
09 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Lessons learned from multi-objective automatic optimizations of classical three-site rigid water models using microscopic
and macroscopic target experimental observables / Perrone, Mattia; Capelli, Riccardo; Empereur-mot, Charly; Hassanali,
Ali; Pavan, Giovanni M.. - In: JOURNAL OF CHEMICAL AND ENGINEERING DATA. - ISSN 0021-9568. - 68:12(2023),
pp. 3228-3241. [10.1021/acs.jced.3c00538]

Original

Lessons learned from multi-objective automatic optimizations of classical three-site rigid water models
using microscopic and macroscopic target experimental observables

Publisher:

Published
DOI:10.1021/acs.jced.3c00538

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988117 since: 2024-04-26T13:04:49Z

American Chemical Society



Lessons Learned from Multiobjective Automatic Optimizations of
Classical Three-Site Rigid Water Models Using Microscopic and
Macroscopic Target Experimental Observables
Published as part of Journal of Chemical & Engineering Data virtual special issue “Machine Learning for
Thermophysical Properties”.

Mattia Perrone, Riccardo Capelli, Charly Empereur-mot, Ali Hassanali, and Giovanni M. Pavan*

Cite This: J. Chem. Eng. Data 2023, 68, 3228−3241 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The development of accurate water models is of primary importance for molecular simulations. Despite their intrinsic
approximations, three-site rigid water models are still ubiquitously used to simulate a variety of molecular systems. Automatic
optimization approaches have been recently used to iteratively refine three-site water models to fit macroscopic (average)
thermodynamic properties, providing state-of-the-art three-site models that still present some deviations from the liquid water
properties. Here, we show the results obtained by automatically optimizing three-site rigid water models to fit a combination of
microscopic and macroscopic experimental observables. We use Swarm-CG, a multiobjective particle-swarm-optimization algorithm,
for training the models to reproduce the experimental radial distribution functions of liquid water at various temperatures (rich in
microscopic-level information on, e.g., the local orientation and interactions of the water molecules). We systematically analyze the
agreement of these models with experimental observables and the effect of adding macroscopic information to the training set. Our
results demonstrate how adding microscopic-rich information in the training of water models allows one to achieve state-of-the-art
accuracy in an efficient way. Limitations in the approach and in the approximated description of water in these three-site models are
also discussed, providing a demonstrative case useful for the optimization of approximated molecular models, in general.

■ INTRODUCTION

The development and optimization of classical molecular
models is typically challenging and time-consuming.1,2 Despite
notable progresses in developing efficient methods and
optimization approaches,3−9 accurately predicting experimen-
tal observables and ensuring transferability across varying
thermodynamics conditions remains in most cases a significant
challenge.10−12 A considerable example is the case of water, for
which current state-of-art models struggle in matching all the
relevant cases of interest at the same time,13 e.g., bulk
properties,14 free energy of hydration of compounds,15

stabilization of lipid membranes,16 interaction with proteins,17

etc.

Although intrinsically approximated, classical three-site rigid
water models are widely used in molecular dynamics (MD)
simulations.14 One key requirement is that such simplified
models can capture fairly well the properties of water, even
relying on a reduced number of parameters. In such a
representation, the interaction potential is centered on three
sites, each of which corresponds to one of the atoms in the

Received: September 8, 2023
Revised: November 17, 2023
Accepted: November 21, 2023
Published: December 5, 2023

Articlepubs.acs.org/jced

© 2023 The Authors. Published by
American Chemical Society

3228
https://doi.org/10.1021/acs.jced.3c00538
J. Chem. Eng. Data 2023, 68, 3228−3241

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

PO
L

IT
E

C
N

IC
O

 D
I 

T
O

R
IN

O
 o

n 
A

pr
il 

26
, 2

02
4 

at
 1

2:
57

:5
5 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/page/virtual-collections.html?journal=jceaax&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mattia+Perrone"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Riccardo+Capelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charly+Empereur-mot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ali+Hassanali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giovanni+M.+Pavan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jced.3c00538&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.3c00538?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jceaax/68/12?ref=pdf
https://pubs.acs.org/toc/jceaax/68/12?ref=pdf
https://pubs.acs.org/toc/jceaax/68/12?ref=pdf
https://pubs.acs.org/toc/jceaax/68/12?ref=pdf
pubs.acs.org/jced?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jced.3c00538?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jced?ref=pdf
https://pubs.acs.org/jced?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


water molecule (O, H, and H). Early versions of these models,
including, e.g., TIP3P18 and SPC,19 were originally para-
meterized to accurately reproduce basic thermodynamic
properties, e.g., density and enthalpy of vaporization under
standard conditions. Despite their age, these models continue
to be extensively utilized in classical MD simulations, and most
general-purpose force fields are parametrized on them.20−22

With the increase in computing power, it has become possible
to perform high-throughput parametrization, often in an
automatic fashion,23,24 by considering a large set of
experimental observables under different conditions as the
reference data to fit.

Over the past decade, two notable general-purpose three-site
water models that have been obtained through iterative
optimization, TIP3P-FB,25 and OPC3,26 have led to a
substantial improvement of the state of the art. Such models
were refined to accurately reproduce a set of thermodynamic
properties, including density, heat of vaporization, coefficient
of thermal expansion, isothermal compressibility, isobaric heat
capacity, and static dielectric constant. In particular, TIP3P-FB
was optimized to accurately reproduce these observables over a
wide range of thermodynamic conditions, spanning a total of
40 training points at different temperatures and pressures. Such
a parallel/multiobjective parameterization has a positive effect
on the transferability of the optimized model,27 e.g., across
different conditions. In contrast, OPC3 was optimized to
match such observables under standard conditions (298 K and
1 bar) while simultaneously imposing a constraint on the
geometry of the water molecule. Specifically, a fixed hydro-
gen−oxygen−hydrogen angle value is imposed to ensure that
the resulting linear quadrupole moment is equal to zero. This
constraint is applied because the quadrupole moment is known
to have minimal significance in the context of the model’s
overall performance and accuracy.28 While both models have
demonstrated similar accuracy in reproducing thermodynamic
properties, they do exhibit some distinct characteristics.

