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ABSTRACT 
Carbon fiber-reinforced polymer (CFRP) composites are 

integral to high-performance aerospace applications, offering 

many exceptional properties such as high specific strength and 

stiffness. However, despite widespread use, several challenges 

persist during manufacturing, one of the most prevalent being 

the mitigation of residual stresses and process-induced 

deformations (PIDs). Shortcomings of traditional process 

simulation-based methods commonly employed to predict PIDs 

often contribute to these challenges. As a result, manufacturers 

often grapple with inaccurate PID predictions, component 

mismatches during assembly, increased production times, and 

compromised mechanical performance. This paper proposes an 

alternative method for accurately predicting PIDs in composite 

parts. First, a finite element (FE) solution scheme based on one-

dimensional (1D) models and the Carrera Unified Formulation 

(CUF), is employed to predict PIDs for L-shaped laminates in a 

defined design space. Then, the virtual simulation data is 

mapped to a reduced-order theory-guided domain and modeled 

using Gaussian Process Regression (GPR), a probabilistic 

machine learning technique. The GPR model is then iteratively 

retrained to calibrate simulation predictions by incorporating 

limited real-world experimental data and creating an adaptive 

probabilistic model with a data-driven uncertainty structure. The 

effectiveness of the proposed method is demonstrated by 

accurately predicting the cured deformed shape of an L-shaped 

cross-ply laminate using just five experiments. The method 

provides a cost-efficient framework for predicting, 

understanding, and potentially mitigating PIDs in composite 

parts.  

Keywords: Aerospace composites manufacturing; residual 

stress, process-induced deformations (PIDs), Carrera Unified 

Formulation (CUF), theory-guided machine learning (TGML) 

1. INTRODUCTION
Carbon fiber-reinforced polymer composites have become

increasingly popular for high-performance aerospace 

applications due to their advanced properties, such as 

exceptional specific strength and stiffness. However, despite the 

widespread utilization of composites across the aerospace 

industry, manufacturers remain surrounded by several 

challenges, including the mitigation of residual stresses and 

process-induced deformations (PIDs) [1–3]. During processing 

at elevated temperatures and pressures, residual stresses develop 

in composites due to complex and interdependent phenomena at 

various scales in the material and manufacturing environment 

[1]. Some of these stresses may be released upon demolding, 

leading to PIDs such as changes in a part’s enclosed angles at 

geometry transitions (i.e., spring-in or spring-out) or warping of 

initially flat sections (i.e., warpage) [4]. These PIDs can cause 

mismatches between components during the assembly of 

structures, escalate production times and costs, and compromise 

mechanical performance [5]. 

Although a general understanding of PIDs exists, 

composites manufacturers are often met with limited success in 

minimizing unwanted deformations through the optimization of 

process parameters such as layup or cure cycle. These ineffective 

optimization attempts are primarily linked to the deficiencies of 

traditional simulation-based methods employed for PID 

prediction. One particularly prominent shortcoming is the trade-

off between fidelity/accuracy and development/simulation time 

[6]. 

During the initial stages of process model development, 

substantial time investments are required to thoroughly 

characterize and validate many complex PID-contributing 

properties [7–9]. While some of the necessary properties (e.g., 
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cure kinetics) may be measured using established yet labor-

intensive methods such as Differential Scanning Calorimetry 

(DSC), directly quantifying other properties like viscoelastic 

(VE) moduli or tool-part interaction may require building 

custom techniques and thus demand even more substantial time 

commitments [8,10]. 

Once properties are characterized and shaped into numerical 

inputs, the simulation models and scheme are often calibrated by 

attempting to connect data from virtual (i.e., simulation) to real-

world (i.e., experimental) domains. This process is typically 

done using deterministic methods (e.g., least-squares) that not 

only require large numbers of virtual and real-world data for 

accuracy, but also neglect the inherently high levels of 

processing uncertainty and variability in composites. Since 

generating high-fidelity virtual (e.g., 3D finite element) and real-

world data is challenging, time-consuming, and consequently 

expensive, especially for large-scale composite structures (e.g., 

Boeing 787 wing skin), the virtual-to-real knowledge transfer 

and thus calibration attempts may be based on suboptimal 

amounts of data. Consequently, simulation predictions are often 

accompanied by inevitable errors, leading to inefficient or 

unsuccessful optimization attempts. 

