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ABSTRACT
In High-Performance Computing (HPC), workflows are utilized to
define and manage a set of interdependent computations which
allow the users to extract insights from (scientific) numerical simu-
lations or data analytics. HPC platforms can perform extreme-scale
simulations, combining Artificial Intelligence (AI) training and in-
ference and data analytics (we refer to heterogeneous workflows),
by providing tools and computing resources which serve a variety of
use-cases spanning very diverse application domains (e.g., weather
forecasting, quantum mechanics, etc.). Executing such workflows
at scale requires to handle dependencies, job submission automa-
tion, I/O mechanisms. Despite State-of-the-Art batch schedulers
can be configured and integrated with tools accomplishing this au-
tomation, a number of cases where resource allocation can lead to
inefficiencies still exist. In this paper, to overcome these limitations,
we present the WARP (Workflow-aware Advanced Resource Plan-
ner), a tool that integrates with workflow management tools and
batch schedulers, to reserve in advance resources for an optimal ex-
ecution of jobs, based on their duration, dependencies and machine
load. WARP has been designed to minimize the overall workflow
execution, without violating the priority policies for cluster users
imposed by the system administrators.

CCS CONCEPTS
• Software and its engineering→ Software as a service orches-
tration system; System description languages; • Computing
methodologies → Machine learning; Planning and scheduling.
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1 INTRODUCTION
High-Performance Computing (HPC) systems are a crucial asset in
many domains, such as scientific research, engineering, and data
analytics. Thanks to the huge processing power, HPC platforms
(aka supercomputers or large clusters) can perform among others,
extreme-scale simulations, AI model training and inference, and
data analytics on large datasets, which are now the fundamental
steps that allow industries to simulate innovative designs, and
researchers to get new insights in a variety of domains (e.g., weather
forecasting, astrophysics simulations, quantum mechanics, etc.).

The flexibility of serving such a diverse use-cases catalyzed the
interest on efficiently managing heterogeneous workflows, i.e., a
composition of (dependent) computations (referred to as work-
flow steps) belonging to different domains (e.g., numerical sim-
ulations, AI model training, in-situ processing and visualization,
etc.) [14, 20, 23], which are characterized by different requirements.
However, batch schedulers implement priority queues and policies
that maximize resource utilization at the expense of single jobs or
workflows execution time, thus making the case for a better alloca-
tion of HPC resources. When working with large-scale workflows,
which involve a series of interconnected computations that need to
be executed in a specific sequence, it becomes essential to introduce
mechanisms that add more execution determinism, while ensuring
the best usage of resources.

For this reason, one of the main objectives of the advanced or-
chestration solution developed within the ACROSS project1 is to
enable the possibility of reserving on-demand HPC resources for
a given workflow. Workflows are made of many steps (jobs), i.e.,
computational blocks, that can be executed in parallel or have many
input-output dependencies. These dependencies are provided in the
workflow description files, which follow, in our case, the Common
Workflow Language (CWL) 2 specification; the ACROSS orches-
tration solution leverages such information to optimize workflow
execution. The optimization lies in determining the best resource

1https://www.acrossproject.eu/
2https://www.commonwl.org/
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allocation, aiming at minimizing the overall execution time, and
maximizing resource utilization (or reducing the cost of resource
utilization) while fulfilling the job constraints. These constraints
may include job dependencies, deadlines, memory requirements,
and the availability of specific hardware configurations. Addition-
ally, the allocation strategy should consider the dynamic nature
of HPC environments, where resource demands change over time
due to varying workloads and user/queue priorities. To automate
the (on-demand) reservation mechanism, and to optimize the reser-
vation shapes and their placement over time, the WARP has been
developed and integrated into the whole orchestration stack. The
reservation mechanism allows to obtain two main advantages: i)
optimize the allocation and the usage of resources, through deter-
ministic and optimized scheduling, and ii) save user time, effort, and
money thanks to the dynamic definition of reservation shapes and
automatic management of workflow step dependencies. Although
required to achieve computing efficiency, at this stage of develop-
ment, the management of heterogeneous computing resources is
left out the optimization process, leaving this task to a fine-grain
resource scheduler. Context related to this work is provided in
the section 2 and section 3, then this paper presents the details of
the WARP in section 4 and reports simulation and demonstration
results in sections 5 and 6. Section 7 concludes the paper.

