
04 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Sampling RealTime Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine
Learning / Cioni, Matteo; DELLE PIANE, Massimo; Polino, Daniela; Rapetti, Daniele; Crippa, Martina; Arslan Irmak, Ece;
Van Aert, Sandra; Bals, Sara; Pavan, Giovanni M.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - (2024).
[10.1002/advs.202307261]

Original

Sampling RealTime Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations,
and Machine Learning

Publisher:

Published
DOI:10.1002/advs.202307261

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988120 since: 2024-04-26T13:20:41Z

wiley-VCH



RESEARCH ARTICLE
www.advancedscience.com

Sampling Real-Time Atomic Dynamics in Metal
Nanoparticles by Combining Experiments, Simulations, and
Machine Learning

Matteo Cioni, Massimo Delle Piane, Daniela Polino, Daniele Rapetti, Martina Crippa,
Ece Arslan Irmak, Sandra Van Aert, Sara Bals, and Giovanni M. Pavan*

Even at low temperatures, metal nanoparticles (NPs) possess atomic
dynamics that are key for their properties but challenging to elucidate. Recent
experimental advances allow obtaining atomic-resolution snapshots of the
NPs in realistic regimes, but data acquisition limitations hinder the
experimental reconstruction of the atomic dynamics present within them.
Molecular simulations have the advantage that these allow directly tracking
the motion of atoms over time. However, these typically start from
ideal/perfect NP structures and, suffering from sampling limits, provide
results that are often dependent on the initial/putative structure and remain
purely indicative. Here, by combining state-of-the-art experimental and
computational approaches, how it is possible to tackle the limitations of both
approaches and resolve the atomistic dynamics present in metal NPs in
realistic conditions is demonstrated. Annular dark-field scanning
transmission electron microscopy enables the acquisition of ten
high-resolution images of an Au NP at intervals of 0.6 s. These are used to
reconstruct atomistic 3D models of the real NP used to run ten independent
molecular dynamics simulations. Machine learning analyses of the simulation
trajectories allow resolving the real-time atomic dynamics present within the
NP. This provides a robust combined experimental/computational approach
to characterize the structural dynamics of metal NPs in realistic conditions.

M. Cioni, M. Delle Piane, D. Rapetti, M. Crippa, G. M. Pavan
Department of Applied Science and Technology
Politecnico di Torino
Corso Duca degli Abruzzi 24, Torino 10129, Italy
E-mail: giovanni.pavan@polito.it
D. Polino, G. M. Pavan
Department of Innovative Technologies
University of Applied Sciences and Arts of Southern Switzerland
Polo Universitario Lugano
Campus Est, Via la Santa 1, Lugano-Viganello 6962, Switzerland
E. A. Irmak, S. Van Aert, S. Bals
EMAT and NANOlab Center of Excellence
University of Antwerp
Groenenborgerlaan 171, Antwerp 2020, Belgium

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202307261

© 2024 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202307261

1. Introduction

Metallic nanoparticles (NPs), owing to
their unique physicochemical characteris-
tics, have garnered significant attention
across diverse scientific and technologi-
cal domains.[1–5] Their magnetic, electrical,
optical, chemical, and catalytic properties
can be finely controlled by tuning their
size, shape, and composition, leading to
their broad applicability in various fields.[6,7]

Specifically, gold (Au) NPs smaller than
3–5 nm exhibit elevated reactivity, mak-
ing them suitable for use in a range of
biomedical and catalytic applications.[8–11]

The high surface mobility of Au NPs
is a characteristic feature that plays a
critical role in determining their unique
properties.[12–14] This is particularly im-
portant in small NPs, where the high
surface-to-volume ratio results in a signif-
icant proportion of atoms residing on the
NP surface, displaying greater mobility
compared to those in the bulk even at fairly
low temperature[15–18] The dynamic atomic
rearrangements occurring on the NP
surface significantly influence the optical,

electronic, and catalytic properties.[12,19–22] However, the high
atomic mobility of NPs introduces substantial challenges for both
experimental and theoretical investigations into NP structures.
Given the highly dynamic nature of the atoms, capturing not just
the static structure of NPs but also their real-time atomic dynam-
ics is crucial. This understanding is a key to fully grasp the behav-
ior of Au NPs and effectively control their properties for different
applications, thus the pressing demand for techniques capable of
providing atom-level insights into the dynamic behavior of NPs.

Despite the vast potential of Au NPs, a comprehensive under-
standing of their real-time atomic dynamics under operational
conditions remains elusive, limiting our ability to harness their
full capabilities. Traditional experimental approaches typically
lack sufficient resolution to track the dynamic behavior of indi-
vidual atoms within these NPs.

Recent experimental advancements such as annular dark-field
scanning transmission electron microscopy (ADF-STEM), have
recently allowed reconstruction of the atomistic structure of
NP from microscopy images taken at temperatures relevant
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to various applications.[15,23,24] However, albeit ADF-STEM
offers a high (atomistic) resolution,[24] a major limitation in
this approach lies in the discrepancy between the frequency
of the experimental image acquisition and the timescales that
characterize the NPs dynamics. In particular, typical ADF-STEM
experimental setups can capture snapshots of the NP structure at
intervals of ≈0.1–1 s.[24] The real atomic dynamic present within
them may nonetheless unfold at much shorter timescales,
typically in the ps and ns scales[13] Therefore, while experimental
techniques such as ADF-STEM allow for the collection of images
and structures of NPs on a timescale relevant to experiments,
the limited time resolution in data acquisition hinders the
tracking of individual atomic movements within them. While
techniques such as ultra-fast electron diffraction (UED) excel in
capturing atomic dynamics with enhanced temporal resolution,
ranging from fs to ps,[25–27] and high-resolution transmission
electron microscopy (HRTEM) extends this capability into the
millisecond (ms) to second (s) range,[28,29] HAADF-STEM stands
out by providing indispensable 3D structural information.[24,30]

Indeed, the integration of such method with molecular dynamics
simulations creates a powerful workflow; this synergy leverages
HAADF-STEM’s detailed spatial and 3D structural insights
with the higher temporal resolution of MD simulations, offer-
ing a comprehensive approach to understanding the intricate
behaviors and structures of nanoparticles

Computer simulations, namely atomistic molecular dynamic
simulations that rely on reliable and accurate force fields, demon-
strated to be remarkably useful for extracting data to under-
stand the atomic dynamics within nanoparticles in relevant
conditions.[13,31,32] In particular, recently, the use of advanced
structural and dynamical descriptors—e.g., smooth overlap of
atomic positions (SOAP),[33] local environments and neighbors
shuffling (LENS),[34] TimeSOAP[35]—allowed via machine learn-
ing to reconstruct the atomic environments populating the NPs
in realistic conditions and the atomic dynamics present within
them; it should be noted, however, that such analyses are ob-
tained from MD trajectories acquired from simulations that start
from ideal nanoparticle structures, which may differ from the
structure typical of the same nanoparticles under experimentally
relevant conditions. This makes it difficult to guarantee that the
extracted data provide a reliable reconstruction of the equilibrium
dynamics of these NPs since one of the main limitations of clas-
sical MD simulations lies in the sampling and in the risk of en-
trapment in local energy minima.