The previously outlined fidelity/time limitations of 

traditional simulation-based process optimization methods offer 

the opportunity to explore alternative approaches for more 

efficiently predicting, understanding, and mitigating PIDs in 

composites. This paper introduces one such approach, which 

follows the subsequent workflow. First, a finite element (FE) 

solution scheme, based on one-dimensional (1D) models and the 

Carrera Unified Formulation (CUF) [11], uses higher-order 

layer-wise theories to compute process-induced stress 

distributions and deformations for composite laminates in a 

defined design space. The use of a 1D layer-wise approach 

allows for a large virtual dataset of high-fidelity 3D solutions to 

be obtained with a fraction of the computational costs of a solid 

model. Next, the virtual simulation data is mapped to a reduced-

order theory-guided domain using metrics from the probabilistic 

machine learning technique, Gaussian Process Regression 

(GPR). The theory-guided GPR model is then iteratively 

retrained by incorporating limited amounts of real-world 

experimental data. In each retraining iteration, simulation 

datapoints are assigned uncertainties based on a Gaussian 

distance-decay weighing mechanism, creating an adaptive 

probabilistic model with a data-driven uncertainty structure. 

Finally, the theory-guided GPR model is updated with 

experimental data until predictions meet specified accuracy 

requirements. The method introduced in this work offers an 

alternative, cost-efficient, and broadly applicable framework for 

potentially mitigating PIDs in composite parts.   

 

2. MATERIALS AND METHODS 
 

2.1 Process Specifications 
The composite material utilized in this study was Toray 

T800S/3900-2B unidirectional (UD) prepreg with a resin content 

of 35.5% by weight [12]. T800S denotes an intermediate-

modulus and high-strength carbon fiber, while 3900-2B is a 

toughened epoxy resin system. The prepreg’s surfaces are also 

partially coated with micro-spherical thermoplastic tougheners. 

Over the last few decades, the T800/3900-2 system has seen 

widespread use as a primary structural material in major aircraft 

such as the Boeing 787 [13].   

Figure 1 illustrates the geometry of, and terminology used 

to describe composite parts considered in this study. Before 

processing, each part consisted of eight T800S/3900-2B plies in 

an L-shaped configuration with a flange length of 154.2 mm, a 

width of 50.8 mm, a corner radius of 15.875 mm, and a corner 

angle of 90°. 

 
FIGURE 1: GEOMETRY OF, AND TERMINOLOGY USED TO 

DESCRIBE L-SHAPED COMPOSITE PARTS IN THIS WORK. 

After curing and demolding, L-shaped parts may deform 

into a variety of configurations and have a wide range of spring-

in and warpage magnitudes and directions [14]. Figure 1 

provides one example of a deformed L-shaped part to serve as 

reference through the remainder of this paper. As schematically 

illustrated, negative spring-in values represent angle enclosures 

between flanges, whereas positive values would represent angle 

enlargements. Likewise, positive and negative warpage values 

represent concave-down and concave-up flange distortions, 

respectively. Lastly, in this study, directions 1, 2, and 3 pertain to 

the longitudinal fiber, transverse fiber, and out-of-plane 

dimensions. 

 

2.2 Numerical Modeling 
This section outlines key features of the numerical approach 

employed to predict PIDs in L-shaped composites. Since the 

method has been previously established and validated, it does not 

constitute the primary novel contribution of this work. Therefore, 

an abbreviated overview of the approach is shared in this paper 

while a more comprehensive description can be found in [15]. 
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This work’s numerical analysis scheme was built on a 

refined 1D kinematic model rooted in the Carrera Unified 

Formulation (CUF) [11]. The CUF approach describes cross-

sectional displacement fields using two-dimensional (2D) 

Lagrange functions, offering flexibility and enabling the 

customization of kinematic approximations to suit various 

laminated structures.  In this work, the technique was employed 

to facilitate layer-wise (LW) modeling, where material properties 

and kinematic descriptions are considered independent for each 

ply within the composite structure. Utilizing this approach 

allowed for computationally efficient and high-fidelity modeling 

of residual stresses and PIDs, providing a more refined structural 

representation than equivalent single layer (ESL) models and a 

considerable reduction in computational time compared to 3D 

finite element (FE) models, as schematically illustrated in Figure 

2 [15]. 

