
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parameterisation of radiation forces for a multiple degree-of-freedom wave energy converter using moment-matching /
Faedo, N.; Pena-Sanchez, Y.; Ringwood, J. V.. - 1:(2019), pp. 166-173. (Intervento presentato al  convegno 29th
International Offshore and Polar Engineering Conference (ISOPE 2019)).

Original

Parameterisation of radiation forces for a multiple degree-of-freedom wave energy converter using
moment-matching

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988079 since: 2024-04-24T12:33:55Z

INTERNATIONAL SOCIETY OF OFFSHORE AND POLAR ENGINEERING



International Journal of Offshore and Polar Engineering (ISSN 1053-5381) http://www.isope.org/publications
Copyright © by The International Society of Offshore and Polar Engineers
Vol. 30, No. 4, December 2020, pp. 395–402; https://doi.org/10.17736/ijope.2020.mk71

Parameterisation of Radiation Forces for Multiple Degree-of-Freedom Wave
Energy Converters Using Moment-Matching

Nicolás Faedo, Yerai Peña-Sanchez and John V. Ringwood
Centre for Ocean Energy Research, Maynooth University

Maynooth, Ireland

The motion of a wave energy converter (WEC) can be described in terms of an integro-differential equation, which
involves a convolution operator. This convolution term accounts for the effect of radiation forces acting on the device and
represents a computational and representational drawback both for simulation and analysis/design of control/estimation
strategies. We present herein a moment-based strategy to compute a parametric form of the radiation force subsystem for
multiple degree-of-freedom WECs. The strategy allows for the computation of a model that exactly matches the steady-state
behaviour of the target system at a set of user-defined frequencies, while retaining the underlying physical properties of
radiation forces. The potential and capabilities of the presented method are illustrated considering a CorPower-like device
(heaving point absorber) as an application case.

INTRODUCTION

Among the different modelling approaches adopted in the wave
energy literature (see Li and Yu, 2012), the speed with which
numerical simulation may be performed makes the widely known
boundary element method (BEM) a common choice to com-
pute hydrodynamic parameters for a given wave energy converter
(WEC) (Penalba et al., 2017). However, one of the major draw-
backs of the BEM is that the results are computed in the fre-
quency domain and, hence, can only characterise the steady-state
motion of the WEC under analysis. Seeking a more comprehen-
sive approach and following the well-known theory developed in
Cummins (1962), the motion of a WEC can be expressed, in the
time domain, using a particular well-known integro-differential
equation of the convolution class. The presence of these convo-
lution terms accounts for the effect of radiation forces acting on
each of the different degrees of freedom (DoF) of the device,
constituting a (hydrodynamic) coupling between these modes of
motion.

The existence of these convolution terms represents a signifi-
cant drawback both for motion simulation and for modern analy-
sis/design of control/estimation strategies. From a motion simula-
tion point of view, it is well known that the explicit computation
of the convolution operator is computationally inefficient, often
worsened by the necessity of a small (time) discretisation step to
obtain accurate numerical integration. From a control/estimation
theory point of view, the presence of these convolution mappings
complicates the application of well-established results in the field,
since modern control/estimation techniques are based on the avail-
ability of a state-space representation (at least in local coordi-
nates) of the system under analysis (Faedo et al., 2017). Moti-
vated by these drawbacks, researchers often seek for a paramet-
ric approximation of this radiation force subsystem in terms of a
linear time-invariant dynamic representation, making explicit use
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of the corresponding hydrodynamic characteristics of the device
obtained from BEM solvers.

To be precise, the prevailing approach is to approximate each
convolution term independently (see, for example, Pérez and Fos-
sen (2008) and Giorgi and Ringwood (2019), as a single-input
single-output (SISO) dynamic system, although the problem is
inherently multiple-input multiple-output (MIMO), as a conse-
quence of the multi-DoF characteristic of the WEC. One main dis-
advantage of this “multi-SISO” approach is that treating each con-
volution term independently often leads to an unnecessary high-
order dimensional parameterisation of the radiation force subsys-
tem, potentially rendering any control/estimation strategy chal-
lenging for real-time applications (Faedo et al., 2017).

We have recently presented a moment-matching-based MIMO
identification method for wave energy applications in Faedo et al.
(2019), particularly to approximate the response of an array of
WECs, i.e. a “farm” of multiple 1-DoF devices. This strategy is
based on the underlying theoretical concepts developed in Faedo
et al. (2018b), and it allows for the computation of a model that
exactly matches the frequency response of the target MIMO sys-
tem at a set of user-selected frequencies F , providing an efficient
and accurate method to compute a state-space representation for
the WEC dynamics. Additionally, a wise selection of the set F
within this moment-based approach helps to enforce the underly-
ing (physical) properties of the WEC under analysis.