In this work, we demonstrate the potential of combining state-
of-the-art experimental and computational approaches, to over-
come the limitations of each method. Particularly, simulations,
by enabling the observation of rapid atomic movements within
NPs over suitable time scales, serve as a bridge between static
imaging and the dynamic behavior of NPs, thus addressing the
challenges associated with time scale decoupling. This integra-
tive method not only addresses the individual challenges posed
by experimental and computational techniques but also offers
a comprehensive analysis of NP dynamics that is closely re-
flective of real-world conditions, thereby deepening our under-
standing of NP behavior. Our method begins with the acquisi-
tion of high-resolution ADF-STEM images, which enable precise
3D reconstructions of the NP (through an iterative local min-
ima search algorithm[24]). Specifically, we used 10 NP configura-

tions each captured at 0.6 s intervals, during 6 sof ADF-STEM ex-
perimental data acquisition. These experimentally reconstructed
structures provided a detailed view of the actual atomic arrange-
ments in supported Au NPs, capturing complexities and devi-
ations from idealized structures, and aligning our simulations
with real-world behaviors of Au NPs. These reconstructed NP
structures serve as starting points for as many MD simulations,
which then allow us to capture the real-time dynamics of NP. This
approach enables us to run atomistic MD simulations relying on
experimental-level sampling, studying the dynamics of Au NPs at
different T and obtaining results in line with the experimental ob-
servations. Our analysis demonstrates that the dynamics we can
reconstruct from MD simulations represent an equilibrium en-
semble. Our computational strategy leverages advanced descrip-
tors like SOAP and LENS, integrated with data-analysis work-
flows, to accurately reconstruct NPs in realistic conditions, mark-
ing a significant breakthrough in modeling dynamic atomic envi-
ronments. The level of insight that can be obtained with this com-
bined experimental/computational approach provides us with a
versatile tool to understand the real atomic-scale dynamics of
metal NPs and to link this to their macroscopic properties.

2. Results

2.1. Outline of the Combined Experimental-Computational
Approach

A recent breakthrough in our team involves a novel approach that
combines atom-counting and iterative local minima search algo-
rithms, while also considering temperature effects, to reconstruct
the 3D structure of supported NPs using single-view 2D ADF-
STEM images (Figure 1a).[15,23] This technique was applied in the
demonstrative case study reported herein to Au NPs supported
on CeO2 at a temperature of 673 K. The methodology begins
with ADF STEM imaging, essential for attaining atomic-level de-
tails of nanoparticles. This step is enhanced by advanced atom-
counting techniques employing statistical parameter estimation,
which precisely determines the composition and density of the
NP. The data obtained from these techniques lay the groundwork
for the next phase, involving the integration of these findings into
MD simulations to create a preliminary 3D model of the NP.[24]

Further refinement of this initial model is achieved through
a local minima search algorithm which adjusts atomic positions
within the model and thoroughly evaluates the system’s energy
landscape. These careful adjustments are key in approximating
the NP’s real structure.

An innovative element of this approach is the incorporation
of molecular dynamics structural relaxation at an experimental
temperature of 673 K. This step is vital to ensure that the recon-
structed models are not only theoretically accurate but also realis-
tically represent the nanoparticles’ behavior under specific, exper-
imentally relevant temperature conditions;[9,36–39] indeed, align-
ing the models with real-world scenarios are crucial for their prac-
tical applicability.

Validation of the reconstructed 3D structures is conducted
through an extensive comparison with experimental data. This
validation focuses on the precision of atom positions and the
overall morphology of the nanoparticles, ensuring that the
reconstructed models are not only theoretically sound but also
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Figure 1. Stepwise process of applying the SOAP analysis to the experimental structures of Au (NPs). a) Left: Schematic representation of the High-Angle
Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). Right: Ten consecutive ADF-STEM frames of observed Au NPs at 673
K. b) Atom-counting maps corresponding to the ten frames from (a), with the color indicating the atom count per column. c) Final reconstructed 3D
structures of the observed NPs. d) Top: Each atom in an Au NP (depicted in blue) is assigned a SOAP vector, with the cutoff radius shown as a transparent
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congruent with observed experimental behaviors. This step is
crucial in confirming the practical viability and accuracy of the
reconstructed models.

Readers interested in a deeper dive into the specificities of this
3D reconstruction process are directed to the dedicated subsec-
tion within the Methods section of this paper. Additionally, for
an expansive overview and detailed methodological insights, ref-
erence paper[24] offers extensive information.

In particular, this approach was used as a first step to generate
a series of atom-counting maps from 10 snapshots taken every
0.6 s along a 6 s of ADF-STEM sampling (Figure 1a). In Figure 1b
we present snapshots of the obtained NPs, color-coded based on a
scheme that corresponds to the number of atoms in each atomic
column. As previously mentioned, the reconstructed 3D struc-
tures of the NPs correspond to 10 frames, captured over a total ob-
servation time of 6 s using ADF-STEM[24] (Figure 1c). Although
the time intervals between the reconstructed NP structures are
relatively long (0.6 s), they significantly contribute to our compre-
hension of atomic surface dynamics in environments similar to
practical applications.[9,36,37,39] This provides a profound insight
into the dynamic activities on NP surfaces, reflecting conditions
encountered in real-world experimental settings. To extract in-
formation on the atomic environments (AEs) emerging on the
NP during the experimental data acquisition, we employed a re-
cently designed approach[13] based on SOAP power spectra[33]

(Figure 1d), with the purpose of analyzing and better interpret-
ing what happens in the atomic structure of these real NP ex-
perimental snapshots. As a first step, we calculated the SOAP
spectrum of each atom for all the snapshots (see Experimental
Section for details). The SOAP power spectrum provides a com-
prehensive representation of the atomic environment by combin-
ing radial basis functions and spherical harmonics, effectively
capturing both the local structural details and global symmetry
features.[33,40] This descriptor thus provides deep insight into how
the neighbor atoms are arranged in the space in the local envi-
ronment surrounding each atom in the NP (i.e within a cutoff
radius).[13,41–43] Complete details on the SOAP analysis are avail-
able in the Experimental Section.