 
FIGURE 2: SCHEMATIC COMPARISON OF LAYER-WISE 

MODELING TO OTHER CONSIDERED NUMERICAL MODELS, 

WITH LAYER-WISE ENABLING COMPUTATIONALLY 

EFFICIENT AND HIGH-FIDELITY LAYER-BASED KINEMATIC 

AND MATERIAL MODELING. 

The simulation of the curing process was conducted using 

the Cure Hardening Instantaneously Linear Elastic (CHILE) 

model [16]. This method considers the post-curing solution as 

the cumulative sum of instantaneous elastic solutions over a 

discrete number of time steps. The simulation process, 

schematically outlined in [14] and [15], begins by directly 

specifying material properties at discrete time steps throughout 

the curing cycle. In contrast to alternative methods, the direct 

specification of discrete material properties should not only 

improve accuracy but also streamline the computational process, 

resulting in notable time savings. 

Essential input properties to the process model, including 

Young’s modulus (E), Poisson’s ratio (ν), shear modulus (G), 

coefficient of thermal expansion (α), and cure shrinkage-induced 

strain (Δεcs) in each of the three principal directions illustrated in 

Figure 1, were defined for every 30 seconds throughout the 

curing cycle. These properties were derived from published 

literature and limited amounts of in-situ bi-material beam (BMB) 

testing [8,9,12,15,17]. Data obtained from plots in published 

literature was extracted using ImageJ analysis software [18]. One 

of the key advantages of the PID prediction method proposed in 

this paper, which will be elaborated upon in the following 

section, is its reduced dependence on highly precise material 

properties. This motivated our decision to utilize properties from 

published literature rather than investing extensive time to 

characterize properties that are highly complex in advanced 

aerospace materials such as T800S/3900-2B. 

After specifying material properties at each i-th time step of 

the curing process, increments of thermal (Δεth
i) and cure 

shrinkage (Δεcs
i) strains are introduced as loads. Subsequently, 

forces acting on the composite part resulting from these loads 

and interactions at the tool-part interface are calculated. Next, 

the interface forces arising from the removal of the tool at the i-

th time step (ΔFtr
i) are computed using the internal forces left 

unbalanced at the tool-part interface. The total forces exerted by 

the tool on the composite part due to tool removal are then 

applied to calculate resulting incremental deformations. Finally, 

applying CHILE assumptions, the incremental deformations can 

be summed to compute the post-curing and demolding 

deformations of the composites. In this work, following the 

curing analysis, corner spring-in and tip spring-in at the center 

and edge of each laminate were derived from deformation results 

using geometric analysis. Additionally, predictions for the 

maximum out-of-plane displacement (i.e., warpage) along each 

laminate’s flange were also directly computed using the 

numerical procedures. 

 

2.3 Experimental Procedures 
Generating real-world (i.e., experimental) PID data in this 

study involved conducting layups and autoclave cure cycles of 

L-shaped T800S/3900-2B parts, then quantifying the resulting 

spring-in and warpage using laser profilometry. During each 

round of experimentation, three parts with identical layups and 

processing conditions were fabricated to account for, assess, and 

later integrate processing uncertainty and variability into the 

TGML models.  

To fabricate the parts, first, a custom-built tool made from 

6.35 mm-thick A-36 steel was covered with one layer of 

fluorinated ethylene propylene (FEP) release film to reduce tool-

part interaction since its effects were neglected during numerical 

modeling. Next, three L-shaped laminates, with dimensions 

specified in Figure 1, were laid up equally spaced across the 

tool’s width. The laminates and tool were then covered with 

another FEP layer and a breather cloth, sealed in vacuum 

bagging, placed in an autoclave, and subjected to a specified cure 

cycle. A combined autoclave and vacuum pressure of 

approximately 0.7 MPa was applied throughout the process. 

After each autoclave cycle, the cured L-shaped components 

were demolded from the tool and excess resin bleed was trimmed 

from the edges using an X-ACTO® blade. The parts were then 

positioned on their sides, and 2D spatial profiles were generated 

at three designated locations spanning the width of each 

component using a Keyence LJ-X8400 laser scanner. One profile 

was scanned just inside each edge, and another profile was 

captured at the center of each part. The laser scanner was 

mounted on a custom mechanical gantry system to ensure precise 
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and consistent measurements in each trial. Schematics of the 

layup and laser scanning procedures can be found in [19]. 

