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A B S T R A C T   

Background and Objectives: Artificial intelligence (AI) models trained on multi-centric and multi-device studies 
can provide more robust insights and research findings compared to single-center studies. However, variability in 
acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi- 
source datasets. This systematic review evaluates strategies for image harmonization, which standardizes ap
pearances to enable reliable AI analysis of multi-source medical imaging. 
Methods: A literature search using PRISMA guidelines was conducted to identify relevant papers published be
tween 2013 and 2023 analyzing multi-centric and multi-device medical imaging studies that utilized image 
harmonization approaches. 
Results: Common image harmonization techniques included grayscale normalization (improving classification 
accuracy by up to 24.42 %), resampling (increasing the percentage of robust radiomics features from 59.5 % to 
89.25 %), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical 
and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging 
modalities like digital pathology and dermatology have remained prominent application areas, though harmo
nization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. 
In all the modalities covered by this review, image harmonization improved AI performance, with increasing of 
up to 24.42 % in classification accuracy and 47 % in segmentation Dice scores. 
Conclusions: Continued progress in image harmonization represents a promising strategy for advancing health
care by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging 
data across clinical settings can help realize personalized, evidence-based care supported by data-driven tech
nologies while mitigating biases associated with specific populations or acquisition protocols.   

1. Introduction 

The current era of big data is characterized by an unprecedented 
volume and variety of digital information, which has revolutionized and 
is continuing to revolutionize the way we collect, analyze, and derive 
insights from data to inform decision-making across diverse fields [1]. 
This is especially true in the field of medical imaging, where we can 
notice an increasing trend in combining data from multiple centers and 
acquisition systems for high-impact studies [2,3]. The integration of 

data from different sources in medical imaging is fundamental in that it 
allows the demonstration of generalizability and applicability of specific 
methods across diverse datasets [4–6]. Moreover, including a diverse 
and increased sample size can improve the statistical power of study 
results, allowing the detection of smaller but still clinically relevant ef
fects. However, a significant challenge in such multi-centric and 
multi-device studies, defined as those involving several centers or de
vices equal to or higher than 2, is the presence of unwanted variability in 
the acquired images. This variability encompasses a range of factors, 

* Corresponding author at: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Turin, Italy. 
E-mail address: massimo.salvi@polito.it (M. Salvi).  

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 
journal homepage: www.sciencedirect.com/journal/computer-methods- 

and-programs-in-biomedicine 

https://doi.org/10.1016/j.cmpb.2024.108200 
Received 27 January 2024; Received in revised form 20 April 2024; Accepted 22 April 2024   

mailto:massimo.salvi@polito.it
www.sciencedirect.com/science/journal/01692607
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://doi.org/10.1016/j.cmpb.2024.108200
https://doi.org/10.1016/j.cmpb.2024.108200
https://doi.org/10.1016/j.cmpb.2024.108200
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2024.108200&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Methods and Programs in Biomedicine 250 (2024) 108200

2

including differences in image intensity, variations in image codification 
and range (such as uint8, int16, etc.), disparities in pixel spacing, and 
other related aspects, such as any other relevant factors that could 
impact the consistency or comparability of the images. These variations 
can arise due to differences in imaging protocols, hardware specifica
tions, and environmental conditions. 

Minimizing unwanted variability in acquired images across multiple 
centers is crucial for ensuring reliable and consistent results, especially 
when employing artificial intelligence (AI) systems [7,8]. AI-based 
methods have shown increasingly powerful results for various tasks in 
medical image analysis, such as segmentation and classification. Still, 
they can present the drawback of over-learning on the dataset that is 
provided during the training phase, potentially creating biases, and 
making it struggle in the ability to generalize and provide satisfactory 
results on new datasets. Hence, the availability of diverse cases from 
multiple centers during the training and testing phases of AI-based 
methods is crucial as it represents the real-world clinical scenario. 
Therefore, while it is paramount to provide diverse cases from different 
sources, it is equally important to harmonize the image data to minimize 
the impact of unwanted variability and enable meaningful comparisons 
and analysis [9]. Hence, image harmonization aims to create a more 
consistent and standardized dataset for further analysis and evaluation, 
helping to ensure a fair and unbiased representation of the dataset and 
preventing perpetuating or amplifying existing biases. In this context, 
image harmonization refers to the specific techniques employed to 
standardize and harmonize the appearance and characteristics of images 
acquired from different sources or devices. It is an essential component 
of the broader data preparation process, which may also include data 
curation, pre-processing steps beyond harmonization, and other data 
management tasks. 

Fig. 1 shows a typical pipeline commonly used in multi-centric or 
multi-device studies. In this pipeline where images are collected and 
subsequently undergo this fundamental harmonization process. 

But how is image harmonization achieved in multi-centric and multi- 
device studies? Various methods exist, including protocol harmoniza
tion and image normalization. Protocol harmonization involves stan
dardizing of acquisition protocols to obtain more consistent results [10]. 
Even if a strict protocol harmonization between centers exists, it may 

still be necessary to harmonize the images through image normalization 
techniques, often referred to as pre-processing, denoising, normaliza
tion, or standardization. These techniques focus on adjusting the ac
quired images to a common reference or standard, aiming to mitigate 
the differences in image appearance, intensity, and spatial characteris
tics. By applying these techniques, researchers can ensure that the im
ages from different centers and devices have similar characteristics, 
facilitating meaningful comparisons and analysis [11]. 

1.1. Related reviews 

Several previous reviews have explored image harmonization and 
pre-processing techniques in medical imaging, but they have certain 
limitations. Some focused exclusively on specific modalities like radi
ology [10,12,13] or digital pathology [9,14], while others covered a 
narrow scope of techniques, such as color normalization [14]. These 
reviews highlighted the importance of harmonization methods in 
improving model performance and generalizability, but they lacked a 
comprehensive, multi-modality perspective:  

• Vasuki et al. [12] “A survey on image preprocessing techniques for 
diverse fields of medical imagery”: This review provides a survey of 
image preprocessing techniques across diverse fields of medical im
agery, including radiology, nuclear medicine, and fundus imagery. 
However, it is outdated only covers 14 studies, and does not discuss 
AI models or the impact of preprocessing.  

• Makandar et al. [13] “A Review on Preprocessing Techniques for 
Digital Mammography images”: This review focuses on preprocess
ing techniques in multi-centric studies within radiology. However, 
its scope is limited to mammography images.  

• Mali et al. [10] “Making Radiomics More Reproducible across 
Scanner and Imaging Protocol Variations: A Review of Harmoniza
tion Methods”: This review summarizes image harmonization tech
niques in radiology. However, its focus is primarily on the impact of 
radiomics analysis.  

• Pinto et al. [15] “Harmonization of Brain Diffusion MRI: Concepts 
and Methods”: This review concentrates explicitly on image 
harmonization in MR of the brain. 

Fig. 1. Typical pipeline used in multi-centric or multi-device studies. Images are collected from different centers and pooled together for data harmonization to 
reduce variability. Then, normalized images are fed into the AI model for training or testing purposes. 
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• Salvi et al. [9] “The impact of pre- and post-image processing tech
niques on deep learning frameworks: A comprehensive review for 
digital pathology image analysis” describes different types of 
pre-processing techniques limited to digital pathology. 

• Tosta et al. [14] “Computational normalization of H&E-stained his
tological images: Progress, challenges and future potential”: This 
review focuses explicitly on color normalization techniques in digital 
pathology. 

This systematic review aims to provide a comprehensive overview of 
image harmonization approaches employed in multi-centric and multi- 
device studies within the healthcare domain. By analyzing studies 
published between 2013 and 2023, we aim to identify the most 
commonly used and effective techniques for harmonizing imaging data. 
Several image modalities are included and discussed, such as radiology 
imaging (Computed Tomography – CT, Magnetic Resonance Imaging – 
MRI, and mammography), nuclear imaging (Positron Emission Tomog
raphy – PET and Single Photon Emission Computed Tomography - 
SPECT), optical imaging (Optical Coherence Tomography – OCT, digital 
pathology, and fluorescence microscopy), ultrasound (US), and dermo
scopy imaging. Additionally, we assess the impact of the various 
harmonization strategies on the outcomes and performance of AI models 
in multi-center studies. 

1.2. Image harmonization approaches 

Image harmonization approaches in medical imaging can vary 
greatly depending on the clinical application and available modalities. 
Fig. 2 provides an overview of common image harmonization methods. 
Broadly, most techniques fall into one of 5 categories:  

- Grayscale normalization: grayscale normalization aims to standardize 
the intensity levels of grayscale images across different sources or 
imaging devices. It ensures consistent brightness and contrast, 
facilitating fair comparisons and analysis of image features. 

- Resampling: these techniques involve scaling, resizing, or interpola
tion to harmonize images with different spatial resolutions. These 
methods enable alignment and consistency in size and spatial prop
erties, improving compatibility and comparability between images.  

- Color normalization: this normalization aims to standardize color 
appearance across images captured under different lighting condi
tions or using different color representations. It ensures consistent 
color characteristics, facilitating accurate analysis and interpretation 
of color-based features or lesions.  

- Denoising: these methods aim to reduce noise or unwanted artifacts in 
images, enhancing their quality and improving the accuracy of 
subsequent analysis or interpretation. By removing noise, these 
techniques enhance image clarity and facilitate more reliable feature 
extraction or detection.  

- Contrast enhancement: these enhancement techniques aim to adjust 
the contrast levels of an image to improve the visibility and differ
entiation of objects or structures. By enhancing the contrast, these 
techniques help reveal finer details and improve the interpretability 
of image features. 

These image harmonization techniques play a crucial role in the 
landscape of multi-centric or multi-device studies, ensuring consistency, 
comparability, and enhanced image quality. They are fundamental for 
AI methods as they contribute to the reliability, accuracy, and general
izability of the developed models. By harmonizing the image data in 
input, these techniques facilitate accurate and reliable analysis, inter
pretation, and diagnosis, allowing the AI model to effectively focus on 
learning crucial image aspects that may differentiate between a healthy 
and a pathological subject, and hence ultimately enhancing the effec
tiveness of healthcare applications and research. 

1.3. Image modalities 

The review encompasses a range of image modalities in healthcare. 
The following list provides an overview of the included modalities along 
with their descriptions: 

- Radiology: this modality includes Computed Tomography (CT) im
aging, Magnetic Resonance (MR) imaging, and mammography [16, 
17]. As research in CT imaging grows, the demand for multi-center or 
multi-device studies has arisen. However, these studies face chal
lenges due to differences in image acquisition parameters and pro
tocols among various imaging centers or devices. Variations in 
factors like tube current, voltage, slice thickness, and reconstruction 
algorithms can affect image quality and introduce data in
consistencies in CT imaging. MR imaging also often struggles with a 
lack of uniformity in its acquisition protocols. This variability poses 
significant challenges in ensuring the consistency of MR imaging 
data across different centers and studies, potentially affecting the 
accuracy and reliability of subsequent analyses, particularly in 
radiomics where quantitative feature extraction is vital. Further
more, standardizing acquisition and reconstruction protocols is pri
marily feasible only for prospectively collected data. Mammography, 

Fig. 2. Example data preparation approaches in healthcare: (a, f) grayscale normalization in MR images, (b, g) resampling in CT images, (c, h) color normalization in 
digital pathology, (d, i) denoising in OCT images, (e, l) contrast enhancement in mammographic images. 
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a critical method for breast examination and cancer screening, uti
lizes low-dose X-rays to detect early signs of breast cancer. However, 
it faces challenges such as high rates of false positives, leading to 
unnecessary biopsies, and false negatives, resulting in missed di
agnoses. In multi-center and multi-device studies, these challenges 
are exacerbated by differences in image acquisition and processing 
across clinical settings. Variability in protocols, equipment, calibra
tion, and techniques can hinder result comparability and reliability.  

- Nuclear imaging: this modality involves Single Photon Emission 
Computed Tomography (SPECT) and Positron Emission Tomography 
(PET) [18]. Using scanner models and acquisition protocols across 
sites poses significant challenges for image harmonization and 
pooling. Factors such as differences in scanner calibration, recon
struction algorithms, attenuation, and scatter correction methods 
can introduce systematic biases between data acquired on different 
scanners. Patient movement, variation in radiotracer dose, and up
take time also impact quantitative values derived from PET and 
SPECT images. Without proper harmonization, combining data from 
multiple centers risks violating assumptions of test equivalence and 
comparisons across treatment groups. This hampers the pooling of 
imaging cohorts for large-scale analysis. 

- Optical imaging: this modality encompasses digital pathology, fluo
rescence imaging, optical coherence tomography (OCT), and OCT 
angiography (OCTA). Digital pathology involves scanning and digi
tizing histological slides for computer-based analysis, enabling 
detailed examination of tissue samples [19]. The need for 
multi-centric studies in digital pathology arises from the desire to 
validate findings across different institutions and ensure the gener
alizability of results. However, multi-centric studies pose challenges 
due to the inherent variability in data acquisition, staining tech
niques, and imaging protocols. Fluorescence imaging is crucial for 
studying diseases, discovering drugs, and personalizing medicine. 
Multi-center studies using this method are growing, but they struggle 
with image consistency due to variations in devices, protocols, and 
analysis methods. These differences make it challenging to compare 
results accurately, potentially leading to inconsistent conclusions. 
OCT/OCTA captures high-resolution cross-sectional images of bio
logical tissues, providing valuable insights into morphological 
structures, such as retinal layers (OCT) [20] and blood vessels 
(OCTA) [21]. OCT and OCTA are essential imaging modalities 
especially for ophthalmology and dermatological applications [22, 
23]. However, performing extensive multi-centric clinical studies 
with OCT/OCTA can be challenging due to variability in acquisition 
settings and equipment between sites. Different OCT systems have a 
range of resolutions, wavelength sources, and scanning protocols 
that can impact imaging quality and lead to inconsistencies in 
measurements and diagnoses [24].  

- Ultrasound (US): ultrasound imaging is widely used for diagnostic 
purposes. It is particularly valuable in obstetrics, cardiology, and 
musculoskeletal imaging [25–27] However, ultrasound images can 
vary significantly depending on the acquisition settings, operator, 
and US device used. These sources of variability present challenges 
for multi-centric studies that aim to pool ultrasound data from 
multiple clinical sites. Factors like scanner brand, transducer model, 
imaging frequencies, focal zones, and acquisition depth can all 
impact the resolution and appearance of ultrasound images. Addi
tionally, differences in how operators position the transducer and 
adjust gain settings contribute to variability.  

- Dermoscopy: This technique, used in dermatology, involves imaging 
for skin condition diagnosis. Dermoscopic images can be taken with 
smartphones or digital cameras, but in clinics, dermatoscopes are 
usually used to compress lesions and capture epiluminescence im
ages [28,29]. The need for multi-centric studies in dermatology 
arises from the desire to gather a broader and more diverse dataset to 
enhance research findings and improve patient care. However, 
conducting studies across multiple centers introduces challenges 

related to data variability. These challenges primarily stem from 
variations in the acquisition settings, imaging devices, resolution, 
and lighting conditions used in different centers. 