2 RELATEDWORKS
Workflows are a powerful mechanism to abstract the description
and execution of (scientific) applications on a given infrastructure.
Their management requires the use of dedicated workflow manage-
ment systems (WMS) to properly handle the execution of each step
(job) on a specific set of compute resources.

The landscape of WMS is variegated and spans from high-level
tools aimed at supporting workflow designs (often leveraging do-
main-specific knowledge) to low-level tools targeting the efficient
scheduling of jobs on computing resources [4, 5, 7, 15]. WMS de-
signed to fulfill the requirements of the scientific community in
one specific domain, offering robustness and automation over data
transfers, emerged since the initial diffusion of web services and
grid computing technologies [1, 9, 18]. Other frameworks provide
a lower-level interface which allows expressing job (in some cases
we can refer to tasks within a job) dependencies directly at the pro-
gramming level (e.g., COMPSs [16]). Tools like Apache Airflow [11]
and Snakemake [13] provide the users with a domain-specific lan-
guage (DSL), to programmatically author and manage workflows.
StreamFlow [6] has been proposed to close the gap between the
expressiveness of the language used to describe the workflows, and
the flexibility and modularity to target different types of infrastruc-
tures and computing resources.

Resource allocation is per se a vast research topic; over the years,
the scientific community released algorithms and mechanisms to
make (mostly compute) resource allocation more robust and ef-
fective, targeting different types of infrastructures (HPC, Cloud,
distributed environments). In [12], the authors surveyed the algo-
rithms and tools used to allocate resources in HPC-distributed sys-
tems. Netti et al. [17] proposed three heterogeneity-aware resource
allocation algorithms, optimizing allocation and use of specialized

hardware and heterogeneous resources, and demonstrating im-
provements in terms of job response times and system throughput.
Others attempted to provide algorithms focusing on other aspects
like reliability [19] and energy efficiency [8].

With the continuous and growing shift towards workflows pair-
ing numerical simulations with data analytics even backed by ma-
chine learning and deep learning tasks (heterogeneous workflows),
HPC centers faced the limitations of traditional resource and job
management software (e.g., SLURM, PBS, etc.). In [2, 3] a hierarchi-
cal flexible system (Flux) handling complex workflows with efficient
use of allocated compute resources was proposed. Similarly, Bal-
sam [21] has been proposed to ease the execution of heterogeneous
workflows on first-class supercomputers. These systems leverage
on low-level resource managers (e.g., SLURM) to acquire resources
(through job submission) and allocating more powerful, hierarchi-
cal, schedulers on top to distribute the workload. Our work mainly
differentiates by a different use of the low-level resource manager
(SLURM), to meet deterministic execution. On the other hand, a
hierarchical integration of fine-grain schedulers is still possible
with our solution.

3 SUPPORTING HETEROGENEOUS
WORKFLOWS EXECUTION

The complexity of modern workflows follows side-by-side the evo-
lution of computing infrastructures. In this regard, (HPC) infras-
tructures, spanning from small research clusters to supercomputers
to (public) Clouds, became very heterogeneous, including different
flavours of hardware accelerators (e.g., GPUs, TPUs, AI-specific
architectures, etc.). In the same way, workflows may leverage this
large heterogeneity to break the boundaries between application do-
mains (e.g., numerical simulations, machine learning –ML and deep
learning –DL training and inference, etc.). Complex heterogeneous
workflows allow both exploiting diversity in compute capabilities
and improving user productivity. Whilst all this opens the door to
many innovations, it comes also with challenges to be addressed.
Among the others, properly managing the allocation of computing
(also networking, storage) resources becomes of paramount impor-
tance. Indeed, a WMS is in charge of capturing this complexity and
promptly responding to resource allocation requests.