Following the laser scanning of the composite parts, all three 

profiles were overlaid onto plots featuring the premeasured tool 

profile at the respective location. Then, a custom Python [20] 

code was used to extract spring-in values at the corner spring-in, 

tip spring-in and warpage at the center and edges of each part to 

be later utilized in conjunction with numerical results. 

 

2.4 TGML PID Prediction Methodology 
In this section, we present a novel method designed to 

accurately predict PIDs in composite parts using simulation data, 

limited experimental data, and theory-guided machine learning 

(TGML) [6,14,19,21–24]. Our objective in this paper is to 

present the method through a relatively simple case study. 

Therefore, throughout the remainder of the paper, we will 

employ the method to predict PIDs for eight-ply layups 

consisting solely of zero- and ninety-degree plies. However, the 

procedures outlined are intended to be general, allowing for 

potential expansion of the method to include other process 

parameters such as cure cycle. 

The first step of the procedure involves generating 

simulation data (i.e., numerical PID predictions) following the 

previously discussed numerical modeling procedures. As 

mentioned earlier, this work’s scope was limited to eight-ply 

crossply layups, and thus simulations were conducted for 28 = 

256 laminations. The LW modeling approach discussed in a 

previous subsection facilitated the efficient attainment of corner 

spring-in, tip spring-in, and warpage predictions for all laminates 

within a few hours.  

The next step in the method involves constructing a 

predictive model from the simulated PID predictions. To initiate 

this process, the first requirement is to obtain numerical 

parameters to describe each of the laminations. Drawing on 

methods from prior studies, we employ closed-form theories for 

this task. This approach serves to later incorporate physical 

domain knowledge into our predictive model, potentially 

offering “guidance” and enhancing accuracy [6,14,19,21–24]. 

Such a principle underlies the rationale behind labeling this 

work’s approach as one based on “theory-guided machine 

learning (TGML)”.  

In this work, the chosen theory for parameter calculations 

was Classical Laminated Plate Theory (CLPT) [25]. CLPT was 

employed to compute all nine elements of the extensional (A), 

coupling (B), and bending stiffness (D) matrices for each 

laminate, serving as potential input parameters for a model. This 

step yielded a high-dimensional dataset of 256 layups, each 

distinguished by 27 stiffness coefficients and three predicted PID 

values (i.e., corner spring-in, tip spring-in, warpage) at the center 

and edge of each L-shaped part. As previously highlighted, our 

goal in this work is to construct a predictive model from this 

extensive dataset. In other words, our aim is to build a model that 

predicts PIDs as outputs which are dependent on stiffness 

coefficients as inputs.  

Training a model with all 27 input parameters generated by 

CLPT is anticipated to be computationally demanding, 

excessively intricate, and present challenges for both 

visualization and interpretation. Therefore, the next step in the 

method involved identifying which variables are likely to be 

most critical for accurately predicting PIDs. Following 

inspiration from [26], this task was achieved using the 

probabilistic machine learning technique, Gaussian Process 

Regression (GPR) [27–29]. During training of a GPR model, 

beyond providing probabilistic responses and certainty bounds, 

the technique can furnish performance metrics such as log 

marginal likelihood, integrated posterior variance, and 

computational fitting time [26,28]. These metrics can then be 

leveraged to assess the suitability of certain smaller subsets of 

input variables as compared to the initial 27 inputs [26].  

In this study, we chose to place an emphasis on developing 

models that are easy to visualize and interpret. Therefore, we first 

used the GPR metrics technique to narrow the number of input 

variables from 27 to 2 so we could visualize the model as a 3D 

surface. Since we aim to predict six different PID outputs – 

corner spring-in, tip spring-in, and warpage at the center and 

edge of each L-shape – it’s important to note that the same 

subsets of variables might not be equally suitable for all outputs. 

Consequently, the subsequent process was repeated for each PID 

type and location.  

First, GPR was employed to train models on each subset of 

two input variables (e.g., A11, B22) to predict simulation-

generated PID values (e.g., corner spring-in). A summation of 

the Radial Basis Function (RBF) and white noise kernels were 

used were training [28]. Given the total of 27 inputs, there were 

351 potential subset combinations for each PID output, all of 

which GPR effectively modeled in approximately four minutes. 