TIP3P-FB is characterized by a larger geometry, with a
distance of 0.101 nm between the oxygen and hydrogen sites
(dOH) and 0.164 nm between the hydrogen sites (dHH).
Furthermore, the oxygen site in TIP3P-FB carries a partial
charge of −0.848 e. In contrast, the geometry of OPC3 is
smaller, with dOH and dHH values equal to 0.098 and 0.160 nm,
respectively. Additionally, the oxygen site in OPC3 has a
charge of −0.895 e. The variability observed between the
optimized models may be attributed to an intrinsic limitation
arising from the simplified description of the system.
Furthermore, as both models are trained solely on average
parameters derived from a top-down approach, it becomes
intriguing to explore the potential advantages of integrating
additional data on microscopic target features through a
bottom-up approach.

In recent works, we introduced Swarm-CG,7,10 a versatile
optimization software that is able to integrate bottom-up and
top-down references in a multiobjective and multidirectional
optimization framework for coarse-grained models. Building
upon Swarm-CG’s capabilities, we propose a novel strategy for
optimizing three-site water models by incorporating exper-
imental data on the microscopic structure of water, particularly
the radial distribution functions (RDF) of its atoms.
Specifically, we utilize the oxygen−oxygen RDF (gOO),
oxygen−hydrogen RDF (gOH), and hydrogen−hydrogen
RDF (gHH) as the primary references for deriving our model.
While our main objective is not to develop the most accurate
three-site rigid model, we aim to explore the capabilities of
Swarm-CG and assess the room for improvement in what can
be considered de facto a coarse-grained description of water.
The results we obtained are significant for two main reasons.
First, we demonstrate that by selecting the optimization targets
spanning different scales (micro + macro), such as the RDFs,
density, and dielectric constant, it is possible to obtain an
optimized water model with comparable accuracy to that of
state-of-the-art models like TIP3P-FB and OPC3 while

Figure 1. Overview of the study. (a) Representation of a water molecule and schematic of the five parameters that define the three-site model. (b)
Experimental data used in this work: radial distribution functions g(r) (bottom-up reference), liquid water density (ρ) as a function of temperature,
and static dielectric constant (ε) as a function of temperature (top-down references). (c) Workflow diagram illustrating the process of the study.
Reference experimental data serve as targets guiding the optimization process. Swarm-CG runs iterative MD simulations, adjusting the parameters
of the water molecule to reach the best match with the reference experimental data. The resulting optimized model is then evaluated and validated
a posteriori against a set of experimental observables at different temperatures not in the training set.
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maintaining computational efficiency and robustness. Second,
our findings allow us to investigate the chemical and physical
origins that control the accuracy limits (indeterminacy) of
model optimization. We investigate how these limits are
intrinsic and are connected to the physical constraints of the
model itself. The insights gained from this study hold
significance not only for optimizing the specific system
presented in this paper but also for any approximated model
that relies on higher-accuracy data or incorporates top-down
constraints based on experimental evidence.

■ METHODS
The optimization work conducted herein builds on a
multireference particle swarm optimization software that we
developed recently: Swarm-CG.7,10 In particular, Swarm-CG
has been developed to optimize bonded and nonbonded
parameters in molecular models to fit experimental results
(top-down references) and the behavior seen in all-atom MD
trajectories (bottom-up references). Swarm-CG has been
successfully tested to optimize a variety of molecular systems
(e.g., lipid models27). In this paper, Swarm-CG has been
adapted for this specific case study (a dedicated variant can be
found at: https://github.com/GMPavanLab/wateropti). The
five parameters of a general three-site rigid water model that
are iteratively tuned (illustrated in Figure 1a) are (i) the
intramolecular distance between the oxygen and the hydrogen
sites, dOH, (ii) the intramolecular distance between the two
hydrogen sites, dHH, (iii) the absolute charge of the oxygen site,
q, and the two functional parameters of the Lennard−Jones
potential, which is centered on the oxygen site, namely (iv)
sigma σ and (v) epsilon ε. To achieve this objective, Swarm-
CG relies on a population-based global optimization algorithm
inspired by the collective movement of birds flocks and fish
schools, specifically Fuzzy Self-Tuning Particle Swarm
Optimization (FST-PSO).29 In PSO algorithms, a swarm of
individuals (referred to as a swarm of “particles”) moves
iteratively inside a bounded search space and cooperates to
identify the best solution for a problem according to a scoring
function. In FST-PSO, fuzzy rules allow to self-tune the hyper-
parameters of the PSO algorithm during optimization, which
improves its performance.29 Each particle of the swarm holds a
set of values to be optimized and represents a distinct putative
force field for the water molecule. Classical MD simulations are
conducted automatically at each iteration of the algorithm
using the iteratively refined force field parameters, and our
scoring function evaluates the deviation of the models from
target properties. These particles iteratively refine their
positions in the parameter space (namely, they fine-tune the
water model), according to the global best solution discovered
by the swarm of particles. This iterative process continues until
a predefined termination criterion is met, such as the
achievement of a satisfactory solution. Population-based
algorithms such as FST-PSO are efficient for global
optimization tasks such as those at hand in this study. Here,
we initialize the swarm of particles randomly within predefined
boundaries of the force field parameter space (five
dimensions), which enables its thorough exploration and
mitigates premature convergence problems to local optima. In
our case, we have continuated the optimization until all
particles converge at the same point in the parameter space
(e.g., they propose the same water force field), and no
substantial changes are made within the iterations. Swarm-CG
exhibits inherent robustness to variations in the initial

conditions due to the random distribution of particles in the
parameter space at initialization. This stochasticity facilitates
exploration across diverse solution regions, mitigating
premature convergence to local minima. The algorithm further
adapts parameters iteratively, guided by the fitness of the best
particles (representing optimal force fields) acting as attractors
for other particles.