Motivated by these results, in this paper we present an adap-
tation of the MIMO identification framework developed in Faedo
et al. (2019) to compute a parametric approximation of the
radiation force subsystem of a multi-DoF device. We demon-
strate that treating the approximation of radiation forces with our
MIMO moment-based strategy (instead of the usual “multi-SISO”
approach) provides a highly accurate low-dimensional system,
hence offering a reliable parametric model while also reducing
the computational effort required for time-domain simulations and
control/estimation calculations. Moreover, we show that we can
guarantee physical properties of radiation forces in the approx-
imating model, such as bounded-input bounded-output (BIBO)
stability.

The remainder of this paper is organised as follows. The
section titled “Moments for MIMO Systems” recalls the theory
behind moment-matching for MIMO systems. The section titled

http://www.isope.org/publications


396 Parameterisation of Radiation Forces for Multiple Degree-of-Freedom Wave Energy Converters Using Moment-Matching

“Equations of Motion for a Multi-DoF WEC” briefly discusses
modelling of multi-DoF WECs in both the time and frequency
domains. The section titled “Moment-Based Radiation System”
presents a moment-domain analysis of radiation forces, while the
section titled “Models Achieving Moment-Matching” discusses
a moment-based algorithm to compute a parametric approxima-
tion for the radiation force subsystem of a multi-DoF WEC. The
section “Application to a Corporate-like Device” discusses an
application case, where a CorPower-like device (see Fig. 1a) is
considered. Finally, “Conclusions” encompasses the main conclu-
sions of this study.

Notation and Preliminaries

Standard notation is considered through this study, with any ex-
ceptions detailed in this section. �+ (�−) denotes the set of non-
negative (non-positive) real numbers. �0 denotes the set of pure-
imaginary complex numbers, and �<0 denotes the set of complex
numbers with a negative real part. The symbol 0 stands for any
zero element, dimensioned according to the context. The symbol
	n denotes an order n identity matrix. The spectrum of a matrix
A ∈ �n×n, i.e., the set of its eigenvalues, is denoted as �4A5. The
notation W †, with W ∈ �n×m, denotes the Moore–Penrose inverse
of W . The symbol

⊕n
i=1 denotes the direct sum of n matrices, i.e.,

⊕n
i=1 Ai = diag4A11A21 0 0 0 1An5. The expression �X�F denotes the

Frobenius norm of the matrix X. The Kronecker product between
two matrices M1 ∈ �n×m and M2 ∈ �p×q is denoted as M1 ⊗ M2

∈ �np×mq . The convolution between two functions f and g over a
set ì⊂�, i.e.,

∫

ì
f 4�5g4t− �5d� is denoted as f ∗g. The Fourier

transform of a function f ∈ L24�5 is denoted by F 8f 4t59= f̂ 4j�5,
while its Laplace transform is denoted as L8f 4t59 = F 4s5, where
L24�5=

{

f 2�→� �
∫

��f 4t52�dt <+�
}

. The notation <8z9 and
=8z9 denote the real and imaginary parts of z ∈ �. The symbol
e
q
ij ∈ �q×q denotes a matrix with 1 in the ij component and 0 else-

where. Finally, the symbol �n ∈ �n×1 denotes a vector with odd
components equal to 1 and even components equal to 0.

MOMENTS FOR MIMO SYSTEMS

We note that the theory recalled herein is originated within the
field of model order reduction in Astolfi (2010), being adapted for
the WEC identification problem in Faedo et al. (2018b, 2019) and
Peña-Sanchez et al. (2019b). The interested reader is referred to
Scarciotti and Astolfi (2017, Chapter 1) for a thorough discussion
on different model order reduction techniques and, particularly,
on moment-based methods.

Consider a finite-dimensional, MIMO, continuous-time system
è described, for t ∈�+, by the state-space model

è 2 8ẋ4t5=Ax4t5+Bu4t51 y4t5=Cx4t59 (1)

with x4t5 ∈ �n, u4t5 ∈ �q , y4t5 ∈ �q , A ∈ �n×n, B ∈ �n×q , and
C ∈ �q×n. Note that we focus on square systems, in line with
the radiation force subsystem application. Consider the transfer
function W 2 � → �q×q , computed in terms of the associated
impulse response matrix w4t5 = CeAtB with wij ∈ L24�5, where
wij denotes the ij element of w, as

L8w4t59 7→W4s5=C4s	n −A5−1B (2)

and assume that Eq. 1 is minimal, i.e., controllable and observable.

