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Abstract
Malignant brain tumours represent a significant medical challenge due to their aggressive nature and unpredictable locations.
The growth of a brain tumour can result in a mass effect, causing compression and displacement of the surrounding healthy
brain tissue and possibly leading to severe neurological complications. In this paper, we propose a multiphase mechanical
model for brain tumour growth that quantifies deformations and solid stresses caused by the expanding tumour mass and
incorporates anisotropic growth influenced by brain fibres. We employ a sharp interface model to simulate localised, non-
invasive solid brain tumours, which are those responsible for substantial mechanical impact on the surrounding healthy
tissue. By using patient-specific imaging data, we create realistic three-dimensional brain geometries and accurately represent
ventricular shapes, to evaluate how the growing mass may compress and deform the cerebral ventricles. Another relevant
feature of ourmodel is the ability to simulate therapeutic protocols, facilitating the evaluation of treatment efficacy and guiding
the development of personalized therapies for individual patients. Overall, our model allows to make a step towards a deeper
analysis of the complex interactions between brain tumours and their environment, with a particular focus on the impact of a
growing cancer on healthy tissue, ventricular compression, and therapeutic treatment.

Keywords Brain tumours · Poroelasticity · Anisotropic growth · Ventricular compression · Therapeutic protocols · Finite
element method

1 Introduction

Malignant brain tumours currently represent one of the most
challenging medical problems. They can emerge in any
region of the brain and are known for their aggressive nature,
which makes them extremely difficult to treat [51]. Among
the numerous issues causedby the growth of such cancers, the
expansion of neoplastic tissue inevitably results in unnatural
displacement of the normal cerebrum. As a consequence of
this anomalous tissue motion within the skull fixed volume,
the tumour can exert considerable pressure and solid stress
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onto the surrounding healthy tissue, leading to changes in
neurological functionalities and in the flow of extracellular
fluid. These side effects caused by a tumour growing within
the brain are known as “mass effect” and can cause severe
neurological dysfunctions, such as fatigue or drowsiness,
alterations of consciousness, problems with vision, nausea
and vomiting, headaches, epilepsy and seizures, changes in
personality and other psychiatric disorders [5, 7, 118, 143,
155]. In general, the growth of a solid mass is associated
with an increase in intracranial pressure, which in turn may
provoke alterations in brain functions and cerebrospinal fluid
flow obstruction. In particular, recent experiments and clini-
cal evaluations underscored the relevant role played by solid
stresses in addition to fluid pressure [142] and it was hypoth-
esized that stresses in the tumour microenvironment may
promote immune escape [130]. Moreover, pre-surgery tis-
sue displacement due to mass effect may also be an indicator
of the overall patient survival expectations [147]. Indeed, the
development of unnatural strains and stresses due to tumour
growth has been recognized as a relevant prognostic factor,
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with a negative impact on the patient, especially in the skull-
confined brain [71, 98, 125, 147]. For all these reasons, it
is important to evaluate brain alterations, displacements, and
stresses caused by tumour growth also in distant parts of the
tissue with respect to the tumour location [112]. Clinically,
the degree of mass effect can be assessed through Magnetic
Resonance Imaging (MRI) by quantifying the displacement
of some relevant biological structures (e.g. the midline shift,
the lateral ventricle displacement [112, 147] or the maxi-
mum displacement magnitude of the ventricles [175]), the
compression of fluid-filled structures that may result in the
obstruction of brain ventricles, and the formation of oedema
in the region close to the tumour lesion [147]. In particu-
lar, an accurate estimation of ventricular compression caused
by the neoplastic mass may also improve the computational
reconstruction and segmentation ofmedical images, which is
important to capture the correct tumour volume [97]. Further-
more, it is well recognized and evident frommedical imaging
that brain tumours exhibit anisotropic shapes and patterns,
owing to preferential growth and cell migration along the
directions of white matter tracts and blood vessels [33, 64,
74, 94, 100].

Regarding the therapeutic treatments, the current stan-
dard of care for brain tumours is the Stupp protocol [150,
151], which involves surgical resection of the mass followed
by radiation therapy and adjuvant chemotherapy. Radiation
therapy utilises high doses of radiation to target the tumour,
shrink its size, and kill cancer cells. It is highly precise and
can double the survival time compared with surgery alone
[139]. The Stupp protocol also includes chemotherapy with
temozolomide (TMZ), a cytotoxic agent that has been shown
to significantly improve survival rates [134]. Nevertheless,
there are cases in which gross resection of themass is not fea-
sible, mainly due to tumour location. This especially happens
for patients with multifocal or eloquently located1 glioblas-
tomas [112] and for deeply infiltrating tumours in locations
not amenable to surgery [114],which exhibit an unacceptable
risk of post-operative neurological deficits. In these situa-
tions, appropriate chemoradiation therapies are even more
relevant to reduce tumour burden and extend the survival time
of patients while minimizing the side effects [25, 28, 112,
114].However, the treatment andprognosis for brain tumours
have only seen marginal improvement over the last decade
due to the complexity of the tumour microenvironment and
the limited ability of drugs to penetrate the blood-brain
barrier [174]. Indeed, even with currently accepted care pro-
tocols, the median survival time does not exceed 15 months
[151], and is even less in the absence of surgery [112, 150].
As a result, there is a pressing need for the development of

1 In the jargon of neurosurgery, eloquent brain areas are defined as
zones whose neurological function is clearly identified and hence, if
injured, may lead to disabilities [84, 103].

novel and more effective therapeutic approaches to enhance
outcomes for patients with brain cancer. Several different
drugs, e.g. bevacizumab or irinotecan, as a substitute for or in
combination with TMZ have recently been tested [104, 114],
sometimes with limited success [43, 104]. In this respect,
the contribution of mathematical models can be helpful to
perform realistic, personalised simulations with the aim of
evaluating in silico the potential efficacy of therapeutic pro-
tocols before administering them to patients.

In particular, during the last decade, various mathematical
models have been developed to understand the progression
of brain tumours, with the aim of supporting clinical obser-
vations. The models used to study glioma growth at the
microscale are mainly Agent-Based Models, like Cellular
Automata or Cellular Potts Models [34, 82, 99, 101, 119],
which are suitable to describe tumour early growth, as well
as invasion-metastasis of small groups of cells and phe-
notypic plasticity. On the other hand, macroscopic models
describe the evolution of cancer at the tissue scale through
continuous variables, whereas mesoscopic and multiscale
models [48, 49, 62, 63, 132, 158] are used in several works
to bridge the gap between scales. Seminal studies employ-
ing reaction-diffusion equations [159–162, 166, 173] to
model the spreading and proliferation of gliomas laid the
foundations for numerous successive investigations, with an
increasing level of detail and focusing on different aspects,
like intra-tumoural and tissue heterogeneity, anisotropy, inva-
siveness, and immune interaction [2, 4, 47, 91, 94, 102, 156].
Biomechanicalmodels, instead, also account for themechan-
ically induced alterations onto the surrounding tissue by the
growing mass and vice versa [18, 19, 23, 33, 35, 45, 58–60,
86, 109, 116, 154], which are important issues. For a more
detailed classification of mathematical models developed for
brain tumour growth, we refer the reader to [9, 23]. What is
worth noting here is that the vast majority of mechanical
models do not include anisotropic growth distortions. The
latter are related to tumours growing preferentially along the
white matter tracts and displacing the host tissue accord-
ingly. Even though the mechanical framework proposed in
[23, 116] is able to evaluate the stress and strain fields asso-
ciated with brain cancer expansion, it does not include the
modelling of anisotropic distortions specifically related to
growth. An attempt in this respect has been made in a recent
work by Harkos et al. [81], where three different evolution
equations for the growth stretches in the principal directions
were introduced. However, such equations were based on a
purely phenomenological exponential law, to preferentially
drive growth along the direction of reduced compression [81,
117]. Another important issue that is generally overlooked
in mechanical models of brain tumour growth is the descrip-
tion of therapeutic protocols. Previous mathematical studies
about therapies for brain cancer can be found in [2, 24, 32, 48,
87, 92, 93, 111, 134, 138–140], which however are grounded
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on ordinary differential equations and kinetic equations, not
discussing the interplay with mechanics. Recent investiga-
tions by Hormuth et al. [89, 91] considered the effect of
Von Mises stress in a model for brain tumour growth and
response to chemoradiation. Notably, the stress was used
to exponentially dampen the motility coefficient of tumour
cells, while the mechanical constitutive equations remained
relatively simplified, and fluid stresses were not considered.

On the basis of these observations, in this paper we pro-
pose amultiphasemechanicalmodel for brain tumour growth
which is able to quantify anisotropic deformations, solid and
fluid stresses induced by the growing mass and to embed
therapeutic protocols. Additionally, a novelty of our work
is the study of cerebral ventricles compression, caused by
brain tumour growth, and alterations in their shape due to
the cancer-induced deformation. Our model extends the one
proposed in [116] by clearly separating the tumour from the
host tissue with a sharp interface that moves with the solid
phase, resulting in variables that are not necessarily continu-
ous across such an interface. Moreover, a key feature of our
model is the inclusion of an anisotropic growth tensor that
accounts for the directions of brain fibres reconstructed from
medical imaging data. In this respect, our approach general-
izes the biomechanical ones based on isotropic growth [18,
19, 23, 58, 116] and also differs from the one by Harkos
et al. [81], where the influence of patient-specific parame-
ters on the anisotropic growth tensor was indirect. Indeed,
in [81] the evolution laws for the growth stretch rates in
the three directions were driven by the stresses, which were
affected by, but not directly reconstructed from, Magnetic
Resonance Elastography data. Furthermore, the model we
propose also includes image-based diffusion and permeabil-
ity tensors, the latter of which is not considered in [81]. These
choices allow to reproduce the irregular and heterogeneous
growth patterns of brain tumours, which are influenced by
the surrounding anatomical structures [64, 167]. In particu-
lar, to construct a realistic three-dimensional brain geometry
and establish the ventricles’ shape, we used patient-specific
Magnetic Resonance Imaging (MRI) data. Specifically, we
took advantageof data collectedbyDiffusionTensor Imaging
(DTI), an MRI technique that captures anisotropic water dif-
fusion and estimates the axonal white matter organization in
the brain. These data were processed with an approach based
on a multi-compartment model to isolate the free water con-
tribution and to givemoreweight towatermotion constrained
by brain fibres. Additionally, we used the mechanical vari-
ables provided by ourmodel tomodify theDTI-acquired data
as the tumour grows and alters the host tissue. By considering
the interactions between the tumour expansion and the sur-
rounding brain environment deformation, our model makes a
step towards a more complete understanding of the complex
processes underlying brain tumour growth and the resulting
pathological effects. The proposed framework also incorpo-

rates a simplemodel to simulate therapeutic protocols, which
is a relevant feature towards the development of improved
treatments for patients. Differently from recent works that
introduced mechanical effects into chemoradiation models
for brain tumours [89–91], our framework accounts for non-
linear elasticity of both the tumour and the host tissue, with
constitutive equations motivated by experimental data [22],
and incorporates both solid and fluid stresses. Furthermore,
the coupling between mechanics and growth is derived via
well-established Continuum Mechanics methods in a physi-
cally motivated way. Although the stress feedback on tumour
growth is not considered here, it can be straightforwardly
incorporated, as done in [116].

In detail, the remainder of this work is organised as fol-
lows. In Sect. 2, we outline the mathematical model and
the procedures to reconstruct its patient-specific anisotropic
components. Then, in Sect. 3 we describe the numerical
implementation and provide an estimate of the parameters
involved. Section4 is devoted to the presentation and discus-
sion of the main results concerning numerical simulations
of the model. Finally, we conclude with Sect. 5, in which we
summarise themain aspects of the work andwe discuss some
possible perspectives for future research.

2 Mathematical model for brain tumour
growth

In this Section, we present a mathematical model grounded
on Continuum Mechanics and poroelasticity to describe
brain tumour growth, proliferation, and treatment. Specif-
ically, the mass and momentum balances, along with the
constitutive assumptions, are presented in Sect. 2.1. The
anisotropic descriptionof diffusion, permeability, andgrowth
tensors, along with their evolution over time, is discussed in
Sect. 2.2. Finally, the interface, boundary, and initial condi-
tions required to solve the model equations are provided in
Sect. 2.3.