We conducted our optimizations initializing swarms
composed of 15 particles in the first and third subsections of
the results and 26 particles in the second subsection. In each
optimization procedure, a series of classical MD simulations
are performed, and their discrepancy from the target properties
is evaluated according to a scoring function (described below).
Finally, the obtained optimized models are simulated at various
temperatures across the liquid regime, and observables of
interest are computed.
Scoring Function. To quantify the discrepancy between

the RDFs obtained from the simulations of the models vs the
experimental ones from liquid water (at various temperatures),
we introduced a scoring function based on the Earth mover’s
distance (EMD) or Wasserstein distance.30 The Wasserstein
distance is a measure of the dissimilarity between two
probability distributions, based on the concept of optimal
transport.31 It represents the minimum cost of transforming
one distribution into the other, where the cost is proportional
to the distance between pairs of points. In our case, we used
the Wasserstein distance to compare the simulated RDFs with
the experimental RDFs, with the distance matrix representing
the differences between the radial distances of the bins of the
distributions. In our work, we modified the standard
computation of the Wasserstein distance by using the square
of the distance matrix instead of the distance itself. Such a
modification allowed to better account (weights more) the
difference between the g(r) at a larger distance, which is
important for capturing the long-range behavior of the water−
water interactions and to avoid overfitting on short-range
interactions. Preliminary tests demonstrated that this provided
the best setup to compare g(r) curves as a whole in the most
robust way. This modification also allows for mitigating
potential problems emerging from the fact that classical three-
site water models usually have difficulty reproducing the first
peak of the RDFs (due to the fact that quantum effects are not
included in the description of the system).32

In particular, the scoring function used in the optimization
presented the first subsection of the results, which is

= + +S EMD EMD EMDg g gOO OH HH (1)

where S represents the score and EMDgOO, EMDgOH, and
EMDgHH represent the Earth mover’s distance measurements
of the three RDFs considered, namely, oxygen−oxygen,
oxygen−hydrogen, and hydrogen−hydrogen, respectively. In
this way, the scoring function does not capture discrepancies
only in terms of distances and spatial displacement of the water
molecules with respect to each other but also in terms of their
natural orientation. This provides us with a scoring function
that is rich in microscopic structural information on the
system.

The optimizations presented in the second and third
subsections of the Results and Discussion section involved
not only fitting of microscopic features but also the density and
static dielectric constant (macroscopic observables). The
adopted score is expressed as
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= + + + | |

+ | |

S w w

w

(EMD EMD EMD )EMD g g g sim exp

sim exp

OO OH HH

(2)

where the first term represents the difference between the
simulated and experimental RDFs for each type of particle−
particle correlation. The second and third terms take into
account the difference between the simulated and experimental
values of density ρ and static dielectric constant ε, respectively.
Each term in the score function has a weight assigned to it,
which determines its relative importance in the optimization
process. The weights were chosen as wEMD = 0.5, wρ = 0.3, and
wε = 0.2. Preliminary tests demonstrated that these weights
ensured a balanced representation in the optimization process,
allowing us to prioritize and place emphasis on fitting the
RDFs over other macroscopic features of the systems. A
comparison of experimental RDF with simulated g(r) examples
scored according to our metrics is present in Figure S1 of the
Supporting Information.

■ RESULTS AND DISCUSSION
This part is organized as follows. The first subsection presents
the results of the model optimized to reproduce the
experimental RDFs (gOO, gOH, and gHH) under standard
conditions of 298 K and 1 bar. This approach focuses primarily
on a pure bottom-up methodology, where the optimization is
driven by the microscopic features of the water model. In the
second subsection, we extend our analysis by optimizing the
model to reproduce not only the RDFs but also the
experimental density and static dielectric constant. Further-
more, the system is trained at two additional temperatures,
specifically 280 and 343 K. This comprehensive optimization
approach aims to capture a broader range of experimental
observables, combining both bottom-up and top-down
references. Finally, the last subsection provides a detailed
investigation of the indeterminacy of the optimization problem
within the context of the three-site representation.
Multiobjective Optimization Based on Microscopic

System Features. In a first optimization test, we trained the

Figure 2. Results obtained from the first optimization, where the model OPTI 1T has been trained to reproduce experimental RDFs at 298 K and 1
bar. (a) RDF reproduction and comparison with other three-site water models: complete data (without superposition of curves) are provided in the
Supporting Information (Figure S3). (b) Ranking of RDFs’ reproduction accuracy was based on our score. (c) A posteriori validation of the model
with respect to density and static dielectric constant. Dashed vertical gray lines indicate the temperature at which the model was trained.
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optimized water model according to a purely bottom-up
approach to reproduce the experimental RDFs (gOO, gOH, and
gHH) of water under the standard conditions of 298 K and 1
bar. At every iteration, Swarm-CG tests new parameters in the
attempt to minimize the discrepancy between the gOO, gOH,
and gHH obtained from the model and the experimental ones
under standard conditions. The obtained results are listed in
Figure 2. A comparison with other popular three-site water
models of the same type (OPC3,33 TIP3P-FB,25 SPC,19

SPCE,34 SPCEb,35 and TIP3P18) is also provided. A summary
of the parameters for these models can be found in Table S1 of
the Supporting Information.

According to the score that we formulated to quantify the
deviation of the simulated RDFs from the experimental
reference (eq 1), our model exhibited the highest level of
accuracy in replicating the experimental RDFs (Figure 2b).
Despite the fact that a model optimized as such is found to be
the best one, this is not surprising since our model was
optimized to reproduce experimental RDFs. Nonetheless, it

can be noticed that also in our case, the oxygen−hydrogen
RDF is overlocalized, which appears as unavoidable in such
models, where the nuclear quantum effects are not explicitly
included. Similarly, the attempt to fit at best the second and
third solvation shell in the oxygen−oxygen RDF (identified by
the second and third gOO peaks) produces an unavoidable
overlocalization of the first peak (an enlarged plot of the RDFs
around the solvation shells is provided for clarity in Figure S2
of the Supporting Information).