3.1 The ACROSS Project
The ACROSS project was funded in 2021 under the H2020 and
EuroHPC-JU frameworks; it targeted to co-design and implement
an orchestration software stack aimed at enabling workflows to
leverage current petascale and pre-exascale machines. By specifi-
cally targeting heterogeneous workflows whose steps encompass
numerical simulations, ML/DL training and inferences, and HPDA
(High Performance Data Analytics) procedures, this orchestration
stack has been architected to i) provide a unified mechanism to
describe heterogeneous steps along with their corresponding com-
puting resources, ii) provide a more deterministic execution, and
iii) exploit compute resources at lower granularity than that of a
single node. To this end, many software components have been inte-
grated together. A workflow management system (i.e., StreamFlow),
has been enhanced through the integration of a module aimed at
dynamically allocating resources to the workflows’ steps (WARP
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–see Section 4). This latter is paired to a batch scheduler plugin
providing more control over the allocation of resources w.r.t. the
exposed standard queuing system. Finally, a fine-grain resource
scheduler is added, allowing for further resource splitting with a
very fine granularity, generally below the single node granularity
(e.g., co-scheduling tasks using GPU resources of a node and leaving
almost all the CPU resources of the node for other tasks). One of
the main challenges related to this architecture lies in the creation
of effective allocation strategies. The following section details the
two main approaches pursued during the project’s lifetime.

4 ADVANCED RESOURCE ALLOCATION
STRATEGIES

Workflow-aware Advanced Resource Planner (WARP) is the tool
developed to manage and determine the shape and characteristics
of the reservations, i.e., defining the number of compute nodes to
be allocated and specifying a starting time and a time duration. It is
written in Rust and leverages Common Workflow Language (CWL)
standard. WARP can be divided into several logical parts which are
interconnected and interdependent.

CLI

WARP

Reservation Plugin Batch Scheduler 

WorkFlow 
Management 

System

User

HPC System (Job Queues)

BACK-END

Op
tim

ize
r

Figure 1: WARP internal structure and interconnections

Figure 1 depicts the internal structure of the WARP and its in-
terconnection with external tools. WARP is made of a Command
Line Interface (CLI), which allows the user to submit, inspect, and
manage workflows, and a back-end part, which implements the
main logic. One or more users can submit workflows to the WARP.
The internal logic, leveraging the workflow description and config-
uration files provided by the user, identifies the steps defining the
workflow and their dependencies. The output of this parsing is a
representation of the workflow as a graph. Every 10 minutes, an
optimization cycle is triggered. All the steps that are waiting for
a reservation, along with the current load on the batch scheduler,
the jobs in the queues, the active reservations, the characteristics
of the cluster are provided to the optimizer. At the end of the cycle,
optimizer module outputs a number of reservations to be allocated
on the cluster. WARP can submit reservation through the interac-
tion with a specific batch scheduler plugin. Indeed, we developed a

plugin for the SLURM scheduler, that implements a new SLURM
command, i.e., sresv, allowing to reserve on-demand resources on
the cluster. Moreover, this plugin allows to perform reservations
without administrative privileges. Scheduler plugins are a conve-
nient mechanism to add specific functionalities to batch scheduler
and do not interfere drastically with internal scheduling policies,
limiting issues or mistrust when dealing with an HPC production
environment. At the end of the reservation cycle, if the reservation
has been allocated correctly, each step is associated with a reserva-
tion. Through a polling mechanism, the workflow manager (used
as a workflow execution engine) can get the array of steps ready to
be submitted to the batch scheduler.