Definition 1 (Astolfi, 2010). The 0-moment of system Eq. 1 at
si ∈�\�4A5 is the complex matrix �04si5=C 4si	n −A5−1 B. The

k-moment of system Eq. 1 at si ∈� is the complex matrix

�k4si5=
4−15k

k!

[

dk

dsk
W4s5

]

s=si

(3)

with k ≥ 1 integer.

Remark 1. Note that moments, as in Definition 1, are the coef-
ficients of the Laurent expansion of the transfer function W4s5
about the complex point si.

Remark 2. The idea of the moment-based model order reduction
technique is based on interpolating the transfer function of the
original system (and the derivatives of this) and the transfer func-
tion of the reduced order model (and the derivatives of this) at
these interpolation points si.

The pioneering study Astolfi (2010) shows that the moments of
a SISO linear system are in a one-to-one relation with the steady-
state response (provided it exists) of the output of the intercon-
nection between a signal generator and the system è itself. This
concept is formally extended to MIMO systems in Faedo et al.
(2019) and Peña-Sanchez et al. (2019b), and briefly recalled in
the following theorem.

Theorem 1 (Faedo et al., 2019; Peña-Sanchez et al., 2019b). Con-
sider system Eq. 1 and the autonomous multiple-output signal
generator

G 2 8æ̇4t5= 4	q ⊗ S5æ4t51 u4t5= Læ4t59 (4)

with æ4t5 ∈ �q� , S ∈ ��×� , L ∈ �q×q� , æ405 ∈ �q� , �4A5 ⊂ �<0,
�4S5⊂�0, and the eigenvalues of S are simple. Suppose the triple
of matrices 4L1 	q ⊗ S1æ4055 is minimal. Let ç ∈ �n×q� be the
(unique) solution of the Sylvester equation

Aç+BL=ç4	q ⊗ S5 (5)

Then, there exists a one-to-one relation between the moments
�04s151�04s251 0 0 0 1�04s�5, with si ∈ �4S5 for all i ∈ �� , and the
steady-state response Cçæ of the output y of the interconnection
of system Eq. 1 with the signal generator Eq. 4.

Remark 3. The minimality of the triple 4L1 	q ⊗ S1æ4055 implies
the observability of the pair 4L1 	q ⊗S5 and the excitability of the
pair 4	q ⊗ S1æ4055.

Remark 4. From now on, we refer to the matrix Cç≡ ¹, with ç
the solution of Eq. 5, as the moment-domain equivalent of y.

Following this steady-state interpretation of moments, we now
recall from Astolfi (2010) the formal definition of a reduced order
model achieving moment-matching for system Eq. 1.

Definition 2 (Astolfi, 2010). Consider system Eq. 1 and the signal
generator Eq. 4. The system described by the equations

èG 2 8ä̇4t5= F ä4t5+Gu4t51 �4t5=Qä4t59 (6)

with ä ∈ �q� , �4t5 ∈ �q , F ∈ �q�×q� , G ∈ �q�×q , and Q ∈ �q×q�

is a model of system Eq. 1 at S if system Eq. 6 has the same
moments at S as system Eq. 1.

Lemma 1 (Astolfi, 2010). Consider system Eq. 1 and the signal
generator Eq. 4. Then, the system defined in Eq. 6 is a model of
system Eq. 1 at S if �4F 5∩�4S5= ∅ and

¹ =QP (7)
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where ¹ =Cç is the moment-domain equivalent of the output of
system Eq. 1 computed from Eq. 5, and P is the unique solution
of the Sylvester equation

FP +GL= P4	q ⊗ S5 (8)

Remark 5. The transfer function of system èG interpolates the
transfer function of system è at the eigenvalues of the matrix S.
Equivalently, the steady-state output of the reduced order model
Eq. 6 exactly matches the steady-state output of the system result-
ing from the interconnection of systems Eq. 1 and Eq. 4.

Given the characteristics of �4S5 in Theorem 1, we set a stand-
ing assumption on the matrix S and we recall a useful lemma from
Faedo et al. (2019) that provides an alternative path for the com-
putation of the matrix ¹ = Cç in terms of the impulse response
matrix of è.

Assumption 1. Consider the finite set F = 0∪8�p9
f
p=1 ⊂�+. The

matrix S in Eq. 4 is written in block-diagonal form as

S = 0 ⊕

(

f
⊕

p=1

[

0 �p

−�p 0

]

)

(9)

where � = 2f + 1, f ≥ 0 integer.