It is worth noting that even at the training temperature, the
value of the dielectric constant predicted by our best model
deviated from the target by a substantial amount. Such a lack of
accuracy can be attributed to the fact that training the water
model on RDFs alone does not provide sufficient information
about the interactions between atoms. As a result, quantities
such as the static dielectric constant, which depends on dipole
fluctuations and is sensitive to the charges on the water model,
are not reproduced accurately enough if the model is not
trained to do so. This also means that although the RDFs are

Figure 3. Performance of the OPTI-3T AND OPTI3Tε models and comparison with other three-site models against observables of interest.
Reproduction of RDFs, isothermal compressibility, surface tension, and quantification of the deviation of simulated observables with respect to
experimental data are provided in the Supporting Information (Figures S3−S6).
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well reproduced, this is not a sufficient condition for
macroscopic properties to emerge spontaneously in the system.
These considerations motivated us to also incorporate
additional top-down experimental targets into the scoring
function. The results of this integration are illustrated in the
following section.

In terms of computational time, the refinement of five
parameters of the water model at the single temperature
condition required 4 days (wall-clock time) to reach
convergence (500 swarm iterations) using 26 particles in the
swarm and using 36 CPU cores, each simulation running on
nine CPU cores equipped with a GPU.
Multiobjective Multitemperature Optimization

Based on Microscopic and Macroscopic Observables.
In a second test, we trained our water model using a hybrid
approach, incorporating both top-down and bottom-up
references, to attain an accurate reproduction of the
experimental RDFs, density, and static dielectric constant at
three distinct temperatures: 280, 298, and 343 K. This is thus a
multitemperature multiobjective optimization combining top-
down (microscopic) and bottom-up (macroscopic) target
observables. For the optimized model (labeled as OPTI-3T),
we assessed its performance in replicating key observables
within the liquid phase. These included density, static dielectric
constant, enthalpy of vaporization, thermal expansion co-
efficient, isobaric heat capacity, and self-diffusion coefficient
(refer to Figure 3). Additional properties, such as isothermal
compressibility, surface tension, and reproduction of the RDFs,
are present in the Supporting Information (Figures S3−S5).
The overall accuracy of OPTI-3T can be compared with the
most advanced state-of-the-art data-driven trained models,
such as TIP3P-FB25 and OPC3.33 In particular, worth noting is
the agreement of our model with the experimental enthalpy of
vaporization and self-diffusion coefficient at all of the explored
temperatures. The enthalpy of vaporization reflects the
strength of interactions between water molecules in the liquid
state, representing the energy required to transition a molecule
from the liquid phase to the vapor phase. On the other hand,
the self-diffusion coefficient characterizes the dynamics of
individual molecule diffusion within the liquid, indicating the
ease of movement in a medium composed of other water
molecules. Notably, our optimized model demonstrates
remarkable agreement with experimental results for these
two parameters despite not being explicitly targeted during
training. This agreement underscores the significance of
training the model on the RDF and these two additional
macroscopic targets as they provide essential information for

accurately reproducing fundamental thermodynamic and
kinetic properties at the local level. A quantification of the
accuracy of our OPTI-3T model by means of average deviation
from the various experimental observables is present in Figure
S6 of the Supporting Information. Overall, these results show
the striking positive effect of training the water model based on
microscopic information-rich observables (e.g., the RDFs) and
how the microscopic characteristics of the model significantly
influence most of its properties.

In the context of the development of empirical force fields,
as underlined by Vega,36 a fundamental ill-posed assumption is
typically made: namely, the charges used to calculate the
potential energy surface (PES) are the same as those used to
sample the dipole moment surface (DMS). This has led to the
development of models matching experimental properties that
depend directly on the PES (such as, e.g., density and enthalpy
of vaporization) but that struggle to achieve an experimentally
consistent reproduction of the static dielectric constant, both
in the solid and liquid phase.37 In fact, the static dielectric
constant depends on both DMS and PES, and the optimal
charges used to describe the polarization of water may differ
from those used to describe PES. A possible approach to tackle
this problem, as shown in ref38, consists, e.g., in scaling the
values of charges and dipole moment when computing
properties that depend on the DMS (such as the static
dielectric constant). The scaling factor λ is equal to

= DMS

PES (3)

where μDMS is the dipole moment of the DMS and μPES is the
dipole moment computed with the charges used to sample the
PES. The scaled static dielectric constant ελ is equal to

= +1 ( 1)PES
2

(4)

where εPES is the static dielectric constant computed using the
charges used to sample the PES. For sake of completeness, we
thus performed another optimization under the same
condition of OPTI-3T, this time accounting for corrections
to the static dielectric constant following eq 4. In the context of
our work, the term μDMS in eq 3 represents the experimental
value of the water molecule immersed in the liquid phase and
has been assumed equal to 2.9 D (following recent
estimations39,40). The terms μPES and εPES are, respectively,
the dipole moment and the static dielectric constant computed
using the unscaled charges adopted during the simulation. In
such a way, we are able to correct the values of the static
dielectric constants of the models proposed by Swarm-CG

Table 1. Comparison of Three-Site Models and Experimental Values for Linear Dipole Moment μ, Quadrupole Moments Qt
and Q0, TMD, Melting Temperature Tm, Critical Temperature Tc, and Critical Density ρc

a

model μ [D] Qt [DÅ] Q0 [B] TMD [K] Tm [K] Tc [K] ρc [g/cm3]

EXP 2.939 NA NA 277 273.15 647.1 0.322
SPC 2.27 1.97 0.00 222 190.543 567 0.324
TIP3P 2.35 1.72 0.23 204 146(5)44 555 0.301
SPCE 2.35 2.04 0.00 248 214(3)45 607 0.324
SPCEb 2.37 2.08 0.00 262 224(4) 625 0.332
TIP3P-FB 2.42 2.05 0.07 256 216(4)46 626 0.329
OPC3 2.43 2.06 0.00 248 210(10)47 633 0.327
OPTI-3T (this work) 2.43 2.03 0.03 244 200(4) 627 0.327
OPTI-3Tε (this work) 2.28 2.10 −0.16 246 214(4) 596 0.322

aThe values of uncertainty of TMD are ±1 K, and the values of uncertainty of critical temperatures and density are equal to ±4 K ± 0.02 g/cm3,
respectively.
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during the optimization procedure. The model obtained in this
optimization is labeled as OPTI-3Tε, and the results are
showcased in Figure 3 alongside those of OPTI-3T.