4.1 Job Queue Waiting Time Predictor
One potential path to enhance the user experience within the work-
flow is to forecast the behavior of cluster queues. In an ideal sce-
nario, where the status of queues or cluster resources can be ac-
curately anticipated, such as predicting the queuing time of HPC
jobs, one could pinpoint optimal submission times for workflow
steps. This would satisfy step dependencies and minimize the over-
all makespan - the total duration from the initiation of the first step
to the completion of the final dependent steps.

This aspiration prompted us to explore the utilization of machine
learning (ML) techniques to refine workflow execution, specifically
in predicting the time jobs spend awaiting execution in batch sched-
uler queues. In our prior research, we introduced an automated
procedure that combines Unsupervised Learning (UL) and Super-
vised Learning (SL) techniques to anticipate queue waiting times in
an HPC environment [22]. The UL phase involved preprocessing,
employing advanced methods to uncover patterns in job features
and identify crucial elements for prediction. Subsequently, the SL
phase facilitated actual predictions of the target feature, namely
queue waiting time.

Within our investigation of various SL models, we assessed dif-
ferent classification and regression models to pinpoint potential
candidates using the analyzed dataset.

Moreover, we underscored pivotal considerations when address-
ing analogous case studies. Our examination of different dataset
splits highlighted the significance of temporal components influenc-
ing data distributions. Consequently, we proposed an uncertainty
quantification approach to evaluate prediction reliability and dis-
cern correlations with error distributions.

After our initial foray into ML techniques for forecasting queue
waiting times in an HPC cluster, we acknowledged that the out-
comes fell short of our expectations. Consequently, we shifted our
focus towards utilizing data-fitted models to delve deeper into inter-
arrival patterns, resource demands, and walltime distributions. This
strategic pivot empowered us to refine job submission strategies
by leveraging insights gleaned from historical cluster data. As a
result, we transitioned away from merely predicting queue times
and towards employing models that comprehensively capture job
characteristics and cluster dynamics. This facilitated the creation
of a simulated test environment conducive to evaluating WARP
reservation-based solutions.
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4.2 On-Demand Reservations
Given the challenges associated with predicting the behavior of
HPC queues, we determined that a more effective approach for
orchestration within the ACROSS project was to utilize on-demand
reservations. In this second approach, the WARP receives informa-
tion from the back-end regarding the cluster status. By analyzing
the jobs in the queue and those currently running, it can ascertain
the number of computational resources already allocated over time.
Additionally, the WARP back-end provides details on the work-
flows, represented as Directed Acyclic Graphs (DAGs), awaiting
scheduling. Specifically, the optimizer is supplied with two key
inputs. First, it receives the cluster occupancy status, which reflects
the number of nodes already allocated for other HPC jobs (either
pending or running) within each timeslot. Notice that to address
this scheduling optimization, time is discretized into timeslots of
1 minute. Secondly, the optimizer receives the description of the
workflow, encompassing dependencies, the required number of
nodes for each HPC job (referred to as computational blocks) within
the workflow, and their corresponding expected execution time
(referred to as walltime).

The elements of the optimization problem tackled by the opti-
mizer are as follows:

• G(V, E), the DAG representing theworkflow to be allocated;
V is the set of blocks, each characterized by the number
of HPC nodes required 𝑟𝑖 , and the execution walltime 𝑤𝑖

(expressed in minutes); the set of directed edges E defines
the dependencies among computational blocks and implies
the allocation order; 𝑁 +

𝑖
= { 𝑗 ∈ V : 𝑖 → 𝑗 ∈ E} describes,

for each 𝑖 ∈ V , the execution blocks that must be allocated
after it.

• 𝑁𝑇 , the last timeslot available for the scheduling.
• T , the set of the timeslots, from 0 to 𝑁𝑇 .
• 𝑁𝑐 , the total number of nodes in the cluster, and 𝑛(𝑠) is the
number of nodes already allocated in timeslot 𝑠 ∈ T .