2.1 Model derivation

We model the brain as a continuum multiphase body whose
reference configuration is identified by a region �∗ in the
three-dimensional Euclidean space E . Within this referential
domain, we consider the sub-region occupied by the tumour,
denoted by �∗

t , which is completely separated from the sub-
region representing the healthy host tissue, denoted by �∗

h.
Hence, the boundary ∂�∗

t between the tumour and the sur-
rounding environment can be described by a sharp interface.
This is appropriate to represent localised, non-invasive brain
tumours, which do not infiltrate much in the host tissue and
have significantly different biomechanical properties from it.
Such tumours are indeed the ones associated with the high-
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Fig. 1 Sketch of the domains
involved in the model and of the
multiplicative decomposition of
the deformation gradient. (Color
figure online)

est mass effect [45, 116, 127, 147]. Moreover, we assume
that the cerebral ventricles can be represented by a hole in
the domain. Therefore, the boundary of the brain domain is
∂�∗ = ∂�∗

out∪∂�∗
v, where ∂�∗

out stands for the outer bound-
ary, which can be interpreted as the skull, and ∂�∗

v represents
instead the boundary of the ventricular region (see Fig. 1 for
a schematic representation). As a result, in order to properly
study the impact of cancer growth on the ventricles without
describing the complex mechanisms that can occur inside
them, appropriate boundary conditions have to be imposed
on ∂�∗

v, as we will discuss in Sect. 2.3.
Working in the framework of poroelasticity, both the

healthy region�∗
h and the diseased one�∗

t are treated as sat-
urated domains, composed of two distinct phases: the solid
phase, labelled with subscript “s”, representing the cellular
components of the brain tissue, and the liquid phase, labelled
with subscript “�”. Therefore, introducing the volumetric
fraction of the cell population,φs, and the volumetric fraction
of the liquid, φ�, the saturation constraint

φs + φ� = 1 (1)

must hold at any time instant and at any point in the brain
domain �∗ = �∗

h ∪ �∗
t . In this description, the cellular

phase represents healthy cells in �∗
h and diseased cells in

�∗
t , whereas the fluid phase resumes interstitial brain fluid,

blood and nutrients in both regions. Furthermore, we assume
that the materials composing the phases are incompressible,
which means that both phases of the mixture have constant
true densities ρ̂α , with α ∈ {s, �}. For this reason, once

the true density ρ̂α is prescribed, the apparent phase den-
sity ρα := ρ̂αφα of the material composing the α-phase is
totally defined by knowing φα . Finally, since cells are mainly
composed of water, we assume that the true densities of both
phases are equal to each other, i.e. ρ̂s = ρ̂�.

Concerning the kinematics, let χ(X, t) be the motion of
the body, which maps a material point X ∈ �∗ to its current
position x ∈ � at time t . The displacement field of the solid
phase is, then, defined by us(X, t) = χ(X, t) − X, so that
the deformation gradient tensor of the solid component is
Fs = I+Grad us, where I is the second order identity tensor
and Grad denotes the gradient with respect to material coor-
dinates. In order to properly describe the mechanics of the
growing tumour, we have to face the problem that the envi-
ronment is constantly changing as cells duplicate and die,
and it is not trivial to define a reference configuration with
respect to which deformations are measured. Therefore, we
resort to the theory of evolving natural configurations, pro-
posed in [55, 115, 136] and successfully applied to model
growth and remodelling of living tissues in different con-
texts [11–15, 19, 77, 79, 116, 120]. Following this modelling
background, we adopt a multiplicative decomposition of the
deformation gradient of the solid phase:

Fs = FeFg . (2)

Such a decomposition, represented pictorially in Fig. 1,
accounts for the fact that the variation of mass due to growth
induces inelastic distortions in the body, which in turn gener-
ate residual stresses. This is translated in mathematical terms
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by considering a growth tensor Fg, which describes the local
change of shape and volume caused by growth, whereas Fe

represents the purely elastic part of the deformation. The
tensor Fg determines the so-called natural state �n(t) of
the body, in which each material particle is allowed to grow
freely and independently of the other ones, while the elastic
accommodation within the material is described by Fe.

Furthermore, since the deformation gradient Fs is invert-
ible, from Eq. (2) it follows that Fe and Fg are non-singular
as well. Indeed, the determinant Js of the deformation gradi-
ent can be expressed as Js = Je Jg , where Je := det Fe and
Jg := det Fg.

2.1.1 Mass balance laws and definition of the therapeutic
protocol

The multiphase approach employed to describe tumour
growth is based on the theory of mixtures [13, 16, 40, 137].
Specifically, the Lagrangian formulation of the mass balance
equations for the solid and liquid phases in the tumour ref-
erence domain �∗

t can be written, respectively, as [23, 79,
116]:

˙Jsφs = Js	s(φs, cn, t) , (3)

˙Jsφ� + Div
[
Jsφ�F

−1
s (v� − vs)

]
= −Js	s(φs, cn, t) , (4)

where the differential operator Div denotes the divergence
with respect to the material point in the reference config-
uration, vs and v� are the velocities of the solid and fluid
constituents, respectively, and a superposed dot denotes the
time derivative. Instead, 	s represents the net mass growth
rate of the solid phase and it is assumed to be a function of the
cell volume fraction φs and of the concentration of available
nutrients cn , the latter normalised with respect to the physi-
ological value. In particular, the evolution in time and space
of cn can be written in Lagrangian form as follows [23, 116]:

Jsφ�ċn − K
∗

μ
Grad p · Grad cn − Div

[
φ�D

∗ Grad cn
]

= JsGn , (5)

where p is the fluid pressure, D∗ := JsF−1
s DF

−T
s is the pull-

back of the diffusion tensor D and K
∗ := JsF−1

s KF
−T
s is

the pullback of the permeability tensor K, whose construc-
tion will be discussed extensively in Sect. 2.2. Instead, Gn is
taken as:

Gn =
{

−ζφsφ�cn + Sn (1 − cn) φ� in �∗
t

0 in �∗
h

, (6)

so that nutrients are consumed by the tumour at a constant
rate ζ and supplied at a constant rate Sn if their concentration

is below the physiological one. In particular, we hypothesize
that a net nutrients uptake only happens within the tumour
region, where a net growth is occurring. We remark that
Eqs. (3)–(4) have been derived, as in standard mixture the-
ory, with respect to the motion of the solid phase, for both
constituents. Thus, the tumour region �∗

t in the reference
configurationdoes not evolve in time. Furthermore, inwriting
Eqs. (3)–(4), we have assumed that growth of the solid phase
happens at the expense of the liquid phase. This assump-
tion stands from the biological observation that cells need
to absorb fluid from the extracellular environment in order
to increase their volume and proliferate. At the same time,
when cells die, in the absence of calcification, they release
the intracellular fluid into the environment. However, a tissue
is generally not a closed system in terms of mass since fluid
can come from the vasculature within the tissue or from the
boundary between the tissue and fluid regions, such as the
brain ventricles. In the present description, as largely done
in the literature [3, 40, 47, 122], we neglect the description
of the extra fluid coming from the vasculature, but fluid can
eventually flow across the boundary between the tissue and
the liquid region of the brain ventricles, therefore, the total
mass of the mixture is not conserved. More in detail, we
assume the following form for the net rate of growth 	s:

	s(φs, cn, t)

=
{

νφs (φmax−φs) (cn−c0)+ −R(φs, t)−G(φs, t) in �∗
t

0 in �∗
h

, (7)

where (·)+ denotes the positive part of its argument and
ν > 0. Specifically, in the domain occupied by the host tissue
�∗

h, we assume that proliferation of healthy cells is compen-
sated by their natural death, so that the net rate of growth
	s can be taken as equal to zero therein. Conversely, the
first term on the right-hand side of Eq. (7) in�∗

t models con-
tact inhibition of proliferation above amaximum cell volume
fraction φmax as well as the dependence of proliferation on
the concentration of nutrients cn , with an hypoxia threshold
c0 [23, 47, 116]. For what concerns the loss terms R(φs, t)
and G(φs, t), they represent cell death due to radiotherapy
and chemotherapy, respectively. We define them by referring
to the current standard of care for newly diagnosed brain
tumours, which consists of adjuvant radiotherapy (RT) and
chemotherapy (CHT), very often after surgical resection. In
some cases, however, resection of the tumour mass is unfea-
sible, and only RT and CHT are administered. A protocol
about the administration of the drug temozolomide combined
with radiotherapy treatment for brain tumours was proposed
by Roger Stupp in 2005 [151]. In particular, he found that
the addition of TMZ to radiotherapy for newly diagnosed
glioblastoma resulted in a clinically meaningful and statis-
tically significant survival benefit with minimal additional
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Fig. 2 The therapeutic protocol considered in this work: radiotherapy (in orange) and three cycles of chemotherapy (in green). (Color figure online)

toxicity for the patient. The radiotherapy administration of
the Stupp protocol consists of fractionated focal irradiation
at a dose of 2 Gy per fraction (1 Gy = 1 J/kg), given once
a day five days per week (Monday through Friday) over a
period of six weeks, for a total dose of 60 Gy. Concomi-
tant chemotherapy consists of TMZ at a dose of 75 mg/m2,
to be administered 7 days per week starting from the first
day of radiotherapy until the last day of radiotherapy. After
a 4-week break, patients receive up to six additional cycles
of chemotherapy according to the standard 5-day schedule
every 28 days. The standard dose of TMZ in the second adju-
vant CHT cycle is 150 mg/m2 and it is increased to 200
mg/m2 beginning with the third cycle.

The effects of radiotherapy and chemotherapy according
to a therapeutic protocol similar to the standard Stupp pro-
tocol, with just three cycles of chemotherapy, as illustrated
in Fig. 2, are introduced in our model by taking R(φs, t) and
G(φs, t) as directly proportional to the fraction of tumour
cells [2, 48, 134, 139]:

R(φs, t) = kR(t)φs , G(φs, t) = kC (t)φs . (8)

Following other works in the literature [2, 48, 134], we
firstly investigate the case in which the two time-dependent
coefficients kR(t) and kC (t) are equal to zero when the ther-
apy is not administered, while they are constant and equal to
the specific cell death rate during the days of treatment, i.e.,

kR(t) =
⎧⎨
⎩
Reff t1 + 7 j days ≤ t ≤ t1 + (4 + 7 j) days

0 otherwise
,

(9a)

kC (t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kC1 t1 ≤ t ≤ t f 1

kC2 t2 ≤ t ≤ t f 2

kC3 t3 ≤ t ≤ t f 3

0 otherwise

, (9b)

where j = 0, . . . , 5, t1 is the time when the patient starts
therapies, t2 and t3 are the days when the patient starts the
second and the third cycle of chemotherapy (i.e., in our case,
t2 = t1+70 days and t3 = t1+105 days) and t fi are the days
in which each chemotherapeutic cycle ends (i.e. t f1 = t1+39
days, t f2 = t1 + 74 days and t f3 = t1 + 109 days). For what
concerns radiotherapy, the term Reff represents the effect of
n fractions per day and it is estimated through the linear-
quadratic model, commonly used for studying the survival
response and clinical results in radiotherapy [2, 134, 171]:

Reff = αnd + βnd2 , (10)

where d [Gy] is the dose radiation for every fraction, while
α [Gy−1] and β [Gy−2] are the linear and quadratic coef-
ficients for RT-induced cell death, respectively. For what
concerns chemotherapy, the parameters kC1, kC2 and kC3

appearing in Eq. (9b) reflect the cell death response for
increasing drug dosage, as described above. Then, we inves-
tigate another modelling assumption to take into account the
fact that the effects of drug administration persist even after
the drug has been cleared out from the body, since complex
biological processes are triggered [68]. Indeed, late apop-
tosis/necrosis induced by TMZ may occur even after some
days from the last treatment [30, 83, 141]. To account for
this prolonged effect of chemotherapy on tumour cells with-
out resorting to a complex pharmacodynamics model, we
consider an exponential decay of the tumour cell response
(in terms of the cell death rate kC ) when each chemotherapy
cycle is stopped. As a consequence, the coefficient kC (t) in
Eq. (8) in this case is not null when the chemotherapy is not
administered, but instead it decays in time as follows:

kC (t) =
3∑

i=1

kCi1[ti ,t f i ](t) + kCi e
−λc(t−t f i )1[t f i ,+∞)(t) ,

(11)

where 1[a,b](t) is the indicator function whose value is one
for a ≤ t ≤ b and is equal to zero otherwise. More details on
the values of the parameters kCi are given in Sect. 3.2 together
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with the plot of the time evolution of kR(t) and kC (t) for all
the considered scenarios (see Fig. 9).

2.1.2 Momentum balance laws

Regarding the momentum balances in both the cancer and
healthy domains, for the fluid phase we assume the validity
of Darcy’s law [23, 76]:

v� − vs = −Fs
K

∗

Jsμφ�

Grad p , (12)

in which p is the pressure of the interstitial fluid and
K

∗ = JsF−1
s KF

−T is the tensor pullback to the reference
configuration of the permeability tensor K in the current
configuration, that will be discussed in Sect. 2.2. Instead, the
balance of linear momentum for the mixture as a whole reads

Div
[
−Js pF

−T
s + Ps

]
= 0 , (13)

where Ps is the constitutively determined part of the first
Piola-Kirchhoff stress tensor of the solid phase, that will be
derived in Sect. 2.1.3. For later convenience, it is useful to
reformulate the mass balances by summing up Eqs. (3) and
(4) and using Eqs. (1) and (12), to obtain

J̇s = Div

[
K

∗

μ
Grad p

]
. (14)

For further details about the derivation of Eqs. (12)–(14)
we refer the reader to [23].

2.1.3 Stress tensor and constitutive equations

In order to close the system of mass and momentum bal-
ance equations and to understand how brain tumour growth
influences mechanically the surrounding tissues, we have
to provide a constitutive equation for Ps, i.e., the effec-
tive part of the first Piola-Kirchhoff stress tensor associated
with the cellular population, both in the diseased and in the
healthy region. In analogy with [14, 116], we assume that the
mechanical response is hyperelastic from the natural state
to the current configuration, so the tumour is modelled as
a hyperelastic material capable of growing. Therefore, we
assume the existence of an elastic strain energy density func-
tion for both the tumour and the healthy tissue, from which
we compute the corresponding stress Ps.