Lemma 2 (Faedo et al., 2019, Peña-Sanchez et al., 2019b). Con-
sider the interconnection between system Eq. 1 and the signal
generator Eq. 4, and suppose Assumption 1 holds. Without losing
generality, assume that æ405= 61 �

ᵀ
�−17

ᵀ so that the minimality of
the triple 4L1 	q ⊗S1æ4055 holds as long as the pair 4L1 	q ⊗S5 is
observable. Then, the moment-domain equivalent ¹ can be com-
puted from the impulse response of è as

¹ =

q
∑

i=1

q
∑

j=1

e
q
ijL
(

	q ⊗Rw
ij

)

(10)

where each Rw
ij ∈��×� is a block-diagonal matrix defined by

Rw
ij =Wij405⊕

(

f
⊕

p=1

[

<8Wij4j�p59 =8Wij4j�p59

−=8Wij4j�p59 <8Wij4j�p59

])

(11)

and Wij4s5=L8wij4t59.

Remark 6. Note that, following Lemma 2, each �p in Eq. 9 rep-
resents a desired interpolation point for the model reduction pro-
cess, i.e., a frequency where the transfer function of system èG

matches the transfer function of the original system è.

Remark 7. The set F , as defined in this study, inherently incor-
porates the zero element; i.e., we always consider matching at
s = 0. This is particularly useful for a proper parameterisation
of the radiation force subsystem, as it helps to enforce physical
properties (see “Moment-Based Radiation Systems”).

EQUATIONS OF MOTION FOR A MULTI-DoF WEC

We now introduce the key concepts behind linear modelling of
multi-DoF WECs, both in the time and frequency domains. The
assumptions considered herein are consistent across a wide variety
of WEC control/estimation studies such as Faedo et al. (2019).

Equations in the Time Domain

The motion for a WEC with N DoF can be expressed in the
time domain according to Newton’s second law, obtaining the

following linear hydrodynamic formulation:

M�̈4t5=Fr4t5+Fh4t5+Fe4t5 (12)

where M =
⊕N

i=1 mi is the mass matrix of the buoy with mi ∈

�+ the mass of the ith DoF, and the elements of the vectors
8�4t51Fe4t51Fh4t51Fr4t59⊂�N contain the excursion xi, excita-
tion force fei , hydrostatic restoring force fhi , and radiation force
fri acting on the ith DoF, with i ∈�N , respectively.

The linearised hydrostatic force Fh can be written as −Sh� ,
where the matrix Sh ∈ �N×N is defined as Sh =

∑N
i=1

∑N
j=1 e

N
ij ⊗

shij and contains the hydrostatic stiffness of each DoF (if i = j)
and each interaction between the different modes of motion of
the device due to the movement of each other DoF (if i 6= j). The
radiation force Fr is modelled from linear potential theory and,
using Cummins’ equation (Cummins, 1962), is

Fr4t5= −���̈4t5−

∫

�+

K4�5�̇4t − �5d� (13)

where �� = lim�→+� A4�5 represents the added-mass matrix
at infinite frequency (Falnes, 2002) and K4t5 =

∑N
i=1

∑N
j=1 e

N
ij ⊗

kij4t5 ∈�N×N , kij ∈ L24�5 contains the (causal) radiation impulse
response of each DoF (if i = j) and each interaction due to radi-
ated waves created by the motion of other DoF (if i 6= j). Finally,
we can express the linearised equation of motion of the multi-DoF
WEC as

4M +��5�̈4t5+K4t5 ∗ �̇4t5+ Sh�4t5=Fe4t5 (14)

Equations in the Frequency Domain

Applying the Fourier transform to Eq. 14 and considering the
velocity of each DoF a measurable output (i.e., �̇4t5), the follow-
ing representation

ˆ̇�4j�5= F̂e4j�5H4j�5 (15)

where H 2 �0 → �N×N denotes the force-to-velocity frequency
response mapping of the WEC, holds. The response H4j�5 can
be readily computed (Falnes, 2002) as

H4j�5=

(

B4�5+ j�4A4�5+M5+
Sh
j�

)−1

(16)

where B4�5 and A4�5 represent the radiation damping and the
radiation added mass matrix of the device, respectively. These
parameters are calculated using hydrodynamic codes at a finite
set of uniformly spaced frequency samples ì= 8�i9

M
i=1 with ì⊂

6�l1�u7, where �l and �u represent the lower and upper bounds
of the range, respectively. We note that the ideal frequency range
depends explicitly on the application, as discussed in Faedo et al.
(2018b).

