POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Privacy-Preserving Approach for Vulnerability Scanning Detection

Original

A Privacy-Preserving Approach for Vulnerability Scanning Detection / Regano, Leonardo; Canavese, Daniele; Mannella,
Luca. - ELETTRONICO. - (In corso di stampa). (Intervento presentato al convegno ITASEC 2024: The lItalian
Conference on CyberSecurity tenutosi a Salerno (IT) nel April 08-12, 2024).

Availability:
This version is available at: 11583/2988122 since: 2024-04-26T18:56:31Z

Publisher:
CEUR-WS

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

08 May 2024

A Privacy-Preserving Approach for Vulnerability
Scanning Detection

2% and Luca Mannella®'

Leonardo Regano™", Daniele Canavese
'Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, Piazza d’Armi, 09123, Cagliari,
Italy

2IRIT, CNRS, 118 Route de Narbonne, CEDEX 9, F-31062 Toulouse, France
3Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy

Abstract

This paper presents an approach leveraging machine learning techniques to monitor network traffic in
search of vulnerability scanning activities. Indeed, attackers typically perform an initial reconnaissance
phase to identify the vulnerabilities their target platforms expose, which they can abuse to perform
cyberattacks. Classical network monitoring approaches have multiple limitations. Indeed, they are
typically hindered by the presence of encrypted traffic, hamper user privacy resorting to Deep Packet
Inspection (DPI), and cannot identify advanced scanning techniques such as slow scans. The research
presented in this paper overcomes such limitations through machine learning classifiers that can detect
vulnerability scans with flow-level granularity, employing statistical features evaluated on Layer 3 and
4 network packet headers. We demonstrate the feasibility of our approach training classifiers able to
detect traffic originated by three well-known vulnerability scanning tools: OpenVAS, sqlmap, and Wapiti.
The presented Proof-of-Concept classifiers are characterized by a high classification accuracy, with the
best classifier reaching a balanced accuracy of 98%.

Keywords
Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), Machine Learning (ML), Network
Security, User Privacy, Vulnerability Scanning

1. Introduction

In recent years, cyberattacks have been steadily on the rise. In particular, interactive intrusion
techniques, where human malicious actors manually interact with target hosts instead of
depending on malware, are becoming widespread, as reported by Crowdstrike in a recent
report [1]. Indeed, these intrusion techniques typically leverage the vulnerabilities of hosts,
exposing the services targeted by the malicious actors. These cyberattacks typically start with
a reconnaissance phase, where attackers employ automated scanners to detect vulnerabilities,
misconfigurations, or weaknesses of the target host or network, which they could exploit to

ITASEC 2024: The Italian Conference on CyberSecurity, April 08—12, 2024, Salerno, Italy

*Corresponding author.

"These authors contributed equally.

Q leonardo.regano@unica.it (L. Regano); daniele.canavese@irit.fr (D. Canavese); luca.mannella@polito.it
(L. Mannella)

&} https://web.unica.it/unica/page/it/leonardo_regano (L. Regano); https://github.com/daniele-canavese

(D. Canavese); http://github.com/LucaMannella (L. Mannella)

® 0000-0002-9259-5157 (L. Regano); 0000-0002-4265-7743 (D. Canavese); 0000-0001-5738-9094 (L. Mannella)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:leonardo.regano@unica.it
mailto:daniele.canavese@irit.fr
mailto:luca.mannella@polito.it
https://web.unica.it/unica/page/it/leonardo_regano
https://github.com/daniele-canavese
http://github.com/LucaMannella
https://orcid.org/0000-0002-9259-5157
https://orcid.org/0000-0002-4265-7743
https://orcid.org/0000-0001-5738-9094
https://creativecommons.org/licenses/by/4.0

obtain entry points to take control of their target. Thus, promptly identifying vulnerability
scans is paramount when protecting corporate networks with their associated services.