The extracted SOAP spectra (2 × 106 for each of the 10 frames)
of the Au atoms have been then classified based on a general AE
dictionary of Au NP SOAP AEs, that we recently developed.[13]

Such comprehensive AE dictionary includes 47 SOAP spectra of
all the AEs present in ideal Au NPs (at 0 K) of various sizes and
morphologies at 0 K (Figure 1d). This provides us with an essen-
tial tool for monitoring the AEs that are present in the real NP un-
der experimental conditions and classifying them based on their
similarity to the AEs contained in the dictionary. Figure 1e dis-
plays the 47 AEs defined in our SOAP environments dictionary,
presented in a circular dendrogram arranged according to their
similarity based on SOAP fingerprints. The dotted inner circle in-
dicates that truncating the dendrogram, we consider only SOAP
distance larger than 0.8 as relevant[13] (an excessive resolution

increases the noise and would emphasize irrelevant differences).
This choice simplifies the dictionary from 47 to 11 without sac-
rificing significant variations[13] (Figure 1f). In the adopted color
scheme of the dendrogram of Figure 1f, the colors belonging to
the purple palette refer to native AEs typical of ideal truncated
octahedral NPs, while all the other colors identify AEs that are
more similar to AEs proper of other ideal NPs’ morphologies (e.g.
icosahedral, decahedral, etc.)

Leveraging such “coarse-grained” dictionary, we colored the
atoms in the ten experimentally reconstructed NP structures
based on the similarity of their SOAP atomic environments to
those within our SOAP dictionary (Figure 1g). This first analysis
reveals the dynamic nature of the atomic environments within
the NPs in experimental conditions over the 6 s data acquisition,
during which the atoms of this octahedral Au NP moves, and
non-native AEs (colored in yellow, green, and red) emerges on
the NP surface. Far from being static, these NP structures show
remarkable variability driven by thermal effects. The positions of
vertices and edges within the NP displayed substantial shifts, un-
derscoring the ongoing structural transformations. Our method
thus provides a unique view of the atomic-level dynamics of NP,
using Machine Learning (ML) analysis to illuminate structural
evolution from experimental static frames.

Such atomic-level ML analysis underlines that understand-
ing the atomic dynamics present in these NPs is key to com-
prehend their properties in experimentally-relevant conditions.
While these experimental snapshots of the NP structures provide
initial important evidence, they are spaced by time intervals of
0.6 s (Figure 2a). This is a substantial time gap, especially con-
sidering that atomic dynamics typically unfold on much faster
timescales, such as pico- and nano-seconds. This temporal mis-
match makes it impossible to reconstruct the atomic dynamics
directly from such ADF-STEM reconstructed snapshots, as, e.g.,
it is not possible to attribute an identity to the individual atoms
nor to monitor their movements from one snapshot to the sub-
sequent one.

To address this issue, we utilized the high spatiotemporal
sampling resolution provided by atomistic molecular dynamics
(MD) simulations, which allow for more detailed tracking of
atomic movements.

2.2. Combining Atomistic-Scale MD Simulations and
Experimental Level Sampling

We initiated ten MD simulations using the ten experimentally
reconstructed configurations depicted in Figure 2a, with each
starting structure containing a varying number of atoms rang-
ing from 1031 to 1044. These simulations were conducted at
temperatures of 300 and 673 K (consistent with experimental
conditions[9,36,37,39]), enabling us to obtain trajectories from
which it is possible to track the movements of the individual

sphere (rcut = ≈4.48 Å, corresponding to 110% of the Au FCC lattice parameter). Bottom: Construction of a SOAP dictionary of atomic environments
(AEs) using icosahedral (blue), decahedral (green), and truncated-octahedral (purple) Au NPs, which also includes larger NPs for comprehensive AE
representation. e) A global dendrogram connecting AEs from different NPs. This dendrogram visualizes hierarchical clustering of AEs based on SOAP
distances, with branches connecting the different clusters. By cutting at a SOAP distance threshold of 0.08 we form a coarse-grained dictionary, reported
in (f). g) Final 3D structures, with atoms colored according to the SOAP classifications from the AEs dictionary.
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Figure 2. Schematic representation of the combined approach for capturing atomic-scale dynamics in Au NPs. a) Experimental frames showing the time
resolution of 0.6 s, highlighting the temporal gaps between the snapshots. b) Final frames after 2 μs MD simulations, with atoms colored according to
the dictionary developed from the SOAP spectra analysis, effectively filling the temporal gaps between experimental snapshots. c) Histograms displaying
the average count of atoms associated with each atomic environment, providing a measure of system stability. Standard deviations as vertical black lines.
d) Conceptual representation of the full 6 s movie reconstruction, with gaps filled by MD simulations.

atoms in the NP and between the AEs that emerge within them;
in these simulations, we employed the SMATB potential,[44–46]

which has been demonstrated to accurately describe the dynam-
ics of gold NPs.[13] It is important to note that we did not include
the substrate in our simulations. For more detailed information
on our simulation methodology, please refer to the Experimental
Section. Each MD simulation lasts for 2 μs, and we collected 1000
frames (every 1 ns in MD) from the final 1 μs of the trajectory.
During this period, we computed SOAP spectra for all the atoms
in the NP. It’s important to mention that the chosen time win-
dow for our analysis ensures that any observed communication

