 1 displays the available optimization parameters, organized into three groups:
network architecture (net), neuron model (neuron), and training process (training). Nu-
meric parameters are “discrete” or “continuous” ranges. In the former case, only discrete
integer values within the specified range are considered, while in the latter case, a continu-
ous interval of real values is analyzed. Additionally, numeric values can be defined as sets
of predefined values to try. For non-numerical parameters, enumerative lists of options
are used.

Regarding network architecture, SpikeExplorer offers constraints for optimizing the
model. These constraints include the number of layers to use (discrete range), the number
of neurons in each layer (set of options), and the network architecture (feed forward or
recurrent). As exploring the dimensionality of the network is computationally intensive,
selecting the number of neurons per layer from a set allows reduction of the search space
by performing a coarser search among a predefined range of layer sizes. Conversely, for
a finer search, SpikeExplorer can be left to select any layer size, and a set containing all
integer numbers between the desired minimum and maximum can be provided. The final
parameter related to the network allows for including recurrent connections within layers.
This specification occurs at the network level, configuring the entire network with the
specified layer type. Hybrid solutions are not currently considered in the search process. As
discussed in Section 4.2, rather than directly specifying whether layers must be recurrent,
users can select models that inherently incorporate recurrence.

Nearly all internal parameters can be adjusted at the neuron level after selecting a
specific model among the six options listed in Table 1 and elaborated upon in Section 4.2.
The reset mechanism can be configured as hard or subtractive (refer to Equation (3)). Opti-
mization of the exponential decay for both the synaptic current and membrane potential
can be achieved through the α and β parameters (0 ≤ α ≤ 1 and 0 ≤ β ≤ 1). In this
case, the search can involve continuous values, with users specifying the limits of the
search range or selecting from a predefined set of powers of two. The last option aligns
with hardware optimization principles, where using powers of two allows replacement of
the multiplication involved in exponential decay with a simple bit shift, as demonstrated
in [33]. Given that exponential decay generally does not require rapid attenuation, α and β
typically approach values close to one. Consequently, the search primarily focuses on the
upper portion of the interval [0, 1], utilizing the expression outlined in Table 1. Additionally,
the firing threshold can be adjusted within a continuous range of values to regulate neuron
activity. Finally, users can select the number of time steps involved in computation by
specifying a set of values. Similar to the approach for choosing the number of neurons,
users can limit the set of sequence lengths, tailoring the set’s granularity based on the de-
sired search precision. Alternatively, to grant SpikeExplorer flexibility in selecting from all
possible sequence lengths, users can provide a set containing all integer numbers between
the desired minimum and maximum.



Electronics 2024, 13, 1744 13 of 21

Table 1. Set of specifications that the user can provide.

Parameter Values

Net

# layers Discrete

# neurons/layer Set

Architecture Feed
Forward Recurrent

Neuron

Model
if
lif
syn

rif
rlif
rsyn

Reset
Hard

Subtractive

α, β
Continuous

1 − 2−n

Vth Continuous

Time-steps Set

Training

Learning rate

Continuous
Optimizer

Regularizer

Surrogate slope

Surrogate

Sigmoid, Fast Sigmoid, ATan,
Straight Through Estimator,
Triangular, SpikeRateEscape,

Custom [17]

In addition to tuning the network architecture, SpikeExplorer offers optimization
options for the training process. This includes fine-tuning parameters such as the learning
rate, optimizer settings, such as the Adam [41] parameters β1 and β2, controlling the decay
rates of moving averages of gradients and squared gradients, respectively, and influencing
the retention of historical information when updating model parameters—regularization
parameters like λ, affecting the strength of L1 and L2 regularization [42], and modifying
the penalty for large weights, and the surrogate function employed in the backward pass,
as elaborated in Section 2. In this scenario, SpikeExplorer can select the function itself and
adjust its steepness.

Given the many parameters involved, optimization efforts can focus on specific subsets.
An illustration of such a targeted search is presented in Section 5.

5. Experimental Results

This section demonstrates the capabilities of SpikeExplorer through selected case
studies designed to test its internal optimization engine.

5.1. Experimental Setup

The exploration capabilities of SpikeExplorer were evaluated using three distinct
datasets, each with varying complexity and characteristics commonly employed for bench-
marking SNNs:

1. MNIST [43]: Grayscale images of handwritten digits, converted into sequences of
spikes using rate encoding. The corresponding number of inputs is 28 × 28 = 784.

2. Spiking Heidelberg Digits (SHD) [44]: Audio recordings of numbers pronounced in
English and German, converted to spikes through a faithful emulation of the human
cochlea. Recordings were performed with 700 channels, corresponding to the number
of inputs of the network.
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3. DVS128 [45]: Video recordings of 11 gestures through a Dynamic Vision Sensor (DVS)
converting images into spikes. The sensor’s resolution is 128 × 128 pixels, accounting
for 16,384 inputs.