This review explores a wide range of analyses used in multi-centric 
and multi-device studies, focusing on the techniques that can be used 
for image harmonization. Commonly used image harmonization tech
niques, such as those listed in Section 1.2, can be implemented in several 
ways, and are not limited to one simple algorithm or implementation. 
For clarity purposes, we separate the types of image harmonization 
methods into three macro-areas: math- or statistics-based, machine 
learning (ML) -based, and deep learning (DL) -based approaches. In this 
review, each image modality is analyzed, and the types of image 
harmonization methods are divided into these three macro-areas. 
Furthermore, the clinical tasks that are confronted in the analyzed 
studies may differ, including classification, detection, segmentation, 
prediction, and image quality assessment. Classification involves 
assigning images to predefined classes or categories, while detection 
focuses on identifying specific objects or features within the images. 
Segmentation aims to delineate and separate different regions or 
structures of interest in the images. Prediction involves estimating or 
forecasting certain properties or outcomes based on the harmonized 
image data. Additionally, image quality assessment plays a crucial role 
in evaluating the fidelity and reliability of harmonized images. 

In the following sections, we will explore the various techniques and 
tasks involved in multi-centric and multi-device studies for different 
imaging modalities. We will specifically focus on the importance and 
impact of image harmonization for AI applications in the analyzed 
studies. 

2. Methods 

To select the most relevant articles, we closely followed the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. 

2.1. Literature search strategy 

This review focuses on articles published between 2013 and 2023 
investigating the use of machine and deep learning methods for medical 
image analysis. The decision to analyze works from the past decade 
ensures a focus on recent advancements and trends in the field, 
providing a comprehensive examination of developments while 
capturing recent innovations and methodologies. A literature search was 
conducted in October 2023 across scientific databases including Scopus, 
the Institute of Electrical and Electronics Engineers (IEEE), and PubMed. 
The search strategy employed a Boolean approach, combining various 
keywords such as “Multi-centric”, “Machine learning”, “Deep learning”, 
“Detection”, “Classification”, “Segmentation”, “Prediction”, “Diag
nosis”, “Healthcare”, with “CT”, “PET”, “MRI”, “US”, “Photoacoustic”, 
“Digital Pathology”, “Ultrasound”, “Dermoscopy”, “OCT”, “Fluores
cence” in different combinations. 

This initial search returned 262 articles. Articles were then screened 
to remove duplicates (n = 11), as well as books, abstracts, and confer
ence proceedings. The remaining studies were further assessed based on 
journal quality, focusing on those published in top-quartile (Q1) jour
nals according to impact factor metrics. The assessment of the remaining 
studies was then based on the following criteria:  

(i) A description of multi-centric studies for image classification, 
detection, or segmentation should be included.  

(ii) A description of methods based on machine learning or deep 
learning models should be included  

(iii) Written in English. 

Articles that did not meet these criteria were excluded, and the pilot 
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studies, works published before 2013, or articles not available in full 
text. This review process resulted in a final set of 100 studies focusing on 
the application of multi-centric and/or multi-device strategies in 
healthcare. To ensure the reliability of our findings, we conducted a risk 
of bias assessment with two independent reviewers. One reviewer per
formed the initial literature search, while the other assessed studies for 
inclusion, thereby mitigating potential bias in the conclusions. Fig. 3 
depicts the utilization of the PRISMA guideline for the systematic article 
screening and selection process. 

3. Results 

3.1. Radiology imaging 

3.1.1. MR imaging 
Table A1 summarizes the studies discussed in this section and the 

effects of the implemented strategies. As shown in Fig. 4, given the 
physical meaning of voxel intensity in MR, almost all the methods pre
sented in this section are related to grayscale normalization, and only 
one method is primarily related to denoising techniques. Only one 
method primarily focuses on denoising. The most commonly used 
techniques for grayscale normalization are based on mathematical 
methods, although machine learning and deep learning approaches are 
also utilized. Furthermore, the majority of the downstream tasks are 
related to the segmentation of anatomical structures, but classification 
and evaluation of image quality are also represented. Grayscale 
normalization enhanced the comparability of MR images acquired from 
different centers or with different imaging protocols by addressing dif
ferences in voxel intensities across scanners and protocols. This high
lights the benefit of grayscale normalization for improving the 
performance of algorithms applied to multi-center or multi-protocol 
MRI data. 

Several methods have been developed to address standardization 
challenges, mainly focusing on grayscale normalization. Carrè et al. [30] 
investigated the impact of three intensity normalization methods (Nyul, 

WhiteStripe, z-score) combined with two discretization techniques. 
They demonstrated that intensity normalization enhanced the robust
ness of first-order radiomics features, with mean balanced accuracy for 
tumor grade classification increasing from 67 % to as high as 82 %. Ji 
et al. [31] developed a cross-vendor bi-parametric radiomic model for 
differentiating between benign and malignant prostate lesions employ
ing a combination of T2-Weighted Imaging and Apparent Diffusion 
Coefficient measures. They applied z-score normalization achieving an 
AUC of 0.93 with the inner test set and 0.88 in the outer test. Alnowami 
et al. [32] employed a DenseNet for classifying brain tumors analyzing 
approximately 4314 MRI images across four classes (normal, glioma, 
meningioma, and pituitary tumor). Their research highlighted the 
effectiveness of intensity normalization techniques, such as WhiteStripe 
and z-Score, improving average classification accuracy from 72.1 % up 
to 96.52 %. Foltyn-Dumitru et al. [33] focused on the impact of N4 bias 
field correction on the generalizability of radiomic-based predictions for 
molecular glioma subtypes, using N4 followed by WhiteStripe (N4/WS) 
and z-score normalization (N4/z-score). Both N4/WS and N4/z-score 
significantly outperformed the other methods, achieving 
macro-average AUC scores ranging from 0.85 to 0.87 in external test 
sets, compared to 0.19 to 0.52 for the naive and N4 methods alone. Sun 
et al. [34] developed a histogram normalization method, comprising 
intensity scaling between low- and high-intensity regions. Through 
experimental validation in image segmentation, this method increased 
the Dice score up to 2.3 % compared to the unprocessed image. Pereira 
et al. [35] developed an automatic brain tumor segmentation method 
based on CNNs. Their image harmonization step involved filtering with 
N4ITK Bias Field filter and Nyul normalization achieving a mean Dice 
score of 84 % compared to 78 % using z-score normalization. Ou et al. 
[36] tackled the challenges of multi-site brain MRI analysis, mainly 
focusing on the variability in fields of view (FOVs) across different 
scanning sites and protocols. Their study introduced an atlas-based 
approach to FOV standardization improving Dice scores in down
stream segmentation up to 25 %. Jacobsen et al. [37] applied four 
different intensity normalization methods during the pre-processing of a 
CNN-based method. They showed that histogram equalization methods 
outperformed unit distribution methods when evaluated using two 
external datasets with a median Dice improving from 85 % to 0.90 %. 
Modanwal et al. [38] proposed a novel normalization approach for 
breast MR images using a modified CycleGAN matching the desired 
intensity across two scanners and achieving a Dice score of 98 %, rep
resenting an 8 % increase over the baseline. Delisle et al. [39] introduced 
an adversarial and task-driven approach with a realism constraint to 
produce harmonized and realistic images across multiple datasets while 
optimizing for segmentation accuracy. They improved the mean Dice 
score by 5.6 % compared to the traditional min-max scaling. Koble et al. 
[40] investigated the efficacy of different histogram normalization 
techniques for segmenting of multispectral brain MR data. Their find
ings suggest that a properly adjusted Nyúl algorithm can produce a 0.5 
% improvement in accuracy than a fine-tuned linear transform in 
DL-based segmentation. Albert et al. [41] tested six normalization 
techniques on multiple deep learning tasks. They suggest normalization 
in neural networks aids by incorporating prior knowledge and is more 
impactful on small, inhomogeneous datasets. It significantly influences 
classification and regression tasks over-segmentation. In single-center 
data training, external evaluation showed no significant difference in 
Dice scores. Reiche et al. [42] developed a framework for 
multi-institutional FLAIR MR datasets, focusing on preserving the 
appearance of white matter lesions (WML) while normalizing intensity. 
Their approach involved denoising, background subtraction, bias field 
correction, and a novel histogram-based intensity standardization. They 
improved the KL divergence between the dataset from 1.013 to 0.094. 
This work was then evaluated by Ghazvanchahi et al. [43] who inves
tigated intensity standardization methods for WML using DL-based 
segmentation in multi-centric FLAIR MRI. They assessed various 
normalization techniques, including IAMLAB [42] and proposed an Fig. 3. Selection of relevant articles based on PRISMA guidelines.  
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ensemble model combining predictions from these methods. They 
observed significant improvements in sensitivity, resulting in 69 % for 
IAMLAB and 78 % for the ensemble method compared to 66 % using 
original data. 

In MR imaging, image harmonization techniques have shown 
promising results in enhancing the robustness of radiomics features and 
improving the performance of downstream tasks. Grayscale normaliza
tion methods, such as z-score, have been widely employed, with studies 
reporting significant improvements in classification accuracy, ranging 
from 67 % to 96.52 % [30,32]. Combining of these techniques with 
other preprocessing steps, such as N4 bias field correction, has further 
enhanced the generalizability of radiomic-based predictions, with 
macro-average AUC scores reaching 0.85 to 0.87 in external test sets 
[33]. Cross-vendor models and atlas-based approaches have also 
contributed to the standardization of MR imaging data across different 
scanning sites and protocols, with FOV standardization improving Dice 
scores in downstream segmentation by up to 25 % [36]. Histogram 
normalization and bias field correction have demonstrated their effec
tiveness in image harmonization, with studies reporting improvements 
in Dice scores ranging from 2.3 % to 8 % [34,38]. These advancements 
contribute to the broader goal of facilitating multi-centric and retro
spective studies in radiomics research, enhancing our understanding of 
patients’ diseases. 

3.1.2. CT imaging 
Table A2 summarizes the studies discussed in this section, along with 

the effects of the implemented strategies. Grayscale normalization refers 
to the harmonization of voxel values depending on the statistical dis
tribution of the intensity between centers and devices, while resampling 

techniques are linked to scaling methods. Fig. 5 shows the distribution of 
the works in this section. Grayscale normalization is typically performed 
using model-based techniques while statistical methods are used for 
resampling. In terms of downstream tasks, CT imaging wide and vast 
scope of tasks, given its wide applicability in clinics. 

In the context of CT imaging, grayscale normalization is a crucial pre- 
processing step aimed at standardizing the intensity of voxels in retro
spective studies. Li et al. [44] employed a generative model to adapt the 
images from 3 different devices A, B, and C to a target device T. Using 
the Wilcoxon-sum test, they computed the percentage of image features 
that were consistent between the different devices, which increased 
from 10.4 %, 18.2 % and 50.1 % for the unnormalized data to 93.5 %, 
89.6 % and 77.9 % after normalization. 

Resampling techniques apply statistical harmonization of the sam
pling and acquisition parameters of the images to reduce the differences 
between centers. Ligero et al. [45] resampled all acquisitions from two 
different centers to isometric voxels of 1 × 1 × 1 mm3 interpolating with 
splines and nearest neighbour methods. They applied ComBat [46] to 
perform batch correction improving K-means-based tumor type classi
fication with respect to initial data (radiomics classification accuracy 
increased from 65.9 % to 73.2 %). Park et al. [47] improved the AUC of a 
Random Forest model for recurrence prediction of non-small cell lung 
cancer (NSCLC) from 0.70 to 0.80 using reconstruction kernels. They 
also standardized the voxel dimensions to 1 mm isovoxels through cubic 
interpolation. Finally, Tonneau et al.[48] resampled original voxels to 
1-mm isometric voxels and applied a Laplacian of Gaussian filter to 
normalize the extraction of deep radiomics features. Through a gener
alization optimizing search framework, the survival rate prediction in 
NSCLC cancer improved the AUC from 0.52 to 0.63 in a validation 

Fig. 4. Summary of the studies (n = 14) on image harmonization in MR. (a) Techniques employed in MR imaging categorized as either machine learning (ML), deep 
learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric MR imaging studies. (c) Example of image harmonization in MR imaging. The inner 
circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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cohort. 
With the increasing prominence of multi-centric or multi-device 

studies in CT imaging, the challenges posed by the variability in image 
acquisition parameters and protocols have become more apparent. The 
normalization of CT images in multi-centric studies not only enhances 
the consistency and comparability of data across different centers but 
also plays a crucial role in improving the accuracy and reliability of 
diagnostic and predictive models. Grayscale normalization techniques 
have demonstrated significant improvements in feature consistency 
across different devices, with the percentage of consistent image fea
tures increasing from as low as 10.4 % to as high as 93.5 % after 
normalization [44]. Resampling techniques, which involve statistical 
harmonization of sampling and acquisition parameters, have also shown 
promise in reducing inter-center differences. The standardization of 
voxel dimensions has led to improvements in tumor type classification 
accuracy, increasing from 65.9 % to 73.2 % [46]. The combination of 
resampling and filtering techniques has also been shown to enhance the 
performance of deep radiomics features in survival rate prediction for 
NSCLC, with the AUC improving from 0.52 to 0.63 in a validation cohort 
[48]. As radiomics advances, implementing effective image harmoni
zation techniques will be crucial for fully leveraging the information 
contained within the CT images. 

3.1.3. Mammography 
Table A3 summarizes the studies discussed in this section, along with 

the effects of the implemented strategies. Fig. 6 illustrates the distribu
tion of techniques used and how they lead to different downstream 
evaluation tasks. The classification was the most common task exam
ined, along with image quality metrics, which aligns with the clinical 

application of mammography in cancer screening. Contrast enhance
ment techniques based on statistical methods primarily comprise the 
landscape of harmonization approaches in mammography. More 
recently, researchers have also explored noise reduction and grayscale 
normalization techniques. Nearly all harmonization methods are based 
on mathematical and statistical methods, except for one instance of 
machine learning for contrast enhancement and one instance of deep 
learning for denoising. The figure shows an example of how contrast- 
limited adaptive histogram equalization (CLAHE) can enhance image 
contrast in a multi-center dataset, demonstrating the potential for 
contrast enhancement techniques to improve harmonization across 
sites. 

Contrast enhancement is vital role in improving the visibility of 
subtle abnormalities and enhancing diagnostic accuracy. In the study by 
Deng et al. [49], a novel mammogram enhancement algorithm (MIFS) is 
presented, which employs intuitionistic fuzzy sets to highlight fine de
tails in mammograms more effectively achieving an average contrast 
value of 0.581 compared to 0.436 of the original data. Perez et al. [50] 
analyze a preprocessing pipeline on an exceptionally representative 
dataset obtained from 11 centers. The pipeline includes several steps, 
normalization of pixel values, histogram shifting, and linear stretching 
based on percentile values, showing an average increase in Dice score 
compared to unprocessed data of 23.5 %. Cao et al. [51] introduce the 
Breast Mass Detection Network (BMassDNet). This novel framework, 
enhanced with a truncation normalization method and adaptive histo
gram equalization for contrast improvement, shows true positive rates of 
0.930 and 0.943 on the INbreast and DDSM datasets respectively, out
performing several methods. 