Leveraging GPR metrics, the variable subset that produced a 

model with the highest log marginal likelihood (i.e., accuracy), 

lowest integrated posterior variance (i.e., scatter), and lowest 

computational time (i.e., cost) was deemed most essential, 

leading to the exclusion of the remaining 25 from the dataset. 

The outcome of this process was six 3D GPR models trained on 

simulation data for corner spring-in, tip spring-in, and warpage 

at the center and edge of each L-shaped composite part. 

After constructing the initial GPR models, an iterative 

process of retraining and calibration was implemented by 

progressively integrating small amounts of experimental data. 

This process was guided by the following ideology 

schematically illustrated in Figure 3. Imagine some arbitrary 

dataset that we are trying to model, where Y (i.e., output) is a 

function of X (i.e., input), and the dataset exhibits variability 

similar to the behavior of composites (Figure 3a). If we attempt 

to model Y as a function of X solely using our GPR model built 

on simulation data (Figure 3b), the predictions will be inaccurate 

due to challenges and shortcomings involved in the simulation 

of PIDs. As previously mentioned in the introduction, some of 

these challenges include the simplification of material properties 

and processing phenomena during modeling. Another approach 

could involve substituting a limited number of simulation 

datapoints with experimental data and then retraining our model 

using GPR (Figure 2c). However, this method is also anticipated 

to exhibit inaccuracies until a significant number of experiments 
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are integrated into the model. This is because the model, without 

differentiation between simulation and experimental datapoints, 

would require a larger volume of experiments (i.e., true data) to 

adjust its predictions.  

 
Figure 3: SCHEMATIC COMPARISION OF WEIGHTED GPR 

(WGPR) MODELING APPROACH PROPOSED IN THIS WORK AS 

COMPARED TO OTHER METHODS. 

A final modeling approach, serving as the primary novel 

contribution of this work, involves assigning datapoint-

dependent noise levels (i.e., uncertainties) to simulation 

datapoints as experiments are incorporated. In this study, we 

suggest that these noise levels could be predicated on the 

proximity of simulation points to experimental ones in the 

domain. Such a process would allow the model to consider 

datapoints from various sources differently, placing greater trust 

in data near experiments in the input space. Conversely, for 

regions in the theory-guided domain where experimental data is 

absent or sparse, the model could exhibit heightened uncertainty 

in its predictions. This would result in the establishment of a 

probabilistic model with a weighted uncertainty structure, 

denoted as WGPR throughout the remainder of this paper 

(Figure 3d). The WGPR strategy may hold the potential to 

necessitate fewer experimental results for accuracy and will be 

further explored in the subsequent sections of this paper. 

As mentioned earlier, the WGPR approach in this study 

entailed directly specifying noise levels to simulation datapoints 

during model training. To accomplish this, after integration of 

experimental results, the Euclidean distance between each 

simulation and experimental point was first computed. Each 

distance was then inputted into the following Gaussian distance 

decay weighing function: 

𝑤𝑖𝑗 = 𝑒−𝑑𝑖𝑗
2 2(ℎ×𝑑𝑖𝑗,𝑚𝑎𝑥)

2⁄
 (1) 

where wij is the weight of each simulation datapoint, dij is the 

Euclidean distance between a simulation and experimental 

datapoint in the theory-guided domain, h is a decay factor 

influencing the rate of decay, and dij,max is the maximum distance 

between two datapoints in the theory-guide domain. 

Figure 4 illustrates the Gaussian distance decay weighing 

function for various values of h. It is important to observe that 

the value of h is a direct reflection of the confidence in simulation 

capabilities. In other words, if there is high uncertainty in 

modeling capabilities, material properties, or other parameters, 

we can implement this knowledge by selecting a smaller value 

of h. Conversely, as h increases, it indicates higher confidence in 

simulation predictions, leading to more gradual weight decays 

throughout the theory-guided domain. In this work, we utilized 

an h value of 0.15 to reflect a moderate trust in simulation data. 

Note that if non-subjective methods for determining h are 

preferred, techniques such as Silverman’s rule of thumb [30] or 

Scott’s rule [31] may also be used as starting points.  