Two optimization experiments were conducted using the three datasets. In the first
experiment, a broad exploration was undertaken, allowing SpikeExplorer the freedom to
optimize the training process while seeking optimal neuron models and network archi-
tectures. The objective was to minimize area and power consumption while maximizing
accuracy. The search parameters provided to SpikeExplorer are detailed in Table 2. The
exponential decay rates were set to α = 0.9 and β = 0.82 and were maintained constant
throughout the search process. The number of optimization iterations was selected to
constrain the optimization time. It was set to 25 for MNIST and DVS128. Conversely,
achieving acceptable accuracy with SHD requires more training epochs, so the number
of search iterations was capped at 15 to control search duration. The second experiment
focused on a more specific optimization goal. Here, the neuron model was fixed initially,
and attention shifted to optimizing the total number of neurons within the network.

Table 2. Set of experimental parameters provided to SpikeExplorer.

MNIST SHD DVS128

Min Max Min Max Min Max

Learning rate 10−4 1.2 × 10−4 10−4 1.2 × 10−4 10−4 1.2 × 10−4

Adam βoptim 0.9 0.999 0.9 0.999 0.9 0.999

# layers 1 3 1 3 1 3

Model lif, syn, rlif, rsyn lif, syn, rlif, rsyn lif, syn, rlif, rsyn

Reset subtractive subtractive subtractive

Time steps 10, 25, 50 10, 25, 50 10, 25, 50

# neurons/layers 200, 100, 50 200, 100, 50 200, 100, 50

Search iterations 25 15 25

Training epochs 50 100 50

Lastly, hardware synthesis of the optimized architecture identified by SpikeExplorer
for the MNIST dataset was conducted to allow for a comparison with SoA FPGA accelera-
tors for SNNs. The dataset is typically used as the reference benchmark to evaluate ML
models in general and SNN accelerators specifically. The target hardware platform is a
PYNQTM − Z2 board, from TUL® hosting a Xilinx® Zynq − 7000 XC7Z020 − 1CLG400C
system on chip (SoC). This features the XC7Z020 FPGA, and a Dual ARM® CortexTM −
A9 MPCoreTM. The FPGA can be programmed with the free version of the Xilinx® Vivado
suite, making the results strongly reproducible.

5.2. Global Exploration

Figure 4 summarizes the performance of SpikeExplorer when optimizing the network
architecture and parameters for the three selected datasets. The figure demonstrates a
strong correlation between power consumption (the first row in Figure 4) and area (the
second row in Figure 4). While this behavior is expected, it is noteworthy because previous
publications predominantly emphasized the correlation between power consumption and
spiking activity [33]. For the MNIST dataset (refer to Figure 4a,d, nonrecurrent models
emerge as the preferred choice. This preference is evident from the Pareto frontier, where
virtually all top-performing models are lif and syn without recurrence. Notably, the highest
accuracy is achieved with a first-order LIF model, devoid of any feedback connection (refer
to Table 3). This is consistent with expectations since simple architectures without explicit
recurrent connections should be enough, given the static nature of MNIST data transformed
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into spike sequences via rate coding. In this scenario, crucial information is not embedded in
the temporal dimension but encoded in the average spike sequence rate. Consistently with
what is expected, SpikeExplorer converges towards these more straightforward solutions.
Conversely, in the case of SHD and DVS128, acquired through biologically inspired sensors
and containing substantial information in spike timing, SpikeExplorer generally leans
towards recurrent structures such as rlif and rsyn, along with higher-order models (syn).
Specifically, for SHD, a recurrent structure comprising rlif neurons emerges as the favored
solution. At the same time, the search tends to diversify more toward both rsyn and rlif,
occasionally incorporating syn instances for the DVS128. It is noteworthy to observe how
SpikeExplorer can discover superior architectures in terms of accuracy by utilizing the same
neuron model and comparable numbers of neurons while playing on other parameters,
allowing us to keep the power consumption unchanged while better tuning them on the
target task. This is visible when looking at the left section of the Pareto frontier across all
three datasets.

(a) (b) (c)

(d) (e) (f)

Figure 4. Pareto frontiers of the global exploration on the three benchmark datasets targeting power,
area, and accuracy optimization. (a) MNIST complete power; (b) SHD complete power; (c) DVS
complete power; (d) MNIST complete area; (e) SHD complete area; (f) DVS complete area.

In summary, Tables 3–5 showcase the top-1 accuracy optimized SNN architecture,
parameters, and performance identified by SpikeExplorer for the three benchmarks, catego-
rized by neuron model. The optimization is performed according to the setup summarized
in Table 2.