More recently, DL techniques have been applied to the challenging 

Fig. 5. Summary of the studies (n = 4) on image harmonization in CT. (a) Techniques employed in CT imaging categorized as either machine learning (ML), deep 
learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric CT imaging studies. (c) Example of image harmonization in CT imaging. The inner 
circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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task of harmonizing mammography images from different medical 
centers. Mechria et al. [52] explore the impact of denoising using a deep 
convolutional neural network, the DnCNN. They compare the classifi
cation performance with different denoising methods and with the 
original data, with improvements of 3.47 % overall accuracy, 5.34 % in 
specificity, and 0.56 % in sensitivity. Perre et al. [53] evaluated the 
impact of six different normalization methods on the performance of two 
CNNs, in the classification of mammographic images. They found that 
the effect of image normalization on the performance of the CNNs de
pends on which network is chosen, and that z-score normalization had 
the most positive impact, improving AUC from 0.763 to 0.786. 

Effective image harmonization strategies, such as contrast 
enhancement techniques, denoising algorithms, and grayscale normal
ization, have improved the visibility of subtle abnormalities, diagnostic 
accuracy, and segmentation performance. Novel contrast enhancement 
algorithms have shown promising results, with an average contrast 
value of 0.581 compared to 0.436 in the original data [49]. Pre
processing pipelines incorporating normalization, histogram shifting, 
and linear stretching have led to an average increase in Dice score of 
23.5 % compared to unprocessed data [50]. The impact of normalization 
methods on CNN performance has been evaluated, with z-score 
normalization demonstrating the most positive impact, improving AUC 
from 0.763 to 0.786 [53]. While traditional mathematical methods 
remain predominant due to their simplicity and direct applicability, the 
complexity of mammographic images, particularly in multi-centric and 
multi-device studies, has necessitated the exploration of more sophisti
cated approaches, such as ML and DL techniques. These advancements 
in image harmonization enhance the accuracy of breast cancer screening 
and improve the comparability and reliability of multi-centric and 

multi-device studies, leading to better patient outcomes. 

3.2. Nuclear imaging 

3.2.1. PET/SPECT imaging 
Table A4 summarizes the studies that apply image harmonization in 

PET/SPECT while Fig. 7 shows the distribution of methods and valida
tion tasks. Grayscale normalization is clearly the most important aspect 
for PET/SPECT given the technique’s lower requirements for spatial 
resolution compared to the need for standardized pixel value interpre
tation, as pixel values relate to physical properties. Mathematical and 
statistical methods are predominantly utilized for grayscale normaliza
tion of PET/SPECT, with just one instance of a deep learning approach. 
The most common downstream validation tasks involve segmentation 
and classification. Fig. 7 also illustrates the benefits of grayscale 
normalization, showing improved harmonization in a sample PET 
dataset. The literature demonstrates that grayscale normalization tech
niques are crucial for PET/SPECT to standardize pixel-level intensities 
across acquisition devices and protocols. 

One of the first issues to tackle to enable reliable voxel-wise statis
tical analysis and predefined-VOI–based automated anatomic labeling 
with nuclear imaging is the Spatial Normalization (SN) procedure. SN is 
a process that adjusts individual images to fit a standard template, 
addressing differences in size and shape among subjects often using an 
MR acquisition to align with the morphological content. Kang et al. [54] 
developed a deep learning–based SN method for amyloid PET imaging 
quantification that does not require MR or CT images. This approach 
was evaluated against the gold standard FreeSurfer [55], across three 
different amyloid PET radiotracers. In terms of correlation, the 

Fig. 6. Summary of the studies (n = 4) on image harmonization in mammography. (a) Techniques employed in mammography categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric mammography studies. (c) Example of image harmonization in 
mammography. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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DNN-based PET SN method outperformed MRI-based PET SN with an R2 
of 0.946 compared to 0.869 for the MR-based method. Similar steps of 
SN are typically found in downstream tasks of classification and seg
mentation of PET images. In Thiele et al. [56], PET brain images have 
been used in the context of a voxel-based classification system of 
neurodegenerative dementias. Images were spatially normalized to a 
template brain image using b-splines resulting in 91 × 109 × 91 
isotropic 2 mm voxels, which were then smoothed with an isotropic 
Gaussian of 10 mm FWHM and normalized to a common median. To 
moderate inter-scanner variability, voxel-by-voxel scaling was applied 
based on “ratio images” calculated on controls. Classification accuracy 
using preprocessed data in the cross-scanner scenario improved from 79 
% to 85 %. In their study, Lee et al. [57] evaluated the performance of 
CNNs in classifying Florbetaben amyloid brain PET scans, crucial for 
Alzheimer’s disease diagnosis. Preprocessing steps such as spatial 
normalization, count normalization, and skull stripping were applied to 
both the internal and external datasets. The VGG 3D model achieved the 
highest performance with an AUC of 0.945 on an external dataset. Ren 
et al. [58] introduced two novel PET normalization methods, PET-Clip 
and PET-Sine, to enhance segmentation of head and neck tumors. 
PET-Clip clips the Standardized Uptake Value (SUV) values to a range of 
0–5 and PET-Sine employs a sine transformation. Both methods aim to 
mitigate the impact of intensity variations across different PET scans. 
Using an ensemble of these normalization methods, they achieved a Dice 
score of 78 %, surpassing the baseline performance of 76 %. 

The impact of image harmonization extends beyond improving the 
accuracy and reliability of quantitative measurements in PET/SPECT 
imaging. It also paves the way for advanced analysis techniques, such as 

voxel-wise statistical analysis, automated anatomic labeling, and clas
sification systems for neurodegenerative diseases. In downstream tasks 
such as classification and segmentation, preprocessing steps often 
include spatial normalization, to address differences in size and shape 
among subjects. In a study on the classification of neurodegenerative 
dementias, preprocessing improved classification accuracy from 79 % to 
85 % in a cross-scanner scenario [56]. Similarly, in classifying brain PET 
scans, a VGG 3D model achieved an AUC of 0.945 on an external dataset 
after applying preprocessing steps [57]. Through techniques like spatial 
normalization, deep learning-based methods, and novel normalization 
approaches, image harmonization ensures standardized interpretation 
of pixel values. It enhances the comparability of imaging data across 
different scanners and sites. 

3.3. Optical imaging 

3.3.1. Digital pathology imaging 
Table A5 summarizes the works discussed in this section, along with 

the impact of the strategies employed. Techniques such as color 
normalization have been adopted to enhance the robustness of AI 
models in digital pathology. Color normalization, in brief, refers to the 
process of standardizing the color appearance of images, thereby 
reducing the effects of staining variations in the specific field of digital 
pathology, and is often referred to as stain normalization. It has been 
demonstrated that stain normalization not only improves the perfor
mance of AI algorithms [9] but also enhances the diagnostic accuracy of 
pathologists themselves [59]. Fig. 8 illustrates the distribution of the 
reported works in this section. Image harmonization techniques in 

Fig. 7. Summary of the studies (n = 4) on image harmonization in PET/SPECT imaging. (a) Techniques employed in PET/SPECT imaging categorized as either 
machine learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric PET/SPECT imaging studies. (c) Example of image 
harmonization in PET/SPECT imaging. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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digital pathology rely predominantly on color normalization, which is 
achieved mainly through DL methods, followed by statistical/mathe
matical methods, and finally, ML methods. Among the various tasks in 
digital pathology, classification tasks constitute the majority (54 % of 
the works), followed by segmentation (21 %), detection (18 %), and 
studies on image quality metrics. An example of color normalization in 
images from a multicentric dataset of digital pathology is shown in 
Fig. 8. 

Initially, stain normalization approaches relied on mathematical and 
statistical techniques, such as color deconvolution, which separates the 
stain components in an image [60,61]. Color deconvolution is a method 
that separates the different stain components present in an image by 
exploiting the optical properties of stains and their interactions with 
light. It allows for estimating of the stain concentrations, which can then 
be used to normalize the color appearance of histopathology images 
[60]. Tam et al. [62] presented a histogram-based stain normalization 
method to enhance feature extraction in quantitative pathology. They 
achieved a 13 % increase in classification accuracy compared to un
processed images. Anghel et al. [63] introduced a real-time stain 
normalization system using Macenko’s stain vector estimation method, 
optimized for high-resolution whole-slide images. Their system delivers 
substantial speed enhancements compared to standard implementations 
and boosts classification accuracy by 5 %, even with low-quality input 
images. Salvi et al. [64] presented SCAN, a novel algorithm for stain 
separation and normalization of H&E slides. SCAN used cellular struc
ture segmentation and clustering to estimate stain vectors and per
formed pixel-wise normalization. It outperformed other qualitative and 

quantitative methods both qualitatively and quantitatively, exhibiting 
reduced artifacts and significantly improved performance (up to 11 %) 
in classification tasks. Mahmood et al. [65] investigated the role of stain 
normalization in facilitating object detection tasks in digital pathology 
images. They evaluated a nuclei detection algorithm on normalized 
versus non-normalized images from multiple staining protocols and 
scanners. Their findings illustrated that stain normalization notably 
enhances the segmentation performance of computer-assisted analysis 
techniques, showcasing an increase in the Dice score by up to 3.5 %. 
Alsubaie et al. [66] proposed a novel stain deconvolution method using 
statistical analysis of multi-resolution stain color representation. It 
separates stain colors from histological images by applying independent 
component analysis in the wavelet domain, achieving good stain sepa
ration without artifacts in normalized images compared to other 
methods. Zheng et al. [67] introduced an innovative adaptive color 
deconvolution model tailored for stain separation and normalization. 
Their model achieved notably more color-consistent normalization 
outcomes by integrating prior knowledge of staining alongside intensity 
constraints. Notably, this approach led to an impressive 7.2 % increase 
in the AUC when tested on an external dataset. Martos et al. [68] pro
posed a fully automated pipeline for nuclei segmentation in gastric 
cancer images. It performs color normalization using an optical density 
colorspace conversion. Their method notably enhances the F1-measure 
by 7.1 % when evaluated on external test sets. Wang et al. [69] pro
posed a Fourier-based mitosis detection method that tackles domain 
shift by using fast Fourier transformation on MIDOG 2021 challenge 
data. It replaces the low-frequency spectrum of source domain images 

Fig. 8. Summary of the studies (n = 38) on image harmonization in digital pathology. (a) Techniques employed in digital pathology categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric digital pathology studies. (c) Example of image harmonization 
in digital pathology. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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with that of a reference domain, generating new images through inverse 
FFT. This style transfer, enhances domain generalization without 
altering image details or labels, increasing the F1 score by 0.4 %. Aal
hassan et al. [70] proposed the FFT-based data augmentation to enhance 
model generalization across multicenter data. The end-to-end segmen
tation strategy outperforms the state-of-the-art methods by approxi
mately +6.5 %. Bazargani et al. [71] proposed an innovative approach 
to enhance model robustness, departing from conventional methods like 
random augmentation. Their method aligns the H&E color space of the 
source dataset with both datasets, incorporating random color 
augmentation for a broader color distribution. This strategy significantly 
improves generalization, reflected in an increased AUC of 0.03 and 0.05 
for internal and external datasets, respectively. 

Subsequently, research moved to more sophisticated techniques 
based on machine learning. These techniques use classifiers to recognize 
stains within the image and consequently normalize them. One such 
approach employs sparse coding to separate blended stains into their 
components for normalization [72]. Perez-Bueno et al. [73] introduced 
a framework for blind color deconvolution, normalization, and classi
fication of histological images. The method combines Bayesian 
modeling and inference with sparse priors to separate multi-stained 
images into single-stained components. It then normalizes the images, 
and experimental evaluations show that the proposed approach out
performs state-of-the-art methods in terms of preserving tissue structure 
and enhancing cancer classification accuracy by 1.6 % in terms of AUC. 
Bejnordi et al. [74] presented the Whole-slide Image Color Standardizer 
(WSICS), which classifies pixels into stains, transforms stain distribu
tions to a template, and combines transformations with weights. WSICS 
performs superior compared to baseline methods in normalization tasks, 
showcasing a noTable 5.5 % enhancement in AUC performance specif
ically observed in rat liver images. Additionally, it displays improved 
color constancy in lymph node images, emphasizing its efficacy across 
varied tissue types. Khan et al. [75] presented a nonlinear mapping 
approach to stain normalization in digital images. The proposed method 
employs a spline-based nonlinear transformation of channel statistics to 
normalize color variations introduced during the staining process. The 
results demonstrate the effectiveness of the approach in preserving 
image structure and enhancing visual quality, making it suitable for 
computer-aided image analysis in histopathology. Shafei et al. [76] 
introduced a novel approach called "Class-Agnostic Weighted Normali
zation" (CLAW normalization) for stain normalization in histopathology 
images. The method utilizes a mixture of multivariate skew-normal 
distributions for stain clustering and parameter estimation, combined 
with a stain transformation technique. The results show that the pro
posed approach outperforms existing methods in terms of information 
preservation, enhancing visual quality, and improving classification 
accuracy by 7 % when compared to original images. 

More recently, methods based on deep learning have become 
increasingly common. These techniques use deep neural networks or 
generative models to normalize images without necessarily decompos
ing the stains. Deep learning approaches have demonstrated an ability to 
learn complex patterns in histology images and perform stain normali
zation in an end-to-end manner [77]. Janowczyk et al. [78] presented 
StaNoSA, a deep learning-based approach for stain normalization. It uses 
sparse autoencoders to perform unsupervised tissue partitioning, 
allowing histogram matching to be done on a per-tissue basis. This 
achieves comparable or better normalization compared to other tech
niques, managing variability from staining, scanning equipment, and 
tissue class imbalance. Zaneta Swiderska-Chadaj et al. [79] discussed 
the impact of rescanning, stain normalization, and their combination on 
the performance of convolutional neural networks in the multi-centric, 
whole-slide classification of prostate cancer. Their evaluation found 
that combining rescanning and normalization techniques improves CNN 
accuracy by up to 10 % in classifying prostate cancer on whole-slide 
images. Perez et al. [73] presented a deep learning solution based on 
contrastive learning to transfer between different staining styles. They 

evaluated the model on two digitized datasets and achieved an improved 
classification accuracy of up to 13 % compared to unprocessed images. 
Kang et al. [54] presented StainNet, a stain normalization network that 
utilizes pixel-wise adjustment via a fully convolutional network. By 
employing distillation learning, StainNet achieves performance com
parable to deep learning methods while better preserving source infor
mation and operating more than 40 times faster than previous methods. 
Marini et al. [80] introduced a CNN that learns stain-invariant features 
through regression. By learning from paired stained and unstained im
ages, the CNN can focus on underlying tissue characteristics rather than 
on color patterns alone. Tellez et al. [81] proposed a stain normalization 
method using a U-Net architecture that maps augmented stain versions 
to a normalized representation. Compared to prior methods, it achieved 
significantly better generalization across organs and cancer types in 
computational pathology applications. Sun et al. [82] proposed Deep 
Attention Integrated Networks (DAINets) for nucleus segmentation. It 
designs an Individual Color Normalization strategy to address stain 
variation issues across multi-organ images. Evaluations demonstrated it 
achieves state-of-the-art performance on nucleus segmentation, show
casing an improvement of 1.7 % in the Dice score compared to the un
processed image. Jeong et al. [83] developed a score-based diffusion 
model with stain separation and overlapping patches for stain normal
ization. Their approach involved decomposing and normalizing of in
dividual stains using a diffusion model. The evaluation of colon biopsy 
images demonstrated that the method achieved high-performance stain 
normalization, with a Pearson correlation coefficient of 99 %. Addi
tionally, the normalization prevented artifacts from being introduced to 
the images during the process. 