Attackers can count on many tools to conduct vulnerability scans, both general-purpose
or specifically tailored to test multiple components of corporate networks, e.g., DBMSs, web
servers, and network security appliances. For example, the OWASP foundation maintains an
extensive list' of vulnerability scanning tools targeting web applications. Traditional defense
techniques for vulnerability scan detection typically rely on identifying patterns, anomalies, and
deviations from established baselines in the monitored network traffic. For example, volumetric
traffic monitors are typically triggered when an abnormal number of requests in a short period
originate from the same network client. This may indicate a vulnerability scan due to the
large number of vulnerability tests executed by automated tools. Nevertheless, volumetric
techniques are often unable to identify slow vulnerability scans properly [2], where attackers
deliberately extend the scanning process, reducing the rate of requests to the target host to
avoid suspicious traffic peaks that network traffic monitors may identify. Other approaches
rely on Deep Packet Inspection (DPI) to identify known patterns in the traffic packets’ payload.
However, resorting to DPI techniques is becoming increasingly difficult due to the widespread
adoption of end-to-end encryption. Furthermore, DPI raises concerns about user privacy and
may not be compatible with related regulations like the European General Data Protection
Regulation (GDPR).

This paper proposes a novel approach for automatically detecting vulnerability scans that can
address the aforementioned challenges. In particular, we employ machine learning algorithms
trained on network traffic statistics evaluated exclusively on Layer 3 and 4 header data. By
avoiding DPI, our approach safeguards user privacy. Furthermore, since each TCP flow is
evaluated separately, our approach overcomes the limitations of traditional volumetric traffic
monitoring techniques, avoiding detection evasion from attackers employing slow scanning
techniques. We demonstrate the feasibility of our approach by describing two machine learning
models, employing respectively random forests and fully connected neural networks, trained on
a data set we have built starting from network traffic captures of vulnerability scans executed on
both vulnerable and secure websites using three well-known vulnerability scanners: OpenVAS,
sqlmap, and Wapiti.

The rest of the paper is organized as follows. Section 2 presents the most relevant works
applying Machine Learning techniques for traffic classification. Section 3 provides an overview
of the vulnerability scanning tools we investigate in this study. Section 4 illustrates the dataset
we have built to train the machine learning models, while Section 5 elaborates on their accuracy
in detecting vulnerability scans. Finally, Section 6 concludes the paper, providing some insights
into the future work we plan to conduct in this field.

2. Related Work

The simplest method of traffic classification relies on port numbers. However, using dynamic
ports rendered this approach less effective, leading to the adoption of Deep Packet Inspection
(DPI) techniques. Subsequently, the rise of encrypted traffic reduced the accuracy of DPL As a

'https://owasp.org/www-community/Vulnerability_Scanning_Tools, last visited on February 25, 2024.

https://owasp.org/www-community/Vulnerability_Scanning_Tools

result, Machine Learning-based methods to classify packets have recently gained prominence.
These methods only require unencrypted headers or information from encrypted data.

This paper presents an ML-based approach to detect vulnerability scanning, which could
be integrated into the existing Intrusion Detection/Prevention System (IDS/IPS). IDS and IPS
recognize possible security violations and anomalies by analyzing network packets. Some
IDS/IPS software, such as Suricata?, Snort, and Zeek?, can detect scanners. However, they have
limitations. For example, they may not be able to recognize the nature of very long scans [3] or
identify the phenomenon collectively when multiple IPs perform scans simultaneously. Our
proposed solution overcomes the aforementioned problems by analyzing TCP flow regardless
of length and without relying on metrics such as IP address. Instead, the analysis is based solely
on metrics extracted from packet headers.

To the best of our knowledge, this paper proposes the first general-purpose tool for detecting
any type of vulnerability scanning. The closest work in literature, albeit limited to the detection
of SQL injection attacks, is the one from Crespo et al. [4]. The authors created a dataset by
executing SQL injection, capturing the related traffic alongside benign traffic, and calculating
network traffic statistics employing Cisco Netflow [5]. They consequently trained multiple
Machine Learning models, including k-Nearest Neighbour (KNN) and Random Forests (RF),
achieving an accuracy score higher than 96%. In the remainder of this section, we present the
most relevant works applying Machine Learning techniques to detect cyberattacks.

Wang et al. [6] introduced the end-to-end learning paradigm for protocol classification. They
utilized a 1D CNN on raw data from the SCX VPN-nonVPN dataset. The authors did not
report training or evaluation times or provide a complete comparison against traditional ML
techniques. In their study, Lopez-Martin et al. [7] utilized Deep Learning (DL) techniques with
time-series features to analyze traffic captures of the RedIRIS network. They proposed several
classifiers based on either CNN or Recurrent Neural Network (RNN), or a combination of the
two. Although they achieved good results, the authors did not compare their findings to classical
machine learning algorithms.