The optimization variables of the scheduling problem are:

• 𝑧𝑖𝑠 := binary variable with value 1 if block 𝑖 is assigned to
timeslot 𝑠;

• 𝑇𝑖 := ending timeslot for block 𝑖 ∈ V;
• 𝑡𝑖 := starting timeslot for block 𝑖 ∈ V;
• 𝑇 := ending timeslot of the whole workflow;
• 𝑡 := starting timeslot of the whole workflow.

The optimization problem’s objective function is defined by the
total makespan of the workflow execution, with the goal of mini-
mizing it. Notably, minimizing the makespan is synonymous with
maximizing packing efficiency [10].

Hence, the overarching optimization problem is framed within
the Integer Linear Program (ILP) outlined by (1a)-(1l). Constraint
(1b) ensures that each computational block 𝑖 ∈ V lasts exactly its
walltime𝑤𝑖 ; constraints (1c) and (1d), in conjunction with the ob-
jective function (1a), enable the optimizer to accurately determine
the makespan of the workflow: 𝑇 is the maximum of the ending
times of the blocks and 𝑡 is the minimum of the starting time.
Preserving the dependencies of the blocks is crucial in the schedul-
ing solution. Consequently, the starting time of each block must
exceed the ending time of the preceding blocks in the workflow,

as expressed by constraint (1e). The constraints (1f) and (1g) estab-
lish the connection between the binary variables 𝑧𝑖𝑠 with integer
variables 𝑇𝑖 and 𝑡𝑖 . Constraint (1h) ensures that the allocation of
resources within a timeslot does not exceed the available resources.
Additionally, constraint (1i) guarantees that for each block in the
DAG, there are precisely 𝑤𝑖 binary variables with a value of 1.
Lastly, constraints (1j), (1k) and (1l) delineate the domains of the
optimization variables.

min 𝑇 − 𝑡 (1a)

s.t. 𝑇𝑖 − 𝑡𝑖 = 𝑤𝑖 − 1 ∀𝑖 ∈ V, (1b)
𝑡 ≤ 𝑡𝑖 ∀𝑖 ∈ V, (1c)
𝑇𝑖 ≤ 𝑇 ∀𝑖 ∈ V, (1d)

𝑇𝑖 + 1 ≤ 𝑡𝑘 ∀𝑖 ∈ V,∀𝑘 ∈ N+
𝑖 , (1e)

𝑠 · 𝑧𝑖𝑠 ≤ 𝑇𝑖 ∀𝑖 ∈ V,∀𝑠 ∈ T , (1f)
(𝑁𝑇 − 𝑠)𝑧𝑖𝑠 ≤ 𝑁𝑇 − 𝑡𝑖 ∀𝑖 ∈ V,∀𝑠 ∈ T , (1g)∑︁
𝑖∈V

𝑧𝑖𝑠 · 𝑟𝑖 ≤ 𝑁𝑐 − 𝑛(𝑠) ∀𝑠 ∈ T , (1h)∑︁
𝑠∈T

𝑧𝑖𝑠 = 𝑤𝑖 ∀𝑖 ∈ V, (1i)

𝑧𝑖𝑠 ∈ {0, 1} ∀𝑖 ∈ V,∀𝑠 ∈ T , (1j)
𝑡𝑖 ,𝑇𝑖 ∈ {0, . . . , 𝑁𝑇 } ∀𝑖 ∈ V, (1k)
𝑡,𝑇 ∈ {0, . . . , 𝑁𝑇 } (1l)

In our current setup, we utilize the GLPK (GNU Linear Program-
ming Kit). We impose a time constraint of 10 seconds for finding a
solution, which proves to be ample for our specific case-study as
we consistently achieve optimal solutions within 1-2 seconds.

However, should we scale up to a cluster with a higher num-
ber of compute nodes, the computational complexity involved in
solving the ILP optimally would exceed the time limits. In such sce-
narios, transitioning from an exact solver to a heuristic approach
becomes necessary to maintain feasibility, albeit at the expense
of optimality. It’s worth noting that while our ILP formulation
currently assumes homogeneous resources, adapting it to accom-
modate heterogeneous resources is straightforward and would not
alter the programming model’s structure.