The data obtained for OPTI-3Tε prove that a better match
in reproducing the static dielectric constant is attained when
scaled values are taken into account. Furthermore, the
substantial offset of all three-site models observed in the
scaled static dielectric constant illustrates the significant
mismatch between optimal charges that fit the PES and the
DMS. We have also calculated and tabulated (in Table 1) the
dipole and quadrupole moments (calculated with PES charges)
as well as the temperature of maximum density (TMD),
melting temperature, and liquid−vapor critical point. For the
models optimized in this work, the dipole μ is observed to be
∼2.3 D. This value assumes an intermediate position between
the experimental value assumed by the molecule in the gas
phase (∼1.8 D) and the one assumed in the liquid phase (∼2.9
D). The quadrupole moments Qt and Q0 are known to

significantly influence the water structure41 and phase
diagram.42 For OPTI-3T, the quadrupole moments are similar
to those of TIP3P-FB and OPC3. On the other hand, OPTI-
3Tε presents a significant divergence in this respect, also
exhibiting a negative Q0 value. This divergence can be
attributed to the different methodology adopted during the
optimization phase, where the decision to scale the dielectric
constant caused a deviation toward quadrupole values that are
outliers when compared to other models. Both the TMD and
the critical temperature are verified to be lower than the
experimental values for both optimized models. Such a
discrepancy underlines an inherent limitation of three-site
models in representing these properties. Although the
dielectric constant constituted only 20% of the total
optimization score, altering the optimization approach by
scaling the dielectric constants exerted a substantial influence
on the resultant models. This is particularly noticeable in the
case of OPTI-3Tε, which adeptly reproduces the scaled

Figure 4. Results obtained by running a series of identical optimizations, initialized at different points of the parameters space. (a) Models obtained
as solutions are displayed with PCA. Each color represents a different optimization run. (b) Density isolines. (c) Parameters that are tuned during
the optimization�dHH and oxygen charge�as a function of the number of iterations. (d) Example of quantities calculated a posteriori that are
related to the energy of interaction between molecules�e.g., enthalpy of vaporization and dipole moment�as a function of the number of
iterations. (e) Schematic representation of the solutions obtained from the series of optimizations: interdependence between size of the molecule
and partial charges.
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dielectric, enthalpy of vaporization, and specific heat capacity
(without considering dipole corrections, Figure S7). However,
even in this scenario, these results demonstrate once more how
improving the accuracy in reproducing certain properties has
the counter-effect of a significant worsening in others (e.g.,
critical temperature and surface tension�see Table 1 and
Figure S5 in the Supporting Information). Considering these
observations, one can speculate that a parameter set for a
three-site water model may only suboptimally fit both the PES
and the DMS, and that there is a limit in the accuracy tightly
related to the physical limits of these models.

In terms of computational time, the refinement of five
parameters of the water model at three levels of temperature
required 8 days (wall-clock time) to reach convergence (300
swarm iterations) using 15 particles in the swarm and using 36
CPU cores, each simulation running on nine CPU cores
equipped with a GPU.

These results give rise to several important considerations.
First, the results obtained with our method demonstrate that,
despite the fact that our models reproduce globally well the
explored thermodynamic properties across the different
conditions, the performances of OPTI-3T are not distant
from those of, e.g., OPC3 and TIP3P-FB. This supports the
hypothesis that, substantially, there is a limited room for
radically improving the performances of three-site rigid water
models. All our results suggest that there is an intrinsic limit in
the accuracy that is achievable with models where the
representation of the water molecule is so simplified. This
leads us to fundamental questions. What are the key factors
underpinning such limits? Are these imputable, e.g., to
limitations in the optimization method itself or to intrinsic
limits of the model? In the next section, we will deeper
investigate these questions, obtaining interesting insights.
Intrinsic Physical Limits and Indeterminate Optimi-

zations of Rigid Three-Site Water Models. Recently, Izadi
et al.33 suggested that three-site water models somehow
possess inherent accuracy limitations due to their over-
simplified nature, which hinders their ability to achieve a
complete and experimentally consistent reproduction of
observables across the liquid phase. Nevertheless, a relevant
question that remains unanswered is the precise reason behind
this intrinsic limitation.

The performance of an automatic optimization procedure
may be significantly influenced by a priori choices concerning
the methodology and training variables. As a result, the ability
of the model to accurately fit different observables may vary to
some extent. In the case of OPC3, for example, it was
considered crucial to impose constraints on the geometry of
the molecules in order to ensure a quadrupole moment of
zero.33 In the case of TIP3P-FB, a predominant emphasis was
placed on a top-down approach, involving the simultaneous
fitting to multiple thermodynamic observables across the liquid
regime of water.25 To investigate the impact of these initial
conditions and gain a comprehensive understanding of the
optimization process, we conducted a series of six
optimizations under identical constraints. Specifically, we
minimized the discrepancy of RDFs, density, and static
dielectric constant under the standard conditions of 298 K
and 1 bar. Since the results obtained with such optimization
cycles vary to some extent, this setup did not produce a single
solution (identical in all six runs) but rather a group of
solutions. Noteworthily, the obtained solutions demonstrate a
comparable score (as illustrated in Figure S7 of the Supporting

Information). Moreover, we conducted a principal component
analysis (PCA) of all explored solutions achieved through the
use of Swarm-CG. Figure 4a shows the high-density regions
(i.e., the solutions projected on the first two principal
components) that represent the optimal solution obtained
from our optimization cycles. The different colors represent
different runs. The contour lines illustrated in Figure 4b
represent density isolines, which enable us to identify the
regions of higher density points containing a set of optimal
water models (according to our scoring function), which are
characterized by a slightly different set of parameters. These
data demonstrate how Swarm-CG brings the model systemati-
cally not to a specific solution (i.e., to a specific optimal model)
but to a region of the space that contains “equally optimal,
although slightly different solutions”. Interesting questions are,
for example, why the method behaves in this way and
specifically why slightly different solutions are “equally
optimal”.