or exchange among the AEs pertains to processes occurring on
the nanosecond timescale or slower. This effectively reduces
the likelihood that the AE exchanges are influenced by thermal
vibrations. This led to ≈106 SOAP spectra for each MD, com-
prehensive for 107 SOAP spectra for all the 10 MD simulations.
In this SOAP analysis, we utilized a cutoff radius of 4.48 Å,
corresponding to 110% of the lattice pair distance of gold, which
is included in the calculation up to the first two neighbors. The
selection of the cutoff is a critical decision,[47] and for this rea-
son, this specific value was chosen to achieve a balance between
computational efficiency and the fidelity of information retained,
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ensuring a thorough and accurate representation in our
analysis.[13] Differently from the previous analysis on the
static experimental frames, these MD simulations permit us
to track the SOAP AEs to which each atom of the NP belongs
to over time. This allows us, e.g. to quantify the propensity of
each atom to remain in a certain AE or to undergo a transition
to a different one at every 𝛿t (1 ns). By delving deeper into
the dynamics of these atomic environments, we were able to
quantify the NP’s stability and analyze the dynamics of exchange
between its various constitutive AEs. We generated histograms
from the final 1 μs of the MD simulations, which provide an
average atom count associated with the population of each
AE (Figure 2c). Comparing the histograms obtained, e.g., at
673 K versus those of the starting NP configurations, provides
information on the NP stability and it is interesting to note
how the AEs histograms calculated from the MD at 673 K do
not deviate much from those obtained from the experimental
structures, despite the considerable dynamics observed along
the MD.

Figure 2b,c shows that during the various MD runs, dynamic
atomic rearrangements can be observed; vertical arrows in the
histograms indicate AEs that are not present in the starting
frame, but that may emerge with temperature: e.g. red “v”
AE. Furthermore, Figure 2b,c (left to right) shows that, while
some variability between the MD runs can be expected, the
histograms do not change much in the various systems configu-
rations. This implies that these MD simulations offer a detailed
view of the atomic dynamics within these NPs. By observing
them at an atomistic resolution over microsecond-long time
windows, we can track their equilibrium trajectories under con-
ditions that are relevant to real-world experiments. This allows
concatenating the various 1μs-long analyzed MD trajectories,
obtaining 10 μs of sampling of the equilibrium MD of the
Au NP.

We repeated the same analysis, as a control case, by run-
ning the 10 MD simulations at a lower temperature (300 K).
In this case, the analysis shows, as expected, less dynamic ac-
tivity in the NPs compared to 673 K. However, the overall
conclusions remain the same (complete data at 300K are pro-
vided in the supporting information- Figure S1, Supporting
Information).

The next step involves a statistical analysis of the SOAP data,
which allows us to quantify the dynamics of the NP. Figure 3a
illustrates the initial structures taken at 0, 2.4, and 6 s, and the
corresponding structures obtained after 2μs of MD at 673 K (color
code according to the dictionary of Figure 1).

The NP surface maintains its structural integrity throughout
the simulation, suggesting that the truncated octahedral struc-
ture remains relatively stable overall, despite the high atomic mo-
bility. To characterize the intricate atomic dynamics present in the
NPs, we calculated the transition probabilities for atoms between
these AEs.

The transition matrices in Figure 3b indicate the probability of
an atom, with a specific AE at time ti, remaining in the same
AE (diagonal entries) or transitioning into a different AE (off-
diagonal entries) within the analysis time interval (𝛿t).

At 673 K, all cells in the transition matrix are colored, in-
dicating non-zero transition probabilities across all AEs within
the NP. This observation indicates a marked increase in atomic

mobility and interchange between various NP regions at higher
temperatures.[13,41,42,48]

A visual representation of these dynamic exchanges is well ren-
dered by the use of chord diagrams of Figure 3c, where the size
of the arc sections is proportional to the population of the various
AE, while the width of the chords corresponds to the intensity of
atomic exchanges between them. At 673 K, these analyses show
high communication and dynamic exchange in the NP. This does
not pertain to surface AEs only but this atomic exchange can also
be observed between the innermost NP bulk (b) and the least co-
ordinated surface AEs, e.g., vertexes AEs (v and v′), or between
sub-surface and surface AEs (ss→v and ss→e’). On the other hand,
at 300 K, dynamic exchanges are predominantly observed among
AEs with similar coordination numbers, such as v→v’ and b→ss,
indicating limited atomic mobility and constrained transitions.
Despite the striking internal atomic dynamics observed at 673 K,
in such conditions, the NP still preserves its truncated octahedral
structure (Figure 3); it is interesting to note that these analyses
performed on the MD trajectories starting from the experimental
configurations captured at 0, 0.6,…,6.0 s provide very similar re-
sults (Figure 3b,c left-to-right). This demonstrates that these MD
provide reliable pictures of the internal atomic dynamics present
in these NPs in equilibrium regimes and in experimental rele-
vant conditions. Furthermore, this also allows us to concatenate
all data in a unique dataset, useful to improve the statistical con-
fidence of our analysis.

2.3. Realistic Atomic Dynamics in Au NPs in
Experimentally-Relevant Conditions

Merging together the results obtained from the ten (inde-
pendent) MD trajectories, we could obtain an average and
comprehensive picture of the dynamics of Ceria-supported Au
NPs. Figure 4 averages the data derived from our MD trajecto-
ries providing meaningful insights into the atomic ensemble’s
dynamics and transitions present in these NPs over the entire
experimental sampling timescale. Figure 4a,c provides an equi-
librium representation of the AEs dynamics at 300 and 673K
respectively. The average histograms, similar to those in Figure 3,
confirm our earlier observations of the AE distribution, show-
ing that the NP’s dynamics at thermal equilibrium maintain
similar characteristics over the full experimental time-scale. The
chord diagrams and transition matrices, displayed in Figure 4a
(middle and right) and Figure 4c (middle and right), capture at
atomistic resolution the average AEs transition probabilities that
characterize such NP in experimental conditions and in relevant
observation timescales, obtained from the ten individual 1μs MD
windows. These average diagrams reveal similar patterns to the
ones observed in (Figure 3), taken along 6s of global experimental
samplings, providing a statistically robust perspective of the equi-
librium atomic structure and dynamics of these NPs. The details
of panels Figure 4b,d show how selecting one specific AE (e.g. s),
from the matrices one can obtain a specific transition probability
of the dynamic interconnections with the other ones in the NP.
From transition probabilities, between AEi and AEj (pi → j) one
can obtain information on the average lifetimes of different
AEs within the NP and on the average transition rates for the
atomic exchange between them. The off-diagonal elements of the
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Figure 3. Quantitative analysis of atomic transitions and stability in reconstructed Au NPs at different temperatures. a) Initial structures at time points
0.0, 2.4, and 6.0 s, and the corresponding final structures post-MD simulations at 673 K, color-coded according to the SOAP dictionary. b) Normalized
transition matrices demonstrating the probability of atoms remaining in a given AEi (pii) or transitioning to a different AEj (pi → j) within a time interval
of 𝛿t = 1 ns. c) Chord diagrams showing the dynamic exchanges between environments; the size of each arc section is proportional to the population
of each AE, while the width of the chords represents the intensity of exchanges between them.