In their study on app fingerprinting, Taylor et al. [8] proposed AppScanner, a framework
capable of classifying traffic generated by 100 different applications. They employed either
Support Vector Classifiers (SVC) or random forests for each traffic flow. Chen et al [9] demon-
strated the suitability of Deep Neural Networks (DNN) for app fingerprinting. The pipeline was
tested to classify the application on the first dataset and the protocol on the second dataset,
which was used to generate the traffic data. A classic 2D CNN was used after projecting six
time-series features into a multi-channel image.

Vargas et al. [10] developed a Bayesian Network model to classify attack types, such as
worms and (Distributed) Denial of Service (DDoS/DoS) attacks, using time series. The reported
accuracy is notably high. However, the model only considers terminated flows, making it
unsuitable for real-time applications.

Naseer et al. [11] investigated the suitability of DL for anomaly detection. The authors trained
several Deep Learning architectures on the NLS-KDD dataset, including Auto Encoders (AE),

2https://suricata.io, last visited on February 15, 2024.
*https://www.snort.org, last visited on February 15, 2024.
*https://zeek.org, last visited on February 15, 2024.

https://suricata.io
https://www.snort.org
https://zeek.org

CNN, and Long Short-Term Memory (LSTM). This dataset comprises four attack typologies:
DoS, User to Root (U2R), Root to Local (R2L), and Probe. Their comparison with traditional
machine learning techniques showed that DL techniques improve accuracy by a few percentage
points, albeit at the cost of a training time at least three orders of magnitude longer.

Wang et al. [12] proposed an approach where they constructed a dataset consisting of both
malware and real traffic data. They used this dataset to train a CNN model. Although the
authors claimed that their framework has early-stage detection capability, they did not provide
the evaluation time of the overall pipeline. Therefore, it is uncertain whether such a framework
can be used for real-time detection.

More recently, a systematic literature review by Abdulganiyu et al. [13] includes a section
on applications of ML techniques to increase accuracy in Intrusion Detection Systems (IDS).
Interestingly, we could not find any works related to vulnerability scanning detection in this
review, excluding one from Vijayanand et al. [14]. In the latter, the authors develop an Intrusion
Detection System tailored for wireless mesh networks based on Support Vector Machines (SVM).
The authors employ a feature selection strategy based on a genetic algorithm and train their
classifiers on the CICIDS2017 dataset®. The latter includes, among various attacks, also port
scans executed with Nmap®.

3. Vulnerability Scanning Tools

This Section presents the vulnerability scanning tools adopted to train our solution. A vul-
nerability scanner is a tool that can identify potential weaknesses in a system or network
through automated rules and analysis. The primary objective of this software is to generate a
comprehensive evaluation report or assessment that accurately reflects the current state of the
system. On the contrary, the process of conducting a simulated and authorized computer attack
is commonly referred to as a penetration test. This test enables the identification of potential
vulnerabilities from the perspective of a potential attacker. The most common vulnerabilities,
related to both popular software and different operating systems, are collected and cataloged by
type and version of the program in various public lists, such as the Common Vulnerabilities and
Exposures (CVE)’ . 1t is important to stay informed about these vulnerabilities, periodically verify
if they are affecting machines under our control, and take appropriate measures to mitigate any
potential risks.

To identify these vulnerabilities, network administrators can use vulnerability scanner tools
such as Burpsuite, Nmap, Nessus, OpenVAS, Qualys VMDR, sqlmap, Wapiti, and many more.
Among all the available vulnerability scanners, those selected for the study are OpenVAS, sqlmap,
and Wapiti. These tools were chosen due to their widespread use and open-source nature, in
contrast to enterprise solutions like Nessus® and QualysVMDR’ which require commercial
relationships between companies (and are less likely to be used for malicious use). Burpsuite!’

Shttps://www.unb.ca/cic/datasets/ids-2017.html, last visited on February 16, 2024.
®https://nmap.org, last visited on February 16, 2024.