Mapping Between Time and Frequency

Following the study performed in Ogilvie (1964), we recall that
there exists a straightforward relation between the parameters of
the models Eq. 14 and Eq. 15, which can be readily obtained via
a direct application of the Fourier transform as

B4�5=

∫

�+

K4t5 cos4�t5dt1

A4�5=�� −
1
�

∫

�+

K4t5 sin4�t5dt
(17)
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Property Significance on K

(I) lim�→+� K4j�5= 0 Strictly proper
(II) limt→+� K4t5= 0 BIBO stable

(III) lim�→0 K4j�5= 0 With transmission zeros
at the origin

(IV) <8Kii4j�59 > 01 ∀i ∈�N Passivity (see Khalil, 1996,
for a proof).

Table 1 Properties of the radiation kernel K

Then, the radiation force impulse response mapping K 2 �+ −→

�N×N can be directly written (Falnes, 2002) as

K4t5=
2
�

∫

�+

B4�5 cos4�t5d� (18)

Considering Eq. 18, the frequency-domain representation of the
radiation force kernel K can be obtained as

K4j�5= B4�5+ j� 6A4�5−��7 (19)

The radiation kernel frequency response K4j�5 has a set of par-
ticular properties that have been used in the literature to enforce a
structure on the parametric model used to identify the frequency-
domain data. Such properties are recalled in Table 1.

MOMENT-BASED RADIATION SYSTEM

The radiation impulse response mapping defines a linear-time
invariant system completely characterised by K 2 �+ −→ �N×N ,
where its input is the vector containing the device velocities for
each DoF, i.e., �̇. To be precise, the radiation subsystem èK is
given by

èK 2 �K4t5=K4t5 ∗ �̇4t5 (20)

where �K4t5 ∈�N is the output (radiation force) of system èK .
With the definition of èK , and following the theory presented

in “Moments for MIMO Systems,” we can obtain a parametric
model è̃KF for the radiation force subsystem defined in Eq. 20
using the result of Lemma 2, which offers an explicit computa-
tion of the moment-domain equivalent of a system in terms of
its impulse response mapping. To that end, and in the spirit of
Assumption 1, we express the velocity of the multi-DoF WEC
�̇ as an autonomous multiple-output signal generator in a similar
fashion to G in Eq. 4, i.e.,

G�̇ 2 8æ̇�̇4t5= 4	N ⊗ S5æ�̇4t51 �̇4t5= L�̇ æ�̇4t59 (21)

with S as in Eq. 9, æ̇�̇405 = 61 �
ᵀ
�−17

ᵀ and L�̇ such that the pair
4L�̇ 1 S5 is observable. Then, recalling the result of Lemma 2, the
moment-domain equivalent of the output of system èK in Eq. 20
can be straightforwardly computed as

¹
K

=

N
∑

i=1

N
∑

j=1

eNij L�̇4	N ⊗Rk
ij5 (22)

where each Rk
ij ∈��×� is a block-diagonal matrix defined by

Rk
ij = 0 ⊕

(

f
⊕

p=1

[

<8Kij4j�p59 =8Kij4j�p59

−=8Kij4j�p59 <8Kij4j�p59

])

(23)

Note that each entry of Rk
ij directly depends on the hydrodynamic

coefficients computed with BEM solvers. To be precise, let Aij4�5
and Bij4�5 be the ijth element of the added mass matrix A4�5

and the radiation damping matrix B4�5 of the device, respectively.
Then,

<8Kij4j�p59= Bij4�p51

=8Kij4j�p59=�p6Aij4�p5−��ij
7

(24)

where ��ij is the ij-th element of the matrix ��.

Remark 8. Note that each matrix Rk
ij already incorporates the

hydrodynamic property Kij405= 0 (see Table 1, Property III).

Finally, following Definition 2 and Lemma 1, we note that the
parametric (state-space) description

è̃KF 2 8ä̇K4t5= FKäK4t5+GK�4t5 �̃K4t5=QKäK4t59 (25)

is a system that interpolates the target frequency response K4j�5
at the set F ; i.e., it has the exact same frequency response of
the radiation subsystem èK at the frequencies defined in the set
F , if QKPK = ¹

K
, where PK ∈��×� is the unique solution of the

Sylvester equation

FKPK +GKL�̇ = PK4	N ⊗ S5 (26)

and ¹
K

is computed from Eq. 22. The explicit computation of
the matrices FK1GK1QK in Eq. 25 (fulfilling condition Eq. 26) is
addressed in the following section.

