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AbstractThe control objective for Wave Energy Converters (WECs) deviates significantly from
the traditional reference “tracking” problem. In fact, a suitable control formulation for WECs
should optimise the energy absorption from waves while observing, at the same time, the
physical limitations of both the device and the actuator. Due to the irregular motion of the sea,
computing an optimal control law achieving such objectives is non-trivial. This paper presents
the application of a recently developed moment-based optimal control strategy for WECs, for
a flap-type device. The main components of this theory are discussed, while highlighting its
appealing characteristics for this energy-maximising application. In addition, numerical results
are presented for both monochromatic and polychromatic wave inputs.
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1. INTRODUCTION

Energy from ocean waves has the potential to fulfill the
worldwide energy demand, with an estimation of 32.000
TWh/year (Mork et al., 2010). This motivates researchers
to obtain a better understanding of the underlying issues
behind harvesting wave energy. As a result, one of the most
consistent outcomes (see, for example, (Ringwood et al.,
2014)) is that Wave Energy Converters (WECs) require an
optimised process that ensures a maximum energy absorp-
tion from waves, while respecting the physical limitations
of both the device and the Power Take-Off (PTO) system.
Such an optimisation procedure can be formulated as an
optimal control problem.

Several strategies have been proposed to formulate and
solve this energy-maximising control objective. Among
these strategies, Model Predictive Control (MPC) is cur-
rently one of the most adopted formulations in the wave
energy community. Nevertheless, the computational bur-
den behind MPC can render the controller unsuitable for
real-time applications (Faedo et al., 2017). Alternative
strategies, such as spectral and pseudospectral methods
(see (Faedo et al., 2017)), have recently emerged as an
attempt to overcome the potentially demanding com-
putational effort behind MPC. Computing this energy-
maximising control law in real-time remains a challenge
among the wave energy research community, and most
of the proposed real-time strategies are usually inherently
suboptimal.

Recently, the foundations of a novel formulation based on
current advances in model order reduction by moment-
matching (see, for example, (Astolfi, 2010)) has been
developed in (Faedo et al., 2018). This strategy exploits

� This material is based upon works supported by Science Founda-
tion Ireland under Grant no. 13/IA/1886.

the steady-state response of the WEC, providing a suitable
set of mappings to compute an energy-maximising optimal
control law in real-time. From now on, we refer to the
framework induced by moment-matching as the moment-
domain formulation of a system. This paper presents the
application of this moment-based optimal control strategy
to design an energy-maximising controller for a flap-type
WEC, subject to constraints on the oscillation amplitude,
velocity and actuator (PTO) input.

1.1 Notation and Preliminaries

Standard notation is considered through this study, with
some exceptions further detailed in this preliminary sec-
tion. R+ (R−) denotes the set of non-negative (non-
positive) real numbers. C0 denotes the set of pure-
imaginary complex numbers and C− denotes the set of
complex numbers with negative real part. The symbol
0 stands for any zero element, according to the context.
The symbol In denotes an order n identity matrix, while
the notation 1n×m is used to denote a n × m Hadamard
identity matrix (i.e. a n × m matrix with all its entries
equal to 1). The spectrum of a matrix A ∈ Rn×n, i.e.
the set of its eigenvalues, is denoted as σ(A). The symbol⊕

denotes the direct sum of n matrices, i.e.
⊕n

i=1 Ai =
diag(A1, A2, . . . , An). The Kronecker product between two
matrices M1 ∈ Rn×m and M2 ∈ Rp×q is denoted as M1 ⊗
M2 ∈ Rnp×mq. The convolution between two functions
f(t) and g(t) over a finite range [0, t], i.e.

∫ t

0
f(τ)g(t −

τ)dτ is denoted as f ∗ g. Finally, the symbol εn ∈ Rn×1

denotes a vector with odd components equal to 1 and even
components equal to 0.