Table 3. Best architectures with the four neuron models on the MNIST.

Model Arch. TS Acc. Power
(mW)

LIF 200-10 10 99.61% 310

RLIF 200-100-200-10 10 99.22% 860

SYN 200-200-10 25 99.22% 680

RSYN 100-10 25 99.22% 140
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Table 4. Best architectures with the four neuron models on the SHD.

Model Arch. TS Acc. Power
(mW)

LIF 200-20 50 59.41% 360

RLIF 200-200-20 50 61.70% 760

SYN 100-100-200-20 10 58.98% 720

RSYN 100-20 50 58.59% 140

Table 5. Best architectures with the four neuron models on the DVS.

Model Arch. TS Acc. Power
(mW)

LIF 200-200-50-11 50 72.27% 500

RLIF 200-200-50-11 25 76.17% 760

SYN 200-100-11 50 75.78% 500

RSYN 100-200-50-10 50 73.83% 590

To showcase the capability of SpikeExplorer across different use cases, this study
limited the maximum number of time steps to 50 to mitigate training time. However,
upon reviewing the accuracy achieved by the optimized models, it seems reasonable to
assume that these datasets may benefit from longer sequences. For instance, ref. [33] reports
a 75% accuracy for SHD with a 200-20 network using rsyn neurons and 100 time steps.
Conversely, models tailored for MNIST can achieve nearly SoA accuracies with minimal
time steps. Regarding architectures, the search for DVS128 tends toward larger structures,
which correspondingly increases power consumption.

In terms of computing time, the exploration took approximately 5 h for both MNIST
and DVS, and approximately 16 h for SHD, conducted on an AMD Ryzen 9 7950X 16-Core
Processor and an Nvidia RTX400 GPU. It is worth noting that the primary time consump-
tion arises from training the network, which is more time-intensive for recurrent models
than nonrecurrent models due to the inability to accelerate the explicit time dependence
through GPU.

5.3. Fixed Neuron Models and Network Size

After showcasing the overall optimization capabilities of SpikeExplorer, additional ex-
periments were performed to highlight its behavior in constrained optimization problems.

Figure 5 showcases the capability of SpikeExplorer to optimize the network with a
predefined neuron model, solely using the network architecture and parameters. In this
case, the Pareto frontiers are dominated by small architectures (N ≤ 250). It is interesting
to observe that the optimizer is very effective when selecting the network architecture: for
example, for the MNIST, an architecture with 200-10 neurons (square on the top left of
Pareto frontier) can obtain the same accuracy of bigger solutions (circles on the top right
of the Pareto frontier), reducing the power requirements by factors of 1.5 and more than
2, respectively. Results reported in Figure 5 also highlight the capability of SpikeExplorer
in supporting designers in finding the suitable trade-off between different metrics. For
example, the Pareto frontier in Figure 5b shows that the power can be reduced almost three
times by accepting an accuracy loss of 3%. Interestingly, the accuracy on the DVS128 is
pushed up to the best value of 81.6%, improving by around 5% concerning a more agnostic
search, indicating that a more specialized search can reach even better results.
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(a) MNIST best model power (b) SHD best model power (c) DVS best model power

Figure 5. Pareto frontiers of the exploration with top-accuracy neuron model for each benchmark.

Finally, Figure 6 shows the behavior of SpikeExplorer when constraining the total
number of neurons to 200 to study how different models behave. Interestingly, this produces
different observations compared to results reported in Section 5.2. The optimization for
SHD now privileges the syn model, either with or without recurrent connections, while the
lif model dominates the Pareto frontier in the DVS128 case. Again, the top-1 accuracy is
increased, even if it is less than in the search with a fixed neuron model, reaching around
80%. This again supports the utility of a tool like SpikeExplorer when exploring different
design opportunities.

(a) (b) (c)

Figure 6. Pareto frontiers of the exploration with the number of neurons constrained to 200 for each
benchmark. (a) MNIST fixed number of neurons power; (b) SHD fixed number of neurons power;
(c) DVS fixed number of neurons power.

5.4. Synthesis and Comparison with State of Art

As discussed in Section 4, the power and area values provided by SpikeExplorer
are estimations to guide the DSE process and do not represent the actual values of the
final FPGA implementation of the respective model. To obtain actual values and compare
the performance of the models optimized by SpikeExplorer with SoA SNN accelerators
designed for FPGAs, a synthesis of an optimized architecture was conducted using the
Spiker+ framework to generate the VHDL description [33]. This process generated the
hardware implementation of a 128-10 architecture optimized with SpikeExplorer for the
MNIST dataset. This architecture is compared with other accelerators in Table 6.