Specifically, in order to describe themechanical behaviour
of soft brain tissue, the generalised Ogden model [129] is
often found appropriate [123].We consider here theMooney-
Rivlin model, which represents a particular case of the
generalised Ogden energy [22, 52, 123], and assume the
brain to bemechanically isotropic, as pointed out experimen-
tally [38, 56]. Hence, let Ce := J−2/3

e Ce be the isochoric

part of the elastic right Cauchy-Green deformation tensor
Ce := F

T
e Fe. The strain energy density per unit volume of

the natural state of the tumour, Ŵ t
sn, and of the healthy tissue,

Ŵh
sn, can be expressed as

Ŵω
sn

(
Ce, Je

)
= 1

2
μ1ω

(
I
Ce

− 3
)

+ 1

2
μ2ω

(
II
Ce

− 3
)

+

+ κω (1 − φsn)
2
(

Je − 1

1 − φsn
− ln

Je − φsn

1 − φsn

)
,

(15)

where I
Ce

:= tr
(
Ce

)
, II

Ce
:= 1

2

[(
trCe

)2 − tr
(
C
2
e

)]
,

φsn := Jeφs is the volume fraction of the solid phase com-
puted in the natural state, and μ1ω, μ2ω, κω are material
constitutive parameters of the ω-tissue, with ω ∈ {t, h} rep-
resenting the tumour and the healthy region, respectively.
The last term on the right-hand side of Eq. (15) penalises
volumetric changes in the solid phase, occurring below the
compaction point, i.e. when all pores in the medium are
closed and further volume deformations are impeded due
to the incompressibility of the solid constituent (see [57] for
further details). Such a response to volumetric deformations
is weighted by the material parameter κω.

Then, given the strain energy density Ŵω
sn, we can express

the first Piola-Kirchhoff stress tensor of the cellular phase in
the ω-tissue, with ω ∈ {t, h}, as

P
ω
s = 2JgFe

∂Ŵω
sn

∂Ce
F

−T
g . (16)

By working out the derivative in Eq. (16), we have

P
ω
s = 2JgFe

[
J−2/3
e

(
I − 1

3
C

−1
e ⊗ Ce

)
:

(
γ ω
1 I + γ ω

2 Ce

)]
F

−T
g +

+κω (1 − φsn) Js

(
1 − 1 − φsn

Je − φsn

)
F

−T
s , (17)

being I the symmetric fourth-order identity tensor and defin-

ing the quantities γ ω
1 := 1

2μ1ω + 1
2 ICe

μ2ω and γ ω
2 :=− 1

2μ2ω,
for ω ∈ {t, h}.

Finally, since we are considering a growth phenomenon,
we also need to provide a constitutive equation which
describes the evolution of the growth tensor Fg in the tumour
region. Indeed, since the net source term 	s is null in the
healthy tissue (see Eq. (7)), the multiplicative decomposi-
tion of the deformation gradient is in principle not needed
within the domain �∗

h, where no growth occurs. For this rea-
son, coherently with ourmodelling approach, we takeFg = I

inside �∗
h at all times.
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Regarding the growth evolution in the tumour region, by
substituting the product Js = Je Jg into Eq. (3), the mass
balance law of the solid phase takes the form:

Jg
˙Jeφs + J̇g Jeφs = Js	s(φs, cn, t) . (18)

Recalling that φsn = Jeφs and defining the strain rate
tensor Lg := ḞgF

−1
g (or velocity gradient) related to Fg, we

take advantage of the identity J̇g = Jg tr
(
Lg
)
to rewrite

Eq. (18) as

Jgφ̇sn + Jg tr
(
Lg
)
φsn = Js	s(φs, cn, t) . (19)

Finally, we enforce the natural condition that the variation
of bodymass is given by the strain rate tensor associated with
growth [12, 16, 76, 120], so that the following relation has
to hold:

tr
(
Lg
) = 	s

φs
. (20)

This assumption also entails that the solid volumetric frac-
tion in the natural stateφsn is constant in time [16, 120]. Then,
we can rewrite Eq. (3) as

Jsφs = Jgφsn , (21)

stating that φs is fully determined once Js and Jg are known.
For what concerns the inelastic distortions related to growth,
several models in the literature consider Fg as isotropic
(see for instance [12, 15, 16, 18, 23, 76, 116, 120]). In
this paper, differently from previous mechanical models for
brain tumour growth [18, 23, 116], we consider instead an
anisotropic growth tensor. Indeed, clinical evidence showed
that brain cancers often grow following the white matter
tracts [33, 64, 74, 94, 100], which preferentially drive tumour
expansion along certain directions. To include such an effect
in our model, we will consider a general anisotropic growth
tensor in the form

Fg = g1w1 ⊗ w1 + g2w2 ⊗ w2 + g3w3 ⊗ w3 , (22)

where wi , i = 1, 2, 3, are the unit orthogonal eigenvec-
tors representing the principal directions of growth and gi ,
i = 1, 2, 3, are the corresponding eigenvalues. Since the
eigenvectors wi , with i = 1, 2, 3, are assumed to be time-
independent, from Eq. (20) it follows that the three distinct
eigenvalues of Fg must satisfy

ġ1
g1

+ ġ2
g2

+ ġ3
g3

= 	s

φs
. (23)

This condition is for instance fulfilled if the evolution laws
of the eigenvalues gi are written as:

ġ1
g1

= β1
	s

φs
,

ġ2
g2

= β2
	s

φs
,

ġ3
g3

= β3
	s

φs
, (24)

where βi , i = 1, 2, 3, are proper coefficients that weigh
growth along the principal directions and such that β1+β2+
β3 = 1. The choice of the coefficientsβi and the eigenvectors
wi will be discussed properly inSect. 2.2, referring tomedical
patient-specific data.

2.2 Anisotropic diffusion, permeability, and growth

The presence of white matter tracts within the brain intro-
duces directional anisotropy that clearly affects all the
relevant phenomena, including diffusion, fluid motion, and
tumour growth. To properly account for the role of preferen-
tial directions, it is therefore necessary to provide definitions
for the diffusion tensorD, the permeability tensorK, and the
growth tensorFg which reflect the in vivo anisotropy. In addi-
tion, the expansion of the tumour mass displaces the fibres
in the surrounding environment, leading to a modification of
the directions of anisotropy in the current configuration�(t).
Thus, we use the mechanical description included in our
model to progressively modify the tensors as time evolves.

To model anisotropic phenomena, we start from a set of
patient-specific data collected through Magnetic Resonance
Imaging (MRI), and, in particular, Diffusion Tensor Imag-
ing (DTI), provided by Istituto Neurologico Carlo Besta in
Milan (Italy). This procedure allows to reconstruct a realistic
brain geometry and environment, with the aim of providing a
framework potentially capable of embedding patient-specific
information. In detail, the main advantages of MRI lie in its
efficiency in detecting brain tumours and its capability to
highlight the different types of tissue composing the brain.
Furthermore, it enables us to clearly identify the ventricle
cavities, which are important for our study. Moreover, DTI
is an MRI technique for characterising the micro-structural
architecture of the brain components and for deriving the
preferential directions of water diffusion inside the tissue.
The capacity of DTI to determine the anisotropic diffusion
of water molecules provides the means to identify and visu-
alise the white matter neural tracts and, consequently, the
preferential directions of nutrients diffusion, cell migration,
and growth. The reconstruction of the boundaries of the brain
and the ventricles, as well as the processing of DTI data, are
summarized in Appendix B. We then take advantage of the
DTI images to extrapolate the relevant information on the
diffusion, permeability, and growth tensors, as discussed in
the following.
Diffusion tensor D. The diffusion tensor at the initial time
instant D0 is reconstructed by using data from DTI medical
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images. In detail, the patient-specific images are processed
with a particular approach based on a multi-compartment
model, which separates the diffusion signal into a free-water
(FW) and a tract-related, non-free-water (NFW) compart-
ments [133]. This approach allows to overcome the limit
of inaccurate estimation of white matter tract directions in
regions with a high content of free water, such as cere-
brospinal fluid or oedema. This is particularly important in
our model to correctly estimate diffusion data in the region
close to the brain ventricles. For this reason, initial data
consist of 6 diffusion images, concerning only the non-free
water component, which are assembled in a symmetric ten-
sor called D

0
NFW. Then, the initial diffusion tensor D

0 is
obtained from aweighted sum of two different contributions:
an isotropic tensor, related to the unconstrained diffusion of
substances in the free water, and the tensor constructed with
DTI data, taking into account the diffusion limited by the
tissue structures. Therefore, we set

D
0 = φ0

�D
0
FW + (1 − φ0

� )D0
NFW , (25)

whereD0
FW := DwI, with Dw a scalar valuewhich represents

the diffusivity of free water at 37◦C. The value φ0
� (X) repre-

sents the liquid volumetric fraction at the initial time and it
considers the fluid content in different regions of the brain.
As a consequence, in regions where a high amount of liquid
is present, diffusion is dominated by the purely isotropic free
water component D0

FW, whereas more weight is given to dif-
fusion along the white matter fibres in regions with reduced
presence of fluid. Starting from the definition of Eq. (25), the
diffusion tensor D at the current instant of time is derived
from D

0 by accounting for the fact that the growing tumour
displaces the surrounding white matter fibres and thereby
modifies the preferential directions of diffusion. We remark
that such a change is only supposed to affect the non-free
water component D0

NFW, while the free water one remains
unaltered, i.e., DFW ≡ D

0
FW. We also underline that the free

water content evolves in time and space and it is here assumed
to be equivalent to the fluid phase volume fraction φ�(x, t).
With these observations in mind, if we call λ01 ≥ λ02 ≥ λ03
the eigenvalues of D0

NFW and e01, e
0
2, e

0
3 the corresponding

orthonormal eigenvectors, we can define the current diffu-
sion tensor as

D = φ�DFW + (1 − φ�)DNFW , (26)

where DFW = DwI, while DNFW is constructed as follows:

DNFW =
3∑

i=1

λ0i
Fse0i ⊗ Fse0i
e0i · Cse0i

. (27)

The representation given by Eq. (27) stems from the dis-
cussions above and prescribes that each eigenvector of the

initial diffusion tensor D0
NFW is deformed through the solid

deformation gradientFs, to account for possible alterations of
the anisotropy directions following cancer expansion. Then,
the deformed eigenvectors Fse0i , i = 1, 2, 3, are normalised

dividing by |Fse0i | =
√
e0i · Cse0i , with Cs = F

T
s Fs. Such a

choice is motivated by the will of changing only the direc-
tions of diffusion while keeping the average diffusivity along
the fibres, i.e. the trace ofDNFW, unmodified in time. Indeed,
a simple push-forward operation on D

0
NFW would result not

only in a change of the preferential directions, but also in
a change of diffusivity due to fibre extension or shorten-
ing. Therefore, in choosing an appropriate normalisation, we
decided to preserve the average diffusivity. It is here impor-
tant to emphasize that, given the definition of Eq. (27), a
pullback of DNFW to the reference configuration results in a
tensorwith the same eigenvectors asD0

NFW, butwith different
eigenvalues, due to the aforementioned modelling choices.
Indeed, introducingD∗

NFW,which is the tensorDNFW mapped
to the reference configuration

D
∗
NFW : = JsF

−1
s DNFWF

−T
s

=
3∑

i=1

λ0i Js

e0i · Cse0i
F

−1
s (Fse0i ⊗ Fse0i )F

−T
s

=
3∑

i=1

λ0i Js

e0i · Cse0i
e0i ⊗ e0i , (28)

the eigenvalues λ̃i of this tensor [23, 116] are

λ̃i := λ0i Js

e0i · Cse0i
, i = 1, 2, 3 . (29)

Finally, we note that, by defining the diffusion tensor
weighted by φ�, we can effectively account for variations in
intratumoral cellularity, which in turn influence the Appar-
ent Diffusion Coefficient (ADC), a metric that reflects the
magnitude of diffusion [8, 89, 105].
Permeability tensor K. As much as diffusion, also the fluid
motion due to pressure gradients follows some preferential
directions, due to the anisotropic nature of brain tissue [168].
This information is encapsulated in the permeability tensorK
appearing in Eqs. (5)–(12), which is also built from imaging
data appropriately modified to account for tissue deforma-
tion. In particular, we can derive the permeability tensor K
by using the information about the fibre directions contained
in the tensor D0

NFW, namely the eigenvalues λ01, λ
0
2, λ

0
3, and

the eigenvectors e01, e
0
2, and e

0
3, suitably modified to account

for tissue deformations, as is done for the diffusion tensor.
Specifically, we define K as

K = K (φs)A , (30)
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where K (φs) is a proper function of the solid volume fraction
and A is the tensor of preferential directions, reconstructed
from the patient-specific DTI data.