One of the most common approaches for stain normalization of 
histopathology images involves adversarial training and generative 
adversarial networks (GANs). GANs can be used to learn the relationship 
between stained and unstained versions of images and translate between 
these two domains. Bentaieb et al. [84] proposed an adversarial deep 
learning approach using a GAN to learn the mapping between stained 
and unstained images, enabling stain transfer between images. Experi
mental results demonstrated that the proposed method improved the 
performance of image analysis tasks such as mitosis detection (+18 % 
accuracy), colon cancer classification (+5.1 % accuracy), and ovarian 
cancer classification (+16.9 % accuracy). Shrivastava et al. [85] intro
duced a self-attentive adversarial approach for stain normalization, 
utilizing self-attention and adversarial training to normalize multiple 
stain domains to a common domain while preserving cellular structures. 
Lafarge et al. [86] presented a domain-adversarial framework for 
learning domain-invariant representations, achieving improved gener
alization over conventional methods in mitosis detection and nuclei 
segmentation tasks. Salehi et al. [87] proposed a Pix2Pix-based stain 
translation method to address inconsistent staining by translating be
tween staining protocols. Experimental results demonstrate that the 
proposed method effectively normalizes stains and improves the per
formance of downstream analysis tasks such as nuclei segmentation (up 
to 3.5 % F1-measure) and mitosis detection (+30 % accuracy). Shaban 
et al. [88] presented a CycleGAN-inspired solution that eliminates the 
need for expert template selection, testing on a clinical use case with a 
12 % increase in AUC over unprocessed images. Cong et al. [89] pro
posed a texture-enhanced generative adversarial network (TESGAN) for 
stain normalization using higher-contrast hematoxylin components as 
input to generate normalized images without reference images. Cong 
et al. [90] introduced a semi-supervised CAGAN approach using color 
augmentation and a dual-decoder GAN with consistency regularization. 
Their method, by learning from unlabeled source domain images, ach
ieved a notable improvement between 5 % and 10 % in classification 
performance compared to established baseline methods. 

Some comparative studies assess the impact of color normalization 
approaches in the AI framework. Boschman et al. [91] systematically 
investigated eight color normalization algorithms for AI-based classifi
cation of H&E-stained histopathology slides in the context of using 
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images from both one center and from multiple centers. Their results 
show that color normalization does not consistently improve classifi
cation performance when both the training and testing data are from a 
single center. However, using four multi-centric datasets of two cancer 
types (ovarian and pleural) and objective functions, they demonstrate 
that color normalization can significantly improve the classification 
accuracy of images from external datasets (ovarian cancer: 0.25 AUC 
increase; pleural cancer: 0.21 AUC increase). Altini et al. [92] investi
gated using of Unpaired Image-to-Image Translation (UI2IT) models for 
stain color normalization in histology images of colon cancer. The au
thors compare five DL normalization models based on GANs and propose 
a meta-domain training approach to reduce training time. The results 
show that the UI2IT frameworks provide realistically colorized images, 
improving the accuracy of downstream classifiers by up to 3.6 % 
compared to traditional normalization methods. 

Some works in digital pathology utilize color augmentation strate
gies, which aim to increase the variability of the data to cover all 
possible color nuances rather than normalizing color variations. By 
expanding the diversity of training examples in this way, models can be 
made more robust to variations inherently present across whole slide 
images from different systems and staining protocols. Faryna et al. [93] 
presented a color augmentation strategy for histopathology images 
stained with H&E. The authors propose adapting traditional data 
augmentation techniques to the specific characteristics of histopathol
ogy images. This approach improves the performance of deep learning 
models on tasks such as classification, showcasing a remarkable increase 
in the AUC of 50.8 %. In another study, Faryna et al. [94] investigated 
the potential of automated hyper-parameter search for augmentation, 
aiming to enhance generalization in histopathology. They assessed four 
advanced automatic augmentation methods across 25 centers for tumor 
metastasis detection and breast cancer tissue classification. Results 
reveal comparable performance in metastasis detection and a significant 
outperformance in breast cancer classification compared to manual 
augmentation. Marini et al. [95] introduced Data-Driven Color 
Augmentation (DDCA), a method to enhance color augmentation by 
comparing augmented stain matrices to a database of variations. DDCA 
was applied to color augmentation and adversarial training, out
performing baseline methods in classifying colon and prostate images. It 
showed better generalization to heterogeneous data, improving up to 
26.7 % in classification performance. Demmaka et al. [96] explored the 
application of color augmentation to enhance the detection of tumor 
mutational burden in scans of H&E-stained multicenter slides of lung 
squamous cell carcinoma. By implementing augmentations like random 
brightness transforms and random whole-color-channel pixel intensity 
shifts, they observed a notable AUC increase from 0.70 to 0.90. Huang 
et al. [97] introduced the OmniCE augmentation method, and experi
mental findings demonstrate its superior performance compared to 
Augmix augmentation. The model trained on OmniCE-augmented 
datasets outperforms Augmix-augmented ones by 8.3 % and 15.3 % at 
two distinct centers, achieving state-of-the-art (SOTA) performance. 
Otalora et al. [98] compared stain normalization, color augmentation, 
and domain adversarial training approaches to improve the general
ization of classification networks to external datasets. Results showed 
that color augmentation and stain normalization achieved the best 
generalization by learning stain-invariant representations of tissue im
ages. Bouteldja et al. [99] investigated different approaches to improve 
the generalization of a pretrained kidney segmentation CNN to external 
cohorts with distinct stain variations. They proposed augmenting the 
training data with external stain variability using CycleGANs and 
comparing this with stain normalization approaches. Their proposed 
stain augmentation approach outperformed other methods at segment
ing kidney structures in external cohorts, yielding a significantly 
improving in the Dice score from 1.2 % to 2.1 %. Tolkach et al. [100] 
introduced a deep learning model designed for detecting tumor tissues 
and grading histological regression in esophageal adenocarcinomas. 
Their preprocessing approach suggested augmentation and stain 

normalization, incorporating both Macenko stain transfer and 
CycleGAN-based transfer. Notably, using CycleGAN in tissue regression 
led to a remarkable increase of +0.12 in AUROC in external cohorts. 

Despite the excellent performance achieved by color augmentation 
techniques, it is important to consider the limitations of data augmen
tation in providing all possible stain variations. Given the vast range of 
potential color variations that can occur in digital pathology images, it is 
practically impossible to include every single variation through data 
augmentation alone. This limitation highlights the need for image 
harmonization, also known as color normalization, as a more promising 
approach. Image harmonization ensures consistent color representation 
across different images and staining protocols, which can enhance 
model generalization. By harmonizing images, we can address the 
challenge of model generalization by reducing the influence of color 
variations and ensuring that the model focuses on relevant features and 
patterns in the pathology images. 

Image harmonization techniques in digital pathology aim to stan
dardize histopathology images and reduce variability caused by 
different staining protocols and imaging systems. Early approaches used 
color deconvolution and mathematical methods for normalization, such 
as histogram-based methods that increased classification accuracy by 13 
% compared to unprocessed images [62] and real-time stain normali
zation systems that boosted classification accuracy by 5 % [63]. More 
sophisticated techniques based on machine learning, such as sparse 
coding and Bayesian modeling, further improved performance, exhib
iting a 5.5 % enhancement in AUC performance [74] and improving 
classification accuracy by 7 % [76]. Recent works leverage deep 
learning, including GANs, to translate between stained and unstained 
images. These approaches have demonstrated significant improvements 
in various tasks, such as mitosis detection (+18 % accuracy), colon 
cancer classification (+5.1 % accuracy), and ovarian cancer classifica
tion (+16.9 % accuracy) [84]. Comparative studies have shown that 
color normalization can significantly improve the classification accu
racy of images from external datasets, with increases in AUC ranging 
from 0.21 to 0.25 [91]. Data augmentation is also explored to enhance 
model robustness to staining variations, ensuring reliable results with 
different scanners. These techniques have led to remarkable improve
ments in classification performance, with increases in AUC ranging from 
26.7 % [95] to 50.8 % [93]. While the creation of slides may retain a 
manual aspect despite automation efforts, digital normalization be
comes pivotal. It ensures uniform coloration and slide quality, not just 
for AI but also for pathologists. This guarantees swift and reliable di
agnoses, an essential factor for validation across varied pathology labs 
and imaging systems in multi-site studies. 

3.3.2. Fluorescence imaging 
Table A6 summarizes the works discussed in this section, along with 

the impact of the strategies employed. Among the techniques employed 
for image harmonization in fluorescence imaging, denoising and gray
scale normalization emerge as the most commonly used methods 
(Fig. 9). Denoising aims to improve the signal-to-noise ratio, further 
refining the visibility of crucial structures and enhancing overall image 
quality. For denoising, machine learning methods are primarily used, 
with one study showcasing a deep learning approach. On the other hand, 
grayscale normalization employs only mathematical methods. Notably, 
five out of the six studies examined in this section focused on analyzing 
image quality metrics, to standardize and improve image quality ob
tained from different facilities using various acquisition devices across 
multiple centers. Only one study deals with classification tasks. 

In terms of image denoising, approaches have been presented based 
both on machine learning and deep learning. Yang et al. [101] proposed 
a noise reduction algorithm employing machine learning that estimates 
noise parameters through contourlet transform coefficients. Their ex
periments on fluorescence microscopy images demonstrated enhanced 
denoising performance compared. Specifically, their method achieved a 
notable improvement with a 2 dB margin in PSNR. Mannam et al. [102] 
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introduced a CNN trained specifically to address denoising in fluores
cence microscopy, particularly in mixed Poisson-Gaussian noise sce
narios. External dataset evaluations demonstrated remarkable 
improvements, showing up to an 8 dB enhancement in PSNR when 
compared to analytical methods and machine learning approaches. The 
method was validated on various fluorescence samples with different 
noise types and contrast ratios. Yang et al. [103] introduced DeepNoise, 
a deep learning model tailored to disentangle biological signals from 
technical noises within high-content image-based assays. This model 
exhibited impressive accuracy, reaching 99.5 % in classifying 1108 
distinct genetic perturbations screened across 125,510 fluorescent mi
croscopy images. The successful isolation of biological and technical 
factors holds promise for reducing treatment development costs and 
expediting drug discovery processes. Broaddus et al. [104] presented 
STRUCTN2V, a method specifically designed for self-supervised 
denoising fluorescence microscopy images affected by structured 
noise. This technique employed blind spot networks, utilizing extended 
blind masks to conceal pixels and effectively eliminate spatially corre
lated noise. Across two real microscopy datasets, STRUCTN2V show
cased superior performance compared to standard and blind spot 
techniques, showcasing enhancements in PSNR (+1.6 dB) and SSIM (up 
to 2.97 %) metrics. Zhang et al. [105] introduced the Fluorescence 
Microscopy Denoising (FMD) dataset, comprising 12,000 authentic 
fluorescence microscopy images afflicted by Poisson-Gaussian noise. 
This diverse dataset encompasses various microscopy modalities and 
encompasses representative biological samples. Through benchmarking 
10 denoising algorithms, the authors discovered that deep learning 
methods exhibited superior performance. These methods showcased an 
impressive enhancement in PSNR by 10.97 dB and SSIM by 5.67 % when 

compared to the original, untreated images. Demircan-Tureyen et al. 
[106] proposed to tailor a dataset for training a denoising CNN for 
fluorescence microscopy images where ground truths are limited. Their 
approach involved leveraging low-level image features to curate visually 
similar images. They fine-tuned a pretrained CNN using a limited 
amount of target data. Remarkably, this approach showcased superior 
outcomes across two datasets compared to the original images, marking 
a substantial increase in PSNR from 4 dB to 9.6 dB and enhancing SSIM 
by up to 37.3 %. 

In summary, image harmonization—primarily through denoising 
techniques—is a crucial role in fluorescence imaging studies. It effec
tively addresses challenges arising from different acquisition devices, 
variations in protocols, and the absence of standardized analysis 
methods, ensuring reliable and valid research findings. The studies 
discussed here underscore the significant impact of denoising methods, 
utilizing both machine learning and deep learning approaches, in 
improving image quality and ensuring consistent sample representation 
across various facilities and acquisition devices. Machine learning-based 
denoising approaches, such as the one proposed by Yang et al. [101], 
have demonstrated enhanced performance compared to conventional 
techniques, achieving a notable improvement of 2 dB in PSNR. Deep 
learning-based methods have shown even more impressive results, with 
CNNs showcasing up to an 8 dB enhancement in PSNR when compared 
to analytical methods [102]. The STRUCTN2V method [104], designed 
for self-supervised denoising of fluorescence microscopy images affected 
by structured noise, outperformed standard and blind spot techniques, 
with enhancements in PSNR (+1.6 dB) and SSIM (up to 2.97 %) metrics. 
These advancements in denoising techniques have notably improved 
metrics like PSNR and SSIM, promising a more reliable and standardized 

Fig. 9. Summary of the studies (n = 6) on image harmonization in fluorescence. (a) Techniques employed in fluorescence imaging categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric fluorescence imaging studies. (c) Example of image 
harmonization in fluorescence imaging. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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approach to fluorescence imaging in multi-centric studies. 

3.3.3. OCT/OCTA imaging 
Table A7 summarizes the works reported in this section along with 

the impact of the strategy employed while Fig. 10 shows the distribution 
of the methods, techniques, and tasks performed in the OCT/OCTA 
papers analyzed. Various techniques have been employed for image 
harmonization in OCT/OCTA studies. In particular, both normalization 
and denoising approaches are applied as well as contrast enhancement 
and image resampling methods. Normalization aims to account for dif
ferences in brightness/contrast levels across datasets acquired using 
varying OCT systems and protocols. Denoising helps reduce background 
speckle noise that can obscure anatomical features. Contrast enhance
ment further improves the visibility of structures by accentuating in
tensity variations. Resampling reformats raw image dimensions to a 
consistent resolution, rectifying discrepancies in pixel sizes and scan 
areas. The most commonly used methods are deep learning (for 
denoising and grayscale normalization) and mathematical methods (for 
grayscale normalization, resampling, and contrast enhancement). 
Additionally, segmentation was the predominant task examined (67 %), 
followed only by quality metric studies. 