"https://cve.mitre.org/, last visited on February 23, 2024.
8https://www.tenable.com/products/nessus, last visited on February 23, 2024.
*https://www.qualys.com, last visited on February 23, 2024.
https://portswigger.net/burp, last visited on February 23, 2024.

https://www.unb.ca/cic/datasets/ids-2017.html
https://nmap.org
https://cve.mitre.org/
https://www.tenable.com/products/nessus
https://www.qualys.com
https://portswigger.net/burp

is another example of free and open-source software, but its main function is to be used as an
application proxy, thus moving away from the purpose of the study.

OpenVAS'! (Open Vulnerability Assessment System) is a framework for vulnerability analysis
and management. OpenVAS empowers users to perform a wide range of tests starting from
the low level, analyzing the various network protocols, up to web applications and their func-
tionalities. OpenVAS integrates the Nmap software from which it is possible to perform scans
of TCP and UDP ports as a preliminary operation before testing for vulnerabilities. OpenVAS
can monitor and generate system reports to identify weak points and improve system status.
OpenVAS also enables automation and integration with other vulnerability assessment tools.
OpenVAS maintains its own database, which is regularly updated with newly discovered CVEs
and scripts capable of identifying them, along with a danger classification. This ensures that
the resulting reports are as up-to-date as possible and enables the identification of the most
critical vulnerabilities through vulnerability assessment.

sqlmap'? is an open-source penetration testing tool that automates the process of identifying
SQL injection vulnerabilities. An SQL injection is a particular case of injection technique that
uses SQL instructions, a type of attack that usually allows discovering the structure of an
application’s database and retrieving sensitive information [15]. The use of this vulnerability is
possible due to poor control of the data received as input that is used within SQL queries.

Wapiti'® is a vulnerability analysis tool for web applications. It automates security checks
of sites and performs black-box analysis which means it conducts non-specific tests for the
victim, as it is not possible to know its source code. Through bots and scripts that read web
pages, Wapiti tries to inject data into URLs and forms to uncover cross-site scripting (XSS)
vulnerabilities [16]. An XSS vulnerability is made possible by poor control and/or poor handling
of the data that a user can enter by interacting with the site.

4. Data Set Construction

This section reports how we built our data set for the analysis of vulnerability scanning.

4.1. Traffic acquisition

We designed a simple but effective scenario for capturing the vulnerability scanning traffic.
In our scenario, we have only two end-points: a web server (the victim) and the attacker
conducting the vulnerability scans. To achieve more realistic data, both the victim and attacker
are connected through the Internet.

We tested three of the most used vulnerability scanners: OpenVAS'#, sqlmap, and Wapiti.
Table 1 shows our attack machine’s hardware and software specifications.

On the other hand, for the victim, we decided to test a variety of vulnerable websites (i.e.,
Juice Shop and DVWA) mixed with several traditional websites found on GitHub'® running

Uhttps://www.openvas.org/, last visited on February 23, 2024.

2http://sqlmap.org/, last visited on February 23, 2024.

Bhttp://wapiti.sourceforge.net/, last visited on February 23, 2024.

“We performed the scanning on the target websites using the default Full and Fast Scan configuration.
>We downloaded several websites from https://github.com/search?q=website&type=repositories.

https://www.openvas.org/
http://sqlmap.org/
http://wapiti.sourceforge.net/
https://github.com/search?q=website&type=repositories

COMPONENT SPECIFICATIONS

CPU Intel® Core™ i7-1065G7 CPU @ 1.30GHz
RAM 8 GiB

operating system GNU/Linux Ubuntu 20.04.1

kernel 5.15.0-72-generic

OpenVAS 22.6.2

sqlmap 1.7

Wapiti 3.1.6

Table 1
Attacker specifications.

on Apache and nginx. We used Tshark to record all the incoming vulnerability scans from the
attacker. Table 2 reports the victim node’s specifications instead.

For the benign traffic, we used some traffic captures that we had previously gathered for
another work [17, 18]. These captures include human browsing traffic performed under Linux
and Windows with Firefox, Chrome, and Edge on various websites.