In more detail, with the same procedure used for the defi-
nition ofDNFW, we assume thatA can be reconstructed from
the eigenvectors of D0

NFW deformed through the solid defor-
mation gradient Fs. However, in the case of the permeability
tensor, the eigenvalues are rescaled to enhance the anisotropy
along the fibres by appropriate anisotropy tuning functions
as described in [2, 4, 94], and a normalisation is performed
to preserve the mean permeability as done in [2, 4, 116].
Therefore, the tensor A is defined as

A = 1

Aav

Â , Aav = 1

3
tr(Â) , (31)

Â = ã1(r)λ
0
1
Fse01 ⊗ Fse01
e01 · Cse01

+ ã2(r)λ
0
2
Fse02 ⊗ Fse02
e02 · Cse02

+ ã3(r)λ
0
3
Fse03 ⊗ Fse03
e03 · Cse03

, (32)

where the normalisation by Aav keeps the trace of A equal
to 3 (as for the identity tensor), r is the anisotropy tuning
parameter, and ãi (r) are functions of r such that, if r > 1,
anisotropy is enhanced (see [2, 4, 94] for further details). In
order to understand the extent of anisotropy and to correctly
define the functional forms of ãi (r) allowing to represent sce-
narios of monodirectional, planar, and spherical growth as a
consequence of the fibre orientation in the brain, we need to
look at the eigenvalues λ̃i , given by Eq. (29), of the deformed
diffusion tensor DNFW pulled back to the reference configu-
ration, as defined in Eq. (28). We sort the eigenvalues λ̃i in

descending order and introduce λmax = max
{
λ̃1, λ̃2, λ̃3

}
,

λmin = min
{
λ̃1, λ̃2, λ̃3

}
and λmid the remaining one. Then

we calculate the linear, planar, and spherical anisotropy coef-
ficients [94] respectively defined by

cl : = λmax − λmid

λmax + λmid + λmin
, cp := 2(λmid − λmin)

λmax + λmid + λmin
,

cs : = 3λmin

λmax + λmid + λmin
, (33)

and we introduce

amax(r) := rcl + rcp + cs , amid(r) := cl + rcp + cs ,

amin(r) := cl + cp + cs . (34)

From the definition of cl , cp and cs , we can observe that
amin(r) ≡ 1. Finally, depending on the descending order
of the eigenvalues λ̃i , we associate ã1(r), ã2(r), and ã3(r)
with the corresponding coefficients between amax(r), amid(r)
and amin(r). We observe that, similarly to the diffusion ten-
sor, such a construction allows us to take advantage of the

mechanical variables of the model to make the permeability
evolve in time, enforcing the correct anisotropy, derived from
the mechanical deformation. In this case as well, the eigen-
vectors of the tensor remapped to the reference configuration
remain unchanged and are still represented by e01, e

0
2 and e

0
3.

As a functional form for the term K (φs), we will consider
the exponential Holmes-Mow expression [21, 88], which is
frequently used in the modelling of soft, hydrated biological
structures [53, 54, 172]:

K (φs) = k0

[
φsn (1 − φs)

φs (1 − φsn)

]α0

exp

(
m

2

φ2
sn − φ2

s

φ2
s

)
, (35)

being α0 and m model parameters, and k0 the reference
permeability value. The choice of the coefficient K (φs)

is motivated by the will of introducing a deformation-
dependent permeability, which is not constant as the tumour
grows and the tissue experiences stresses and strains. In par-
ticular, it is required that the permeability decreases as the
solid volume fraction increases. The linearised version of
Eq. (35) for small strains has often been adopted to describe
the permeability of brain tissue [72, 144, 146, 176]. How-
ever, since we deal with finite deformations and nonlinear
mechanics of the brain, we choose to use the nonlinear per-
meability of Eq. (35) as in a previous work [116], looking
forward to further experimental confirmation for brain tissue.
Anisotropic growth tensor Fg. Finally, we have to provide an
expression for the tensor Fg that describes inelastic mechan-
ical distortions related to growth. Recalling Eq. (22), we
define it as follows:

Fg = g1e01 ⊗ e01 + g2e02 ⊗ e02 + g3e03 ⊗ e03 , (36)

where e01, e
0
2 and e03 are the eigenvectors of D0

NFW. Such
a choice for the principal directions of growth deformation
reflects the anisotropic structure of the tissue, with growth
preferentially happening along the white matter tracts. This
is a relevant difference from previous works on brain tumour
growth since, as discussed before, Fg is often considered to
be isotropic.

Given that the growth tensor has to match the condition of
Eq. (20), and recalling Eq. (24), we need to prescribe the evo-
lution in time of the stretch ratios g1, g2 and g3 by means of a
proper choice of the coefficients βi , i = 1, 2, 3. This choice
should take into account that white matter tracts and other
physical structures in the brain (such as vessels) are used
by tumour cells to expand along preferential directions. The
tumour expansion is dictated not only by cell migration, but
also by cell division/growth. Therefore, we define the coef-
ficients βi , i = 1, 2, 3 in order to enhance cell growth along
the principal directions of the brain physical structures,which
can be determined through the eigenvectors of theD0

NFW ten-
sor inferred fromDTIdata. Then, as done for the permeability
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tensor, we assume that the extent of growth in each direction
is related to the eigenvalue of the deformed diffusion ellip-
soid associated with that growth direction, possibly rescaled
by a factor to enhance anisotropic growth. Specifically, we
will consider the following evolution equations and initial
conditions:

ġ1
g1

= λ̃1ã1(r)

λ̃1ã1(r) + λ̃2ã2(r) + λ̃3ã3(r)

	s

φs
, with g1(0) = 1 ,

(37a)

ġ2
g2

= λ̃2ã2(r)

λ̃1ã1(r) + λ̃2ã2(r) + λ̃3ã3(r)

	s

φs
, with g2(0) = 1 ,

(37b)

ġ3
g3

= λ̃3ã3(r)

λ̃1ã1(r) + λ̃2ã2(r) + λ̃3ã3(r)

	s

φs
, with g3(0) = 1 ,

(37c)

where λ̃1, λ̃2 and λ̃3 are defined in Eq. (29) and ã1(r), ã2(r),
and ã3(r) are obtained by association with amax(r), amid(r)
and amin(r) defined by Eq. (34), through the same permuta-
tion required to sort the eigenvalues λ̃i in descending order.
Consequently, the choice of the βi coefficients is closely
related to the eigenvalues λ̃i , which are tied to the biome-
chanical properties of the tumour and its interaction with the
surrounding tissue, reflecting the impact of tumour-induced
deformations on the eigenvalues. We remark that the math-
ematical assumption for the choice of the βi is grounded on
the idea that the alignment of the cell mitotic spindle dur-
ing cell division is guided by the physical structures in the
surrounding environment. This hypothesis has been tested
(mathematically and biologically) in other anisotropic envi-
ronments (see for example the work of Hoehme et al. for the
liver [85]) and needs to be validated by experimental tests
for brain tissue. For the sake of completeness, we note that
other assumptions that take into account, for instance, the
stress experienced by cells in a particular direction can be
considered [81].

2.3 Interface, boundary, and initial conditions

Before solving the model to describe brain tumour growth,
we need to provide appropriate conditions at the interface
between the tumour and the host tissue, as well as boundary
and initial conditions.
Interface conditions at the boundary ∂�∗

t between the tumour
and the healthy tissue. First of all, we have to define proper
conditions on the material interface ∂�∗

t between the tumour
and the host healthy tissue. In particular, as done in [23], we
prescribe continuity of the displacement of the solid phase,
of the normal stress, of the fluid pressure, of the nutrients’
concentration, and of fluid and chemical fluxes at the inter-
face. Therefore, the conditions that we impose on ∂�∗

t are
the following:

�us�|∂�∗
t

= 0 , (38a)
�
K

∗

μ
Grad p · N

�

|∂�∗
t

= 0 , (38b)

�PsN�|∂�∗
t

= 0 , (38c)

�p�|∂�∗
t

= 0 , (38d)

�cn�|∂�∗
t

= 0 , (38e)

�φ�D
∗ Grad cn · N�

∣∣
∂�∗

t
= 0 , (38f)

where �·�|∂�∗
t
denotes the jump across the interface and N is

the unit normal vector to ∂�∗
t pointing outwards. In particu-

lar, we underline that the condition of Eq. (38c) is obtained
by combining the continuity across the interface of the total
stress P = −Js pF−T

s + Ps in the normal direction and the
continuity of the pressure p. Furthermore, we remark that
the continuity of the solid displacement vector in Eq. (38a)
follows by combining the continuity of the normal veloc-
ity vs · N with the continuity of the tangential component
of the same velocity field. The former is a natural condition
to avoid rupture and detachment within the tissue. At the
same time, due to the presence in biological tissues of cell-
cell and cell-extracellularmatrix adhesionmolecules (mainly
cadherins and integrins), it is physically reasonable to assume
that tangential displacements (and thus velocities) at the
tumour-healthy tissue boundary are also continuous. These
biologically consistent observations lead to the assumption
of continuous displacement us across the interface. How-
ever, we remark that the continuity of the displacement field
does not necessarily imply that the solid deformation gra-
dient Fs and its determinant Js are continuous. Finally, we
observe that, without this requirement, appropriate condi-
tions describing the slipping at the tumour-host interface,
possibly taking into account the attachment/detachment of
bonds, should be defined. Furthermore, in the case of discon-
tinuous tangential displacements, the healthy tissue boundary
should be defined and meshed separately from the tumour
boundary to allow the two surfaces to deform in different
ways.
Boundary conditions. Before imposing the boundary condi-
tions, it is important to remark (see Fig. 1) that the boundary
of our domain ∂�∗ = ∂�∗

out ∪ ∂�∗
v is composed by the

external boundary ∂�∗
out, corresponding to the cranial skull,

and by the edges of brain ventricles ∂�∗
v. Specifically, in our

simulations for tumour growth in the brain, we consider the
following boundary conditions on ∂�∗

out:

us = 0 on ∂�∗
out , ∀t ∈ (0, T ) , (39a)

K
∗ Grad p · N = 0 on ∂�∗

out , ∀t ∈ (0, T ) , (39b)

cn = 1 on ∂�∗
out , ∀t ∈ (0, T ) . (39c)

In detail, we impose a null Dirichlet boundary condition for
the displacement us, given that the skull is fixed. For what
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concerns the pressure p, we take into account a Neumann
boundary condition since we assume that fluid cannot flow
outside the skull. Finally, for the nutrients’ concentration, we
suppose that the brain boundary is sufficiently far from the
tumour, so we can assume that the oxygen concentration is
maintained constant at the physiological value, leading to the
condition (39c) for the normalized concentration.

Instead, on the boundary of the ventricles ∂�∗
v we impose

the continuity of the stresses and an outflow boundary con-
dition for the chemical mass to model an outlet where the
species can leave the domain with the fluid flow, i.e.,

PsN = 0 on ∂�∗
v , ∀t ∈ (0, T ) , (40a)

p = pv on ∂�∗
v , ∀t ∈ (0, T ) , (40b)

φ�D
∗ Grad cn · N = 0 on ∂�∗

v , ∀t ∈ (0, T ) . (40c)

The first and second conditions are a consequence of the
continuity of stresses imposed at the ventricles’ interface,
which leads to a boundary condition that involves only the
constitutively determined part of the first Piola-Kirchhoff
stress tensor Ps, and to the condition (40b) that enforces
a fixed value for the pressure equal to the physiological
intracranial pressure pv on ∂�∗

v. This condition takes into
account the capability of the interconnected brain ventricular
system tomaintain a physiological pressure. Furthermore, for
cn we consider an outflow boundary condition [107], consid-
ering that mass transfer at the outlet boundary only happens
by convection, while the net diffusive flux is negligible. This
condition implies that the fluid is flowing across the bound-
ary (at an unchanged velocity along the normal direction)
and that the local concentration of chemicals on either side
of the brain-ventricle interface is equal, so that the normal
component of the chemical species gradient is zero at ∂�∗

v.
This condition may be reasonable in the absence of physical
barriers that could impede fluid andmass transport across the
ventricles and maintain different chemical concentrations on
either side. More complex conditions may require a detailed
description of the hydrodynamics of the ventricles, taking
into account washout and uptake of chemicals.
Initial conditions. At the beginning of the tumour growth
process, we assume that the displacement and the pressure
are equal to zero. In addition, we take the scalar fields g1,
g2 and g3 as equal to 1 everywhere in the tumour domain at
t = 0. The volumetric fraction of the cell phase is instead ini-
tialized to a value φ0

s (X), whose estimate will be discussed in
Sect. 3.2. Finally, in order to obtain the initial nutrients con-
centration c0n(X), we solve the steady version of the nutrients
governing equation, neglecting advection:

− Div
[
φ�D

0 Grad c0n
]

= JsGn . (41)

In conclusion, we have the following set of initial condi-
tions:

us(X, 0) = 0 , ∀X ∈ �∗ , (42a)

p(X, 0) = 0 , ∀X ∈ �∗ , (42b)

gi (X, 0) = 1 , i = 1, 2, 3 , ∀X ∈ �∗ , (42c)

φs(X, 0) = φ0
s (X) , ∀X ∈ �∗ , (42d)

cn(X, 0) = c0n(X) , ∀X ∈ �∗ . (42e)

3 Numerical implementation

The set of equations governing the evolution of the system
in the domain �∗

t consists of Eqs. (1), (5), (13), (14), (21),
(37). These equations and the constitutive assumptions (17)
still hold in the healthy domain, recalling that in the healthy
region we assume Fg = I, which means ġi = 0 , i = 1, 2, 3.

The system allows to determine all the unknown fields,
namely, the displacement field us(X, t) and the scalar fields
p(X, t), φs(X, t), φ�(X, t), g1(X, t), g2(X, t), g3(X, t) and
cn(X, t), ∀X ∈ �∗ = �∗

t ∪ �∗
h and ∀t ∈ (0, T ), equipped

with the boundary and interface conditions discussed in
Sect. 2.3.

In this Section, we discuss how the Lagrangian model
for brain tumour growth is solved through numerical sim-
ulations. The weak formulation of the model is derived in
AppendixA. The discretization in time and space of theweak
formulation is instead reported and summarised in Sect. 3.1.
Finally, in Sect. 3.2, we assess the values of the parameters
that appear in the system.