A deeper inspection of the “optimal solutions” provided by
Swarm-CG revealed interesting patterns. In particular, it is
interesting to observe that the dipole moments of all of the
models belonging to this minimum is identical. Namely,
despite the fact that their geometry or partial charges can be
slightly larger/smaller (Figure 4c) in the various solutions,
these change in such a way that the dipole moment the
molecule is conserved. In such a way, the enthalpy of
vaporization is also conserved across the various solutions
(Figure 4d).

It is worth noting that these two properties (the dipole
moment and the enthalpy of vaporization) are evaluated a
posteriori and are not explicitly used to train the models during
the optimization process. Moreover, both such observables are
related to the extent of the intermolecular interactions, as the
enthalpy of vaporization is proportional to the potential energy
in the system and the interaction between dipoles of the
molecules plays a key role in it. Figure 4d presents a visual
representation of the variability in the charge and geometry of
the water models generated by the different optimization runs.
In qualitative terms, an increase in charge corresponds to a
reduction in the size of the molecule, while a decrease in
charge results in an increase in the size (Figure 4c,e).
Additionally, we observed changes in the Lennard−Jones
interactions with variations in sigma and epsilon values (Figure
S8 in the Supporting Information). The obtained results and
considerations illustrate how the collective properties of these
models are largely controlled by the interplay of molecular
dipoles and their interactions with each other.

Since in such a simplified three-site models, the majority of
water−water intermolecular interactions are largely governed
by the dipole moment, this introduces an intrinsic level of
indeterminacy in the optimization. Recently, we have observed
similar results also in the framework of the automatic
optimization of, e.g., lipid models using Swarm-CG, where a
certain level of model accuracy can be achieved, although
accompanied by an inherent uncertainty. While uncertainties
can arise from various sources in automatic approaches, such as
the number of objectives, parameter selection, and optimiza-
tion methods, it is worth noting that the uncertainty we are
referring to in this context originates elsewhere. Here, due to
the simplified physical description of the three-site rigid water
model, the optimization problem becomes inherently un-
determined as it seeks to find an optimized dipole, which is a
composite variable represented by the product of charge and
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geometry (μ = qd). This leads to a degeneracy characterized by
different optimal solutions with varying combinations of
charges and geometry. To overcome this limitation, a potential
improvement could involve incorporating additional parame-
ters that decouple the geometric and electrostatic character-
istics of the water model during the training process. For
example, one approach could be training the model to
reproduce a specific geometry obtained with higher accuracy
from quantum mechanical (QM) approaches or calculating the
electrostatic potential. However, implementing such an
approach encounters challenges due to the substantial
differences between the geometric and electrostatic descrip-
tions at the QM level compared to the all-atom models, as
demonstrated by recent research on OPC3.26

An interesting outcome of these considerations is that while
our approach can achieve optimal solutions at least as good as
the state-of-the-art models in a very efficient way, it also
underlines how such all atom water models are de facto a
coarse-grained description of the real water molecule features.
Like other coarse-grained models, they encounter degeneracy
due to simplified representations of system degrees of freedom,
resulting in a certain level of precision combined with inherent
indeterminacy. This indeterminacy implies that different
parameterizations can lead to similar behaviors. Notably, in
our case, this degeneracy yields a set of nonidentical solutions
that belong to a minimum that is identified by the PCA.

These considerations suggest that similar principles used to
parameterize other three-site rigid water models generally
encounter similar limitations (i.e., the challenges and
constraints faced in developing and optimizing water models
based on similar principles are likely to be shared). To reduce
the uncertainty in the model outcomes, another possible
solution is to employ extra sites in the model, such as in the
four-site models like TIP4P18 or TIP4P-ICE.48 Such an
addition would permit us to expand the degrees of freedom to
tune, allowing for a better fit of some properties, e.g., the curve
of density across different temperatures. De facto, this
underlines how, to improve substantially the performances of
three-site water models, it is necessary to increase the
resolution of the model, accounting for more degrees of
freedom.

■ CONCLUSIONS
In this work, we explored the effect of combining microscopic-
and macroscopic-rich information into a training set of
experimental observables used to automatically optimize
classical three-site water models. In particular, as the
microscopic target observables, we use the experimental gOO,
gOH, and gHH RDFs of liquid water at various temperatures
that, altogether, contain information not only of how strongly
the water molecules interact but also on how the molecules are
organized in space with respect to each other. A first
optimization of the water model under standard conditions
(298 K and 1 bar) using only a bottom-up (microscopic)
reference demonstrated how such microscopic information
alone is insufficient to obtain an experimentally consistent
reproduction of all other screened macroscopic observables for
the liquid phase of water, especially for what pertains to the
density and dielectric constant of liquid water.

Including in the training set and in the score, in a second
test, the density and static dielectric constant of liquid water
were then seen to provide considerable improvements. The
obtained model showed a remarkable improvement in

reproducing macroscopic properties, especially with respect
to the self-diffusion coefficient and enthalpy of vaporization.
This also suggests that these properties�density and dielectric
constant�are not strongly dependent on the g(r) of water.
Overall, we found that our optimized water model (called
OPTI-3T herein) exhibits a comparable level of accuracy to
that of the two models OPC3 and TIP3P-FB, which were also
obtained through automatic optimization approaches and are
considered state-of-the-art models in the realm of three-site
rigid water models. Nonetheless, it is worth noting how, in our
case, combining microscopic and macroscopic target properties
allows for achieving such a level of accuracy in an efficient way
and with a relatively reduced computational time (e.g., TIP3P-
FB is trained on a large amount of thermodynamic properties
at various temperatures in a computationally intensive
process). At the same time, our tests show that there is little
room for further improvement in these models by, e.g., adding
more experimental observables in the training set, etc., which
suggested that all these models are somewhat very similar and
possibly nearly consistent with each other, considering the
precision that it is reasonable to expect from them. Moreover,
the calculation performed using the new estimate of static
dielectric constant returned a new model that was improved in
some observable and worse in others, corroborating the
intrinsic limitation of three-sites representation.