After weights were calculated for each simulation-

experiment pair, a weighted sum was computed to give each 

simulation datapoint a single weight in the domain. Next, each 

wij was translated into a noise level parameter (αij) by calculating 

its reciprocal. This led to a numerical value representing the 

weighted uncertainty for each simulation datapoint that 

increased exponentially as the distance from experimental data 

increased (Figure 4). 

 

5 Copyright © 2024 by ASME



 

 
Figure 4: GAUSSIAN DISTANCE DECAY WEIGHINING AND 

UNCERTAINTY FUNCTIONS FOR DIFFERENT DECAY RATE 

VALUES. 

The subsequent step in training the predictive model 

involved organizing each noise level parameter into an array and 

then integrating it into the GPR training process using scikit-

learn [32]. These specified noise values for each datapoint were 

included in the training process as constants added to the 

diagonal of the kernel matrix during fitting. Essentially, these 

values can be interpreted as the variance of additional Gaussian 

measurement noise on the training observations. It is important 

to note that this approach differs from using a white noise kernel, 

which is employed to describe the global uncertainty of the GPR 

model [28]. When an array of αij values is passed during fitting, 

it is akin to directly specifying datapoint-specific noise levels 

and creating a local uncertainty structure. 

The concluding phase of model training involves 

conducting experiments and progressively incorporating the 

results. In this work, experiments were strategically carried out 

in regions where the model exhibits the greatest uncertainty in 

its predictions. Experiments were conducted until the model 

could provide mean predictions within the standard deviation 

range for five validation laminates with various layups. 

3. RESULTS AND DISCUSSION 
In this section, we initially demonstrate the construction of 

a WGPR model for predicting corner spring-in at the center of 

all eight-ply crossply L-shaped composite parts. The model’s 

evolving predictions, as more experimental datapoints are 

integrated, are compared to experimental results for five 

validation cases. Finally, the iterative WGPR approach is applied 

to predict the deformed shape of an L-shaped laminate with a 

[0/90]2s layup. Prediction of the L-shape profile involved first 

repeating the corner spring-in process to predict all PID values – 

corner spring-in, tip spring-in and warpage at the center and edge 

of each L-shaped part. Then, interpolation between these values 

was performed to estimate the overall L-shape.  

3.1 Corner Spring-in Prediction 
Figure 5 shows the evolution of a WGPR model for 

predicting corner spring-in of L-shaped laminates, trained on 

simulation data and various amounts of experimental data. Red 

points in the plot represent simulation predictions, the colored 

surface represents the GPR model’s mean response (i.e., 

predictions) for all crossply laminations, and grey surfaces 

represent the bounds of the model’s 95% confidence intervals. 

The corner spring-in is plotted as a function of B11 and D22, as 

these values were identified as most crucial based on the GPR 

metrics method employed. Since no experimental data was 

integrated into the model, all simulation datapoints are equally 

weighed an assigned equal αij values during training. 

 
Figure 5: EVOLUTION OF A WEIGHTED GAUSSAIN PROCESS 

REGRESSION MODEL FOR PREDICTING CORNER-SPRING IN 

OF L-SHAPED LAMINATES WITH DIFFERENT AMOUNTS OF 

EXPERIMENTAL RESULTS INTEGRATED. 
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Figure 5a presents a WGPR model trained solely on 

simulation data. In Figures 5b, 5c, and 5d, the model is depicted 

with one, three, and five sets of integrated experimental results, 

respectively. Note that the model with two and four sets of 

experiments is not shown due to space limitations of this 

document. As mentioned earlier, each set of experimental results 

was derived from the fabrication of three L-shaped parts with 

identical layups and processing conditions, introducing 

uncertainty and variability into the model. These figures vividly 

demonstrate the evolving nature of the WGPR model with each 

integration of experimental results. Notably, the mean response 

and confidence bounds converge onto the experimental results 

where no additional noise level is specified during training. 

Simultaneously, the mean response and bounds diverge further 

away from experiments, a consequence of the Gaussian distance 

decay weighing mechanism applied during the training on 

simulation data. 