3.1 Discrete formulation of the continuous
variational problems

In order to implement our model and solve the equations
by means of the Finite Element Method, it is customary to
introduce a discrete formulation in time and space of the con-
tinuous variational problems derived inAppendixA, namely,
Eqs. (A.12) and (A.15). We make use of linear tetrahedron
P1 elements, so we introduce the following finite element
spaces:

V h,out :=
{
qh ∈

[
C0 (�∗)]3 : qh

∣∣
K ∈ [P1(K )]3

∀K ∈ Th, qh = 0 on ∂�∗
out

}
⊂ H1

0,∂�∗
out

(
�∗) ,

Wh0,out :=
{
qh ∈ C0 (�∗) : qh |K ∈ P1(K )

∀K ∈ Th, qh = 0 on ∂�∗
out

}
⊂ H1

0,∂�∗
out

(
�∗) ,

Wh0,v :=
{
qh ∈ C0 (�∗) : qh |K ∈ P1(K )
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∀K ∈ Th, qh = 0 on ∂�∗
v

}
⊂ H1

0,∂�∗
v

(
�∗) ,

Wh1,out :=
{
qh ∈ C0 (�∗) : qh |K ∈ P1(K )

∀K ∈ Th, qh = 1 on ∂�∗
out

}
⊂ H1 (�∗) ,

Whpv,v :=
{
qh ∈ C0 (�∗) : qh |K ∈ P1(K )

∀K ∈ Th, qh = pv on ∂�∗
v

}
⊂ H1 (�∗) ,

whereTh is a decomposition of the domain�∗ into tetrahedra
K conforming to the tumour boundary.

For what concerns the time discretization, given N time
instants on the interval (0, T ), �t := T /N is the time step
and we use a superscript k to denote the value of a quantity
at time tk = k�t . Moreover, we use the superscript k + 1
to denote the value of a quantity of interest at the next time
step.

First, we have to introduce a proper discretisation of the
ordinary differential equations for g1, g2 and g3 in (37). Let
gk+1
1,h , gk+1

2,h , gk+1
3,h be piecewise-constant functions defined

on �∗ approximating g1, g2, g3, respectively. The equations
of the system (37) are discretized in time using an explicit
Euler method, only in the nodes which belong to the tumour
domain �∗

t :

gk+1
i,h = gki,h

(
1 + �t

λ̃ki ã
k
i (r)

λ̃k1ã
k
1(r) + λ̃k2ã

k
2(r) + λ̃k3ã

k
3(r)

	s(ckh, φ
k
s,h)

φk
s,h

)
,

i = 1, 2, 3 , (43)

where λ̃i and ãi (r) are respectively the eigenvalues and the
coefficients of Eqs. (34) and (29) computed with the infor-
mation acquired at time step k.

We can then formulate the discrete variational problem
for uk+1

h and pk+1
h as follows: for k = 1, . . . , N , given(

ukh, p
k
h

) ∈ V h,out × Whpv,v find
(
uk+1
h , pk+1

h

)
∈ V h,out ×

Whpv,v such that ∀(vh, wh) ∈ V h,out × Wh0,v it holds

(
Js
(
uk+1
h

)
, wh

)
+ �t

⎛
⎝Gradwh ,

K
∗ (uk+1

h

)

μ
Grad pk+1

h

⎞
⎠+

−
(
P

(
uk+1
h , pk+1

h

)
,Grad vh

)
−
(
Js
(
uk+1
h

)
pvF

−T
s

(
uk+1
h

)
N, vh

)
S

=

=
(
Js
(
ukh

)
, wh

)
, (44)

where we have used an implicit method for time integra-
tion. For simplicity, we have denoted by (·, ·) the standard
scalar product on the spaces L2(�∗), L2(�∗;R3) and
L2(�∗;R3×3) when appropriate, and by (·, ·)S the integral
on the surface ∂�∗

v.

Afterwards, we need to introduce adequate discretisation
of the mass balance (21) and the saturation condition (1),
whereφk+1

s,h andφk+1
�,h represent piecewise-constant functions

approximating φs and φ�. The first equation is discretized as

φk+1
s,h = J−1

s (uk+1
h )gk+1

1,h gk+1
2,h gk+1

3,h φsn . (45)

Once we have computed φk+1
s,h , we can derive φk+1

�,h using
the saturation condition

φk+1
�,h = 1 − φk+1

s,h . (46)

Finally, we can solve the variational problem for the nutri-
ents. Given ckh ∈ Wh1,out, we have to find ck+1

h ∈ Wh1,out

such that ∀qh ∈ Wh0,out it holds

(
Js
(
uk+1
h

)
ck+1
h , qh

)
− �t

⎛
⎝K

∗
(
uk+1
h

)

μφk+1
�

Grad pk+1
h · Grad ck+1

h , qh

⎞
⎠+

+ �t
(
Grad qh ,D

∗ (uk+1
h

)
Grad ck+1

h

)
− �t

⎛
⎝Js

(
uk+1
h

) Gn

(
ck+1
h

)

φk+1
�

, qh

⎞
⎠ =

=
(
Js
(
uk+1
h

)
ckh , qh

)
. (47)

Also in this case, we have used an implicit Euler method
for time integration. Furthermore, an adaptive time-step was
used in order to ensure the convergence of the numerical
simulations. Specifically, our equations are solved with a
constant time-step, but if, at any given temporal instance,
our method does not converge, �t is halved until conver-
gence is achieved. Once the next time-step is reached, the
time-step is reset to the initial value.

3.2 Parameters estimation

Before running numerical simulations, it is essential to iden-
tify suitable values for the parameters involved in the model.
While obtaining precise estimates for these parameters can be
challenging, selecting reasonable values is crucial to gener-
ate a realistic outcome, which is one of the goals of our work.
The selected parameter values, together with the biological
ranges found in the literature and the relative references, are
summarised in Table 1.

In particular, for the majority of the parameters, we have
referred to the discussion presented in [23, 116],where a thor-
ough estimation of parameters for brain tumour growth has
been carried out. For what concerns the mechanical param-
eters μ1h and μ2h of the healthy tissue, we refer to the
estimates of mean values provided by Balbi et al. for human
brain matter [22], that is, we take μ1h = 3.06 × 10−4 MPa
and μ2h = 5.94 × 10−4 MPa. These parameters are also
in the range found by other authors [37, 38], even though
also smaller values of the order of 10−5 MPa are sometimes
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found. Regarding the tumour, the choice of material param-
eters for brain cancer is debated in the literature. Several
studies point out that the tumour is stiffer than the healthy
tissue, evenmore than ten times in some cases [3, 44, 45, 124,
149, 153]. However, some works suggest that brain tumours
may be as stiff as the normal tissue, or even softer [128, 157].
A study of different values for the mechanical parameters
of healthy and tumour tissue was carried out computation-
ally in [116]. In the present work, we choose μ1t and μ2t

as ten times greater than their healthy counterparts. Ideally,
these parameters could be estimated by means of patient-
specific Magnetic Resonance Elastography (MRE), as done
in [81]. However, accurate tools for the reconstruction of
complex nonlinear constitutive responses by means of MRE
are still lacking. The volumetric moduli κt and κh are also
difficult to be estimated, given that very few experiments are
carried out by accounting for poroelastic effects. Following
[135], we take κh = 1.389 × 10−4 MPa, and κt = 10κh.
We remark that we choose not to differentiate the mechan-
ical parameters between grey and white matter. Although
some experiments showed rheological differences between
them [39, 78], some subsequent investigations such as [38]
do not seem to underline a substantial distinction. Further-
more, since in the present work we are focusing on a tumour
which is ten times stiffer than the healthy tissue, the pos-
sible mechanical difference between grey and white matter
appears to be less relevant. Therefore, we decided to prior-
itize simplicity and computational efficiency in the present
version of the model, so we did not adopt this differentia-
tion, which could have a greater impact if the cancer and the
healthy tissue have comparable stiffness.

The parameter ν appearing in Eq. (7) is estimated as in
[47] by using typical proliferation times for glioma cells in
vitro, which range between 24 and 48h. Hence, we choose an
intermediate value of ν = 0.65 day−1. The hypoxia threshold
c0 is set to 0.30, given that values in the literature range
from 0.15 to 0.5 [2, 69, 73, 163]. The nutrients consumption
rate ζ in Eq. (7) is estimated as done in [47], resorting to
measurements of oxygen diffusion in the brain. In particular,
we set ζ = 8640 day−1. Instead, for the nutrients supply rate
Sn , we refer to the value of 104 days−1 proposed in [42],
as also done in [2, 23, 47, 116]. The maximum cell volume
fraction φmax, representing contact inhibition of cell growth,
is set to beφmax = 0.95. Even if, to the best of our knowledge,
such a parameter is not estimated experimentally, we assume
that aminimum amount of extracellular fluid remains present
in the tissue, since we are not considering the formation of
calcification and necrotic regions.

Then,we need to estimate the values of the parameters that
appear in the radiotherapy and chemotherapy terms defined
in Eq. (8). Inspired by the standard Stupp protocol [151] and
recalling Eq. (10), we take the dose of radiation for every
fraction d equal to 2 Gy, given once daily, i.e. n = 1 day−1.

Furthermore, the dose at which the contributions from the
first and the second term in Eq. (10) are equal is given by
α/β [Gy], which is an inverse measure of a tissue’s sensitiv-
ity to the dosage administered during each treatment. In the
following, the value prescribed in [134, 138] is used, where
this ratio is taken as equal to 10 Gy. For what concerns the
linear coefficient for RT-induced cell killing, we assume a
value of α = 0.027 Gy−1, in agreement with [2, 134, 139].
As a consequence, we have that β = 0.0027 Gy−2. Intro-
ducing all these parameters in Eq. (10), we obtain the value
of the radiotherapy death rate Reff = 0.0648 day−1. On the
other hand, the values of CHT-induced cell killing rate are
chosen with reference to [2, 134], i.e. kC1 = 0.00735 day−1,
kC2 = 0.0147 day−1 and kC3 = 0.0196 day−1. Finally,
in the simulations where therapy decay is accounted for as
in Eq. (11), we consider a value of λc = 0.05 day−1. We
remark that such a choice is not motivated by the will of
reproducing the chemotherapeutic drug half life, which is
indeed much shorter [70]. Instead, it is rather made with the
intention of capturing the prolonged effects of chemotherapy
over time. This allows to incorporate in our model the pro-
cesses initiated by the drug and their effects on the tumour,
in terms of cell late apoptosis, which gradually decline over
time. Indeed, late apoptosis/necrosis induced by TMZ has
been experimentally recorded even after many days from the
last treatment [30, 83, 141]. However, we acknowledge that
the correct estimation of such a parameter deserves further
experimental studies and medical data.

Regarding the free water diffusivity coefficient Dw at
37◦C, which appears in Eqs. (25) and (26), the mean value
reported in the literature is Dw = 259.2 mm2 day−1 [108],
and we decide to adopt such a value. Furthermore, it is nec-
essary to estimate the cell volumetric fraction φ0

s (X) at the
initial time. We assume it to be equal to the cell volumet-
ric fraction in the natural state, denoted as φsn, which is
a predefined constant. In this study, we consider a value
of φsn = 0.45, based on the approximate estimation that
the extracellular space, which is complementary to the solid
volume fraction, constitutes around 50 − 60% [36]. By pre-
scribing φ0

s (X), we also define the initial fluid volumetric
fraction φ0

� (X) = 1 − φ0
s (X) = 1 − φsn, which is utilized

in the construction of the initial diffusion tensor of Eq. (25).
We remark that, although an ideal approach would involve
the use of a voxel-wise estimation of the free-water con-
tent to determine a spatially dependent initial value for φ0

�

[8, 89], in this work we have chosen not to consider it for
specific reasons. Firstly, the impact of this simplification on
the results is not remarkable, as it is greatly mitigated by
the exclusion of the ventricular region from our domain. In
fact, the ventricles are mainly filled with water and there-
fore the inclusion of this area in the computational domain
would have been most affected by this choice. Furthermore,
in the specific region where the brain tumour was initially
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localised, we identified a homogeneous distribution of the
freewater estimated from theDTI data.Moreover, to account
for a spatially inhomogeneous distribution of φ�, it would
be necessary to address an initial mechanical problem to
establish the condition of mechanical equilibrium, in order to
avoid tissue evolution unrelated to growth. Finally, simula-
tions with highly inhomogeneous conditions face numerical
convergence problems that require further analysis. Regard-
ing the permeability parameters of Eq. (35), we remark that
the reference permeability k0 has units of mm2, while in the
literature it is frequent to estimate the hydraulic conductivity
kc := k0/μ, with μ the dynamic viscosity. Values for kc,
which has units mm2 MPa−1 day−1, range in the literature
between 104 − 105 mm2 MPa−1 day−1 for the brain [20, 26,
96, 122, 168, 169].We adopt the value of kc = 7.8×104 mm2

MPa−1 day−1, as in [96]. Instead, we take α0 = 0.0848 and
m = 4.638 as for other soft tissues [54, 88], though specific
experimental estimates for them in the brain are still lacking.

Finally, it is necessary to estimate the pressure pv of cere-
brospinal fluid (CSF) in the brain ventricles, which appears
in the boundary condition (40b). Intracranial pressure mea-
surements suggest that normalmean pressure exerted byCSF
is in the range of 0 to 10 mmHg [6, 17]. We consider there-
fore an intermediate value within this range, i.e. 5 mmHg,
which is equivalent to a value of pv = 6.67× 10−4 MPa. To
be precise, this value could have also been set to zero as it
merely causes a shift in pressure.