The solution of the ILP informs on-demand reservations that are
made possible by integrating a dedicated batch scheduler plugin,
which takes care of creating the reservations in terms of duration
and number of resources to allocate. This makes possible to decou-
ple the reservation requests which a restrained to the user space
from their actual implementation which lies at the system level.
Looking at the specific case of the SLURM batch scheduler (which
is widely adopted by many HPC centers), the approach to achieve
this is as follows: i) the information describing the reservation is
passed through the WARP to the batch scheduler as it was a job to
be queued; ii) the request is enriched with flags forcing the job to
never enter the targeted queue; iii) the system checks if the request
(job) can be fulfilled, i.e., there are enough resources in the near fu-
ture; and iv) if the request can be fulfilled, the job is substituted with
a corresponding reservation on the system. This approach avoids
negatively impact on the internal scheduling policies already in
place on the batch scheduler. Notably, although we targeted the
specific case of SLURM, other batch schedulers and WMS can be
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tweaked to provide the same functionality, although the complexity
of this operation depends on their specific internal architecture.

5 SIMULATION ENVIRONMENT
To develop, test, and validate the WARP, we created an isolated
testbed infrastructure from a partition of a real HPC platform. The
total amount of vCPUs available for this simulation environment
have been divided into defining: i) 1 virtual node, which exports the
whole storage quota (3.0TB) through an NFS service; ii) 2 virtual
nodes running SLURM services, WARP, and StreamFlow (the WMS
selected for these tests and integrated with WARP); iii) 14 virtual
nodes managed by the batch scheduler. Each node is connected to
a common virtual network. The SLURM plugin has been developed
according to version 22.05.8 of SLURM, thus this specific version
has been installed to manage the cluster. Version 0.2.0dev10 of the
StreamFlow tool has been deployed. This version includes a specific
plugin that enables the interaction with WARP through a polling
mechanism as well as the modifications to add reservations when
submitting workflows to the scheduler. This StreamFlow plugin also
implements a basic exchange mechanism in order to synchronize
workflows and steps’ status with WARP.

5.1 Warming Up the Experimental Cluster
One critical aspect of the design and integration of resource alloca-
tion policies is to properly define a validation strategy. The natural
choice for addressing this aspect should be applying the newly
devised policy on a production machine, where real load conditions
can happen. Getting access to production machines may be costly;
nevertheless, cloud resources are a valid alternative. Given such
an experimental virtual cluster, a mechanism to easily reproduce
a real load becomes necessary; moreover, the mechanism should
provide more control (in a statistical sense) over the generated load.
To this end, in this work, we leveraged a dataset of 12, 786 samples
(i.e., jobs with their features –, arrival times of submitted jobs (ex-
pressed in seconds), the wall-time duration (expressed in minutes
and with a maximum allowed value of 60 minutes) and the number
of required resources) gathered on a real supercomputer (actually
a small subset of 16 nodes, each equipped with 36 cores, which fits
more with the characteristics of our experimental virtual cluster),
to train statistical models. Then, these models are used to generate
a list of jobs to be submitted to the batch scheduler at different
point in time (following the learned statistic). Specifically, we fit 3
independent probability distributions to emulate the job submis-
sions distribution: i) Exponential distribution for interarrivals with
rate 𝜆 ≈ 1.30 𝑒−3, on average a new HPC job is submitted every
12 minutes; ii) Multinoulli distribution for the number of nodes
required by a job, with possible outcomes of 1,2,3 or 4 nodes; and
iii) Gaussian mixture model for walltime durations, with 2 compo-
nents to catch the bi-modality of the distribution, the corresponding
means are 12 and 60 minutes. These three models are the core of the
generator function that enables control over the jobs’ distribution
that is being created. The warming-up procedure then, uses these
distributions to define the number of jobs (and their requirements)
to be submitted to the compute nodes, thus reproducing a realistic
initial workload.