Table 1 provides details on the layups and coordinates of the 

five validation tests, while Figure 6 illustrates the WGPR 

model's corner spring-in predictions for these laminates. In the 

figure, black outlined bars and error bars represent the average 

experimental results and standard deviations, respectively. The 

green bars depict the WGPR model’s predictions with different 

numbers of experiments integrated, following the same sequence 

as shown in Figure 5. The root mean squared error (RMSE) 

initially stood at 39.7%, reducing to 8.2% after incorporating just 

five experiments. Ultimately, the WGPR model achieved a 

corner spring-in prediction within a RMSE of 0.12 degrees and 

within the standard deviation of each laminate. These findings 

underscore the effectiveness of the WGPR method in 

significantly reducing the error of simulation predictions with 

only a minimal number of experiments. 

 
Table 1: LAYUPS AND THEORY-GUIDED INPUT PARAMETERS 

OF LAMINATES USED FOR VALIDATION OF WGPR 

PREDICTION METHOD. 

Laminate Layup 
WGPR Inputs 

B
11

 × 10
-3

 

(Pa·m
2
) 

D
22

 

(Pa·m
3
) 

1 [0/90/0/90/90/0/90/0] 0.00 15.63 
2 [90/0/0/90/0/90/90/0] 0.00 23.24 
3 [0/0/0/90/90/0/0/0] 0.00 3.58 
4 [90/0/0/0/0/90/90/0] -2.50 22.92 
5 [90/0/90/0/90/90/0/90] -2.50 31.61 

 
 

Figure 6: EVOLUTION OF A WEIGHTED GAUSSAIN PROCESS 

REGRESSION MODEL’S PREDICTIONS OF CORNER-SPRING IN 

OF L-SHAPED LAMINATES WITH DIFFERENT AMOUNTS OF 

EXPERIMENTAL RESULTS INTEGRATED. 
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3.2 L-shape Prediction 

In Figure 7, predictions for the post-curing and demolding 

shapes of an L-shaped laminate with a [90/0]2s layup are 

presented. As outlined in the experimental procedures, three 

parts were fabricated for this layup, and their results are 

displayed in Figure 7a. From these experiments, a mean response 

illustrating the PIDs of the three parts is depicted in Figure 7b. 

Correspondingly, Figure 7c showcases predictions derived from 

LW-modeling-based simulations. Subsequent figures, 7d-g, 

exhibit predictions of the L-shape from the WGPR model with 

zero, one, three, and five experiments integrated. Similar to the 

convergence observed in spring-in predictions, the WGPR 

method yields highly accurate predictions of the L-shaped part 

after incorporating just five experiments during the training 

phase. It is worth noting that a significant portion of the error 

between predictions (i.e., simulation) and experiments seems 

concentrated in the flange region, primarily due to warpage. This 

observation is reasonable, considering that most of the warpage 

is attributed to tool-part interaction, which was not modeled 

during simulation. However, the overall convergence in shape 

suggests that the WGPR method holds promise in compensating 

for these shortcomings, and further exploration will be 

conducted in future studies. 

 
Figure 7: EVOLUTION OF A WEIGHTED GAUSSAIN PROCESS 

REGRESSION MODEL’S PREDICTIONS OF AN L-SHAPED 

LAMINATE’S DEFORMED SHAPE WITH DIFFERENT AMOUNTS 

OF EXPERIMENTAL RESULTS INTEGRATED. 

4. CONCLUSION 
This study introduced an innovative approach to accurately 

predict process-induced deformations (PIDs) in composite parts, 

leveraging numerical simulation, limited experimental results, 

and theory-guided machine learning (TGML). The methodology 

initiates with a layer-wise (LW) modeling technique, utilizing 

the Carrera Unified Formulation (CUF) to predict PIDs for 

laminates within a specified design space. Subsequently, closed-

form physical theory generates numerical parameters to describe 

each solution. Gaussian Process Regression (GPR) is then 

employed to map these points into a reduced-order domain and 

construct a predictive model. The GPR model undergoes 

iterative updates with experimental results, and simulation 

datapoints are assigned point-specific noise levels using a 

Gaussian distance decay weighing mechanism. This process 

results in a probabilistic model featuring a weighted uncertainty 

structure, denoted as Weighted Gaussian Process Regression 

(WGPR). The effectiveness of this approach is demonstrated by 

its ability to provide accurate predictions of corner spring-in and 

the final deformed shapes of L-shaped laminates with crossply 

layups after integrating five experiments into the model. This 

novel method holds promise for further investigation, 

understanding, and potential mitigation of PIDs in composite 

parts. 
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