4 Results and discussion

The mechanical model used in our study simulates the pro-
gression of brain tumours to determine their preferential
directions of growth and the resulting stresses and strains
on the healthy surrounding brain tissue. The tumour is con-
sidered as a sphere of initial radius 2.5 mm, located near the
right lateral ventricle of the brain. The evolution is then sim-
ulated for a time period of 140 days, both with and without
therapies. In this way, we are able to evaluate how the growth
and the mechanical alterations provoked by the tumour may
adversely impact on the cerebral ventricles. Moreover, we
can test different therapeutic protocols in the simulations
and observe the consequences on cancer growth. Simula-
tions have been performed using the discrete formulation
described in Sect. 3.1, implemented in the software FEniCS
[10, 113], which provides a high-level Python and C++ inter-
face for solving PDEs through the Finite Element Method.

4.1 Simulation without any therapeutic intervention

A first simulation is performed without including neither
radiotherapy nor chemotherapy, so the tumour is free to grow.
Figure3a illustrates the temporal progression of the solid cell
fraction on the brain geometry. As cancer cells proliferate
within the tumour region, there is a noticeable increase in
the volumetric fraction occupied by the solid phase. After an
uninterrupted growth period of approximately five months,
φs approaches a value of 0.85 within the tumour domain,
indicating a higher density of cancer cells as the tumour
evolves. From Fig. 3, it is evident that the volumetric frac-
tion of the cell phase, φs, exhibits an anisotropic expansion,
extending beyond the tumour region and into the surround-
ing healthy tissue. This expansion is primarily driven by
the compressive effects exerted by the expanding tumour
mass on the neighbouring healthy region and ventricle. Con-
versely, a decrease in φs is observed near the ventricles,
indicating an increased presence of the liquid phase in that
specific zone and fluid flow near the compressed ventri-
cles. These observations highlight the spatial heterogeneity
of tumour-induced changes in the cell phase and the influ-
ence of neighbouring structures on these alterations. Forwhat
concerns the magnitude of the displacement ‖us‖ shown in
Fig. 3b, it is immediately evident a substantial anisotropic
growth behaviour, which follows the orientation of the sur-
rounding white matter tracts. We can observe that values of
the displacement are not negligible, since they reach a max-
imum value of 9.3 mm, which is almost four times bigger
than the initial radius. Furthermore, a contour line is plot-
ted to indicate the magnitude of displacement values equal
to 1mm. It is worth to observe that the area affected by
unnatural displacements around the tumour is quite extended,
indicating that not only the region near the tumour bound-
ary experiences deformations, but there are relevant strains
also far from the cancer mass. Moreover, the final volume
of the tumour is significantly increased, as it reaches the
value of 1737.92 mm3, while the initial one was 63.24 mm3,
that is more than 27 times smaller, indicating a significant
boost in the dimensions of the tumour. To make a compari-
son with clinical references, we computed some measures of
tumour growth that are often used in the biomedical litera-
ture. Specifically, we find a volume doubling time (VDT) of
about 29.3 days, which is aligned with data from Stensjoen
et al. [148] (median VDT: 29.8 days) and from Ellingson et
al. [61] (median VDT: 21.1 days). The specific growth rate
(SGR), defined as (ln 2)/VDT, is therefore 2.4%/day, which
is also consistent with the mentioned references. However,
we remark that suchmeasures are often computed in the clin-
ical literature by assuming an exponential growth law, which
might be oversimplified. Another parameter that is some-
times used to quantify brain tumour growth is the average
velocity of radial expansion (VRE). In our case, given that
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Fig. 3 a Temporal evolution of
the volumetric fraction of cell
population φs in the brain
domain. b Comparison between
the volumetric fraction of cell
population φs and the
displacement magnitude ‖us‖
after t = 140 days of tumour
growth in the brain, clipped
along three different planes. The
insets show a magnification near
the ventricles, where the growth
phenomenon is primarily
happening. (Color figure online)

wehave a strongly anisotropic tumourwhich consistently dif-
fers from a sphere, we computed the velocity of expansion
along the three axes of the tumour ellipsoid. We find that
the VRE along the major axis is approximately vmax

RE ≈ 19.1
mm/year, whereas the VRE along the intermediate axis is
vintRE ≈ 12.1 mm/year and the one along the minor axis is
vmin
RE ≈ 10.2 mm/year. These values are comparable with

clinical data [148, 170], even though there is a high variabil-
ity from patient to patient.

In all these simulations, it is visibly evident that the shape
of the tumour is no longer a sphere as it was initially, but the
mass has grown along the preferential directions. In order to
assess how much anisotropic growth impacts the final shape
of the tumour and the size it reaches, we perform the same
simulations as before using an isotropic form of the growth
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Fig. 4 Comparison between the
final magnitude of displacement
using isotropic growth model
(first row) and anisotropic
growth model (second row),
clipped in three different planes
at time t = 140 days. The last
column shows the 3D final
shape reached by the tumour at
time t = 140 days. (Color figure
online)

tensor Fg = gI, while keeping an anisotropic diffusion of the
nutrients and permeability tensor (isotropic growth model),
as done in [23]. In Fig. 4, the magnitude of the displacement
at time t = 140 days obtained in the latter case is compared to
the one obtainedwith the anisotropic growthmodel proposed
in the present work.

It is evident that the hypothesis of an anisotropic growth
tensor has a strong impact on the shape that the tumour devel-
ops and for this reason it is important to model the presence
of preferential growth directions in Fg to predict the correct
tumour expansion. Thus, this work overcomes the limita-
tions of previous mechanical models [23, 116], in which
isotropic growth strains were used and the predicted final
tumour shapes did not deviate too much from the spher-
ical one. To provide also a quantitative measure of these
differences, it is possible to compute a sphericity index, by
measuring the lengths of the three representative axes of the
tumour at t = 140 days in both cases. If we call a the length
of the longest axis, b the intermediate one, and c the shortest,
we can define the intercept sphericity as the cubic root of
the ratio between the volume of an ellipsoid having the three
diameters a, b, and c and the volume of the circumscribing
sphere of diameter a [50, 106, 145]:

ψ := 3
√
bc/a2 . (48)

In our cases, for the isotropic growth simulation we obtain
ψ = 0.9834, whereas we getψ = 0.7792 for the anisotropic
case, whichmeans that the latter is definitelymore elongated,
while the first is more spherical. Furthermore, in order to
characterize the anisotropic behaviour of the growth tensor
Fg, we introduce two parameters called linear anisotropy
coefficient (g�) and spherical anisotropy coefficient (gs),
motivated by the definition of c� and cs used in evaluating
the anisotropy of diffusion in Eq. (33):

g� := gmax − gmid

gmax + gmid + gmin
, gs := 3gmin

gmax + gmid + gmin
,

(49)

where gmax = max {g1, g2, g3}, gmin = min {g1, g2, g3} and
gmid is the remaining one, recalling that g1, g2 and g3 are the
eigenvalues of Fg. These coefficients provide insights into
the directional preference and overall isotropy of the growth
tensor, respectively: a value of g� ≈ 1 denotes that growth
is happening almost entirely along a preferential direction,
whereas gs ≈ 1 is indicative of isotropic growth. In Fig. 5,
the coefficients g� and gs across different brain sections are
presented at the specific time point of t = 140 days.

Regarding the results of the linear anisotropy coefficient,
g�, certain regions within the tumour display values closer to
1, indicating a preference for growth along a specific axis. In
contrast, values closer to 0 suggest a more planar or isotropic
behaviour. As for the results of gs , in some regions they gen-
erally tend to be closer to zero than to one. This indicates
that, in those areas, the deformation within the tumour zone
is not isotropic but rather exhibits preferential deformation
along specific directions.

As mentioned above, it can be noted that tumour-induced
displacement compresses the near brain ventricles: such a
clinical issue was pointed out for instance in [5, 147]. The
amount of compression can be quantified in terms of volume
reduction of the ventricles with respect to the initial config-
uration. More specifically, we concentrate our analysis on
the posterior section of the right lateral ventricle, which is
adjacent to the tumour area. This particular region represents
approximately half of the total volume of the right lateral ven-
tricle. By tracking its temporal evolution,weobserve changes
in volume over time. The initial volume, measured computa-
tionally, is recorded as 7693.25 mm3. The evolution in time
of the ventricular volume in the region under consideration is
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Fig. 5 Visualization of linear
(g�) and spherical (gs )
anisotropy coefficients in three
different planes at time t = 140
days. (Color figure online)

then reported in Fig. 6, together with a representation of the
portion of compressed ventricles. We find that the volume of
the portion of the ventricle considered is reduced to a value
of 6738.23 mm3 (corresponding to a decrease of 12.4% of
the initial volume) after 140 days of tumour growth, high-
lighting that a significant compression has occurred in that
region. Moreover, we find that the maximum displacement
magnitude of the ventricular portion considered amounts at
6.7 mm, which is a notable value, in line with clinical evalua-
tions of ventricular displacement [147, 175]. We remark that
in our simulation the edges of the cerebral ventricles never
collapse and get into contact. When comparing the compres-
sion of the cerebral ventricles between the anisotropic and
isotropic simulations, we observe that, with the same tumour
volume equal to 1737.92 mm3, the final volume of the ven-
tricular portion in the isotropic simulation is 6915.51 mm3.
Consequently, in that case the ventricles experience reduced
compression. This underscores the significance of incorpo-
rating anisotropy into our model, providing a more precise
representation of the intricate behaviour of brain tumours
within a realistic anatomical environment.

Figure7 presents the outcomes related to the pressure p,
the nutrient concentration cn and the volumetric solidCauchy
stressσ := − 1

3 tr(Ts), whereTs = J−1
s PsF

T
s , at the final time

step, depicted in three distinct brain sections.
Looking at the pressure, negative values emerge in the

tumour zone, since the fluid is consumed by the cancer mass
during uncontrolled cellular growth. Coherently, the con-
centration of nutrients decreases inside the tumour, where
nutrients are consumed by proliferative cells, and near its
boundary due to diffusion and transport towards the cancer,
while it is maintained at the physiological value of 1 far from
the cancer region. We observe that, for the chosen set of
parameters, the concentration of nutrients is never above the

physiological threshold, i.e. cn < 1. Finally, concerning the
volumetric solid Cauchy stress σ , positive values within the
tumour region indicate tissue compression therein and sug-
gest the presence of compressive forces acting on the cells.
In contrast, negative values surrounding the tumour mass
indicate tissue traction, implying the existence of stretch-
ing forces in this area. This distribution of stresses highlights
the mechanical interactions within the tumour microenviron-
ment and provides insights into the biomechanical behaviour
of the surrounding tissue under the influence of the growing
tumour. Indeed, the presence of gradients of solid stresses,
with tractions near the tumour boundary and compression
inside the proliferating mass, is frequently found in experi-
mental analyses [128, 142]. To compare our outcomes with
experimental and clinical evidence, first of allwe remark that,
in our results, σ > 0 denotes compression, differently from
other references in the literature. Given this sign convention,
we find that the amount of compressive stress within the
tumour area is quantitatively comparable with experimen-
tal results on glioma tumour spheroids by Stylianopoulos
et al. [153], where compressive stresses range between 5–
8 kPa. These values are coherent both with the hydrostatic
stress plotted in Fig. 7 and with the hoop stress values of
our model, which inside the tumour area vary between 1–
9 kPa of compressive stress. A range of 1.3–13.3 kPa is
pointed out by Stylianopoulos et al. in another work about
tumour spheroids [152], though in that case the results are not
brain-specific. Moreover, by using a poroelastic model with
experimentally informed parameters for tumour spheroids,
Fraldi and Carotenuto [67] found compressive stress val-
ues that are comparable with ours. Instead, measurements
of stresses in murine brain tumours by Seano and coworkers
[142] display compressive stress values of the order of 10−1

kPa. This discrepancy might be due to the material model
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Fig. 6 Volume of a portion of
cerebral ventricles over time. In
the bottom left, a graphical
representation of the cerebral
ventricles at three different time
instants (t = 0, 90, 140 days)
is shown. (Color figure online)

chosen and to the difference in stiffness between the tumour
and the host tissue, as pointed out in [116]. Furthermore, we
observe that relatively high compression values of the volu-
metric solidCauchy stressσ can also be found at the interface
between the healthy tissue and the ventricles, in the presence
of high deformations. Indeed, at this boundary, while the
normal component of the stress is null, the tangential/hoop
component of the stress may be significantly elevated. In this
case, given the forthcoming contact scenario, itwill be impor-
tant to model contact boundary conditions for a thorough
analysis of the stress distribution in this region, a consider-
ation that will be addressed in future research. Concerning
the fluid pressure, our results display a decrease inside the
tumour region due to the cells consuming fluid therein, in
accordance with other works using mixture models [75, 76].
However, other references [67, 152] report an increase in the
interstitial fluid pressure within the tumour. The discrepancy
is due to the fact that these models also account for possible
fluid inflow due to vessel leakage and osmotic pressure dif-
ferences, as well as for outflow due to lymphatic drainage.
We did not consider such effects in our model, although a
Starling-like law could be easily incorporated and would be
interesting to investigate.