Table 3 lists how many packets and TCP web flows we gathered. The benign class is the
majority since it also includes multimedia traffic, which transports more data than traditional
web pages and textual data. It is important to emphasize that, in our study, we are mostly
interested in the flows since they represent our observations for the machine learning models.

COMPONENT SPECIFICATIONS

CPU Intel® Core™ i7-10875H CPU @ 2.30GHz
RAM 8 GiB

operating system GNU/Linux Ubuntu 20.04.1

kernel 5.15.0-72-generic

Juice Shop 8.7.2

DVWA 1.10

Apache 2.3.4

nginx 1.22

Tshark 422

Table 2
Victim specifications.

4.2. Data analysis

Once we gathered the traffic, we created a Python script with scapy'© to extract the statistics
for each flow.

These metrics represent the classification features we used to categorize the data using our
machine-learning algorithms. The features marked with ‘both directions’ (e.g., the number

IShttps://scapy.net/, last visited on February 28, 2024.

https://scapy.net/

CLASS PACKETS FLOWS

benign 818616 280597
OpenVAS 43123 17 147
sqlmap 2229 938
Wapiti 57 424 11691

Table 3
Data set composition.

of sent packets) include two values: one from the attacker to the victim and vice versa. We
purposely ignored the IP addresses and the ports since they are easy to spoof.

We then randomly split our data set into three sub-sets: the training set (containing 70 % of
the samples), the development set for the hyperparameter optimization (15 % of the samples),
and the test set (the remaining 15 % of the observations). Table 4 lists the number of samples
(TCP flows) per set, while Table 5 enumerates the flow statistics we employed.

NAME FRACTION [%] SAMPLES
training set 70 217 261
development set 15 46 556
test set 15 46 556
total 100 310373

Table 4
Samples in our experiments.

5. Classification Results

We trained two machine learning models for detecting vulnerability scanning: a random
forest and a fully connected neural network. We opted for these models since, based on our
experience, they generally offer high accuracy for detecting anomalous traffic conditions. We
decided to avoid a cross-validation phase since we considered the size and variability of the
dataset sufficient.

5.1. Random Forest

We used scikit-learn!’ to train a multiclass random forest, and we used a grid search for the
hyperparameter optimization to maximize the accuracy. Table 6 reports the optimal parameters
of our random forest.

Table 7 shows several classification metrics of our final optimized random forest. Our
model performs excellently, reaching a balanced accuracy of nearly 99 %. SQLmap is the less
recognizable class by the model; this is better emphasized in the confusion matrix, reported in

https://scikit-learn.org/, last visited on February 28, 2024.

https://scikit-learn.org/

FEATURE UNIT

transmitted packets (both directions) packet
packets with payload (both directions) packet
retransmitted packets (both directions) packet
out of sequence packets (both directions) packet
packets with RST set (both directions) packet
packets with ACK set (both directions) packet
packets with ACK set and no payload (both directions) packet
packets with SYN set (both directions) packet
packets with FIN set (both directions) packet
packets with PSH set (both directions) packet
packets with URG set (both directions) packet
packets with ECE set (both directions) packet
packets with CWR set (both directions) packet
packets with NR set (both directions) packet

payload bytes excluding retransmissions (both directions) B
payload bytes including retransmissions (both directions) B

retransmitted bytes (both directions) B
flow duration ms
relative time of first payload packet (both directions) ms
relative time of last payload packet (both directions) ms
relative time of first ACK packet (both directions) ms
Table 5
TCP features.
NAME VALUE
criterion for measuring the quality of the tree splits ~ Gini index
maximum number of features per tree 20
maximum tree depth 8
number of trees 500
Table 6

Hyperparameters of our random forest.

Figure 1. Regarding live vulnerability scan detection, we report an AUC greater than 90% for
flows longer than 5 packets.

sqlmap flows are frequently misclassified as OpenVAS or benign connections. This is most
likely due to the fact that OpenVAS also performs SQL injection attacks such as sqlmap. On the
other hand, being able to distinguish a SQL injection connection from a regular SQL request is
complex without recurring to a deep packet inspection approach.