transition matrix, denoted as pi → j, provide data on the prob-
ability for transitioning from AEi to AEj over the sampling
time interval (𝛿t), which we preset at 1 ns for our investiga-
tion. This choice represents the best compromise between
capturing significant atomic AE exchanges and managing
computational costs. This period effectively balances reso-
lution and computational efficiency, ensuring that observed
AE exchanges reflect sustained, dynamic processes within
the NPs. This time-frame minimizes the influence of tran-
sient thermal fluctuations, focusing on the more substan-
tial changes we aim to observe, and aligns with our goal of
accurately depicting meaningful dynamics in nanoparticle
behavior.

We observe a high mobility of atoms within this AE at 673 K,
where transitions are observed to/from all other AEs, including

the innermost bulk AE. Specifically, at 673 K, surface atoms have
a probability of ≈61% of remaining in AE s during the 1-ns sam-
pling interval.

This probability increases to ≈91% at 300K. However, even at
this lower temperature, transitions from the surface (s) to the con-
cave AEs (c, c′) and edges (e) can still be observed with probabili-
ties significantly above ≈1% (in dt = 1ns).

By dividing pi → j by dt, one can estimate the transition rate
(ki → j), and consequently calculate the characteristic timescale
(𝜏 i → j) expected for each transition (the reciprocal of ki → j). The
right parts of Figure 4b and Figure 4d show the characteristic
timescale of transitions involving surface AEs (s). Comparing the
data extracted at 673 and 300 K, the transition times diminish
substantially at higher temperatures, exemplified by the charac-
teristic timescales for s→c transition shrinking from ≈66 ns at

Adv. Sci. 2024, 2307261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307261 (7 of 13)
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Figure 4. Detailed analysis of atomic transitions and mobility in Au NPs across the experimental time-scale. a) Equilibrium representation of atomic
environments at 673 K, featuring histograms similar to Figure 3, confirming AE distribution. The inset shows the equilibrium 3D structure of the NP, cut
to show the interior. In the middle and right panels, chord diagrams and transition matrices encapsulate the aggregated fluxes and transition probabilities
for the combined trajectories, representing atomic behaviors over the full experimental time. b) Focused examination of specific transition probabilities
from the surface (s) AEs at 673 K, demonstrating the likelihood of atoms on the NP’s flat faces transitioning to other AEs. The rightmost panels display
the characteristic times (in ns) of transitions related to surface AEs. Panels (c) and (d) report the same results, but at 300K.

300K to ≈11 ns at 673K. Such different dynamics as a function of
temperature, are even more pronounced for transitions between
the inner AEs; the interior of the NP is almost static at 300 K, e.g.,
the s→ss’ (i.e., surface to subsurface) transition time drops from
≈104 ns at 300K to ≈14 ns at 673 K, a diminution of three orders
of magnitude. These analyses demonstrate how such a combined
experimental/computational approach allows achieving a resolu-
tion of the ps scale, to reconstruct the atomic dynamics present
over a real 6 s experimental time window. Such level of detail

provides crucial insights, such as, e.g., how long an AE exists in
realistic conditions, which is key to understanding the surface
properties of these NPs.

3. Rare Local Transitions on the NP Surface in
Experimental Conditions

While the equilibrium and average dynamic picture discussed
thus far are useful, they could mask significant local fluctuations,

Adv. Sci. 2024, 2307261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307261 (8 of 13)
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Figure 5. Exploring local fluctuations and dynamic domains within reconstructed Au NPs. a) Left: Time-series of LENS signals (𝛿i(t)), Kernel Density
Estimate (KDE) of the LENS distribution,[34] and interconnection dendrogram for a 1-microsecond window of our Au NP MD at 300K. The KDE provides
an overview of the LENS distribution, while the dendrogram illustrates the interconnections between dynamic domains. b) An example of a local fluctu-
ation, where a small group of Au atoms exhibits rapid diffusion on the NP surface. Atoms are colored according to the LENS cluster represented in the
KDE plot. The corresponding movements during the MD simulation on the underlying NP surface are highlighted by black trajectory lines. This dynamic
behavior of a localized group of atoms adds complexity to the overall NP behavior, with potential implications for system properties and reactivity.
c) Four snapshots at different times (indicated above) illustrate the movement of the aforementioned group of dynamic atoms. The color scheme used
is relative to the simulation time, as represented by the arrow below.

key for the NP properties. In particular, such analyses based on
pattern recognition of the statistically dominant AEs may lose
information, in particular, on fluctuations/transitions that may
sparsely occur along the MD trajectories and that have negligible
statistical weight. To address this issue, we have completed our
previous analysis using a different abstract descriptor called “Lo-
cal Environments and Neighbors Shuffling” (LENS).[34] LENS al-
lows detecting and tracking rare local fluctuations, by monitoring
how much every Au atom in the NP changes neighbor individ-
ual atoms identities (IDs) every 1 ns along the MD trajectories,
which are typically overlooked in pattern recognition structural
(e.g., SOAP) based analyses.

Figure 5a illustrates the time-series of LENS signals, denoted
as 𝛿i(t), obtained from one of the MD trajectories at 300K. These
signals were computed starting from the experimentally recon-
structed structure obtained at 2.4 s. Additionally, the figure in-
cludes the Kernel Density Estimate (KDE) of the LENS distribu-
tion and the interconnection dendrogram, covering the final 1μs
of our AuNP MD simulation at 300K.

Atoms exhibiting elevated 𝛿i(t) values are suggestive of pro-
nounced dynamism within their atomic environments. These
elevated 𝛿i(t) values are indicative of considerable variations
in the number and identities of neighboring atoms, signifying
notable changes in the local neighborhood of each atom. Conse-

quently, atoms characterized by persistently elevated 𝛿i(t) values
are systematically classified into the more dynamically active
regions. This criterion underpins our methodological approach
in differentiating between various dynamical states of the atoms,
with the most dynamically active clusters comprising those
atoms exhibiting the highest values of 𝛿i(t).