MODELS ACHIEVING MOMENT-MATCHING

Herein, we briefly summarise some of the key concepts behind
the algorithm proposed in Peña-Sanchez et al. (2019b) to compute
a moment-based time-domain model for an array of WECs, and
we adapt the procedure for our multi-DoF radiation force subsys-
tem case. We note that Peña-Sanchez et al. (2019b) regard the
moment-based concepts described in this study in synergy with
well-known results of subspace-based identification methods, as
detailed in McKelvey et al. (1996).

To be precise, we approximate the dynamic and output matrix
from the target radiation subsystem èK in terms of the corre-
sponding singular value decomposition of the Hankel matrix H
(see McKelvey et al., 1996), constructed from K4j�5 as defined in
Eq. 19 and computed at the finite set of uniformly spaced frequen-
cies ì (see “Equations of Motion for a Mult-DoF WEC”). These
�-dimensional approximated matrices dÂ� ∈ ��×�, Ĉ� ∈ �N×�

(where dÂ� corresponds to a discrete-time model) can be com-
puted as

dÂ� = 4J1Û�5
†J2Û�1 Ĉ� = J3Û� (27)

where the continuous-time equivalent matrix Â� can be obtained
directly from dÂ� using, for instance, the bilinear transformation.
We refer the reader to McKelvey et al. (1996) for the explicit
expression of the matrices J11 J21 J3, and Û�.

Remark 9. If dÂ�, computed as in Eq. 27, has unstable eigenval-
ues, one can always project such a set into the complex unit circle
following the procedure described in McKelvey et al. (1996).

Finally, the moment-based identification algorithm for the radi-
ation force subsystem utilised herein can be summarised in the
following steps:

I Select a set of f interpolation points (frequencies �p) F =

0 ∪ 8�p9
f
p=1 to achieve moment-matching.
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II Compute the matrix 	N ⊗ S following Eq. 9 and select any
L�̇ such that the pair 4L�̇ 1 	N ⊗ S5 is observable.

III Calculate the moment-domain equivalent of the output of sys-
tem Eq. 20 ¹

K
using Equation 22.

IV Compute the matrices ÂN� and ĈN� from Eq. 27 (We note
that standard Matlab routines can be used to obtain ÂN�

and ĈN� from the frequency-domain data K4j�5).
V Consider the parametric model for the radiation subsystem

described in Eq. 25 and set FK = ÂN� and QK = ĈN� .
VI Consider the frequency response of Eq. 25, i.e.,

K̃4j�1GK5=QK 4j�i − FK5
−1 GK 0

Using the frequency set ì = 8�i9
M
i=1, compute the input

matrix G
opt
K with the following optimisation-based procedure:

G
opt
K = arg min

GK

M
∑

i=1

∥

∥K̃4j�i1GK5−K4j�i5
∥

∥

2

F

subject to

FKPK +GKL�̇ = PK4	N ⊗ S51 QKPK = ¹
K
0

VII Compute a N�-dimensional radiation force subsystem time-
domain model è̃KF achieving moment-matching at S as

è̃KF 2 8ä̇K4t5= FK äK4t5+G
opt
K �̇4t51 �̃K4t5=QK äK4t590

Remark 10. The method is based on the idea of building the
model è̃KF by matching the f + 1 (user-defined) frequencies of
the set F , exploiting the system structure of Eq. 25, and solving
for an equality-constrained optimisation problem, which computes
the input matrix G

opt
K that minimises the difference between the

target frequency response and that of Eq. 25, while ensuring the
moment-matching conditions in the model.

APPLICATION TO A CORPOWER-LIKE DEVICE

To illustrate the strategy proposed in this study, we consider
the CorPower-like device utilised in Giorgi and Ringwood (2019)
(note that the applicability of the method is independent of the
specific device geometry) and depicted here in Fig. 1a. We refer
the reader to Giorgi and Ringwood (2019) for a precise descrip-
tion of the dimensions of this device.

Fig. 1 CorPower-like device considered in this study; SWL, still
water level

Following the analysis carried out in Giorgi and Ringwood
(2019), we consider surge (mode 1), heave (mode 2), and pitch
(mode 3) as the more relevant DoF for this particular appli-
cation case. The corresponding hydrodynamic parameters A4�5
and B4�5 can be appreciated in Fig. 2. Note that the elements
811291 821191 821391 83129 of the matrices A4�5 and B4�5 are not
shown in Fig. 2, given that there is no interaction due to radia-
tion forces between these particular modes of motions; i.e., they
are exactly zero for all � ∈�+. The maximum frequency selected
in the BEM code, to compute the hydrodynamic parameters of
the CorPower-like device of Fig. 2, is set to 10 rad/s. Neverthe-
less, we note that ocean waves peak periods typically lie between
3 s and 16 s, which implies that the frequency range of the wave
excitation force Fe is approximately 600412017 rad/s (Faedo et al.,
2018b). Hence, it is straightforward to conclude that, under the
modelling assumptions considered in “Equations of Motion for
a Multi-DoF WEC,” the velocity of the multi-DoF device (input
to èK) has significant frequency components in the same range.