NAME TOTAL OPENVAS sqQLMAP WAPITI BENIGN

balanced accuracy 98.791

accuracy 97.581 98.284 99.484 99.474 97.921
(macro) AUC 96.787 96.602 92.994 98.864 98.686
(macro) F1-score 81.488 84.905 48.936 93.267 98.844
(macro) recall 94.288 94.730 86.466 98.206 97.751

(macro) precision 74.953 76.926 34.125 88.802 99.961

Table 7
Statistics (in percentages) of our random forest.

OpenVAS 0.0058 0.0072 0.2177

sqlmap - 0.2967 0.3413 0.0208 0.3413

inferred classes

Wapiti -~ 0.0068 0.0000

benign — 0.0003 0.0000

|
K\ R

target classes

Figure 1: Normalized confusion matrix of our random forest.

5.2. Neural Network

In addition to the random forest, we also trained a fully connected neural network with skorch'®.
The hyperparameter optimization phase selected the values shown in Table 8.

NAME VALUE
learning rate (for Adam) 0.0007
neurons per layer 512, 256, 128, and 64
activation function ReLU

Table 8
Hyperparameters of our neural network.

Bhttps://github.com/skorch-dev/skorch, last visited on February 25, 2024.

https://github.com/skorch-dev/skorch

Table 9 lists the usual classification metrics for our neural network. The overall balanced
accuracy of our model is close to 95 %, slightly below the random forest. Similarly to its
counterpart, the neural network shows that sqlmap is harder to correctly identify. Regarding
live vulnerability scan detection, we report an AUC greater than 85% for flows longer than 5
packets.

By comparing the two models, although the random forest shows a greater overall accuracy,
the neural network seems better suited to distinguish sqlmap attacks.

NAME TOTAL OPENVAS sQLMAP WAPITI BENIGN

balanced accuracy = 94.684

accuracy 89.368 92.626 95.496 99.519 91.095
(macro) AUC 89.815 80.975 88.745 95.744 93.794
(macro) F1-score 61.531 48.446 9.417 93.396 94.865
(macro) recall 83.029 68.002 81.955 91.667 90.495
(macro) precision 59.373 37.625 4995 95.192 99.608

Table 9
Statistics (in percentages) of our neural network.

Figure 2 instead reports the normalized confusion matrix of our classifier.

OpenVAS -1 0.6800 0.2702 0.0000 0.0498

sqlmap — 0.1805 0.0000 0.0000

inferred classes

Wapiti -~ 0.0729 0.0075

benign -~ 0.0596 0.0335 0.0019

[[[

S Q & N
K\ 4 Q\ X
OQQ/O %0\5(\ [‘QQ’Q

target classes

Figure 2: Normalized confusion matrix of our neural network.

6. Conclusions

In this paper, we presented a novel approach for detecting vulnerability scans. In particular, our
approach can discriminate legitimate traffic from vulnerability scans by employing machine
learning models using a set of traffic statistics computed on the IP and TCP headers as features.
The Proof-of-Concept classifiers presented in this paper, based respectively on random forests
and neural networks, can, in most cases, correctly classify vulnerability scans executed using
three well-known tools: OpenVAS, sqlmap, and Wapiti. The random forests classifier performs
best, with a balanced accuracy of 98.7%. The presented approach does not resort to DPI
techniques, thus being fully compatible with encrypted traffic and respecting user privacy. Both
classifiers can react swiftly to attempted vulnerability scans, needing only 5 packets in a flow to
classify it accurately.

In the future, we plan to conduct an ad-hoc study targeting vulnerability scanning tools
specifically tailored for IoT scenarios. Indeed, one of the vulnerability scanners we studied
in this paper, OpenVAS, includes vulnerability scans tailored for IoT devices'®. In previous
work, we presented the IoT proxy [19], an architectural component to offload security controls
from IoT devices, which typically have limited computational resources. The IoT proxy has a
modular approach that permits the stacking of multiple security controls as virtual Network
Security Functions (VNSF). We plan to investigate the feasibility of the approach presented in
this paper for IoT vulnerability scanners and their effectiveness in bolstering the security of
IoT architectures (e.g., Industrial Control Systems) when deployed as vNSF running on the IoT

proxy.

Acknowledgments

The authors thank Alberto Solaro for his valuable contributions to this research activity during
his master’s thesis.

This work was partially supported by project SERICS (PE00000014) under the NRRP MUR
program funded by the EU - NGEU.