One of the main challenges when analyzing an OCT image is speckle 
noise, making a correct interpretation of the image difficult for experts 
and CAD systems. Shi et al. [107] proposed DeSpecNet, a CNN for OCT 
retinal image despeckling. The method exhibited strong generalization 
capabilities across four scanners with different wavelengths. Specif
ically, despeckled images saw an improvement of approximately 14 % 
PSNR and approximately 5.3 % on CNR compared to the original 
speckled images. For speckle denoising, Gour et al. [108] presented a 

residual CNN that adapted the pre-trained VGGNet architecture. The 
proposed method’s strength was its ability to generalize a speckle 
denoising model across different images. It demonstrated an improve
ment of approximately 10 dB in PSNR and approximately 60 % in 
structural similarity index measure (SSIM) compared to the baseline 
speckled images. 

Image harmonization can also address the limitations of existing 
segmentation methods, which often have restricted applicability to 
samples closely resembling the distribution of the training data. Romo- 
Bucheli et al. [109] proposed an unsupervised unpaired image trans
lation approach using CycleGANs to address variability between images 
from distinct OCT devices. CycleGANs were employed due to their 
effectiveness in handling variability observed across different OCT 
scanners. The results demonstrated that applying the translation algo
rithm significantly improved segmentation model performance when 
classifying images from a different vendor. Specifically, the Dice score 
improved by 47 % for intra-retinal cyst segmentation, 54 % for 
sub-retinal fluid segmentation, and 29 % for photoreceptor layer seg
mentation in the test set. Venhuizen et al. [110] aimed to automatically 
segment the inner retinal complex (IRC) in OCT images acquired from 
different devices. As a pre-processing step, they applied resampling to 
standardize the spatial resolution of the OCT scans. Then, they imple
mented a cascade of two fully convolutional neural networks (FCNNs) to 
segment the IRC. Bogunovic et al. [111] described eight ways to detect 
and segment the three retinal fluids in a multi-centric OCT study using 
various segmentation algorithms and pre-processing methods. The 
works described in the paper used image harmonization techniques like 
median filtering, morphological operators and 3D smoothing. The 
top-performing method applied 3D bounded variation denoising to 

Fig. 10. Summary of the studies (n = 6) on image harmonization in OCT/OCTA. (a) Techniques employed in OCT/OCTA imaging categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric OCT/OCTA imaging studies. (c) Example of image harmo
nization in OCT/OCTA. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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motion-corrected B-scans, achieving a mean Dice score for intra-retinal 
fluid, sub-retinal fluid, and pigment epithelial detachment of 82 %, 75 % 
and 74 % respectively. 

Regarding OCTA, the only multi-device study that adopted image 
harmonization was conducted by Ma et al. [112]. They utilized 
contrast-constrained adaptive histogram equalization (CLANE) prior to 
segmenting the complex vascular network in the images. This 
multi-device study achieved a 0.4 % improvement in the Dice score after 
applying CLANE. 

Image harmonization techniques show great promise for advancing 
clinical research using OCT/OCTA modalities. A key challenge is vari
ability between imaging systems and acquisition protocols across 
research sites, which can hamper efforts to pool and jointly analyze large 
multi-centric datasets. Normalization, denoising, contrast enhancement 
and resampling approaches have been applied to standardize brightness, 
reduce speckle noise, improve structure visibility, and rectify pixel 
mismatches between OCT datasets, allowing for more robust cross-site 
comparability. In terms of denoising, the despeckle of OCT retinal 
image exhibited strong generalization capabilities across four scanners 
with different wavelengths, with an improvement of 14 % in PSNR and 
5.3 % in CNR compared to the original images [107]. Similarly, a re
sidual CNN demonstrated an improvement of approximately 10 dB in 
PSNR and 60 % in SSIM compared to the baseline speckled images 
[108]. Generative models have also been employed to address the lim
itations of existing segmentation methods. A CycleGAN for unsupervised 
unpaired image translation was developed to handle variability between 
images from distinct OCT devices. The results showed significant im
provements up to 54 % in Dice score [109]. Overall, image 

harmonization addresses critical heterogeneity issues, enabling larger 
and more diverse OCT/OCTA cohorts that can help segmentation and 
diagnostic deep learning algorithms achieve their full potential for 
advancing clinical care. 

3.4. Ultrasound imaging 

Table A8 summarizes the works reported in this section and the 
impact of the strategy employed. As shown in Fig. 11, most studies 
analyzed focused on grayscale normalization of US images. The primary 
objective of these harmonization techniques was to enable image clas
sification using data pooled from different scanners and operators. Only 
one study utilized contrast enhancement for harmonization, based on 
mathematical methods. The analyzed studies in literature all employed 
mathematical algorithms to standardize ultrasound image appearance 
before multi-center analysis. Classification was the most studied 
downstream task (83 %), followed by segmentation. Fig. 11 also pro
vides an example demonstrating the effects of grayscale normalization 
on ultrasound images from different centers, highlighting its ability to 
improve harmonization for multi-center US data. 

Liu et al. [113] aimed to quantify the risk level of gastrointestinal 
stromal tumors in multi-centric endoscopic ultrasound images. They 
introduced a triple normalization approach to address issues from 
multi-centric data bias. Their harmonization approach included 
applying a CLAHE algorithm and resizing the images. An ablation 
experiment was conducted to further investigate the impact of this in
tensity, size, and spatial resolution normalization, demonstrating a 3 % 
increase in classification accuracy. In another work, Ren et al. [114] 

Fig. 11. Summary of the studies (n = 5) on image harmonization in ultrasound. (a) Techniques employed in ultrasound imaging categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric ultrasound imaging studies. (c) Example of image harmo
nization in ultrasound imaging. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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aimed to grade hepatocellular carcinoma using machine learning-based 
techniques on data from three hospitals. The authors employed z-score 
normalization, resampling through B-spline interpolation and gray-level 
discretization to standardize the appearance of the ultrasound images, 
obtaining an AUC of 0.874. Homayoun et al. [115] proposed a 3σ 
normalization approach to mitigate undesired consequences arising 
from the utilization of diverse ultrasound devices across the three cen
ters to classify breast lesions using ultrasound radiomics signatures. 
Sirjani et al. [116] implemented min-max scaling to normalize the 
grayscale of ultrasound images from 5 different datasets. The final goal 
of classifying breast lesions was achieved with an accuracy of 81 % on an 
external test set, demonstrating higher performance compared to than 
other popular CNN architectures. Specifically, VGG attained an accuracy 
of 75 %, DenseNet achieved 73 %, and ResNet achieved 67 % for the task 
of classifying breast lesions. The only study that employed image 
harmonization for segmentation was performed by Du et al. [117]. They 
proposed a multi-centric study for segmenting intravascular ultrasound 
images using convolutional neural networks. The study included 175 
intravascular ultrasound pullbacks obtained from two medical centers. 
To avoid biases, z-score normalization was performed on all the images. 
The proposed method achieved a Dice score of 92.7 %. 

The studies reported in this section demonstrated a variety of tech
niques can help standardize the appearance and enable fair comparisons 
across ultrasound data. Key approaches included intensity normaliza
tion methods like histogram equalization, z-score normalization, and 
min-max scaling to mitigate differences in grayscale values and contrast. 
Spatial normalization through resizing and interpolation facilitated 
input uniformity for classification and segmentation models. Intensity, 
size, and spatial resolution normalization led to a 3 % increase in 

classification accuracy for gastrointestinal stromal tumor risk assess
ment [113] and improved the AUC up to 0.874 for grading hepatocel
lular carcinoma [114]. In a study applying z-score normalization to 
images from two centers, a Dice score of 92.7 % was achieved for the 
segmentation of intravascular ultrasound images [117]. These quanti
tative results highlight the significant impact of harmonization tech
niques on downstream tasks in multi-centric ultrasound studies. 
However, the limited number of studies and the focus on a narrow range 
of tasks (primarily classification) suggest that further research is needed 
to understand the potential and limitations of these methods fully. 
Continued development of such harmonization methods is crucial to 
fully leverage ultrasound’s significant potential for collaborative, 
multi-centric research, and clinical applications. 

3.5. Dermatology imaging 

Table A9 summarizes the works reported in this section along with 
the impact of the strategy employed. Harmonization techniques in 
dermatology encompass various aspects, such as standardizing imaging 
parameters, calibrating devices, and optimizing lighting conditions. 
These approaches aim to reduce variations caused by different equip
ment and settings, thereby enabling more accurate and comparable 
analysis of dermatological data. As shown in Fig. 12, most works use 
color normalization to standardize the appearance of dermatological 
images. Color normalization techniques have been applied to both 
classification and segmentation tasks. Mathematical methods are the 
most commonly used for color normalization and resampling, followed 
by deep learning approaches. In summary, harmonization research in 
dermatology focuses on reducing equipment and environmental 

Fig. 12. Summary of the studies (n = 19) on image harmonization in dermatology. (a) Techniques employed in dermatology imaging categorized as either machine 
learning (ML), deep learning (DL), or mathematical methods. (b) Distribution of tasks in multi-centric dermatology imaging studies. (c) Example of image 
harmonization in dermatology. The inner circle of (a) shows the type of technique used in the approach described by the outer circle of the same graph. 
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differences through techniques like color normalization, facilitating 
multi-site analysis. 

The early approaches to image harmonization in dermatology were 
simple techniques such as scaling pixel values using min-max scaling 
and z-score normalization strategies. Codella et al. [118] introduced a 
system integrating deep learning, sparse coding, and support vector 
machines (SVMs) with multi-contextual analysis for melanoma seg
mentation and classification. They cropped and resized dermatological 
images before feeding them into the DL network. Their results showed 
an improvement of 7.5 %, achieving an AUC of 0.843 for classification 
and a Jaccard index of 84 % for segmentation. Azad et al. [119] intro
duced TransNorm, a transformer-based model designed for medical 
image segmentation. Their approach involved resizing the images to a 
fixed size and integrating a spatial normalization mechanism within the 
transformer module to adaptively recalibrate skip connections. Through 
evaluation across multiple datasets, their method showcased consider
able effectiveness, enhancing segmentation performance by up to 8 % in 
the Dice score when compared to other network architectures. Yu et al. 
[120] introduced a framework for classifying dermoscopy images that 
leverages deep convolutional features and Fisher vector encoding. To 
normalize images, they applied a process of subtracting the 
per-image-mean from each channel. Evaluating the ISIC 2016 dataset, 
their method demonstrated superior performance compared to 
state-of-the-art methods, enhancing the mean average precision (mAP) 
by approximately 1.3–6 %. Gong et al. [121] introduced a decision 
fusion technique for classifying dermoscopy images employing multiple 
pre-trained CNNs. Their image normalization process involved sub
tracting the channel-wise average intensity from each image. Evaluating 
the ISIC 2019 dataset, the decision fusion approach showcased 
enhanced performance compared to individual CNNs and traditional 
fusion methods. It achieved an accuracy of over 99.5 % and a specificity 
of 99.6 %. Shahin et al. [122] introduced a DCNN model to classify skin 
lesions as benign or malignant. Their approach involves data normali
zation through z-score normalization and employs data augmentation to 
expand the training dataset. Their model achieved an impressive test 
accuracy of 91.93 % on HAM10000, surpassing the performance of 
transfer learning models such as ResNet, VGG-16, and MobileNet. Xin 
et al. [123] introduced the SkinTrans model, leveraging a vision trans
former for skin cancer classification. Their approach involves 
multi-scale patch extraction from images and utilizes contrastive 
learning to encode similar data. They employed z-score normalization 
for the input images. Their model demonstrated a noteworthy increase 
of 1 % in accuracy compared to the baseline. Gajera [124] analyzed 
dermoscopy images for melanoma detection utilizing deep CNN fea
tures. Following image resizing and cropping, they applied per-channel 
normalization using the z-score method. Employing an MLP classifier 
resulted in an impressive accuracy of 98.33 % for melanoma detection, 
showcasing up to a 5 % enhancement compared to other networks that 
did not employ any image harmonization step. Zafar et al. [125] intro
duced a skin lesion segmentation technique utilizing a Res-Unet con
volutional neural network model. They conducted normalization to 
scale pixel values within the range of 0 to 1. Additionally, they imple
mented hair removal using morphological operations. Their method 
exhibited an enhancement in the Jaccard index of up to 2 % when 
compared to other existing approaches. Behara et al. [126] introduced a 
skin lesion classification framework with a focus on the qualitative 
assessment of the preprocessing phase, including techniques such as 
bicubic interpolation for scaling, normalization, sharpening, color 
transformation, and median filters. Their model demonstrated superior 
performance with a notable accuracy of 99.38 %, outperforming all the 
compared methods. 

These initial methods focused on the basic standardization of input 
images to deep learning models by rescaling pixel intensity ranges lin
early. While helping to some degree with training, they did not address 
more complex issues like variations in lighting, skin tone, image dis
tortions, and background noise between images. More sophisticated 

preprocessing involving color constancy algorithms would later be 
developed to better normalize dermoscopic images prior to analysis. 
Barata et al. [127] aimed to address issues arising from color variations 
in dermoscopy images acquired from different sources. They investi
gated employing color constancy techniques based on shades of gray to 
execute color normalization. Their study showcased enhanced perfor
mance, exhibiting an increase of up to 14 % in accuracy for two classi
fication systems when color normalization was applied. This highlighted 
the technique’s efficacy in mitigating the impact of variations in 
acquisition setups. Barata et al. [128] explored color constancy algo
rithms aimed at standardizing the colors of dermoscopy images 
collected from various sources. They implemented four distinct color 
constancy methods and evaluated their impact on a bag-of-features 
classification system. Their findings revealed notable improvements: 
when leveraging the Shades of Gray color constancy method, sensitivity 
increased from 71 % to 79.7 % and specificity rose from 55.2 % to 76.8 
%. Abbas et al. [129] introduced a melanoma border detection tech
nique employing color normalization and region segmentation. Their 
method involved normalizing dermoscopy images to the CIE Lab* color 
space, enhancing contrast, and subsequently identifying regions of in
terest using a hill-climbing approach. Through experimental evaluations 
conducted on 100 images, their method achieved promising results with 
a true detection rate of 94.25 % and a false positive rate of 3.56 %, 
surpassing the performance of other existing methods in this domain. Ng 
et al. [130] delved into the impact of color constancy algorithms on the 
semantic segmentation of skin lesions. They utilized four distinct color 
constancy algorithms to preprocess images sourced from the ISIC 
Challenge 2017 dataset before training a Fully Convolutional Network 
(FCN) for segmentation purposes. Their findings indicated that pre
processing images with color constancy algorithms led to improved 
segmentation outcomes, particularly for seborrheic keratosis lesions, 
showcasing an enhancement of up to a 4 % increase in Jaccard simi
larity. Olga et al. [131] investigated the performance of an automatic 
lesion classification algorithm on skin cancer detection with and without 
image enhancement. They applied various enhancement methods, 
including the Retinex method [108], and conducted classification using 
CNNs and SVMs. Their findings revealed that the Retinex method yiel
ded the most impressive performance, enhancing the F1 score by up to 5 
% compared to scenarios with no preprocessing. Zhang et al. [132] 
introduced an attention residual learning convolutional neural network 
(ARL-CNN) designed for skin lesion classification. They incorporated the 
gray-world color constancy algorithm [133] as a preprocessing step 
before feeding the images into their network. Specifically for melanoma 
classification, the integration of color constancy with their novel 
network architecture increased the AUC by up to 14 %. Yuan et al. [134] 
proposed an improved Convolutional-Deconvolutional Network (CDNN) 
specifically for skin lesion segmentation. All images were resized to keep 
a balanced aspect ratio while reducing computational cost. In addition 
to the RGB color channels, three channels from the HSV color space and 
one channel (L) from the CIELAB color space were included as input to 
the network, resulting in a total of 7 channels. Remarkably, their pro
posed CDNN method secured the top position on the ISBI 2017 skin 
lesion segmentation challenge dataset, achieving an average Jaccard 
Index of 76 % on the testing set. Goyal et al. [135] introduced ensemble 
deep learning techniques for skin lesion segmentation using Mask 
R-CNN and DeeplabV3+. Their approach incorporated a color constancy 
step that followed the shades of gray algorithm [136]. The ensemble 
methods achieved higher sensitivity and specificity than other algo
rithms, showcasing an improvement in sensitivity from 4.4 % to 22.7 %. 