Finally, we present the findings concerning the impact
of tumour growth on DTI data. As the tumour expands and
displaces the surrounding tissue, it alters the natural arrange-
ment of fibre tracts, resulting in noticeable modifications in
the preferred directions of diffusion and fluid motion. To
quantify this effect, we employ a scalar parameter known as
fractional anisotropy (FA), which is calculated based on the
descending order eigenvalues of the diffusion tensor (λ1, λ2,
and λ3) as

FA :=
√
1

2

(λ1 − λ2)
2 + (λ2 − λ3)

2 + (λ1 − λ3)
2

λ21 + λ22 + λ23
. (50)

A fractional anisotropy value of 0 indicates an isotropic
environmentwhere the eigenvalues are all equal to eachother,
resulting in a diffusion ellipsoid resembling a sphere with
no preferred direction. Conversely, a fractional anisotropy
value of 1 identifies the presence of a single preferential
direction, limiting diffusion to happen exclusively along one
of the eigenvectors. To assess the alteration of the diffu-
sion tensor over time due to tumour-induced deformation,
we compute the fractional anisotropy of the diffusion tensor
D at the final time point (t = 140 days) of the simula-
tion where no therapies were included and subtract it from
the fractional anisotropy of the initial time diffusion tensor
D
0, i.e. we evaluate �FAD := FAD − FAD0 . Similarly, we

compute the variation of fractional anisotropy for the ten-
sor DNFW at t = 140 days, which takes into account the
motion influenced by the fibres. This variation is denoted as
�FADNFW := FADNFW − FA

D
0
NFW

. Such an index is com-
parable to the so-called Free Water Eliminated Fractional
Anisotropy (FWE–FA) reported in certain medical stud-
ies [27]. The findings derived from computing differences
between initial and final data on each cell of the mesh are
presented in Fig. 8.

For what concerns the non-free water diffusion tensor
DNFW, there is a notable increase in diffusive anisotropy
in the region surrounding the expanding tumour. The vari-
ations in fractional anisotropy are not uniform around the
tumour area, revealing distinct zones that experience sig-
nificant changes in anisotropy while others maintain their
initial preferred directions. In particular,wenotice that theFA
associated to DNFW within the tumour bulk mostly remains
constant. This is due to the fact that we modify the tensor
DNFW by means of the solid deformation, which is greater
around the tumour domain. As a consequence, the most
relevant alterations in anisotropy are observed in the sur-
roundings, where displacements attain higher values and the
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Fig. 7 Comparison between the
pressure p, the concentration of
nutrients cn and σ := − 1

3 tr(Ts)

after t = 140 days of tumour
growth in the brain, clipped
along three different planes. The
insets show a magnification near
the ventricles, where the growth
phenomenon is primarily
happening. (Color figure online)
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Fig. 8 Variation in fractional
anisotropy (FA) over 140 days
of tumour growth, comparing
the diffusion tensor (D) and its
non-free water component
(DNFW). (Color figure online)

cancer mass dislocates the white matter fibres. The recon-
struction of DTI data inside the tumour is a non-trivial
problem, given that such data often appear to be altered by
the cancerous mass in patients, even at the first scan. There-
fore, the modelling of anisotropy changes inside the tumour
may require further research efforts [158], also accounting
for damage of fibres and reconstruction algorithms. On the
other hand, as far as the diffusion tensor D is concerned, it
can be observed that, in the regions near the ventricles, there
is a decrease in fractional anisotropy, which is reflected in
negative values of �FAD. This is because the presence of
more fluid results in a higher weighting of the isotropic com-
ponent of the tensor, recalling Eq. (26). On the contrary, in
the area within the tumour, the increase in φs results in a
greater importance attributed to the non-free water compo-
nent of D, leading to observed increases in FA with respect
to initial DTI data, where more fluid was present.

4.2 Simulations including radiotherapy and
chemotherapy

After having studied the effect of anisotropic growth and its
impact on cerebral ventricles, we incorporate radiotherapy
and chemotherapy into ourmathematicalmodel. Such a capa-
bility represents a relevant feature of our framework, as itmay
allow to evaluate treatment efficacy by simulating the effects
of therapies on tumour progression. This might be of help
in understanding how the tumour responds to treatments and
provide insights into potential therapeutic strategies, which
are often very challenging for brain tumours. Secondly, the
model may assist in optimising treatment protocols by simu-
lating different schedules, dosages, and drug combinations,
aiding in personalised treatment planning.

First of all, we conducted a simulation by incorporat-
ing the first protocol presented in Sect. 2.1.1 and defined by
Eqs. (9a)–(9b), using the parameters discussed in Sect. 3.2,
and we refer to this case as standard therapy. Secondly, we
performed a simulation adding to the model the prolonged
effects of the chemotherapeutic drug in treating the tumour,
asmodelled in Eq. (11), applying the parameters discussed in
Sect. 3.2.We denote this second scenario as standard therapy
with decay. Finally, in a third simulation, we increased the
parameters of the therapies, by using Reff = 0.07128 day−1

and kC1 = 0.043 day−1, always preserving the decay. For
what concerns the radiotherapy coefficient, this is equivalent
to an approximate increase of 11% from the initial value,
which remains within the clinically acceptable range [139],
whereas the chemotherapy coefficient exhibits a significantly
higher increase, specifically 485%. This could be interpreted
as the use of a more powerful drug or a combination of
different drugs to control tumour growth, as done in some
medical trials. In this third scenario, the parameters kC2 and
kC3 are instead chosen to achieve the same response in terms
of chemotherapy-induced cell death rate at the beginning
of each cycle, taking into account the prolonged effect of
the drug. The aim of the second and third cycles is there-
fore to restore the already high lethal effect on cancer cells
achieved in the first cycle. Specifically, the required values
are kC2 = 0.035 day−1 and kC3 = 0.034 day−1. We refer to
the latter case as enhanced RT and CHT with decay. Graphs
illustrating the temporal evolution of kR(t) and kC (t) for the
three different scenarios are reported in Fig. 9.

The results obtained in all these three cases with thera-
pies are compared in Fig. 10 with the case where the tumour
is not treated. In particular, Fig. 10a displays the variation
of the average value of 	s, which represents a measure of
the growth rate of the tumour mass. In Fig. 10b we show the
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Fig. 9 The graphs show a
comparisons among the
variations of kR(t) and kC (t)
over time in the three therapeutic
protocols considered in the
paper. (Color figure online)
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evolution of the average value of the fraction of solid phase
φs, whereas Fig. 10c reports the changes in tumour volume
over time. From these results, it is possible to observe how
the tumour responds differently by changing the therapeutic
approach. As expected, the case without therapy leads to the
fastest and greatest growth, while the introduction of thera-
pies is reflected by the reduction in volume and growth rate.
In particular, an enhancement in therapies may allow to sig-
nificantly contain the progression of the cancer. This could
be highly beneficial from a medical perspective, as it sug-
gests that an intensified treatment strategy has the potential to
significantly impact tumour growth and potentially improve
patient outcomes. Hence, these results demonstrate that, by
integrating diverse parameters and variables, including drug
concentration, tumour growth rate, and drug sensitivity, the
model can effectively simulate and predict the outcomes of
different drug treatments. Simulations like these could there-
fore be useful to tune the dosage of drugs or the intervals of
administration of therapies, for instance, in order tominimise
the growth of the cancer.

Finally, in Fig. 11, the volume fraction of the solid phase
is plotted at the initial time instant and at t = 140 days,
in order to compare the initial size of the tumour with the
shape reached at the end of the simulations performed both
without introducing any therapy and including a treatment.
It can be observed that the case without therapy obviously
leads to the biggest tumour mass after about five months of
growth, whereas the introduction of therapeutic protocols is
able to contain the expansion of the cancer. Such an outcome
is especially important when growth near delicate cerebral
structures like the ventricles is studied, given that a proper
therapeutic treatment may be helpful to avoid unnatural ven-
tricular compression. To quantify the response of the tumour
to therapies in the first 39 days, where RT andCHT are simul-
taneously performed, we computed the percent variation in
the tumour principal diameters with respect to the initial size,
following the RECIST criteria for solid tumours [131]. First
of all, we notice that, in the case without therapy, the major
axis of the tumour increases by 92%,while the increase along

the minor one amounts at 32%, with an average along the
three directions of about 56% increase in diameter. Instead
we find that, for the case of standard therapy, the major axis
of the tumour increases by 54% and the minor axis by 3%,
with an average of about 24% increase. The case of standard
therapy with decay improves the outcomes, but only slightly.
In these cases, even if growth is slowed down, the tumour
is still classified as progressive according to medical stan-
dards [131]. Instead, when we consider enhanced RT and
CHT with decay, the percent increase of the tumour major
axis amounts at 16%, whereas a −1% reduction is observed
along the minor axis, with an average in the three directions
of about only 6% increase. In the latter case, resorting to
the RECIST criteria, the tumour can be classified as stable
and not progressive anymore [131], falling within the typical
response window also highlighted in other models of brain
tumour treatment [138, 139].

5 Conclusions

Brain tumours are among the most difficult to treat with
current therapeutic protocols, due to their aggressiveness
and to a significant resistance to therapies. In addition, the
impact of a growing cancer mass inside the brain may be
particularly harmful for the patient, since it may deform and
compress delicate structures like the ventricles. As a con-
sequence of damage affecting healthy areas of the brain,
neurological issues can emerge and negatively affect the
prognosis of patients affected by such cancers. Based on
these observations, in this paper we have proposed a math-
ematical model and computational framework that feature
three main novelties compared with previous works. First
of all, we explicitly accounted for the presence of ventricles
in the cerebral geometry, so that a precise quantification of
unnatural ventricular compression following tumour growth
can be performed. In particular, the deformation and vol-
ume variation of the ventricles can be studied thanks to the
mechanical nature of the model, which is able to evaluate
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Fig. 10 In the graphs, a comparison between the variations of 	s (a),
φs (b) and the volume of the tumour (c) over time is shown. The red
line represents the scenario without any therapy, while the magenta line
corresponds to the scenario including the standard therapy. Addition-

ally, we included the blue line to illustrate the standard therapy with
the consideration of a time decay of the drugs. Lastly, the green line
represents the scenario with enhanced radiotherapy and chemotherapy.
(Color figure online)

Fig. 11 Volumetric fraction of
the cell population, plotted at
the initial time and after
different simulations both with
and without therapeutic
protocols, at time t = 140 days.
(Color figure online)

tumour-induced strains as well as fluid motion. Indeed, we
consider the brain as a mixture of a nonlinear elastic solid
phase and an ideal fluid phase, within the framework of mix-
ture theory. Moreover, we employ a sharp interface model to
simulate solid localized brain tumours, which are responsible
for the higher mechanical deformations of the surrounding
tissue. This choice, however, does not allow to capture the
behaviour of infiltrating cancers, which are characterized by
small clusters of tumour cells and show extensive growth and
dissemination far from the primary cancer mass, as consid-
ered for instance in [89, 110, 126]. Secondly, we consider
growth distortions as anisotropic, to overcome the simplified
assumption of isotropic growth which is frequently made in
the literature. Such a choice is justified by the presence of ori-
ented fibre structures in the brain, i.e. the white matter tracts,
along which tumour cells may preferentially move and grow.
This anisotropy creates irregular and heterogeneous growth
patterns,with tumours becominghighly non-spherical during
their proliferation. In addition,we consider also diffusion and
fluid motion as anisotropic phenomena affecting the tumour

and its environment, so that the proposed framework embeds
three anisotropic components: the diffusion tensorD, the per-
meability tensor K, and the growth-related distortion tensor
Fg. As an additional capability of the model, all these tensors
are computationally reconstructed from medical imaging
data, with a specific focus on free-water diffusion, related
to the free liquid in the brain, and non-free-water diffu-
sion, characterised by preferential motion along the fibres.
Thirdly, the model includes cancer treatment via chemother-
apy and radiotherapy, and it can be fruitfully employed to
simulate different therapeutic strategies aimed at slowing
down tumour growth.

Our numerical results confirm the validity of the proposed
model as a proof-of-concept for simulating fully anisotropic
brain tumour progression, as well as therapeutic protocols
and ventricular compression. In particular, we find that an
initially spherical tumour can become highly elongated dur-
ing growth and may exert a significant compression on the
nearby ventricles, increasing the risk of neurological damage
due to excessive intracranial pressure and fluid flow obstruc-

123



Computational Mechanics

tion. Clear differences are highlighted between the case of
isotropic and anisotropic growth, suggesting that the role of
brain fibre structures is fundamental in driving the evolu-
tion of the tumour shape and size. A large region around
the tumour zone is also found to be affected by unnatural
displacements, which might be harmful for patients. Finally,
we have shown that the model is capable of reproducing
therapeutic strategies, pointing out methods to slow down
cancer progression. Furthermore, the model can be readily
adapted to simulate different therapies and schedules, such as
concomitant treatment with different chemoterapies [25] or
ultra-fractionated radiotherapy [28, 29], allowing the explo-
ration of potentially effective, tailored protocols.

