Development of In-Cu binary oxides catalysts for hydrogenating $\mathbf{C O}_{\mathbf{2}}$ via thermocatalytic and electrocatalytic routes
Marco Pietro Mezzapesa ${ }^{\text {a }}$, Fabio Salomone ${ }^{\text {a }}$, Hilmar Guzmán ${ }^{\text {a }}$, Federica Zammillo ${ }^{\text {a }}$, Roberto Millini ${ }^{\text {b }}$, Letizia Bua ${ }^{\text {c }}$, Gianluigi Marra ${ }^{\text {c }}$, Alessandra Tacca ${ }^{\text {c }}$, Rosamaria Marrazzo ${ }^{\text {c }}$, Nunzio Russo ${ }^{\text {a }}$, Raffaele Pirone ${ }^{\text {a }}$, Simelys Hernández ${ }^{\text {a, }} \mathrm{d}$, , Samir Bensaid ${ }^{\text {a, }}$ *
${ }^{\text {a }}$ Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
${ }^{\text {b }}$ Eni S.p.A., R\&D, Via Felice Maritano 26, 20097 San Donato Milanese, Milan, Italy.
c Eni S.p.A., DE-R\&D, Via Giacomo Fauser 4, 28100 Novara, Italy.
${ }^{\text {d }}$ Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy.
* Corresponding authors. E-mail addresses: samir.bensaid@polito.it; simelys.hernandez@polito.it

Supplementary Materials

1. Test bench scheme 2
2. N_{2} physisorption measurements of the fresh samples 3
3. Raman spectroscopy of the fresh samples 4
4. Transmission electron microscopy results 5
5. Raman spectroscopy of the spent samples 7
6. XPS measurements 10
7. Deactivation study 12
8. Kinetic study 13

1. Test bench scheme

Figure S1. Simplified scheme of the thermochemical test bench.

2. N_{2} physisorption measurements of the fresh samples

Figure S2. N_{2} adsorption-desorption isotherms of each fresh catalysts.

Figure S3. N_{2} adsorption-desorption pores distribution of each fresh catalysts.

3. Raman spectroscopy of the fresh samples

Figure S4. Raman spectra of non-binary fresh catalysts.

Figure S 5 . Raman spectra of all fresh samples. Yellow regions refer to the main peaks of CuO and $\mathrm{Cu}_{2} \mathrm{O}$.

4. Transmission electron microscopy results

(a) $\ln _{100}$ fresh

(d) $\ln _{100}$ spent

(g) $\mathrm{In}_{90} \mathrm{Cu}_{10}$ fresh

(I) $\mathrm{In}_{90} \mathrm{Cu}_{10}$ spent

(b) In_{100} fresh

(e) In_{100} spent

(h) $\mathrm{In}_{90} \mathrm{Cu}_{10}$ fresh

(m) $\mathrm{In}_{90} \mathrm{Cu}_{10}$ spent

(c) $\ln _{100}$ fresh

(f) $\ln _{100}$ spent

(i) $\mathrm{In}_{90} \mathrm{Cu}_{10}$ fresh

Figure S6. TEM images of the fresh calcined and TC spent samples. The crystal planes (in red) and the associated data are reported in Table S1.

Table S1. Crystalline planes obtained from the TEM analysis shown in Figure S6.

Sample		Plane name	$\mathrm{d}_{\text {observed }}[\AA \AA]$	$\mathrm{d}_{\text {reference }}$ [Å]	Miller indexes			Reference substance	
		h			k	I			
ln_{100}	Fresh		A	4.165	4.140	2	1	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$
In_{100}	Fresh	B	2.777	2.704	3	2	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
In_{100}	Fresh	C1	2.821	2.821	2	2	0	$\mathrm{In}(\mathrm{OH})_{3}$	
In_{100}	Fresh	C2	2.941	2.920	2	2	2	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
$1 \mathrm{n}_{100}$	TC spent	D	4.210	4.140	2	1	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
In_{100}	TC spent	E	2.685	2.704	3	2	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
In_{100}	TC spent	F	2.956	2.920	2	2	2	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	G1	2.863	2.821	2	2	0	$\ln (\mathrm{OH})_{3}$	
				2.865	3	-2	1	$\mathrm{Cu}_{7} \mathrm{In}_{3}$ - alloy	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	G2	4.103	4.140	2	1	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	H1	3.961	3.990	2	0	0	$\mathrm{In}(\mathrm{OH})_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	H2	2.849	2.821	2	2	0	$\mathrm{In}(\mathrm{OH})_{3}$	
				2.865	3	-2	1	$\mathrm{Cu}_{7} \mathrm{In}_{3}$ - alloy	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	11	2.710	2.704	3	2	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	12	2.697	2.704	3	2	1	$\mathrm{ln}_{2} \mathrm{O}_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	13	2.836	2.821	2	2	0	$\ln (\mathrm{OH})_{3}$	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	Fresh	14	2.794	2.754	1	1	0	CuO	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	TC spent	L1	2.893	2.898	2	-1	2	$\mathrm{Cu}_{7} \mathrm{In}_{3}$ - alloy	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	TC spent	L2	2.914	2.910	2	0	2	$\mathrm{Cu}_{7} \mathrm{In}_{3}$ - alloy	
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	TC spent	M	2.766	2.774	1	-3	1	$\mathrm{Cu}_{7} \mathrm{In}_{3}$ - alloy	

5. Raman spectroscopy of the TC spent samples

Figure S7. Raman spectra of $\ln _{100}$ sample (fresh and spent).

Figure 58 . Raman spectra of $\mathrm{In}_{90} \mathrm{Cu}_{10}$ sample (fresh and spent).

Figure S9. Raman spectra of $\mathrm{In}_{50} \mathrm{Cu}_{50}$ sample (fresh and spent).