More recently, advanced approaches leveraging deep learning have 
been presented for performing color normalization. Where earlier 
methods relied on traditional computer vision techniques, newer tech
niques utilize neural networks to learn complex mappings between 
image appearances under different lighting conditions in an end-to-end 
fashion. This allows for non-linear color normalization without 
requiring explicit modeling of the imaging pipeline. Salvi et al. [137] 
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introduced the DermoCC-GAN method for standardizing dermatological 
images via generative adversarial networks (GANs). They employed a 
custom heuristic algorithm for color constancy, mitigating illumination 
variability during GAN training. DermoCC-GAN exhibited superior 
performance in both classification and segmentation tasks compared to 
alternative color constancy methods. In classification, it showcased a 3 
% accuracy improvement, while in segmentation tasks, it demonstrated 
enhancements of up to 19 % in Dice score compared to the original 
images. 

As seen in digital pathology, algorithms for color augmentation have 
also been proposed in dermatology to make networks less sensitive to 
variations in the illumination conditions of images. These techniques 
aimed to expand dermatology datasets by artificially modifying aspects 
like brightness, contrast, and color tone through data augmentation. 
Galdran et al. [138] proposed a data augmentation technique for skin 
lesion analysis using color constancy. It estimates illuminants from 
training images and then applies random illuminants for augmentation. 
Networks trained with this method achieve promising segmentation and 
classification results on a validation set for skin lesion analysis tasks. 
Specifically, a Dice score of 84.6 % was achieved for segmentation and 
an AUC of 0.873 was obtained for classification, indicating excellent 
discriminability of lesion types. 

Image harmonization in dermatology ensures for ensuring reliable 
and comparable research outcomes and clinical applications. By stan
dardizing the acquisition and preprocessing of dermatoscopic images 
across multiple centers, image harmonization allows for effective com
parison and combination of datasets. Harmonizing data improves the 
accuracy and reliability of image analysis algorithms by mitigating 
variations caused by lighting conditions and imaging devices [139]. 
Color normalization techniques, such as min-max scaling and z-score 
normalization, improved classification accuracy by up to 7.5 % and 
increased the Jaccard index to 84 % for segmentation [118]. Spatial 
normalization through resizing and interpolation enhanced segmenta
tion performance by up to 8 % in the Dice score compared to other 
network architectures [119]. Z-score normalization contributed to an 
increase of 1 % in accuracy compared to the baseline [123]. It show
cased up to a 5 % enhancement in accuracy compared to other networks 
that did not employ any image harmonization step [124]. Color con
stancy techniques based on shades of gray exhibited an increase of up to 
14 % in accuracy for two classification systems [127]. The Shades of 
Gray color constancy method increased sensitivity from 71 % to 79.7 % 
and specificity from 55.2 % to 76.8 % [128]. Preprocessing images with 
color constancy algorithms led to improved segmentation outcomes, 
particularly for seborrheic keratosis lesions, showcasing an enhance
ment of up to a 4 % increase in Jaccard similarity [130]. The integration 
of color constancy with a novel classification architecture resulted in an 
increase in the AUC by up to 14 % [132]. An ensemble method incor
porating a color constancy step following the shades of gray algorithm 
improved sensitivity from 4.4 % to 22.7 % [135]. Overall, image 
harmonization techniques play a crucial role in advancing dermatology 
by improving research outcomes, diagnostic accuracy, and the quality of 
patient care [140,141]. 

4. Discussion 

4.1. Summary of main findings 

Initially, AI tools were designed to work with data from a single 
center or a single acquisition. However, there has been a shift towards 
multi-centric and multi-device approaches over time. This shift is due to 
the limitations of working solely with single-center data, which can 
result in limited generalization, bias, and a drop in performance on the 
test set. Our review provides a comprehensive overview of image 
harmonization approaches in multicenter studies, analyzing the papers 
published between 2013 and 2023. Unlike previous reviews, which 
focused on normalization in one or a few imaging modalities, such as 

digital pathology [9,14] or radiology [10–13], our review covers a vast 
majority of the imaging modalities used in healthcare. Finally, our re
view emphasizes the impact of image harmonization on the performance 
of AI models in multicenter studies. 

Fig. 13 analyzes an analysis of the number of papers that use image 
harmonization categorized by statistical/mathematical methods (Math), 
ML, and DL over the publication years. The figure reveals that mathe
matical models are the predominant approach consistently employed 
throughout the entire time frame. Statistical/mathematical techniques 
have been more widely utilized than DL or ML techniques in most years 
from 2013 to 2023. This preference for mathematical and statistical 
methods can be attributed to their inherent simplicity and interpret
ability. On the other hand, there has been a noticeable growth in DL- 
based methods since 2017. This surge in the use of DL can be attrib
uted to the limitations of purely mathematical or ML-based approaches 
in managing image complexities, especially in color images, and 
handling variability introduced by changes in the acquisition system. 

Recently, some studies have adopted standardization methods that 
combine mathematical models with DL or ML techniques, or even a 
combination of all three. For example, Altini et al. 2023 [92] employed a 
comprehensive standardization approach integrating mathematical, ML, 
and DL techniques in their color normalization strategy for digital pa
thology, utilizing methods such as color deconvolution, sparse 
non-negative factorization (SNMF), and GANs. 

Fig. 14 provides the annual distribution of research papers across 
various application fields including digital pathology, dermatology im
aging, fluorescence, mammography, PET/SPECT, MRI, ultrasound, CT, 
and OCT/OCTA imaging. This visualization offers valuable insights into 
the evolving trends and research interests within these application do
mains over time. 

One notable finding from Fig. 14 is the increasing adoption of 
normalization techniques in the field of digital pathology, which has 
consistently remained a focal point of research, particularly in recent 
years (2019–2023). The chart also highlights the sustained application 
of normalization techniques in MRI and dermatology imaging 
throughout the analyzed period (2013–2023), with a noticeable increase 
in recent years. Additionally, novel normalization techniques have 
emerged for CT and OCT/OCTA imaging, indicating a shift in research 
focus that had not been explored extensively before 2018. 

Fig. 15 provides insights into the utilization of image harmonization 
techniques across different application fields. It is noteworthy that 
mathematical and statistical models are the most employed techniques 
across almost all image modalities. The majority employed mathemat
ical techniques for grayscale modalities, such as ultrasound and radi
ology imaging (CT, MR, PET/SPECT). The data further reveals that DL 
methods are more prominently used in imaging techniques character
ized by greater image complexity. This includes fields like digital pa
thology, which deals with color images and significant variability in the 

Fig. 13. Reviewed papers categorized by use of statistical/mathematical 
methods (Math), machine learning (ML), or deep learning (DL) approaches, 
divided by publication year. 
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sample preparation and acquisition system. DL methods are also 
increasingly utilized in emerging modalities like OCT/OCTA. 

Fig. 16 clearly shows picture of the percentage of studies dedicated to 
image harmonization across different imaging modalities. Color image 
modalities like digital pathology (38 %, n = 38) and dermatology (19 %, 
n = 19) stand out as the most widely studied applications for multi- 
centric studies. This indicates the significance of harmonizing data 
collected from multiple centers in these fields. Furthermore, image 
harmonization is also a notable aspect in MR studies (14 %, n = 14), 
highlighting the importance of standardizing data collected from diverse 
sources in this particular application. Around 4 % of studies focus on 
image harmonization techniques in mammography and PET-SPECT. 
However, when it comes to ultrasound, CT, and OCT/OCTA, image 
normalization techniques have yet to become a predominant focus of 
research. 

For each imaging modality, Table 1 presents a summary of the 
studies that demonstrate the most significant performance improve
ments using image harmonization techniques. The table highlights the 
authors, specific techniques employed, tasks addressed, and the quan
titative impact of normalization on the results. The performance im
provements are quantified using various metrics such as AUC, accuracy, 
PSNR, and SSIM, depending on the nature of the study and the task 

performed. 
Notably, some recent studies introduce normalization techniques 

that apply to various fields, such as dermatology and digital pathology 
combined. Salvi et al. [141] introduced an application of GANs to tackle 
color variability in medical images. With a focus on digital pathology 
and dermatology, the method frames color normalization as an 
image-to-image translation problem, showcasing superior performance 
compared to existing methods in both domains. Table 2 shows the 
Open-access datasets used in multi-centric studies in healthcare. 

4.2. Benefits and challenges of image harmonization for multi-centric 
studies 

The integration of image harmonization has enormous potential to 
transform many areas of healthcare by providing a standardized and 
unified approach to data analysis in multi-centric studies. Adopting an 
image harmonization approach offers several key benefits:  

- Improved robustness of the AI model towards out-of-distribution 
samples: image harmonization ensures that the AI model is robust 
on a diverse data, including samples from different centers. This 
improves the model’s ability to generalize and perform well on 

Fig. 14. The trends in the number of research papers categorized by major macroscopic application fields (radiology, nuclear medicine, optical imaging, ultrasound, 
dermatology) over the years. 

Fig. 15. Techniques of normalization (Math, ML, and DL) studies categorized by application area. Math represents the statistical and mathematics techniques.  
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unseen data, enhancing its robustness and reliability in real-world 
applications [9].  

- Bias reduction towards a specific medical center: by harmonizing 
data from multiple centers, bias towards any specific center or 
population can be minimized [158]. This helps to ensure that the AI 
model provides accurate and unbiased predictions across different 
medical settings, leading to fair and equitable healthcare outcomes.  

- Multi-modal pipelines: normalization and harmonization of data 
across sources are essential steps to ensure the accuracy and reli
ability of a multi-modal system. Variability in how data is collected, 
including variations in image protocols, resolution, and image 
quality, can introduce systematic biases that compromise the effec
tiveness of multi-modal systems [159]. Data standardization pipe
lines should account for the inherent differences in data acquisition 
while preserving the biological variance present in the dataset. 

- Facilitates collaborative research: image harmonization enables re
searchers from different institutions to collaborate more effectively. 
Establishing standardized data collection and harmonization 

protocols makes it easier to pool resources, share data, and conduct 
large-scale, multi-centric studies.  

- Enables comparative analysis: harmonized data allows for direct 
comparisons between different centers, regions, or populations. This 
enables researchers to identify variations in disease prevalence, 
treatment outcomes, or other important factors, leading to improved 
understanding and more targeted interventions. 

While integrating image harmonization has immense potential, 
several key challenges must be addressed to ensure its successful 
implementation:  

- Reliable image harmonization: it is crucial to ensure that the data 
pre-processing and harmonization process does not lead to a loss of 
information or a decrease in the informative value of the processed 
image. The data preparation steps should be carefully designed and 
implemented to minimize any potential loss or distortion of impor
tant features in the original data.  

- Variability in data formats and standards: Data generated by 
different imaging modalities or centers may have different formats, 
metadata structures, or standards. Addressing these variability issues 
is necessary to ensure interoperability and seamless integration of 
data across different sources. Standardization efforts are needed to 
establish common data formats and metadata standards to facilitate 
image harmonization and interoperability.  

- Privacy and data protection: multi-centric studies involve sharing 
and integrating data from multiple institutions, raising privacy and 
data protection concerns. Safeguarding patient privacy and 
complying with ethical and legal requirements while sharing and 
harmonizing data is crucial. Data anonymization and secure data- 
sharing mechanisms need to be implemented to protect patient 
confidentiality. 

- Data quality control and validation: Ensuring the quality and reli
ability of harmonized data is essential for accurate and meaningful 
analysis. Implementing rigorous data quality control measures and 
validation protocols is necessary to identify and address any data 
inconsistencies, errors, or artifacts that may arise during the 
harmonization process. 

4.3. Future research directions 

As the field of medical imaging continues to evolve, it is essential to 
highlight emerging trends and potential future directions in multi- 
centric approaches for healthcare. Several areas of improvement and 
future research opportunities exist to advance the field: 

Fig. 16. Image modalities involved in the studies reviewed.  

Table 1 
Summary of studies highest performance improvements obtained for each imaging modality.  

Author, year Image modalities Technique Strategy Task Impact of normalization with 
respect to the baseline 

Foltyn-Dumitru 
et al. [33] 

MRI Math Grayscale normalization: z-score Radiomic-based predictions for 
molecular glioma subtypes 

AUC: 87 % (+42 %) 

Tonneau et al. [48] CT Math Resampling: voxel resampling, 
intensity clipping (HU), Denoising 

Prediction of non-small cell lung 
cancer 

AUC: 63 % (+11 %) 

Thiele et al. [56] PET/SPECT Math Grayscale normalization: intensity 
ratio 

Classification of neurodegenerative 
dementias 

Accuracy volumes: 88 % (+8 %). 
Accuracy scans: 86 % (+8 %) 

Bejnordi et al. [74] Digital pathology ML Color normalization: color 
deconvolution 

Stain Specific Standardization of 
Whole-Slide 
Histopathological Images 

AUC: 94.4 % (+63.4 %) 

Demircan-Tureyen 
et al. [106] 

Fluorescence 
microscopy 

DL Denoising: CNN Restoring Fluorescence Microscopy 
Images 

PSNR: 31.37 (+7.21) 
SSIM: 85.3 % (+39.2 %) 

Gour et al. [108] OCT/OCTA DL Denoising: CNN Generalization of a speckle denoising 
mode 

PSNR: 27.55 (+10) 
SSIM: 68 % (+60 %) 

Liu et al. [113] Ultrasonography Math Contrast enhancement: CLAHE Gastrointestinal stromal tumors 
classification 

Accuracy: 83.4 % (+3.3 %) 

Barata et al. [127] Dermoscopy Math Color normalization: color constancy, 
SoG 

Skin lesion classification Accuracy: 77.8 % (+14.7 %)  
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Table 2 
Open-access datasets used in multi-centric studies in healthcare.  