More precisely, by applying K-means clustering[49] to the LENS
data, we identify 3 distinct environments, represented in the right
panel of Figure 5a, characterized by different LENS signals (local
dynamics), enabling the construction of an associated dendro-
gram illustrating their adjacency.

This detailed dynamic analysis complements our equilibrium
SOAP analysis, pinpointing localized dynamic areas amidst a
backdrop of relative stability, and underscoring the complexity
of NP behavior. Indeed, in line with the equilibrium SOAP
analysis, the majority of NP atoms remain within a relatively
“static” region, visualized by the green domains. However, a
sparse subset of atoms participates in local transitions and
diffusion, leading to the emergence of localized dynamic regions
shown in blue (cf. Movie S1, Supporting Information). Figure 5b
provides an illustrative example of these local fluctuations,
where a few Au atoms demonstrate rapid movements on the
NP surface. Such infrequent behaviors, which may not be as
evident in other analyses like those in Figure 4, are effectively

Adv. Sci. 2024, 2307261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307261 (9 of 13)
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detected by LENS, providing a deeper insight into the micro-
scopic and macroscopic features characterizing the atomic
dynamics of these metal NPs under experimentally-relevant
conditions.

4. Conclusion

In this work, we presented a combined experimen-
tal/computational approach that allows us to characterize
the (complex) atomic dynamics present in Au NPs in realistic
relevant conditions. Leveraging high-resolution ADF-STEM
microscopy, we demonstrate the potential of this approach by
obtaining ten images of a real Au NP every 0.6 s along a total
of 6 s of experimental data acquisition. These images are then
used to reconstruct as many atomic precise 3D structures of
the Au NP, which are then used as a starting point for ten
microseconds-long independent MD simulations. By integrating
advanced descriptors of atomic environments with machine
learning, we can track the atomic-scale rearrangements of the
individual atoms on the NP over time, combining in this way
the high spatiotemporal resolution of fully atomistic MD and the
advantage of starting from multiple (time-decorrelated – experi-
mental dt = 0.6 s) NP structures. This allows us to minimize the
typical sampling limitations of MD simulations starting, e.g.,
from initially perfect (ideal) NP structures.

MD simulations starting from NP structures taken every 0.6
s along a multi-second experimental data acquisition show con-
sistent and conserved atomic dynamics within the NP. This is
true both at 673 K (same temperature as during the data acqui-
sition) and at 300 K (see Figure 2, Figure 3 and Figure 4). Al-
though the simulations at 673 K show pronounced atomic dy-
namics, the nanoparticle maintains its octahedral structure. This
stability, observed under experimental conditions, illustrates that
the dynamics in our simulations align with the equilibrium be-
havior expected in practical environments where nanoparticles
are actively employed.[9,36,37,39] This means that such an approach
allows us to reconstruct in a reliable—notably, with a spatial res-
olution of the Å, and the time resolution of the picosecond—way
the structural dynamics that such metal NPs have when observed
along an experimentally-relevant seconds time-window.[24]

The ML approach used herein to analyze the MD trajectories
allows us to identify and classify all the AEs that emerge within
the Au NP in realistic conditions, and to quantify, e.g., their life-
times, transitions, etc. The dynamics reconstructed via SOAP
and LENS data identify dominant average dynamic behaviors as
well as sparse concerted movements, such as the “terrace slid-
ing” on the NP face shown in Figure 5 that, being rare events, are
typically difficult to capture with conventional pattern recogni-
tion approaches. On the one hand, such insights provide a new,
exquisitely dynamic (qualitative) view of these atomic NPs (see
Movie S1, Supporting Information). At the same time, the anal-
yses of these MD simulations provide a useful approach to inter-
pret and rationalize, in the future, the properties of such NPs in
experimentally relevant conditions (e.g., their reactivity, stability,
etc.).

We believe that the comprehensive understanding of the in-
ternal atomic dynamics that it is possible to attain for metal NPs
with such a combined experimental/computational approach
will offer a fundamental tool for rational control of NP proper-

ties. On a first simpler step, for example, it provides a direct way
to understand the effect of the environmental conditions on the
behavior expected from these NPs. Increasing with the complex-
ity, it will also pave the way toward a better understanding of the
properties of such metal systems, e.g., under the exposure to var-
ious stimuli or revealing, for example, the effect of the interac-
tion with different entities (e.g., reactants, molecules, etc.) on the
structural dynamics of the NP and, vice versa, the effect of the dy-
namics of the AEs that populate the NPs on the NPs’ properties
(e.g., interactions, reactivity, etc).

In summary, our work not only advances the current state of
the art in studying metal NPs but also highlights the remarkable
stability of these systems under realistic conditions. By integrat-
ing experimental data and computational simulations, we bridge
the gap between theory and practice, offering valuable insights
into the dynamic behavior of metal NPs in real-world scenarios,
with implications for catalysis and materials science. We are con-
fident that our approach will serve as a foundation for further
advancements in NP research, enabling precise control and opti-
mization of NP properties for various applications.

5. Experimental Section
The NPs were stimulated using SMATB[44–46] potential, available in

LAMMPS,[50,51] acknowledged for its specific application to gold nanopar-
ticles despite known limitations, such as underestimation of the melting
temperature.[52]The approach was validated through extensive compar-
ison with experimental data, emphasizing atom position precision and
nanoparticle morphology to ensure theoretical and practical congruence
of the models. The NP models were initially minimized using the built-
in command in LAMMPS (set up with etol = 10−6 ftol = 10−8, maxiter =
1000 and maxeval = 10000), then a small thermalization of 20 000 MD
steps was performed with the timestep set to 1 fs on the NP with the ve-
locities initialized to the desired temperature and with the thermostat with
the same settings of the main simulation. Ten reconstructed Au NPs[24]