Figure S10. Raman spectra of $\mathrm{In}_{10} \mathrm{Cu}_{90}$ sample (fresh and spent). $\mathrm{Cu}_{2} \mathrm{O}$ formation is appreciable in the spent TC catalyst.

Figure S11. Raman spectra of Cu_{100} sample (fresh and spent). $\mathrm{Cu}_{2} \mathrm{O}$ formation is appreciable in the spent TC catalyst. Otherwise, CuO reduction is found.
6. XPS measurements

Figure S12. XPS spectra of both fresh calcined and TC spent $\ln _{100}$ and $\mathrm{In}_{90} \mathrm{Cu}_{10}$ samples: (a) Cu2p, (b) Cu LMM, (c) In3d, (d) In MNN, (e) O1s and (f) C1s.

Table S2. Results of the XPS measurements on the fresh calcined and TC spent samples.

Catalyst	Superficial atomic composition ${ }^{(a)}$			Cu oxidation state ${ }^{(b)}$		Modified Auger parameters ${ }^{(c)}$		O defects ${ }^{(d)}$
	$\begin{gathered} \mathrm{Cu} \\ \text { (at \%) } \end{gathered}$	$\begin{gathered} \text { In } \\ \text { (at \%) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { (at \%) } \end{gathered}$	$\begin{gathered} \mathrm{Cu}^{2+} / \mathrm{Cu} \\ \text { (at \%) } \end{gathered}$	$\begin{gathered} \left(\mathrm{Cu}^{0}+\mathrm{Cu}^{1+}\right) / \mathrm{Cu} \\ \text { (at \%) } \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \hline \text { In } \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \mathrm{O}_{\text {defects }} / \mathrm{O} \\ \text { (at \%) } \\ \hline \end{gathered}$
$1 \mathrm{n}_{100}$ fresh	-	39.1	60.9	-	-	-	849.6	24.5
In_{100} TC spent	-	43.5	56.5	-	-	-	850.7	17.1
$\mathrm{In}_{90} \mathrm{Cu}_{10}$ fresh	1.6	49.2	49.3	73.3	26.7	1850.1	850.8	26.8
$\mathrm{In}_{90} \mathrm{Cu}_{10}$ TC spent	2.3	46.1	51.6	65.2	34.8	1848.5	850.9	30.1

(a) Evaluated using Cu2p $p_{3 / 2}, \ln 3 d_{5 / 2}$ and O1s HR XPS spectra.
${ }^{(b)}$ Evaluated using the deconvolution of the $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ HR XPS spectra.
${ }^{(c)}$ Evaluated using Cu LMM and In MNN HR XPS spectra.

Figure S13. XPS spectra around the In 3d region of the fresh, tested in GDE and tested in MEA In_{100} samples.

7. Deactivation study

The results of equation (11) are reported in this section.
$\ln \ln \frac{1}{1-\zeta_{A}}=\ln \left[\tau^{\prime} k^{\prime}\right]-k_{d} t$

Equation (11) is valid for reactions with first-order kinetics; deactivation is independent from reagents or products concentration and the order of deactivation is unity. Table S3 reports the fittings results.

Table S3. Deactivation kinetic parameters were obtained from fitting experimental data with equation (11).

Sample	k^{\prime}	Deactivation constant k_{d}	Correlation coefficient R^{2}
	$\mathrm{Nm}^{3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~h}^{-1}$	$\mathrm{~h}^{-1}$	-
In_{100}	0.380	0.010	0.836
$\ln _{90} C \mathrm{Cu}_{10}$	0.511	0.014	0.768
$\mathrm{In}_{50} \mathrm{Cu}_{50}$	0.133	0.086	0.990
$\mathrm{In}_{10} \mathrm{Cu}_{90}{ }^{(\mathrm{a})}$	-	-	-
$C \mathrm{H}_{100}$	0.118	0.022	0.884

[^0]
8. Kinetic study

Equation used for data fitting reported in Table S4:

$$
\begin{equation*}
\ln \left(R_{i}\right)=\ln \left(k_{\infty, i}^{*}\right)-\frac{E_{a, i}}{R} \cdot \frac{1}{T} \tag{1}
\end{equation*}
$$

Table S4. Kinetic data obtained from data fitting with equation (14).

Sample	CO_{2} hydrogenation			CO synthesis			$\mathrm{CH}_{3} \mathrm{OH}$ synthesis		
	$\begin{gathered} \mathrm{E}_{\mathrm{a}} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$	${ }^{(+)} \ln \left(\mathrm{k}^{*}{ }_{\infty}\right)$	R^{2}	E_{a} (kJ/mol)	${ }^{(+)} \ln \left(\mathrm{k}^{*}{ }_{\infty}\right)$	R^{2}	$\begin{gathered} \mathrm{E}_{\mathrm{a}} \\ (\mathrm{~kJ} / \mathrm{mol}) \end{gathered}$	${ }^{(+)} \ln \left(\mathrm{k}^{*}{ }_{\infty}\right)$	R^{2}
In_{100}	78.3	25.2	1.00	103.1	29.7	1.00	65.3	21.7	1.00
$\mathrm{In}_{90} \mathrm{Cu}_{10}$	93.7	29.0	1.00	105.6	30.5	1.00	89.8	27.7	1.00
$\mathrm{In}_{50} \mathrm{Cu}_{50}$	91.3	25.8	1.00	100.7	26.8	0.99	85.9	24.1	1.00
Cu_{100}	70.9	22.2	1.00	91.3	26.3	1.00	28.5	11.4	0.98

[^0]: ${ }^{\text {(a) }}$ Catalyst with zero conversion, so the data obtained from the interpolation is meaningless and subject to physical errors.