6 AN EXAMPLE WITH A TURBINE DESIGN
WORKFLOW

After setting up the simulation environment and finding a way
to deploy a plausible load to the virtual cluster, we identified a
workflow to test theWARP resource allocation logic. This workflow
is a reduced and simplified version of a more complex one, which
is used to support the aerodynamic design of aero-engine turbines.
In detail, the workflow is made of two steps: LES step identifies
a SLURM job that runs a simplified Large-Eddy Simulation (LES).
LES, a mathematical model utilized in computational fluid dynamics
to simulate turbulence phenomena, produces numerical data that
serve as input to the High-Performance Data Analytics (HPDA)
step. HPDA receives numerical data and analyses them. Thus, there
is a direct dependence between the two steps of the workflow. Table
1 reports the resource requirements of the two steps.

Step ID Nodes Exec. time Deployment

LES 2 00:15:00 SLURM
HPDA 5 00:30:00 SLURM

Table 1: Step requirements

When the user submits the workflow leveraging a classic WMS,
this tool, following the step dependencies, tries to submit the LES
step to the batch scheduler. If required resources are available, the
corresponding job is executed. At the end of LES execution, the
WMS proceeds with the submission of a new request to resources
for the execution of the second step. Potentially, the second step
must wait until enough nodes are available to trigger its execution.
This can lead to a situation where single jobs of the workflow are
executed in the minimum time but the total amount of time spent
to execute the entire workflow is much greater than the sum of the
two job execution times, due to the waits among the jobs. Thanks
to the introduction of the WARP in the workflow execution flow,
we can introduce more determinism to the scheduling of jobs, thus
avoiding the waiting time among workflow steps. In this case, the
user directly interfaces with the WARP through its CLI. Similarly
to what happens with canonical WMS, the user submits the work-
flow providing the configuration files. WARP supports the input of
workflows following the CWL format. Additionally, a configuration
file related to the deployment platform and implementation of the
workflow is needed, as CWL is implementation-agnostic. The bene-
fits resulting from the introduction of the WARP into the workflow
orchestration process emerge predominantly when the load on the
cluster is particularly heavy, i.e., when there are jobs in the running
state and jobs in a pending state, waiting for node allocation. This
is a representative situation of a production HPC cluster.

Figure 2: Reservations listed from scontrol

Table 2 shows the jobs in the running and pending state at
𝑇0. Data are retrieved directly from the batch scheduler and jobs
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named ’sleep_job’ are simulated with the algorithm described in
section 5.1. Reservations can also be listed running the SLURM
command scontrol show reservation. The output is reported in Figure
2. Given the workflow structure, the reservations are allocated in
sequence. The first reservation is assigned to the LES step. The
second reservation starts at the end of the previous one and it is
assigned to the HPDA step.

Job ID Name Status Nodes Node list

1600 sleep_job R 2 [1-2]
1602 sleep_job R 1 4
1605 sleep_job R 2 [5-6]
1606 sleep_job R 2 [7-8]
1607 sleep_job R 1 3
1608 sleep_job R 1 9

Table 2: Cluster status at 𝑇0

Running nearly at the same moment two instances of the same
workflow, one withWARP and the other one withoutWARP, we can
find that 𝐿𝐸𝑆𝑤 , managed with the WARP, is assigned correctly to
the reserved resources (Job ID=1611). On the other end, 𝐿𝐸𝑆𝑠 (LES
job managed directly by the WMS, i.e., StreamFlow) is executed
immediately as there were enough free nodes in the cluster but the
𝐻𝑃𝐷𝐴𝑠 job (Job ID=1613) is stuck in a pending state (see Table 3).