References

[1] CrowdStrike 2024 Global Threat Report, Technical Report, CrowdStrike, 2024. URL: https:
//go.crowdstrike.com/global-threat-report-2024.html.

[2] T. Yamashita, D. Miyamoto, Y. Sekiya, H. Nakamura, Slow scan attack detection based on
communication behavior, in: Proceedings of the 2020 10th International Conference on
Communication and Network Security, ICCNS ’20, Association for Computing Machinery,
New York, NY, USA, 2021, p. 14-20. URL: https://doi.org/10.1145/3442520.3442525. doi:10.
1145/3442520.3442525.

[3] T. Yamashita, D. Miyamoto, Y. Sekiya, H. Nakamura, Slow scan attack detection based on
communication behavior, in: Proceedings of the 2020 10th International Conference on
Communication and Network Security, ICCNS °20, Association for Computing Machinery,

Yhttps://www.greenbone.net/wp-content/uploads/solution_comparison_EN.pdf, last visited on February 22, 2024.

https://go.crowdstrike.com/global-threat-report-2024.html
https://go.crowdstrike.com/global-threat-report-2024.html
https://doi.org/10.1145/3442520.3442525
http://dx.doi.org/10.1145/3442520.3442525
http://dx.doi.org/10.1145/3442520.3442525
https://www.greenbone.net/wp-content/uploads/solution_comparison_EN.pdf

(5]
(6]

(9]

[10]

[11]

[12]

[13]

[15]

[16]

New York, NY, USA, 2021, p. 14-20. URL: https://doi.org/10.1145/3442520.3442525. doi:10.
1145/3442520.3442525.

L. S. Crespo-Martinez, A. Campazas-Vega, Angel Manuel Guerrero-Higueras, V. Riego-
DelCastillo, C. Alvarez Aparicio, C. Fernindez-Llamas, Sql injection attack detec-
tion in network flow data, Computers & Security 127 (2023) 103093. URL: https:
//www.sciencedirect.com/science/article/pii/S0167404823000032. doi:https://doi.org/
10.1016/j.cose.2023.103093.

B. Claise, Cisco systems netflow services export version 9, Technical Report, Cisco System,
Inc., 2004.

W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traffic classification
with one-dimensional convolution neural networks, in: 2017 IEEE Int. Conf. on Intell. and
Secur. Inform., 2017, pp. 43-48.

M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network Traffic Classifier
with Convolutional and Recurrent Neural Networks for Internet of Things, IEEE Access 5
(2017) 18042-18050. doi:10.1109/ACCESS.2017.2747560.

V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Appscanner: Automatic fingerprinting of
smartphone apps from encrypted network traffic, in: 2016 IEEE Eur. Symp. on Secur. and
Privacy, 2016, pp. 439—454.

Z. Chen, K. He, J. Li, Y. Geng, Seq2img: A sequence-to-image based approach towards ip
traffic classification using convolutional neural networks, in: 2017 IEEE Int. Conf. on Big
Data, 2017, pp. 1271-1276. doi:10.1109/BigData.2017.8258054.

M. J. Vargas-Munoz, R. Martinez-Pelaez, P. Velarde-Alvarado, E. Moreno-Garcia, D. L.
Torres-Roman, J. J. Ceballos-Mejia, Classification of network anomalies in flow level
network traffic using Bayesian networks, in: 2018 28th Int. Conf. on Electron., Commun.
and Comput., volume 2018-Janua, 2018, pp. 238-243. doi:10.1109/CONIELECOMP. 2018.
8327205.

S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Igbal, K. Han, Enhanced network
anomaly detection based on deep neural networks, IEEE Access 6 (2018) 48231-48246.
doi:10.1109/ACCESS.2018.2863036.

W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, Malware traffic classification using convolu-
tional neural network for representation learning, in: Int. Conf. on Inf. Networking, IEEE,
2017, pp. 712-717. doi:10.1109/ICOIN.2017.7899588.

O. H. Abdulganiyu, T. Ait Tchakoucht, Y. K. Saheed, A systematic literature re-
view for network intrusion detection system (IDS), International Journal of Infor-
mation Security 22 (2023) 1125-1162. URL: https://doi.org/10.1007/s10207-023-00682-2.
d0i:10.1007/s10207-023-00682-2.