were stimulated at temperatures of 300 and 673 K. The number of atoms
in each configuration, starting from the first structure to the tenth, are as
follows: 1038, 1031, 1044, 1044, 1047, 1037, 1042, 1030, 1036, and 1035
All MD simulations were conducted in the canonical ensemble using the
LAMMPS’s Langevin thermostat, using a timestep of 5 fs, and a damp-
ing parameter for the Langevin thermostat set to 100 ps. Each NP system
was stimulated for a total of 2 μs of MD. During the simulations, all NP
systems reached a steady state in the MD regime (equilibrium). All the
analyses were thus conducted on 1000 frames taken every 1 ns along the
last 1 μs of each MD simulation, during which the populations of all de-
tected AEs were plateaued. It is important to note that in the simulations,
the ceria (CeO2) substrate on which the gold nanoparticles were often sup-
ported was not explicitly included.[38,53–55] Instead, to mimic the effect of
the substrate on the nanoparticles, a potential was applied to the last lay-
ers of the nanoparticle. This approach was chosen as the primary inter-
est was in understanding the intrinsic dynamics of the gold nanoparticles
themselves, rather than the interactions between the nanoparticles and
the ceria substrate. By focusing on the gold nanoparticles and employing
the SMATB potential, which had been shown to accurately describe the dy-
namic behavior of these systems,[13] under the conditions of interest, the
properties and behavior of the nanoparticles could be more easily inves-
tigated. A key observation from the study was that the structure obtained
after MD simulations closely resembles the structure reconstructed exper-
imentally. This similarity indicates that the potential applied successfully
reproduced the impact of the substrate on the structure of the nanoparti-
cle. This decision to omit the explicit simulation of the substrate allowed
to concentrate the computational resources and analysis on the aspects
most critical to the aim
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SOAP Analysis: SOAP[33] was used as high-dimensional abstract de-
scriptors of the local atomic environments that surround each atom in
the NPs during the simulations. The SOAP power spectrum had found
wide applications in various fields, including materials science, catalysis,
and drug discovery. Its ability to encode complex atomic structures and
capture subtle variations in local environments makes it a versatile tool
for understanding and predicting the behavior of materials at the atomic
scale.[13,33,41–43] In the present work, SOAP spectra of each atom in the
NPs were calculated at each of the 1000 MD snapshots taken from the
last 1 μs of the simulations (every 1 ns). The dscribe[56] was used to gener-
ate the SOAP vectors with the following parameters: rcut = ≈4.48 Å (cor-
responding to 110%)of the Au FCC lattice parameter, which was included
in the calculation up to the first two neighbors in FCC, and up to the third
in the HCP case even in case of some small local fluctuations. The lmax
parameters for the spherical harmonics were set up to 8, and the nmax pa-
rameter was set up to the number of radial basis functions to use to 8.
With these parameters, the SOAP spectrum for each atom was a vector of
576 components (of which 324 are unique).

Atom-Counting for NPs at High Temperature: The atom counting was
based on so-called scattering cross-sections (SCSs), representing the total
intensity of electrons scattered toward the ADF detector for every atomic
column. These SCSs could be quantified using statistical parameter es-
timation theory.[57,58] To achieve this, images were modeled as a super-
position of Gaussian functions using the StatSTEM software. From the
estimated model parameters, which encompassed the positions, heights,
and widths of all atomic columns, the SCS values were determined. In a
subsequent analysis, the distribution of the SCSs of all atomic columns
was decomposed into overlapping normal distributions, i.e., a Gaussian
mixture model. This allowed to count the number of atoms in a par-
ticular atomic column with single-atom sensitivity. However, to ensure
the reliability of the results, especially when prior information was lack-
ing, the findings were validated by comparing them to reference SCS val-
ues obtained through accurate multislice simulations. These simulations,
conducted using MULTEM,[59] account for the unique characteristics of
the detector, including the non-uniformity of the real detector surface.[60]

Furthermore, to achieve the highest level of quantitative accuracy, the
temperature-dependent Debye–Waller factors were incorporated into our
image simulations. This accounts for changes in the root mean square
deviation of Au atoms concerning temperature variations. An appropriate
parameterization[61] was used for this purpose.

Reconstruction Based on Atom-Counting Results: To obtain the 3D
atomic structure of the Au NP from the estimated number of atoms in
each atomic column, the proposed method was applied to a simulated
system as a validation step. The atom-counts procedure was used to gen-
erate an initial 3D model of the Au NP by arranging the atoms symmetri-
cally around the central plane, based on the known specimen orientation
([110]) and the crystal structure. The distance between adjacent Au atoms
was fixed, along the beam direction, according to the lattice parameter.[24]

Then, an iterative local minima search algorithm was employed to con-
struct the final 3D structure using the starting input model. This process
was designed to comprehensively navigate the energy landscape and pre-
vent confinement to nearby local minima. In each iteration, a random
atomic column was displaced upward or downward within the interval of
[-a, a], where “a” represents the lattice parameter of the FCC Au structure.
Based on the resulting change in the energy of the system, the Boltzmann
probability factor (P) was computed,[62,63] utilizing Boltzmann’s constant
(kB) and a selected temperature of 673 K.

P = e(−ΔE∕kB) (1)

If P for the candidate structure exceeded a specified threshold, it was
accepted and used for the next iteration; otherwise, the previous configu-
ration continued. This process repeated for 2000 iterations, maintaining
convexity until deviation due to displaced atomic columns. A threshold of
0.9 was selected for efficient exploration within the energy range near the
input model, accounting for computational advantages.

Each candidate structure linked to a local minimum underwent MD re-
laxation in a canonical ensemble at 673 K for 5 ns using a Nose–Hoover

thermostat. Unlike standard energy minimization, this temperature-
specific MD relaxation enabled studying structures observable at elevated
temperatures. Indeed, at elevated temperatures, the anisotropy of surface
energy diminishes. This phenomenon led to the emergence of rounded
features in the equilibrium shape, along with the presence of kinks and
steps on the surface. These surface irregularities serve as sites for atom
sources and growth, facilitating the diffusion of adatoms.[64] During the it-
erative search and MD simulations, the EAM potential described Au atom
interaction, and the interaction between CeO2 support and the particle was
considered using LJ interaction.

To select the most plausible 3D structure, a fitness function (f) was
defined.

f = E
atom

+ 𝛼𝜒 (2)

It incorporated the average potential energy per atom ( E
atom

) and a
quantitative goodness-of-fit measure (𝜒) of candidate structures with the
reference observation. The fitness function balanced E

atom
and 𝜒 using an

empirically chosen weighting parameter (𝛼). This function’s design was
taken from Yu et al.,[65] utilizing atom counts and projected atomic col-
umn displacements for the discrepancy definition.