From now on, we denote the frequency-domain model of the
radiation subsystem corresponding to our CorPower-like device
K4j�5 as the target response. In addition, we use the notation
Kij4j�5 for the ij element of the matrix K4j�5. More precisely,
Kij 2 �

0 −→ � is the frequency response mapping between the
output i (radiation force exerted on the ith mode) and the input j
(velocity of the jth mode).

Approximation of the Radiation Subsystem

We now specifically proceed with the computation of a
moment-based approximation è̃KF for the radiation subsystem
èK , based on the knowledge of the target frequency response
K4j�5 and using the procedure described in “Models Achieving
Moment-Matching.”

Recall that the first step of the algorithm is to select the set of
frequencies F to interpolate. In the SISO case (1-DoF device) of
Faedo et al. (2018b), a sensible choice can be made by analysing
the gain of K4j�5, and selecting dynamically important points,
such as the resonant frequency of the particular DoF under study,
i.e., where the maximum amplification occurs. For this MIMO
case, it is well-known that the system gain depends on the cor-
responding input direction (see, for example, Zhou and Doyle,
1998), so that this set of dynamically important points cannot
be obtained by inspecting each element Kij4j�5 independently.
Instead, we use the singular values of K4j�5 (Zhou and Doyle,
1998), which are plotted in Fig. 1b.

Following well-known theory for MIMO systems, it is straight-
forward to notice, from Fig. 1b, that � ≈ 107 rad/s represents an
interpolation point of dynamical importance (marked with a blue
diamond in Fig. 1b), being the frequency where the maximum
amplification occurs, i.e., the frequency characterising the H�-
norm of the system (Zhou and Doyle, 1998).

Based on this, we propose two different frequency interpolation
sets F , as follows:

F1 = 80110791 F2 = 80100811079

where F2 includes the set F1 and incorporates an additional low
frequency component � = 008 rad/s. Note that both sets include
the zero element (see Remark 7). Following the discussion pro-
vided at the beginning of this section, the frequency range selected
to approximate K4j�5 is given by ì= 6003137 rad/s, with a fre-
quency discretisation step of 0001 rad/s. Given that heave (mode
2) is the main DoF of this WEC, Fig. 3 presents the Bode dia-
gram for the target response K224j�5 (dashed black) and the
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Fig. 2 Hydrodynamic parameters A4�5 (dot-dashed blue) and B4�5 (dashed green) for the CorPower-like device considered herein

Fig. 3 Bode diagram for K224j�5 (dashed black), and K̃224j�5
(solid gray) for both parametric models è̃KF1

(left) and è̃KF2

(right), with interpolation points (empty red circles)

moment-based approximated response K̃224j�5 (solid gray) for
both parametric models è̃KF1

(left) and è̃KF2
(right). The interpo-

lation points for each model are denoted by an empty red circle.
As expected, the approximated systems have the exact same fre-
quency response as the target model for each corresponding set F .
Though using the set F1 as the interpolation set provides quite
accurate results, the decrease in the approximation error from sys-
tem è̃KF1

to è̃KF2
can be clearly appreciated.

As a conclusive graphical illustration of the frequency-domain
performance for the models computed via our strategy, Fig. 4
presents the singular value plot for the target response K4j�5,
and the approximated mapping K̃4j�5, both for è̃KF1

(left) and
è̃KF2

(right). It can be readily appreciated that both models can
accurately approximate the target singular values in every prin-
cipal direction (i.e., the target MIMO gain) with an increase in
accuracy when using the interpolation set F2 instead of F1.

Aiming to further assess the strategy, Table 2 offers a numer-
ical appraisal of each of the moment-matching-based parametric
models in terms of the following parameters:

Dim: Dimension (order) of the parametric model

NRMSEF: Normalized Root-Mean-Square Error (NRMSE) com-
puted against the target WEC frequency response ∀� ∈ì.

NRMSET: NRMSE computed (in steady-state) against the target
steady-state radiation system response using inputs generated with
frequency content inside the set ì.