In conclusion, we have proposed a framework that can
represent a first step towards a realistic simulation of
anisotropic, patient-specific, mechanically motivated brain
tumour growth, together with therapeutic treatment. Regard-
ing possible future developments, it would be important
to model the contact of ventricle edges when they touch
due to deformations caused by cancer. Such a situation,
which is never reached in our simulations, would require
an appropriate treatment by means of contact mechanics.
Furthermore, we aim to integrate a voxel-wise estimation
of free water in the brain to establish a more appropriate and
spatially-dependent initial value for φ0

� and, consequently,
for φ0

s . Possible heterogeneity between grey and white mat-
ter from a mechanical viewpoint could also be incorporated
in the proposed framework, especially if tumours of compa-
rable stiffness to the healthy tissue are considered. We also
note that in our model we have neglected fluid exchange
between the tissue and the vasculature, assuming that the
only source of fluid is cell death within the domain and
fluid flow at the tissue-ventricle boundary. This assumption
is more appropriate for representing avascular or poorly vas-
cularised tumours. Therefore, future models should focus
on the description of the vasculature and lymphatic system
(either from a homogenised point of view [67, 121] or by
implementing a 3D-1D coupling between the tissue and the
vasculature [31, 41]) in order to properly describe the vascu-
lar growth phase of the tumour. Moreover, we are aware that
our model for therapies is a simplification of the much more
complex biological phenomenon, but this approach allows us
to simulate the ongoing effects of therapies without taking
into account the intricate biological processes initiated by the
drug, or eventually radiation, in the context of a computation-
ally sophisticated model. In this respect, clinical data could
be used to test, validate and possibly modify the model about
therapies, establishing the values of RT andCHT parameters,
and explicitly including TMZ pharmacodynamics to better
represent the late cell death after treatment. In addition, the
integration of optimal control theories presents an intriguing
avenue to enhance our research. Future perspectives could be
focused on exploring this promising approach for developing

optimal timing and dosing strategies for chemotherapeutic
drugs, addressing a prominent issue of medical significance,
as exemplified in [46]. Finally, the model should be adapted
to simulate surgical resection before chemoradiation thera-
pies, which represents a challenging modelling task and has
not been targeted in the present work.

A Weak formulation of the Lagrangian
model

The weak formulation of the Lagrangian model is derived in
the following. The weak form is first written in each domain
�∗

t and �∗
h separately and then it is extended to the whole

domain �∗ = �∗
t ∪ �∗

h. First of all, it is necessary to define
the test functions spaces that meet the Dirichlet conditions
imposed on the external boundary for cn (39c) and on ven-
tricles boundary for p (40b), recalling that p and cn are
continuous functions over �∗:

H1
0,∂�∗

out
(�∗) :=

{
q ∈ H1(�∗) : q = 0 on ∂�∗

out

}
,

H1
0,∂�∗

v
(�∗) :=

{
q ∈ H1(�∗) : q = 0 on ∂�∗

v

}
.

Furthermore, we establish the vector test functions space
that meets the Dirichlet conditions we impose on the external
boundary for the continuous vector function us (39a):

H1
0,∂�∗

out
(�∗) :=

{
q ∈ H1(�∗) : q = 0 on ∂�∗

out

}
.

Then, starting from Eq. (14), we multiply each side by a
test function qt ∈ H1

0,∂�∗
v
(�∗) and we integrate the whole

equation over the Lagrangian tumour domain �∗
t :

∫

�∗
t

J̇sqt dV
∗ =

∫

�∗
t

Div

[
K

∗

μ
Grad p

]
qt dV

∗ . (A.1)

Integratingbyparts the secondorder derivatives,weobtain

∫

�∗
t

J̇sqt dV
∗ = −

∫

�∗
t

Grad qt · K
∗

μ
Grad p dV ∗ +

+
∫

∂�∗
t

qt
K

∗

μ
Grad p · Nd�∗ . (A.2)

In the healthy domain we take as test function qh ∈
H1
0,∂�∗

v
(�∗) and we find

∫

�∗
h

J̇sqh dV
∗ = −

∫

�∗
h

Grad qh · K
∗

μ
Grad p dV ∗+

+
∫

∂�∗
t

qh
K

∗

μ
Grad p · Nd�∗+
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+
∫

∂�∗
out

qh
K

∗

μ
Grad p · Nd�∗+

+
∫

∂�∗
v

qh
K

∗

μ
Grad p · Nd�∗ . (A.3)

The test function qh is required to vanish on the bound-
ary ∂�∗

v because it belongs to H1
0,∂�∗

v
(�∗). Furthermore, the

second-last integral vanishes due to the boundary condition
(39b). Summing up the equations in the healthy and tumour
domain and taking q ∈ H1

0,∂�∗
v
(�∗) we have

∫

�∗
J̇sq dV

∗ = −
∫

�∗
Grad q · K

∗

μ
Grad p dV ∗ +

−
∫

∂�∗
t

�q
K

∗

μ
Grad p� · Nd�∗ , (A.4)

where �·� denotes the jump across the interface. Since the
test function q belongs to H1

0,∂�∗
v
(�∗) and for this reason

it is continuous inside the domain, remembering interface
condition (38b) we finally have

∫

�∗
J̇sq dV

∗ = −
∫

�∗
Grad q · K

∗

μ
Grad p dV ∗ , (A.5)

for all test functions q ∈ H1
0,∂�∗

v
(�∗).

For what concerns the momentum balance, we multiply
Eq. (13) by a vector test function qt ∈ H1

0,∂�∗
out

(�∗) and then
we integrate over the tumour reference domain, obtaining

∫

�∗
t

Div
[
−Js pF

−T
s + Ps

]
· qt dV ∗ = 0 . (A.6)

Using tensor integration by parts, we get

−
∫

�∗
t

(
−Js pF

−T
s + Ps

)
: Grad q t dV ∗ +

+
∫

∂�∗
t

(
−Js pF

−T
s + Ps

)
N · q t d�∗ = 0 , (A.7)

where : denotes the double contraction between tensors. If
we do the same in the healthy domain using as test function
qh ∈ H1

0,∂�∗
out

(�∗), we obtain

−
∫

�∗
h

(
−Js pF

−T
s + Ps

)
: Grad qh dV ∗+

+
∫

∂�∗
t

(
−Js pF

−T
s + Ps

)
N · qh d�∗+

+
∫

∂�∗
out

(
−Js pF

−T
s + Ps

)
N · qh d�∗+

+
∫

∂�∗
v

(
−Js pF

−T
s + Ps

)
N · qh d�∗ = 0 . (A.8)

If we remember that qh ∈ H1
0,∂�∗

out
(�∗), the second last

integral vanishes. Using condition (40a), the last summand
of the last integral is equal to zero, and therefore we have

−
∫

�∗
h

(
−Js pF

−T
s + Ps

)
: Grad qh dV ∗+

+
∫

∂�∗
t

(
−Js pF

−T
s + Ps

)
N · qh d�∗+

−
∫

∂�∗
v

Js pF
−T
s N · qh d�∗ = 0 . (A.9)

Summing up Eqs. (A.7) and (A.9) and taking q ∈
H1

0,∂�∗
out

(�∗), the weak formulation on the whole domain
is

−
∫

�∗

(
−Js pF

−T
s + Ps

)
: Grad q dV ∗+

−
∫

∂�∗
t

�
(
−Js pF

−T
s + Ps

)
N · q�d�∗+

−
∫

∂�∗
v

Js pF
−T
s N · q d�∗ = 0 . (A.10)

Recalling that the displacement is taken continuous in all
directions (38a), the areas deform in the same way at the
interface. The relation d� = JsF−T

s d�∗, where d� = nd�

represents the infinitesimal element of area in spatial coor-
dinates and d�∗ = Nd�∗ denotes the infinitesimal element
of area in material coordinates, implies �JsF−T

s N�|∂�∗
t

= 0.
Looking at this condition and at the interface conditions (38c)
and (38d) and recalling that q ∈ H1

0,∂�∗
out

(�∗), the jump in

Eq. (A.10) vanishes. Furthermore, the pressure p on ∂�∗
v is

fixed by (40b) and it assumes the constant value pv. At the
end we are left with

−
∫

�∗

(
−Js pF

−T
s + Ps

)
: Grad q dV ∗ +

−
∫

∂�∗
v

Js pvF
−T
s N · q t d�∗ = 0 . (A.11)

The variational problems in Eqs. (A.5) and (A.11) are non-
linear and coupled: in view of the numerical implementation,
it is convenient to rewrite them into a single nonlinear vari-
ational problem by summing them. If we do that, we obtain
a variational problem for the displacement and the pressure:

∫

�∗
J̇sq dV

∗ +
∫

�∗
Grad q · K

∗

μ
Grad p dV ∗+

−
∫

�∗

(
−Js pF

−T
s + Ps

)
: Grad q dV ∗+

−
∫

∂�∗
v

Js pvF
−T
s N · qt d�∗ = 0 . (A.12)
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We need then a weak formulation for the equation of the
nutrients. In order to derive it, we multiply Eq. (5) by a test
function qt ∈ H1

0,∂�∗
out

(�∗) andwe integrate by parts, obtain-
ing

∫

�∗
t

(
Jsφ�ċn − K

∗

μ
Grad p · Grad cn

)
qt dV

∗+

+
∫

�∗
t

φ� Grad qt · D∗ Grad cn dV ∗+

−
∫

∂�∗
t

qtφ�D
∗ Grad cn · Nd�∗ =

∫

�∗
t

JsGnqt dV
∗ .

(A.13)

We follow the same approach in the healthy domain:

∫

�∗
h

(
Jsφ�ċn − K

∗

μ
Grad p · Grad cn

)
qh dV

∗+

+
∫

�∗
h

φ� Grad qh · D∗ Grad cn dV ∗+

−
∫

∂�∗
t

qhφ�D
∗ Grad cn · Nd�∗+

−
∫

∂�∗
out

qhφ�D
∗ Grad cn · Nd�∗+

−
∫

∂�∗
v

qhφ�D
∗ Grad cn · Nd�∗ =

∫

�∗
h

JsGnqh dV
∗ .

(A.14)

For what concerns the last two surface integrals on the
l.h.s., they vanish using the fact that qh ∈ H1

0,∂�∗
out

(�∗) and
the boundary condition (40c) on ∂�∗

v. Then we sum Eqs.
(A.13) and (A.14) and, recalling the interface condition (38f)
and the fact that the test function q ∈ H1

0,∂�∗
out

(�∗) is con-
tinuous along ∂�∗

t , we finally have

∫

�∗

(
Jsφ�ċn − K

∗

μ
Grad p · Grad cn

)
q dV ∗+

+
∫

�∗
φ� Grad q · D∗ Grad cn dV ∗ =

=
∫

�∗
JsGnq dV

∗ . (A.15)

We remark that, given the pressure p and the displace-
ment us obtained by solving (A.5) and (A.11), Eq. (A.15)
represents a linear variational problem to be solved for the
unknown cn .

B Image acquisition

In this Appendix, we provide details on the process by which
information regarding the shape and tissues of the patient’s

brain, as well as the most probable direction of the white
matter fibers, was derived from MRI and DTI. Imaging
data were acquired at the Fondazione IRCCS Istituto Neu-
rologico Besta (Milan, Italy). The patient signed a written
consent to the MRI and DTI tests in the context of nor-
mal clinical practice, including clinical research. The patient
was not submitted to any specific procedure different from
normal clinical practice and the collected patient data was
anonymized and de-identified prior to analysis. Anonymiza-
tion was performed by the neuroradiology unit of the Besta
Neurological Institute, independently from the researchers
involved in the paper.

To visualize theMRI data of the patient’s brain, we use the
open-source software 3D Slicer [1, 65]. Since we are inter-
ested in identifying fluid regions, we focus on T1-weighted
images, where fluid appears dark and tissue appears white.
The initial step involves image segmentation, dividing it into
distinct and homogeneous regions, emphasizing the areas of
interest to facilitate analysis. We then choose a task, leverag-
ing provided atlases (images from various patients that are
already labeled) to identify the ventricular region within the
new image and assign an appropriate label. In our case, we
select the MRI Human Brain task and perform segmentation
through 3D Slicer’s automatic segmentation. Additionally,
smoothing can be applied to the generated maps. The next
step involves extracting the brain external surface and ven-
tricle surface from the segmented map using Vmtk (Vascular
Modeling ToolKit) [165]. Finally, using Tetgen [80, 164], a
program capable of generating tetrahedral meshes for any
3D polyhedral domain, the mesh is constructed. The exter-
nal surface represents the brain’s outer surface, while the
inner surface corresponds to the brain-ventricle boundary.
We observe that we construct a tumour-conformal mesh to
distinctly separate the healthy from the tumour domain. The
latter is considered as a sphere with a radius of 2.5 mm. Tet-
gen is again employed to refine the tetrahedral mesh within
a spherical area centered on the tumour. In Fig. 12, the con-
structed mesh is shown.

Now it is necessary to incorporate information from Dif-
fusion Tensor Imaging (DTI) into the mesh. Each cell of
the 3D mesh requires assignment of a symmetric 3 × 3
tensor, specifically the symmetric tensor denoted as D0

NFW,
containing water diffusion values along the principal spatial
directions. In this specific case, the initial data consists of
medical images that only contain the non-free water infor-
mation, already available from the files provided by the
medical professionals. Our task involves processing themed-
ical images and subsequently transferring the values to the
three-dimensional mesh. In detail, we generate six meshes,
each dedicated to one independent component of the ten-
sor. Since perfect alignment is required for transferring data
from images to meshes, image registration becomes neces-
sary. This involves realigning the images as accurately as
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Fig. 12 Computational brain
mesh and refinement, with
tumour region highlighted in
red. (Color figure online)

possible with our reference map. For this purpose, we use
FSL (FMRIB Software Library) [66, 95] and select FLIRT,
the FMRIB’s linear registration tool specifically designed for
images from the same patient, as in our scenario.With all dif-
fusion tensor components aligned with the maps segmented
from magnetic resonances and, consequently, with the tetra-
hedral mesh, we can proceed to assign diffusion values to
the cells of the mesh. This task can be accomplished using
specific commands in Vmtk [165].
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