The series of optimizations that we conducted herein under
identical constraints (namely, fitting the experimental RDFs,
density, and static dielectric constant at standard conditions)
shows that these models are somewhat intrinsically limited in
their accuracy. The same is true in some sense concerning the
determinacy of their optimization cycles. The results shown in
Figure 4 show how many of the screened thermodynamic
observables are controlled in these simplified water models by
the water dipole (μ), which is a composite variable that
depends on both the charge (q) and geometry (d) of the water
model (μ = qd). This leads to inherent indeterminacy in the
solutions that are systematically obtained. This means that
different combinations of charge and size can correspond to
equally optimal solutions toward fitting of the targeted
properties. A set of optimal solutions is thus typically obtained
in such automatic optimizations instead of a single specific one.
The PCA data of Figure 4a,b show how all such obtained
“optimal” solutions belong, in our case, to the same global
high-density minimum. In Figure 4c,d, it is demonstrated how
all the slightly different solutions belonging to such minimum
represent nearly identical molecular dipole and enthalpy of
vaporization. While the broadness of such minima could be
interpreted, e.g., as being imputable to some kind of statistical
error or limit in the particle swarm optimization method used
herein, these results suggest that this is most likely related to an
intrinsic indeterminacy in how the problem is posed. In
particular, the degrees of freedom in such “coarse-grained”
atomistic description of the water models are so limited that
the optimization process degenerates, providing equally
optimal solutions that are nonetheless different from each
other.

These results are interesting because they demonstrate that
when dealing with the optimization of approximated models,
there will be inevitably intrinsic limits due to degeneration of
the optimal set of parameters that satisfy the conditions that
are posed. In such a case, further improvements cannot be
achieved without introducing additional degrees of freedom
that can decouple in some way such composite variables into
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the fundamental ones, allowing to fine-tune the model. One
way could be, e.g., to add some higher (quantum) level
additional constraint that allows to decouple the dependence
on the charge (q) from that of geometry (d) in the solution.
However, the geometry and electrostatics of QM water
molecules are so different from those of these AA models
that tests in this sense proved inefficient. In the case of the
classical water models studied herein, reaching higher precision
thus requires expanding the model’s representation by adding
additional “classical” degrees of freedom, for example, allowing
for a more flexible and accurate description of the system. This
is exactly the case of the higher precision that can be achieved
by, e.g., four- or five-site models.49,50 Moreover, altering the
degrees of freedom can have important effects, for example, on
subtle dynamical mechanisms associated with water reorienta-
tional dynamics, as recently shown.51 However, these results
are also interesting for the development of approximate
molecular models in general. Recently, we have observed
similar intrinsic limitations also in the optimization of, e.g.,
coarse-grained models of a variety of other molecular
systems.7,10,27 This observation serves as a valuable lesson for
developing models of all kinds and not just in the context of
water simulations. Such inherent limitations and these
challenges encountered in optimizing approximated models
demonstrate the importance of considering the complexity of
the system being studied and the type of information lost with
approximated molecular models. The integration of multiple
references and, in particular, combining bottom-up and top-
down microscopic/macroscopic-level information in the train-
ing set can improve the efficiency and robustness in the
models’ optimization. Nonetheless, the results discussed herein
also offer an unambiguous example of how understanding the
physical limits of approximated models can provide precious
knowledge for guiding future research toward more robust and
reliable modeling approaches.

■ COMPUTATIONAL DETAILS
MD Simulations. All of the simulations have been

conducted using GROMACS version 2021.552 with the
following protocol. The starting systems’ configuration is a
cubic box containing 1024 water molecules, arranged in initial
random configurations, using PACKMOL.53 After a prelimi-
nary energy minimization via steepest descent algorithm (for 2
× 103 steps), the system is then equilibrated for 5 ns in the
NpT ensemble and simulated for 10 ns in the same ensemble.
Both these equilibration and production phases are simulated
with a 2 fs time step. We kept the temperature constant with a
velocity rescale thermostat54 (with a time constant of 0.2 ps)
and the pressure constant to 1 bar with a cell rescale barostat55

(with a coupling constant of 1 ps and compressibility of 4.5 ×
10−5 bar). A cutoff distance of 1 nm was used for short-range
electrostatic and van der Waals interactions, and the long-range
interactions were computed with the particle-mesh Ewald
summation method.56 Corrections to long-range pressure and
potential energy were considered.57

Observables. Density. The mass density of water ρ was
calculated as follows

=
×
×

N m

V
H O

A box

2

(5)

where N is the number of water molecules (1024 in our case),
mH O2

is the mass of water molecules in u.a., A is Avogadro’s

number, and Vbox is the volume of the simulation box.
Experimental reference data of ρ are taken from ref 58.

Static Dielectric Constant. We calculate the static dielectric
constant from the fluctuations of the total dipole moment M of
the simulation box, i.e., as

= + M M
Vk T

1
3

2 2

0 B (6)

where ε0 is the permittivity of the vacuum, V is the volume of
the simulation box, kB is the Boltzmann constant, T is the
temperature of the system, and ⟨·⟩ represents the thermody-
namic average. We calculated this observable using the routine
gmx dipoles of the GROMACS suite. Experimental reference
data of ε are taken from ref 58.

Radial Distribution Function. We calculated the RDFs of
oxygen−oxygen, oxygen−hydrogen, and hydrogen−hydrogen
[gOO(r), gOH(r), gHH(r)] pairs with MDAnalysis 2.0.0.59 We
considered a cutoff of 10 Å and 500 equally spaced bins.
Experimental reference data of RDFs are taken from ref 60.