In order to get meaningful results for the time-domain scenario
of Table 2, and since the inputs are generated from sets of ran-
dom amplitudes, it is found that the mean of 10 simulations is

Fig. 4 Singular value (SV) plot for K4j�5 (dashed black) and
K̃4j�5 (solid gray), with interpolation points (empty red circles)

necessary to obtain a 95% confidence interval with a half-width
of 0.25% of the mean, computed as in Peña-Sanchez et al. (2018).

The first row of Table 2 includes the “multi-SISO,” which
corresponds to a parametric model of the MIMO system èK

obtained by approximating each individual element of the matrix
K4j�5 with a SISO system. Though several strategies can be used
to obtain this “multi-SISO” system, we select herein the SISO
moment-matching method described in Faedo et al. (2018b) (with
F2 as interpolation points), resulting in a model of dimension 25.
This is merely motivated by the comparison study (Peña-Sanchez
et al., 2019a), where the SISO moment-matching method is shown
to outperform well-established strategies, both in terms of perfor-
mance and preservation of physical characteristics.

As can be appreciated in Table 2, note that the approach pro-
posed herein provides highly accurate results even with a single
interpolation point (in addition to the zero frequency), with only
approximately 4% of error in both the frequency domain and time
domain, and with an intrinsic decrease in computational complex-
ity, given the low dimension (order) of the resulting model. We
also note that the “multi-SISO” approach provides similar results
to those of è̃KF2

with higher computational requirements (i.e.,

Model Dim NRMSEF NRMSET

“multi-SISO” 28 1.036% 0.985%

è̃F1
9 3.580% 4.045%

è̃F2
15 1.092% 0.664%

Table 2 Numerical comparison table
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higher system order). That said, we emphasize that the radiation
subsystem should be treated as a MIMO system when it comes
to its parametric approximation.

To conclude the assessment of our strategy, we analyse the
moment-based computed models è̃KF with respect to the physical
properties of the radiation subsystem listed in Table 1.

• Property I (èK is strictly proper): This property is always
fulfilled by the family of parametric models defined in Eq. 25.
See, for example, Khalil (1996).

• Property II (èK is BIBO stable): The strategy proposed in
“Models Achieving Moment-Matching” preserves the dynamic
matrix approximated by using the Hankel matrix associated with
K4j�5. This matrix can always be constructed so that it is Hur-
witz (see Remark 10), and, hence, system è̃KF is BIBO stable.
By way of example, Fig. 5 shows the pole-zero map for system
è̃KF1

computed in this same section for the CorPower-like device.
It can be appreciated that all the poles are contained in the open
left-half of the complex plane; i.e., è̃KF1

is BIBO stable.
• Property III (èK has transmission zeros at s = 0): This prop-

erty is specifically enforced by considering 0 as part of the set
of interpolation points F (see Remark 8). In practice, this can be
(graphically) appreciated in the pole-zero map of Fig. 5, where
the zero at s = 0 manifests explicitly for the approximating model
è̃KF1

.
• Property IV (èK is passive): This particular physical property

is not enforced by our strategy. However, we note that, if the target
data K4j�5 effectively come from a passive model, the parametric
models computed with our strategy, for the WEC radiation force
subsystem, are virtually inherently passive. If required by the
application, a similar strategy to that of Faedo et al. (2018a) can

Fig. 5 Pole-zero map for the approximating model è̃KF1

Fig. 6 Nyquist plot (diagonal elements) of K̃4j�5 for è̃KF2

be considered to specifically ensure passivity within this multi-
DoF moment-based framework. Figure 6 depicts the Nyquist plot
for the diagonal elements of K̃4j�5 for è̃KF2

, where it can be
appreciated that <8K̃ii4j�59 > 0 for all i ∈ �3 and, hence, èKF2

is passive.

CONCLUSIONS

This paper presents a MIMO moment-based identification
framework for the radiation force subsystem of multi-DoF WECs.
The proposed strategy computes a parametric model of the tar-
get radiation force mapping using raw frequency-domain data
produced by well-known BEM-based hydrodynamic codes. Such
a moment-based model exactly matches the target steady-state
response for a user-defined set of frequencies, allowing for the
preservation of the relevant dynamic characteristics of the device.
Moreover, we show that this parametric approximation retains
important properties of radiation forces, such as input-output sta-
bility and passivity, agreeing with the underlying physics that
characterise such a system. The performance of the strategy is
demonstrated and analysed from both a time- and a frequency-
domain perspective, using a CorPower-like multi-DoF device as
application case.
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