Dataset Image modality Data description Used 
by 

BRATS 2013 MRI A brain tumor 
segmentation dataset 
(synthetic and real 
images, n patients = 24). 
All images are divided 
into high-grade gliomas 
(HG) and low-grade 
gliomas (LG) 

[35] 

Lung Image Database 
Consortium (LIDC) 

CT 1018 cases of thoracic CT 
scan with associated 
manual segmentation of 
lung lesions 

[48] 

Public dataset INbreast Mammography 460 mammography 
images (115 female, using 
two views, a mediolateral 
oblique view, and a 
craniocaudal view 

[51] 

CBIS-DDSM dataset Mammography 2620 mammography 
images (1925 cases with 
mass and 695 cases 
without mass). 

[51] 

Digital Database for 
Screening 
Mammography 
((DDSM) dataset 

Mammography 2500 studies, with two 
images of each breast, and 
patient information 

[52] 

Mammographic Image 
Analysis Society 
(MIAS) dataset 

Mammography 20 mammograms 
obtained from the 
mediolateral oblique view 
containing 25 annotated 
microcalcification 
clusters 

[142] 

Nijmegen mammo- 
graphic databases 

Mammography 40 mammograms of both 
craniocaudal and oblique 
views from 21 patients 

[142] 

BCDR-FM dataset (Film 
Mammography 
Dataset) from Breast 
Cancer Digital 
Repository 

Mammography 736 grey-level digitized 
mammograms (426 
benign and 310 malign 
mass lesions) from 344 
patients. 

[53] 

National Information 
Society Agency 

PET PET scans (18F- 
florbetaben or 18F-flute
metamol) and structural 
T1-weighted 3-dimen
sional MRI scans of 
patients with AD or mild 
cognitive impairment and 
cognitively normal 
subjects. 

[143] 

Alzheimer’s 
Neuroimaging 
Initiative (ADNI) 
database 

PET Scans of normal control, 
mild cognitive 
impairment (MCI), and 
AD. 

[57] 

Mitosis-Atypia Digital 
Pathology 

11 histology slides with 
multiple 20x frames per 
case digitalized with two 
different scanners 

[54,73, 
76,80, 
84, 
144] 

MICCAI’16 GlaS 
challenge [145] 

Digital 
Pathology 

colon adenocarcinoma 
tissue images 

[80,84, 
95] 

MICCAI’16 TUPAC 
challenge [146] 

Digital 
Pathology 

500 WSIs of breast cancer 
patients 

[63,81, 
86] 

Camelyon-16 [147] Digital 
Pathology 

1399 H&E-stained 
sentinel lymph node 
sections of breast cancer 
patients from two 
different laboratories 

[54,63, 
67,73, 
83,89, 
90] 

Camelyon-17 [148] Digital 
Pathology 

1000 WSIs of breast 
cancer patients from 5 
medical centers 

[67,73, 
81,89, 
90] 

SICAPv1 and SICAP- 
HUVNGR [149] 

Digital 
Pathology 

105 H&E WSI of prostate 
cancer from two hospitals 

[73,80, 
95] 

Cancer Genome Atlas 
(TCGA) [150] 

Digital 
Pathology 

publicly funded project 
with thousands of slides 

[65,86, 
89,90, 
92,98]  

Table 2 (continued ) 

Dataset Image modality Data description Used 
by 

from different centers and 
pathologies 

Breast Cancer dataset  
[151] 

Digital 
Pathology 

7909 breast cancer 
histopathology images 
acquired on 82 patients 

[91] 

MoNuSeg dataset  
[152] 

Digital 
Pathology 

30 training images from 
different tissues with 
annotated nuclei 
boundaries 

[68,76, 
82] 

BACH dataset [153] Digital 
Pathology 

400 microscopy images 
from four different classes 
of breast cancer 

[76] 

PAIP2019 [154] Digital 
Pathology 

100 WSIs of liver cancer 
patients 

[83] 

ROSE datasets Retinal 
OCTA SEgmentation 
dataset (ROSE) 

OCTA 229 OCTA images with 
vessel annotations at 
either centerline-level or 
pixel-level. 

[112] 

OCTA-500 [155] OCTA 500 subjects [112] 
The Breast Ultrasound 

Images Dataset 
(BUSI) 

Ultrasound 
imaging 

780 breast ultrasound 
images of 600 female 
patients. The images are 
categorized into three 
classes, which are normal, 
benign, and malignant. 

[116] 

The BUS dataset Ultrasound 
imaging 

780 images (normal, 
benign, and malignant) 

[116] 

A public dataset Ultrasound 
imaging 

86 breast cancer 
ultrasound images 

[116] 

International Skin 
Imaging 
Collaboration (ISIC 
2016) 

Dermatology 
imaging 

900 annotated 
dermoscopic images for 
training (173 
melanomas), and 379 
images in a held-out test 
set for evaluation (75 
melanomas). 

[120, 
124, 
134] 

International Skin 
Imaging 
Collaboration (ISIC) 
2017 

Dermatology 
imaging 

2000 images with 
corresponding ground 
truth images. 

[124, 
130, 
132, 
134, 
135] 

International Skin 
Imaging 
Collaboration (ISIC) 
2019 dataset 

Dermatology 
imaging 

25,331 dermoscopy 
images, 8 classes (i.e., 
actinic keratosis (AKIEC), 
basal cell carcinoma 
(BCC), benign keratosis 
(BKL), dermatofibroma 
(DF), melanoma (MEL), 
melanocytic nevus (NV), 
vascular lesion (VASC) 
and squamous cell 
carcinoma (SCC)). 

[121] 

ColorChecker image 
dataset 

Dermatology 
imaging 

568 8-bit sRGB images, 
most of which have the 
size 874 × 583. 

[156] 

EDRA database Dermatology 
imaging 

482 images, 241 
melanomas and 241 
benign lesions. 

[126, 
128] 

HAM10000 Dermatology 
imaging 

10,015 images of seven 
distinct types of skin 
lesions: Actinic Keratoses 
and Intraepithelial 
Carcinoma (AKIEC), Basal 
Cell Carcinoma (BCC), 
Benign Keratosis-like 
Lesions (BKL), 
Dermatofibroma (DF), 
Melanoma (MEL), 
Melanocytic Nevus (NV) 
and Vascular Lesion 
(VASC). 

[122, 
124, 
137] 

PH2 dataset Dermatology 
imaging 

200 dermoscopic images 
of melanocytic lesions (80 
normal nevi, 80 atypical 
nevi and 40 melanoma). 

[124, 
125, 
134, 
135, 
157]  
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- Federated learning: federated learning can potentially address the 
issue of bias from individual centers by allowing models trained on 
local data to communicate with a central model. This approach en
ables collaborative learning while preserving data privacy and se
curity [160]. Further research can explore the application of 
federated learning in multi-centric studies to improve model per
formance and mitigate biases.  

- Emerging imaging modalities: While initial research has explored the 
use of emerging imaging modalities such as photoacoustic imaging, 
there is a lack of multi-centric studies in this area. Future research 
should focus on conducting multi-centric investigations using this 
modality, which would require the development of data preparation 
techniques specific to these modalities [161].  

- Open-access mindset: despite the significant benefits offered by 
multi-centric approaches, there is currently a scarcity of open-source 
multi-centric datasets. Future research should prioritize the creation 
and sharing of open-source datasets to facilitate technological ad
vancements and enable comparisons among studies working on 
similar applications. Cultivating an open-access mindset would fos
ter collaboration, and reproducibility, and accelerate progress in the 
field. 

Overall, numerous promising opportunities exist to advance image 
harmonization techniques and expand their capabilities to new appli
cations in healthcare. Thoughtful innovation in image harmonization 
techniques, such as federated learning approaches and solutions for 
emerging modalities, could help enable a more integrated, informative, 
and transparent analysis of healthcare data across multiple centers and 
devices. 

It is important to acknowledge the limitations of this review. The 
literature search was restricted to English articles from 2013 to 2023 and 
did not include a quantitative meta-analysis. Expanding the search 
criteria and performing statistical comparisons between findings could 
provide more significant insights into the relative performance of 
different approaches. However, this review aimed to provide a 
comprehensive overview of current image harmonization approaches 
and their impact across different medical imaging applications. 

5. Conclusion 

Image harmonization enables reliable integration and analysis of 
diverse imaging data from multiple centers, leading to more robust and 

generalizable findings that better represent real-world clinical scenarios. 
By reducing variability and ensuring consistent image characteristics, 
harmonization techniques improve the reproducibility and compara
bility of research outcomes, facilitating effective translation of findings 
into clinical practice. This systematic review aimed to provide a 
comprehensive overview of image harmonization techniques employed 
in multi-centric and multi-device studies within the healthcare field. In 
this work, we identified the most commonly used and effective methods 
for image harmonization in various imaging modalities, including 
radiology imaging, nuclear imaging, optical imaging, ultrasound, and 
dermatology. While current techniques have shown promising results, 
there is still room for improvement and exploration of new approaches. 
Future research should focus on refining existing methods, developing 
standardized protocols, and exploring novel techniques to achieve even 
greater harmonization and generalizability across diverse datasets. 
Overall, continued progress in image harmonization methods and their 
wider adoption can help derive more informative healthcare analytics 
from integrated multi-source data. 
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Appendix 

Tables A1, A2, A3, A4, A5, A6, A7, A8, A9.  

Table A1 
Summary of studies (n = 14) that apply image harmonization in MR.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Sun et al [34] 11 subjects, different centers ML Grayscale normalization: 
histogram-based 

Segmentation DSC: 69.86 %, +2.35 % 

Pereira et al. [35] BRATS 2013, 2 external test sets, 
different centers 

ML Grayscale normalization: 
histogram-based 

Segmentation DSC: 84 %, +6 %; 88 %, +8 % 

Ou et al., [36] Different centers ML Grayscale normalization: 
field of view 

Segmentation Dice: 91 %, +8 % 

Jacobsen et al. [37] EMCC, ISBR, different centers Math Grayscale normalization: 
histogram-based 

Segmentation DSC: 94.54 %, +21.81 %; 87.35 %, +6.69 % 

Reiche et al. [42] CAIN: 27 vol, ADNI: 21 vol, 
different centers 

Math Denoising: bias field 
correction 

Segmentation DSC: 91 %; 86.2 % 

Carré et al. [30] TCIA, different centers Math Grayscale normalization: z- 
score 

Classification Accuracy: 82 %, +15 %; 68 %, +2 % 
AUC: 91 %, +17 %; 72 %, +2 % 

Ji et al. [31] 221 subjects, different centers Math Grayscale normalization: z- 
score 

Classification AUC: 88.6 % 
Accuracy: 81.9 % 

(continued on next page) 
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Table A1 (continued ) 

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Modanwal et al. 
[38] 

GE scanner, Siemens scanner DL Grayscale normalization: 
CycleGAN 

Segmentation Dice 
From GE to Siemens: 98.01 % 
From Siemens to GE: 98.13 % 

Delisle et al. [39] iSeg, MRBrainS, different centers DL Grayscale normalization: 
GAN 

Segmentation DSC: 87 %, +55.7 % 

Koble et al. [40] iSeg-2017, BRATS 2019, 
different centers 

Math Grayscale normalization: 
histogram-based 

Segmentation HE shows better performance than the simple linear 
transform-based method on both accuracy and DSC 

Alnowami et al. 
[32] 

Different scanners, different 
centers 

Math Grayscale normalization: 
histogram-based 

Classification Accuracy: 72.10 %, +24.42 % 

Foltyn-Dumitru 
et al. [33] 

TCGA: 160 subjects, UCSF: 410 
subjects, different centers 

Math Grayscale normalization: z- 
score 

Classification AUC: 87 %, +42 %; 86 %, +67 % 

Albert et al. [41] 6 centers DL Grayscale normalization: 
histogram-based 

Segmentation Dice: 58 % 

Ghazvanchahi et al. 
[43] 

ADNI, CAIN, CCNA, different 
centers 

Math Grayscale normalization: z- 
score 

Segmentation DSC: 62 %, +2 % 

AUC: Area Under the Curve; DL: Deep Learning; DSC: Dice Similarity Coefficient; GAN: Generative Adversarial Network; ML: Machine Learning; n: number of centers.  

Table A2 
Summary of studies (n = 4) that apply image harmonization in CT.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Li et al. [44] GE: 38 subjects, Philips: 28 
subjects, Siemens: 32 subjects 

DL Grayscale normalization: GAN Classification AUC: 69 %, +11.1 % 

Ligero et al. 
[45] 

43 subjects, different scanners Math Resampling: voxel resampling, ComBat Classification Mean percentage of robust CT-radiomics features 
increases from 59.50 % to 89.25 % 

Park et al. 
[47] 

79 subjects, 1 external test set Math Resampling: voxel resampling, kernel 
reconstruction 

Prediction AUC: 80.2 %, +3.5 % 

Tonneau et al. 
[48] 

4 centers, 1 external test set Math Resampling: voxel resampling, intensity 
clipping (HU), Denoising 

Segmentation AUC: 63 %, +11 % 

AUC: Area Under the Curve; DL: Deep Learning; GAN: Generative Adversarial Network; n: number of centers.  

Table A3 
Summary of studies (n = 4) that apply image harmonization in mammography.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Deng et al. [49] 256 images, different centers ML Contrast enhancement: fuzzy 
filtering 

Quality metrics Contrast improvement index: 0.5814, 
+0.1450 

Perre et al. [53] BCDR, different centers Math Contrast enhancement: HE Classification AUC: 78.5 %, +2.2 % 
Perez et al. [50] 1688 images, n = 11 Math Contrast enhancement: HE Segmentation Dice: 74.7 %, +16.1 % 
Cao et al. [51] InBreast: 410 images, 6 centers Math Contrast enhancement: CLAHE Detection Sensitivity: 91.3 %, +0.9 % 
Mechria et al. 

[52] 
DDCM: 600 images, different 
centers 

DL Grayscale normalization: DCNN Classification Accuracy: 92.70 %, +3.47 % 

AUC: Area Under the Curve; CLAHE: Contrast Limited Adaptive Histogram Equalization; DCNN: Deep Convolutional Neural Network; DL: Deep Learning; HE: His
togram Equalization; ML: Machine Learning; n: number of centers.  

Table A4 
Summary of studies (n = 4) that apply image harmonization in PET/SPECT imaging.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Thiele et al. 
[56] 

3 scanners, 2 centers Math Grayscale normalization: intensity 
ratio 

Classification Accuracy volumes: 85 %, +6 %; 88 %, +8 %; Accuracy scans: 
86 %, +6 %; 86 %, +8 % 

Lee et al. [57] ADNI, 251 subjects, 1 
centers 

Math Grayscale normalization: intensity 
ratio 

Classification Accuracy: 87 % 

Ren et al. 
[58] 

1 centers Math Grayscale normalization: standardized 
uptake values 

Segmentation DSC: 77.87 %, +1.16 % 

Kang et al. 
[143] 

148 images, 3 centers DL Grayscale normalization: DNN Correlation ICC: 99.2 %; 98.9 %; 98.5 % 

DL: Deep Learning; DNN: Deep Neural Network; DSC: Dice Similarity Coefficient; ICC: Intraclass Correlation Coefficient; ML: Machine Learning; n: number of centers.  