An important observation is that the same architecture, with the same neuron model
used in [33], is considered for a direct comparison. All other parameters are optimized
following the approach outlined in Sections 5.2 and 5.3. In this scenario, SpikeExplorer
optimizes the model by reducing the time steps from 100 to 16, decreasing the overall
latency by more than six times, from 780 µs to 120 µs. Simultaneously, the optimized
training increases the accuracy by almost 3%, reaching 95.8%, thereby establishing the
new optimized model as the best one among those considered, both in terms of power
consumption and latency, while also positioning it close to the best-performing model in
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terms of accuracy [29]. Thus, SpikeExplorer demonstrates its capability to enhance the
design of FPGA accelerators for SNNs, simplifying the selection of the optimal architecture
and effectively tailoring it to the desired application. It must be noted that SpikeExplorer
can optimize a target accelerator, starting from an existing set of hardware blocks. If the
goal is to optimize latency and power further, the tool requires a more efficient neuron
implementation tailored explicitly for low-power or high-performance applications.

Table 6. Comparison of SpikeExplorer to state-of-the-art FPGA accelerators for SNNs.

Design Han et al. [29] Gupta et al. [30] Li et al. [31] Spiker [32] Spiker+ [33] This Work

Year 2020 2020 2021 2022 2024
fclk [MHz] 200 100 100 100

Neuron bw 16 24 16 16 6
Weights bw 16 24 16 16 4

Update Event Event Hybrid Clock
Model LIF LIF [46] LIF LIF
FPGA XC7Z045 XC6VLX240T XC7VX485 XC7Z020

Avail. BRAM 545 416 2060 140
Used BRAM 40.5 162 N/R 45 18
Avail. DSP 900 768 2800 220
Used DSP 0 64 N/R 0

Avail. logic cells 655,800 452,160 485,760 159,600
Used logic cells 12,690 79,468 N/R 55,998 7612

Arch 1024-1024-10 784-16 200-100-10 400 128-10
#syn 1,861,632 12,544 177,800 313,600 101,632

Tlat/img [ms] 6.21 0.50 3.15 0.22 0.78 0.12
Power [W] 0.477 N/R 1.6 59.09 0.18
E/img [mJ] 2.96 N/R 5.04 13 0.14 0.02
E/syn [nJ] 1.59 N/R 28 41 1.37 0.22
Accuracy 97.06% N/R 92.93% 73.96% 93.85% 95.8%

6. Conclusions and Future Work

This paper introduced SpikeExplorer, a tool tailored for hardware-centric ADSE in
SNNs. Specifically designed for crafting and fine-tuning specialized hardware accelerators
intended for deployment on FPGA, this tool showcases the effectiveness of Bayesian
optimization within the context of SNNs. It enables an easy and flexible multiobjective
search, considering model accuracy and critical hardware-specific metrics such as power
consumption, area utilization, and latency. The design of SpikeExplorer builds upon three
open-source projects: snnTorch, AX, and Spiker+. Being open-source, SpikeExplorer offers
a robust solution for optimizing SNNs.

The capabilities of SpikeExplorer were evaluated across three distinct tasks: static
image recognition using the MNIST dataset, a prevalent benchmark in ML; speech recog-
nition on the SHD dataset; and gesture recognition on the DVS128 dataset. In the MNIST
scenario, the tool achieved outstanding performance, surpassing existing solutions in terms
of latency by classifying images in approximately 120 µs while consuming minimal power
(180 mW) and achieving high accuracy (95.8%). On the SHD task, it encountered challenges,
achieving a top-1 accuracy of approximately 62%, possibly due to the limited number of
time steps used for spike sequences during optimization. Regarding the DVS128 dataset,
SpikeExplorer delivered promising results, achieving 81.6% top-1 accuracy. Notably, the
high dimensionality of the inputs of this dataset, with 128 × 128 event-based channels,
made the use of FC networks suboptimal and fully parallel processing infeasible. Never-
theless, this dataset served as a valuable case study for evaluating the optimization tool
with a complex dataset.

Despite the promising experimental results, additional testing with more complex
case studies will be conducted to identify and solve cold boot and scalability issues that
may affect Bayesian optimization. Future work also involves expanding the framework’s
scope to encompass different architectures such as Convolutional Spiking Neural Network
(CSNN) and generalizing the tool to accommodate diverse computing paradigms like event-
driven processors. Despite not being explicitly tailored for such hardware accelerators,
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SpikeExplorer exhibits considerable flexibility, supporting custom neuron models and
configurable metric assessments during optimization. This lays a solid foundation for
automating the optimization of SNN co-processors, thereby facilitating the adoption of
neuromorphic solutions in resource-constrained edge applications.
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