Job ID Name Status Nodes Node list

1600 sleep_job R 2 [1-2]
1602 sleep_job R 1 4
1605 sleep_job R 2 [5-6]
1606 sleep_job R 2 [7-8]
1607 sleep_job R 1 3
1608 sleep_job R 1 9
1611 sbatch PD 2 (Reservation)
1613 sbatch PD 5 (Resources)

Table 3: Cluster status at 𝑇1

At 𝑇1, 𝐿𝐸𝑆𝑠 job has been executed and does not appear in the
list of running/pending jobs, while there is 𝐻𝑃𝐷𝐴𝑠 that is waiting
to be allocated. According to the internal allocation logic of the
WARP, implemented in the optimizer, reservations are scheduled
considering the expected load of the cluster. When the load is below
50% of the total number of nodes in the cluster, the reservations are
scheduled. This parameter can be further adjusted. At𝑇2, according
to the start time of the reservation, 𝐿𝐸𝑆𝑤 changed its status to
running. After the execution of 𝐿𝐸𝑆𝑤 ,𝐻𝑃𝐷𝐴𝑤 appears as a pending
job, according to the start time of its reservation. At 𝑇3, 𝐻𝑃𝐷𝐴𝑤

starts simultaneously with the beginning of the second reservation
(see Table 4), and few seconds later also 𝐻𝑃𝐷𝐴𝑠 is executed. Due
to the simplified version of 𝐿𝐸𝑆 , data processed are very limited
and 𝐻𝑃𝐷𝐴 jobs last few seconds. Finally, Table 5 reports an overall
comparison between the workflow managed directly by WMS and
the one managed by the WARP.

As described in this section, the execution of the two work-
flows demonstrated the benefits of the WARP. Indeed, according to
the results collected, the introduction of the advanced-reservation

Job ID Name Status time Nodes Node list

1617 sleep_job PD 0:00 2 (Priority)
1618 sleep_job PD 0:00 1 (Priority)
1619 sleep_job PD 0:00 2 (Priority)
1621 sleep_job PD 0:00 2 (Priority)
1622 sleep_job PD 0:00 1 (Priority)
1623 sleep_job PD 0:00 1 (Priority)
1607 sleep_job R 54:25 1 3
1613 sbatch R 0:14 5 [5-8,11]
1620 sbatch R 0:29 5 [1-2,4,9-10]
1614 sleep_job R 37:07 1 [12-13]

Table 4: Cluster status at 𝑇3

Step Submitted_at Starte_at Ended_at

𝐿𝐸𝑆𝑤 10:26:49 10:57:45 11:05:49
𝐿𝐸𝑆𝑠 10:27:11 10:27:11 10:33:00
𝐻𝑃𝐷𝐴𝑤 11:05:53 11:12:45 11:13:23
𝐻𝑃𝐷𝐴𝑠 10:33:01 11:12:53 11:13:37

Table 5: Comparison between the two workflows

mechanism allows to reduce the waiting time among jobs of the
same workflow, optimizing the user experience, and providing more
determinism for the workflow execution. WARP optimized work-
flow has a makespan of 16 minutes with respect to the 46 minutes
of the non-optimized one. Moreover, the proposed approach should
facilitate the management of interactive jobs where present in com-
plex workflows, as users know in advance the starting and ending
time and date of the reservation related to that specific step/job.
We believe that improvements to the user experience deriving from
knowing in advance start time of various jobs of a workflow are the
real added-value of the WARP. Initial results reported in this work
will be extended with other experiments, including more complex
workflows, which foresee several interdependent and parallel steps.

7 CONCLUSIONS
The ever growing compute capabilities of modern HPC systems
opened the doors for new, more complex workflows, which pair
large-scale numerical simulations with computations belonging to
other domains (e.g., IA model training and inference, in-situ data
visualization, data analytics, etc.). Optimal resource allocation be-
comes of paramount importance to keep the performance pace. In
this work, we presented the WARP, a tool developed in the con-
text of the ACROSS EuroHPC-JU funded project. WARP integrates
with a workflow execution engine and a batch scheduler to make
(optimal) resource allocation simple, by means of an on-demand
reservation mechanism. Through a concrete example we demon-
strated the effectiveness of the proposed tool, leaving the scalability
study as a future research activity.
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