The minimum in the fitness graph yielded the final 3D structure aligning
best with the reference ADF STEM image in terms of atom count and pro-
jected atomic column position.[24] The retrieved structure primarily com-
prises 100 and 111 facets separated by edges and corners. A quantita-
tive comparison with the exact 3D model of the reference image verified
the proposed methodology.[24] Discrepancies in the number of atoms be-
tween reconstructed and original input model atomic columns were mini-
mal, attributed to methodological limitations and atom movement during
MD relaxations. Surface structure analysis highlighted an accuracy of over
95% in identifying the reconstructed Au NP’s surface structure.[24] The it-
erative local minima search algorithm was then applied to reconstruct the
3D structure of the experimentally investigated NPs of Figure 1g.

It is important to note that in this case, images were recorded sequen-
tially. The recording dwell time per pixel in this ADF STEM experiment was
0.6 μs, and the total recording time required to capture one atomic column
is therefore in the range of several microseconds. During that time, the
atomic structure was likely to be averaged out experimentally. Each atomic
column was revisited after 0.6 s. This sequential recording approach in-
troduces inherent temporal averaging, which could contribute to mitigat-
ing the effects of atomic vibrations and enhancing the overall signal-to-
noise ratio. It effectively accounts for the dynamic nature of atomic mo-
tion during imaging, particularly at elevated temperatures. By revisiting
each atomic column within a relatively short time frame, the experiment
captures a series of atomic snapshots, contributing to a more accurate
representation of the dynamic behavior of the NP’s atomic structure.

In conclusion, the integration of atom-counting with an iterative local
minima search algorithm, incorporating temperature effects and particle-
support interaction, facilitated the accurate and precise reconstruction of
the 3D structures for both simulated and experimentally observed sup-
ported NPs. Unlike approaches solely relying on energy minimization, this
method outperforms previous techniques that combined 3D atom count-
ing with MC or MD simulations. This approach overcomes inherent limi-
tations by effectively navigating the local energy landscape to pinpoint the
local minimum corresponding to the imaged NP structure. This capabil-
ity enables the successful estimation of target structures, encompassing
atomic column positions and surface atomic configuration, as observed in
ADF STEM images. Thus, this methodology offers a robust means to re-
trieve comprehensive 3D atomic-scale insights into stable and metastable
structures within catalytic environments, even at elevated temperatures.

The Dictionary of SOAP Environments: For the analysis presented here,
the well-defined SOAP distance[40] was utilized to classify the environ-
ments visited during the simulations, following similar approaches em-
ployed in previous studies.[41,43,66]
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The SOAP distance between two SOAP spectra a⃗ and b⃗ is calculated as:

dSOAP(a⃗, b⃗) =
√

2 − 2(a⃗, b⃗) (3)

where, for the SOAP power spectrum representation used in our work,

(a⃗, b⃗) = a⃗⋅b⃗

‖a⃗‖‖b⃗‖
To perform the classification, a dictionary was constructed containing

diverse environments from various minimized unsupported Au NPs, aim-
ing to create the most comprehensive dictionary for icosahedral, deca-
hedral, and octahedral NPs’ atomic environments. In addition to the NPs
simulated in this work, larger-sized NPs with a higher variety of atomic en-
vironments in their ideal state were included to enrich the dictionary.[13]

The resulting dictionary comprised 47 elements.
To facilitate the usage of the dictionary, its elements were hierarchi-

cally classified using the hierarchical clustering algorithms implemented in
scipy.[67] Initially, the distances between each pair of environments in the
dictionary were calculated using Equation (3). Subsequently, a binary tree
was created representing the hierarchical classification by employing the
“complete” algorithm for hierarchical clustering. This algorithm couples
the closest elements at each step and assigns the newly formed couple
the largest distance from each remaining element in the set. This process
was iteratively applied until the classification was completed.

The resulting binary tree was depicted in the dendrogram shown in
Figure 1e. A cut was applied at a distance of 0.08 [dSOAP], resulting in the
formation of 10 distinct groups of dictionary entries (as depicted more
clearly in Figure 1f) with similar geometrical characteristics, derived from
the original 47 environments.

During the analysis of the MD simulations, each environment was as-
signed to one of these 10 clusters in two steps. First, it was classified as
one of the 47 elements in the original environment dictionary by assigning
it to the closest element in terms of SOAP distance (using Equation (3)).
Then, in the second step, we assigned the analyzed environment to the
cluster to which its closest reference belonged.

The dendrogram in Figure 1f displays the final 10 atomic environments
(AEs) analyzed. The ‘b AE’ represents all bulk nanoparticle environments,
‘ss’ and ‘ss’ AEs’ denote subsurface AEs, with ‘ss’ covering AEs under
FCC(111) and FCC(001) faces and edges, and ‘ss’ for non-standard sub-
surface AEs under vertices and convex elements. ‘c’ and ‘c’ AEs’ encom-
pass concave environments. ‘s’, ‘e’, and ‘e’ AEs cover all surface AEs,
where ‘s’ pertains to FCC(111) and FCC(001) faces, ‘e’ and ‘e’ to edge AEs,
and ‘v’ and ‘v’ to vertex AEs. This classification is derived from a coarse-
grained SOAP dictionary used for differentiating native and non-native AEs
in simulated nanoparticles.

Temporal Analysis: To investigate the temporal behavior, transition
matrices were calculated based on the cluster information of each atom
throughout the simulation.[41,48] Transition matrices were constructed by
accumulating a table where the elements represent the number of tran-
sitions from state i to state j, or from state i to state i, observed at each
time step. The probabilities for an atom to transition to a specific atomic
environment (or to remain in the same environment) after each time step
(with a time increment of 𝛿t = 1 ns in our analyses) were further obtained
by normalizing each row to 1. In the figures presenting the transition ma-
trices, unobserved transitions were denoted by blank squares. By employ-
ing these methodologies, a detailed analysis of the atomic environments
and their temporal behavior in the simulated systems was performed. It
was noted that the 1 ns timeframe chosen for the analysis was crucial in
distinguishing processes occurring on the nanosecond scale or slower.
This consideration significantly reduces the likelihood that the exchanges
between atomic environments were merely attributable to thermal vibra-
tions. Additionally, the SOAP spectra for each atom in the nanoparticles
were calculated based on 1000 molecular dynamics snapshots, taken every
1 ns from the last microsecond of the simulations. This approach, which
uses unprocessed atomic positions, was critical for an accurate represen-
tation of the dynamics within the nanoparticles.
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the author.
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