Self-Diffusion Coefficient. The self-diffusion coefficient D is
calculated using Einstein’s relation for a diffusive particle as

= | |
D

r t r
t

lim
( ) (0)

6t

2

(7)

where the quantity in the numerator is the mean square
displacement (MSD), averaged over the trajectories of
individual particles. Diffusion coefficients calculated with MD
simulation are often referred to as DPBC, because they contain
systematic errors due to the finite box size.61 Following ref 61,
it is possible to correct this artifact obtaining the theoretical
value of self-diffusion coefficient of water in an infinite box
(D0). To this end, we calculated DPBC in cubic simulation cells
with N = 512, 1024, 2048, 4096, and 8192 water molecules.
The protocol used for these simulations is identical to the one
described at the beginning of this section, except for a different
production time, i.e., 20 ns (N = 512), 15 ns (N = 1024 and
2048), and 10 ns (N = 4096 and 8192). We calculated the
various DPBC values using the gmx msd routine of
GROMACS52 and D0 with linear interpolation. Experimental
reference data are taken from ref 62.

Enthalpy of Vaporization. The enthalpy of vaporization
ΔHvap of 1 mol of liquid water in the gas phase can be
approximated as63

+ +H U RT p V E Cvap sat pol (8)

where U and V are, respectively, the average potential energy
and the volume of 1 mol of water molecules at pressure p and
bath temperature T. psat is the value of the saturation pressure
at temperature T. The term Epol represents the depolarization
energy of 1 mol of water molecules when it is transferred from
the liquid to the gas phase.34 It can be expressed as

=E
( )

2pol
gas

2

gas (9)

where μ is the dipole moment of the simulated model, and μgas
and αgas are the dipole moment and average polarizability of a
water molecule in the gas phase,63 respectively. The last term
in eq 8 contains corrections that account for the vibrational
effects of water molecules and nonideality of the gas phase.
These corrections are reported in ref 63 for different
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temperatures. Experimental reference data are taken from ref
63.

Specific Heat Capacity. We computed the isobaric heat
capacity cp using the enthalpy fluctuation formula, namely

=c
H H
Nk Tp

2 2

B
2 (10)

We computed this observable by using the gmx energy
routine of the GROMACS52 suite. The value obtained was
then corrected to account for quantum effects that are not
considered in the classically computed heat capacity in eq 10.
Specifically, these corrections include estimation of intra-
molecular vibrational energies (because our model is rigid) and
intermolecular high-frequency modes. The values of these
corrections are reported in ref 63 (Horn et al). The
experimental reference data of cp are taken from ref 64.

Thermal Expansion Coefficient. We calculated the thermal
expansion coefficient αT using the enthalpy−volume fluctua-
tion formula

= VH V H
k T VT

B
2 (11)

We computed this observable by using the gmx energy
routine of the GROMACS52 suite. The experimental reference
data of αT are taken from ref 64.

Isothermal Compressibility. We calculated the thermal
expansion coefficient κT using the volume fluctuation formula

= V V
k T VT

2 2

B (12)

We computed this observable using the gmx energy routine
of the GROMACS52 suite. The experimental reference data of
κT were taken from ref 64.

Surface Tension. The interface between water and void was
prepared and simulated following the good practices outlined
in ref 65. First, a cubic box containing 1024 water molecules
was equilibrated in the NPT ensemble. To represent the void
phase, the z-axis of the simulation box was elongated by a
factor of 4. The resulting biphasic system was then simulated
for 50 ns in the NVT ensemble. The surface tension of the
water−void interface was calculated using the mechanical or
pressure approach,66 which involves evaluating the inhomoge-
neity of the pressure tensor as follows
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where Lz is the elongation of the z-axis, and Pxx, Pyy, and Pzz are
the diagonal components of the pressure tensor. To perform
the analysis, we used the gmx energy routine of the
GROMACS suite.52 Experimental reference data for the
surface tension are obtained from ref 67.

Temperature of Maximum Density. To estimate the TMD,
we conducted a series of NpT simulations with 1024 water
molecules for 40 ns at different temperatures, incrementing
every 2 K. We applied the same protocol described above for
both the simulations and the estimation of density.

Melting Temperature. The melting temperature of ice Ih
has been estimated from direct coexistence of the solid−liquid
interface.45 The initial configuration of 1024 ice molecules
have been obtained with the program GenIce,68 which
generates a hydrogen-disordered lattice with zero net polar-

ization satisfying the Bernal−Fowler rules. The solid lattice is
equilibrated by performing a 10 ns anisotropic NpT simulation
at ambient pressure (1 bar). On the other hand, the liquid
phase is obtained from the same initial configuration of ice Ih,
performing a NVT simulation at T = 400 K in order to quickly
melt the ice slab. The two phases are put in contact, resulting
in a system of 2048 molecules in such a way that the solid face
in contact with the liquid is the secondary prismatic 1210
plane. We then conducted a series of NpT simulations at
different temperatures, controlling the pressure with Parrinel-
lo−Rahman barostat in its anisotropic version. The melting or
freezing process is observed by monitoring the potential energy
of the simulation system. In the direct coexistence simulation,
when the temperature surpasses the actual melting point of the
water model, the potential energy of the system rises until the
entire box undergoes melting. Conversely, in simulations with
temperatures below the melting points of the water model, the
potential energy decreases until the entire box solidifies into
ice. In the case of three-site models, this temperature is
typically very low (200 K and less). The increase in potential
energy indicating the melting of the system is observed on
timescales of 10−1000 ns, depending on the temperature
values. However, in the case of freezing, this process may take
up to several microseconds to occur, likely due to the slow
dynamics at such low temperatures.45,47

Critical Temperature and Pressure. The critical point for
all models was determined using the direct coexistence
method.69 Initially, we equilibrated a system of 8192 water
molecules under different NpT conditions (1 bar and a
temperature range from 350 to 550 K, incremented every
25K). To achieve this, we elongated the periodic box in one
direction by flanking the original simulation box with two
empty cubic boxes. Subsequently, constant NVT MD
simulations were performed until an equilibrium was reached.
We estimated the equilibrium densities of each phase by
computing a density profile along the long side of the box. We
utilized this collection of data of the liquid and vapor phases at
various points to estimate the critical point using the law of
rectilinear diameters and a three-term Wegner expansion of the
form70−72
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where ρc is the critical density, Tc is the critical temperature,
and B0, B1, and C2 are variable constants. The constants Δ and
β were set to their standard values as established from
renormalization group theory: Δ = 0.50 and β = 0.325.73
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