R. Vijayanand, D. Devaraj, B. Kannapiran, Intrusion detection system for wire-
less mesh network using multiple support vector machine classifiers with genetic-
algorithm-based feature selection, Computers & Security 77 (2018) 304-314. URL:
https://www.sciencedirect.com/science/article/pii/S0167404818303766. doi:https://doi.
org/10.1016/j.cose.2018.04.010.

L. K. Shar, H. B. K. Tan, Defeating sql injection, Computer 46 (2013) 69-77. doi:10.1109/
MC.2012.283.

S. Gupta, B. B. Gupta, Cross-site scripting (xss) attacks and defense mechanisms: clas-

https://doi.org/10.1145/3442520.3442525
http://dx.doi.org/10.1145/3442520.3442525
http://dx.doi.org/10.1145/3442520.3442525
https://www.sciencedirect.com/science/article/pii/S0167404823000032
https://www.sciencedirect.com/science/article/pii/S0167404823000032
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103093
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103093
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/BigData.2017.8258054
http://dx.doi.org/10.1109/CONIELECOMP.2018.8327205
http://dx.doi.org/10.1109/CONIELECOMP.2018.8327205
http://dx.doi.org/10.1109/ACCESS.2018.2863036
http://dx.doi.org/10.1109/ICOIN.2017.7899588
https://doi.org/10.1007/s10207-023-00682-2
http://dx.doi.org/10.1007/s10207-023-00682-2
https://www.sciencedirect.com/science/article/pii/S0167404818303766
http://dx.doi.org/https://doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/https://doi.org/10.1016/j.cose.2018.04.010
http://dx.doi.org/10.1109/MC.2012.283
http://dx.doi.org/10.1109/MC.2012.283

[18]

[19]

sification and state-of-the-art, International Journal of System Assurance Engineer-
ing and Management 8 (2017) 512-530. URL: https://doi.org/10.1007/s13198-015-0376-0.
d0i:10.1007/s13198-015-0376-0.

D. Canavese, L. Regano, C. Basile, G. Ciravegna, A. Lioy, Encryption-agnostic classifiers
of traffic originators and their application to anomaly detection, Computers & Electrical
Engineering 97 (2022) 107621. URL: https://www.sciencedirect.com/science/article/pii/
S0045790621005528. doi:https://doi.org/10.1016/j.compeleceng.2021.107621.

D. Canavese, L. Regano, C. Basile, G. Ciravegna, A. Lioy, Data set and machine learning
models for the classification of network traffic originators, Data in Brief 41 (2022).
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126104702&doi=10.
1016%2£j.dib.2022.107968&partnerID=40&md5=d74892c6b0daf14665ac5d4457e8aal9.
doi:10.1016/3.dib.2022.107968, cited by: 3; All Open Access, Gold Open Access,
Green Open Access.

D. Canavese, L. Mannella, L. Regano, C. Basile, Security at the edge for resource-limited
iot devices, Sensors 24 (2024). URL: https://www.mdpi.com/1424-8220/24/2/590. doi:10.
3390/524020590.

https://doi.org/10.1007/s13198-015-0376-0
http://dx.doi.org/10.1007/s13198-015-0376-0
https://www.sciencedirect.com/science/article/pii/S0045790621005528
https://www.sciencedirect.com/science/article/pii/S0045790621005528
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2021.107621
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126104702&doi=10.1016%2fj.dib.2022.107968&partnerID=40&md5=d74892c6b0daf14665ac5d4457e8aa19
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126104702&doi=10.1016%2fj.dib.2022.107968&partnerID=40&md5=d74892c6b0daf14665ac5d4457e8aa19
http://dx.doi.org/10.1016/j.dib.2022.107968
https://www.mdpi.com/1424-8220/24/2/590
http://dx.doi.org/10.3390/s24020590
http://dx.doi.org/10.3390/s24020590

	1 Introduction
	2 Related Work
	3 Vulnerability Scanning Tools
	4 Data Set Construction
	4.1 Traffic acquisition
	4.2 Data analysis

	5 Classification Results
	5.1 Random Forest
	5.2 Neural Network

	6 Conclusions