Table A5 
Summary of studies (n = 38) that apply image harmonization in digital pathology.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Khan et al. [75] 60 WSI, 3 centers ML Color normalization: color 
deconvolution 

Classification, 
Segmentation 

Accuracy: 96 %, +12 % 
Dice: 80 %, +2 % 

Tam et al. [62] 434 patients, 
different centers 

Math Color normalization: histogram-based Classification Accuracy: 66.2 %, +14.8 % 

(continued on next page) 
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Table A5 (continued ) 

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Bejnordi et al. [74] 155 WSI, 6 centers ML Color normalization: color 
deconvolution 

Classification AUC: 94.4 %, +63.4 % 

Bentaieb et al. [84] 55 WSI, different 
centers 

DL Color normalization: color 
deconvolution 

Classification Accuracy: 61.7 %, +7 % 

Alsubaie et al. [66] 20 WSI, different 
centers 

Math Color normalization: color 
deconvolution 

Detection F1-score: 41.6 %, no improvement 

Janowczyk et al. [78] Different centers DL Color normalization: AutoEncoder Segmentation Dice: 76.5 %, +14.5 % 
Shaban et al. [88] 1 center DL Color normalization: CycleGAN Classification AUC: 79 %, +35 % 
Anghel et al. [63] 1 center Math Color normalization: color 

deconvolution 
Classification F1: 79 %, +5 % 

Zheng et al. [67] 130 WSI Math Color normalization: color 
deconvolution 

Classification AUC: 91.4 %, +7.2 % 

Otalora et al. [98] TMA-Zürich: 50 
WSI, 6 centers 

DL Color normalization: GAN Detection, 
Classification 

F1: 82.4 %, +11 %; AUC: 91.5 %, +11 % 
F1: 62.22 %, +14 %; AUC: 69.1 %, +5 % 

Lafarge et al. [86] 20 centers DL Color normalization: GAN Detection, 
Segmentation 

F1: 60 %, +48 % 
F1: 85 %, +2 % 

Shrivastava et al. [85] 16 WSI, 2 centers DL Color normalization: GAN Quality metrics SSIM: 99.6 %, better performance on external 
test set 

Zaneta Swiderska- 
Chadaj et al. [79] 

135 WSI, 2 centers DL Color normalization: CycleGAN Classification Accuracy: 93 %, +10 %; 92 %, +7 % 

Shafei et al. [76] BACH Dataset ML Color normalization: Spatial Finite 
Mixture of Skew-Normal distributions 

Classification Accuracy: 79.75 %, +7 % 

Salvi et al. [64] Camelyon-16 Math Color normalization: color 
deconvolution 

Detection Accuracy: 92.87 %, +11 % 

Tellez et al. [81] 200 WSI, 6 centers DL Color normalization: GAN Detection, 
Classification 

Color normalization is crucial to obtaining top 
classification performance on external test sets. 

Salehi et al. [87] 16 WSI, 2 centers DL Color normalization: Pix2Pix Quality metrics SSIM: 84.5 %, +4 % 
Perez et al. [73] 2 centers DL Color normalization: GAN Segmentation Dice: 71.75 %, +13 %; 61.78 %, +7 % 
Cong et al. [89] TCGA: 2310 

patches 
DL Color normalization: Pix2Pix Classification AUC: 96.7 %, +3 % 

Kang et al. [54] Camelyon-16: 170 
WSI, n = 1 

DL Color normalization: CycleGAN Classification AUC: 89.5 %, +21 % 

Marini et al. [80] 7 datasets, 7+
centers 

DL Color normalization: CNN Classification Cohen’s k-score: 0.532, +0.108; 0.474, +0.422 

Faryna et al. [93] Camelyon-17, 2 
centers 

Math Color normalization: augmentation 
transforms 

Classification AUC: 96.4 %, +51.4 % 

Perez-Bueno et al. 
[162] 

270 WSI, 2 centers ML Color normalization: Gaussian priors, 
Bayesian inference 

Classification AUC: 96.56 %, +1.6 % 

Mahmood et al. [65] TCGA Math Color normalization: color 
deconvolution 

Segmentation Dice: 80.84 %, +3.4 % 
F1: 85.47 %, +3.8 % 

Boschman et al. [91] 113 WSI, different 
centers 

DL Color normalization: color 
deconvolution, SNMF, GAN 

Classification AUC: 94 %, +25 %; 98 %, +20 % 

Jeong et al. [83] PAIP19, 
Camelyon-16 

ML Color normalization: SNMF Quality metrics MS-SSIM: 96.97 %; 95.78 % 
PSNR: 23.85; 19.79 
PCC: 94.85 %; 95.68 % 
Better performance on external test set 

Cong et al. [90], Camelyon-17 DL Color normalization: GAN Quality metrics 
Classification 

Performance improvement by 5 % to 10 % on 
external test sets 

Bouteldja et al. [99] 5 WSI, 3 centers DL Color normalization: Color 
augmentation, CycleGAN 

Segmentation Dice: 83.2 %, +0.6 %; 86.5 %, +2.3 %; 82 %, 
+1.3 % 

Altini et al. [92] 10 WSI, 1 center DL Color normalization: SNMF, GAN, 
CycleGAN 

Classification Accuracy: 82.05 %, +1.8 %; 83.70 %, +2.65 %; 
78.08 %, +6.4 % 

Marini et al. [95] 12 datasets, 12+
centers 

Math Color normalization: color 
augmentation 

Classification Cohen’s k-score: 0.432, +0.165; 0.477, +0.267 

Martos et al. [68] TCGA: 16 WSI Math Color normalization: color 
deconvolution 

Detection F1-score: 90.7 %, +7.1 % 

Sun et al. [82] 6 WSI Math Color normalization: z-score Segmentation Dice: 82.2 %, +2.4 % 
F1: 86.8 %, +3.6 % 

Tolkach et al. 2023 
[100] 

4 centers DL Color normalization Detection AUROC: +0.12 

Dammaka et al. 2023 
[96] 

35 centers Math Color normalization Classification AUC: +0.20 (from 0.7 to 0.9) 

Wang et al. 2023 [69] 4 external datasets Math Color normalization Detection  
Huang et al. 2023 

[97] 
2 centers Math Color normalization Classification / 

Segmentation 
Performance: +8.3 % and 15.3 % 

Alhassan et al. 2023 
[70] 

4 centers Math Color normalization Segmentation Accuracy: +6.5 % 

Faryna et al. 2023 
[94] 

25 centers Math Color normalization Detection AUC: +50 % 

Bazargani et al. 2023 
[71] 

2 centers Math Color normalization Classification AUC:+ 0.03 and 0.05 in internal and external 
dataset 

Marini et al. 2023 
[95]  

DL Color normalization Classification Classification performance: 26 % 

AUC: Area Under the Curve; CNN: Convolutional Neural Network; DL: Deep Learning; GAN: Generative Adversarial Network; ML: Machine Learning; MS-SSIM: Multi 
Scale Structural Similarity Index Measure; n: number of centers; PCC: Pearson Correlation Coefficient; PSNR: Peak Signal-to-Noise Ratio; SNMF: Sparse Non-negative 
Matrix Factorization; SSIM: Structural Similarity Index Measure; WSI: Whole Slide Image.  
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Table A6 
Summary of studies (n = 6) that apply image harmonization in fluorescence microscopy.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Yang et al. [101] 140 images, 2 centers DL Denoising: teacher-based DL 
model 

Quality metrics PSNR: 34.02, +7.69 

Zhang et al. [105] FMD, 2 centers DL Denoising: CNN (Noise2Noise) Quality metrics PSNR: 33.02, +10.31; 36.35, +5.68 
SSIM: 91.09 %, +46.68 %; 94.41 %, +15.39 
% 

Broaddus et al. [104] 100 images, 2 centers DL Denoising: CNN (Noise2Void) Quality metrics PSNR: 29.73 
SSIM: 91.3 % 

Yang et al. [103] RxRx1 Math Grayscale normalization: z-score Classification Accuracy: 74.58 % 
Mannam et al. [102] Widefield2SIM: 360 

images 
DL Denoising: CNN, (Noise2Noise) Quality metrics PSNR: +8.25 

Demircan-Tureyen et al. 
[106] 

FMD, 7 centers DL Denoising: CNN Quality metrics PSNR: 31.37, +7.21 
SSIM: 85.3 %, +39.2 % 

CNN: Convolutional Neural Network; DL: Deep Learning; ML: Machine Learning; n: number of centers; PSNR: Peak Signal-to-Noise Ratio; SSIM: Structural Similarity 
Index Measure.  

Table A7 
Summary of studies (n = 6) that apply image harmonization in OCT/OCTA.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Venhuizen et al. 
[110] 

30 vol, 4 scanners Math Resampling: pixel resampling Segmentation Dice: 75.4 % 

Shi et al. [107] Topcon: 11 vol, 4 scanners DL Denoising: CNN Quality 
metrics 

PSNR: 40.17, +14 
CNR: 9.67, +5.3 

Bogunovic et al. 
[111] 

RETOUCH: 42 vol, 3 scanners: Cirrus, 
Spectralis, Topcon) 

Math Grayscale normalization: 
histogram-based 

Segmentation DSC: 82 %; 75 %; 74 % 

Romo-Bucheli et al. 
[109] 

2 scanners (Cirrus, Spectralis) DL Grayscale normalization: 
CycleGAN 

Segmentation Dice 
Cirrus as Test Set: 48 %, +47 %; 55 %, +54 %; 
85 %, +29 % 
Spectralis as Test Set: 59 %, no improvement; 66 
%, +11 %; 88 %, +4 % 

Gour et al. [108] BSDS500 and Topcon dataset DL Denoising: CNN Quality 
metrics 

PSNR: 27.55, +10 
SSIM: 68 %, +60 % 

Ma et al. [112] OCTA-500, ROSE dataset, different 
scanners 

Math Contrast enhancement: 
CLAHE 

Segmentation Dice: 76.04 %, +0.4 % 

CLAHE: Contrast Limited Adaptive Histogram Equalization; CNN: Convolutional Neural Network; CNR: Contrast-to-Noise Ratio; DL: Deep Learning; DSC: Dice 
Similarity Coefficient; GAN: Generative Adversarial Network; PSNR: Peak Signal-to-Noise Ratio; SSIM: Structural Similarity Index Measure.  

Table A8 
Summary of studies (n = 5) that apply image harmonization in US imaging.  

Author, year Dataset Technique Strategy Task Results/Impact of normalization 

Liu et al. [113] 914 subjects, 18 centers Math Contrast enhancement: CLAHE Classification Accuracy: 83.4 %, +3.3 % 
Ren et al. [114] 1370 subjects, 3 centers (1 external) Math Grayscale normalization: z-score Segmentation Accuracy: 81.82 % 
Homayoun et al. [115] 1259 subjects, 3 centers (2 external) Math Grayscale normalization: 3-sigma Classification Accuracy: 88.8 %; 87.9 % 
Du et al. [117] 175 subjects, 2 centers Math Grayscale normalization: z-score Segmentation n/a 
Sirjani et al. [116] 1656 subjects, 5 centers (1 external) Math Grayscale normalization: min-max scaling Classification Accuracy: 91 % 

CLAHE: Contrast Limited Adaptive Histogram Equalization; n: number of centers.  

Table A9 
Summary of studies (n = 19) that apply image harmonization in dermoscopy.  

Author, year Dataset Technique Strategy Task Results/Impact of 
normalization 

Abbas et al. 
[129] 

EDRA: 100 images, 3 centers Math Color normalization: color 
constancy 

Detection Recall: 94.25 %, +10 
% 

Barata et al. 
[127] 

EDRA: 482 images, 3 centers Math Color normalization: color 
constancy, SoG 

Classification Accuracy: 77.8 %, 
+14.7 % 

Barata et al. 
[128] 

EDRA: 482 images, 3 centers Math Color normalization: color 
constancy, SoG 

Classification Accuracy: 73.4 %, 
+14.6 % 

Codella et al. 
[118] 

ISIC 2016: 379 images, different centers Math Resampling: resize and cropping Classification Accuracy: 76 % 

Galdran et al. 
[138] 

ISIC 2017: 500 images, different centers Math Color normalization: color 
constancy augmentation 

Segmentation Accuracy: 94.8 % 
Dice: 84.6 % 

Yu et al. [120] ISIC 2017: 379 images, different centers Math Color normalization: z-score Classification Accuracy: 82.97 % 
Olga et al. 

[131] 
ISIC 2016: 379 images, different centers Math Color normalization: color 

constancy 
Segmentation Dice: 41 %, +2 % 

Ng et al. [130] ISIC 2017: 600 images, different centers Math Color normalization: color 
constancy, SLRMSR 

Segmentation Accuracy: 93.37 %, 
+0.24 % 

(continued on next page) 
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Table A9 (continued ) 

Author, year Dataset Technique Strategy Task Results/Impact of 
normalization 

Dice: 84.41 %, +2.21 
% 

Yuan et al. 
[134] 

ISIC 2017: 600 images, different centers Math Color normalization: color 
constancy 

Segmentation Accuracy: 93.4 %, 
+0.3 % 
Dice: 84.9 %, +0.9 % 

Zhang et al. 
[132] 

ISIC 2017: 600 images, different centers Math Color normalization: color 
constancy, SoG 

Segmentation Accuracy: 91.8 %, 
+0.1 % 

Goyal et al. 
[135] 

ISIC 2017: 600 images, PH2: 200 images, different centers Math Color normalization: color 
constancy 

Segmentation Accuracy: 94.08 %; 
93.8 % 
Dice: 87.14 %, 90.7 % 

Gong et al. 
[121] 

ISIC 2019, 5066 images, different centers Math Color normalization: z-score Classification Accuracy: 97.5 % 

Zafar et al. 
[125] 

ISIC 2017: 600 images, PH2: 200 images, different centers Math Color normalization: z-score Segmentation Dice: 85.8 %; 92.4 % 

Shahin Ali 
et al. [122] 

HAM10000: 1000 images, different centers Math Color normalization: z-score Classification Accuracy: 91.43 % 

Xin et al. [123] HAM10000, different centers Math Color normalization: z-score Classification Accuracy: 94.3 % 
Salvi et al. 

[137] 
HAM10000: 8715 images, different centers DL Color normalization: GAN Classification, 

Segmentation 
Accuracy: 79.2 %, 
+2.6 % 
Dice: 90.9 %, +8.8 % 

Azad et al. 
[119] 

ISIC 2018: 520 images, different centers DL Resampling: cropping Segmentation Accuracy: 96.5 %, 
+0.7 % 
Dice: 91.31 %, +1.8 % 

Behara et al. 
[126] 

ISIC 2017 dataset: 2000 images Math Color normalization Classification Accuracy: 99.38 % 

Gajera et al. 
[124] 

PH2: 60 images, ISIC 2016: 379 images, ISIC 2017: 600 
images, HAM10000: 3000 images, different centers 

Math Color normalization: z-score Classification, 
Segmentation 

Accuracy: 98.33 % 
Dice: 96 % 

DL: Deep Learning; GAN: Generative Adversarial Network; n: number of centers; SLRMSR: Smart Light Random Memory Spray Retinex; SoG: Shades of Gray. 
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