In the remainder of this section the formal definition of
the Kronecker sum is provided, since its definition in the
literature can be often ambiguous.
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Definition 1. (Brewer, 1978) The Kronecker sum be-
tween two matrices P1 and P2, with P1 ∈ Rn×n and
P2 ∈ Rk×k, is defined (and denoted) as

P1⊕̂P2 � P1 ⊗ Ik + In ⊗ P2. (1)

2. MOMENT-BASED DESCRIPTION OF A SYSTEM

The moment-based formulation, as considered in this
study, was first formulated in (Astolfi, 2010), with the
purpose of developing reduced-order models for linear
and non-linear dynamical systems. This mathematical
foundation is extrapolated to the analysis of the steady-
state behaviour of dynamical systems in (Scarciotti and
Astolfi, 2016). A brief summary of the key elements of
this moment-based theory is presented in the following.

2.1 Moments for Linear Systems

In this subsection, the notion of moment for linear
systems, as formulated in (Astolfi, 2010), is recalled.
Consider a finite-dimensional, single-input, single-output,
continuous-time system described, for t ≥ 0, by the state-
space model

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn×1

and C ∈ R1×n. Consider the associated transfer function

H(s) = C(sIn −A)−1B (3)

and assume that (2) is controllable and observable.

Definition 2. (Antoulas, 2005) The 0-moment of sys-
tem (2) at si ∈ C is the complex number η0(si) =

C (siIn −A)
−1

B. The k-moment of system (2) at si ∈ C
is the complex number

ηk(si) =
(−1)k

k!

[
dk

dsk

(
C(sIn −A)−1B

)]

s=si

, (4)

with k ≥ 1 integer.

In (Astolfi, 2010), it is shown that the moments of sys-
tem (2) are in a one-to-one relation with the steady-
state response (provided it exists) of the output of the
interconnection between a signal generator and system
(2). This result is recalled, without proof, in the following
theorem (the reader is referred to (Astolfi, 2010; Scarciotti
and Astolfi, 2017b) for a comprehensive proof).

Theorem 1. (Astolfi, 2010; Scarciotti and Astolfi, 2017b,a)
Consider system (2) and the signal generator

ξ̇(t) = S ξ(t),

u(t) = L ξ(t),
(5)

with ξ(t) ∈ Rν×1, S ∈ Rν×ν , L ∈ R1×ν and ξ(0) ∈ Rν×1.
Assume that the triple (L, S, ξ(0)) is minimal, σ(A) ⊂ C−,
σ(S) ⊂ C0 and the eigenvalues of S are simple. Let Π ∈
Rn×ν be the (unique) solution of the Sylvester equation

AΠ+BL = ΠS. (6)

Then, there exists a one-to-one relation between the mo-
ments η0(s1), η0(s2), . . . , η0(sν), with si ∈ σ(S) for all
i = 1, . . . , ν, and the steady-state response CΠξ of the
output y of the interconnection of system (2) with the
signal generator (5) (as in Figure 1). In fact, the moments
are uniquely determined by the matrix CΠ.

Moreover, system (2) has a global invariant manifold
described by M = {(x, ξ) ∈ Rn+ν×1 : x = Πξ}. Hence,
the expression, ∀t ≥ 0,

x(t) = Πξ(t) + eAt(x(0)−Πξ(0)), (7)

holds.

Figure 1. Schematic of the interconnection between the
system (2) and the signal generator (5) (adapted from
(Astolfi, 2010)).

As discussed in (Scarciotti and Astolfi, 2017a), the as-
sumption on the eigenvalues of S is a sensible hypothesis,
since any contribution from a stable mode will decay expo-
nentially to zero. The minimality of the triple (L, S, ξ(0))
implies the observability of (L, S) and the controllability
of (S, ξ(0)).

Remark 1. Note that the steady-state output yss of the
interconnected system in Figure 1 can be computed from
(7) as yss(t) = CΠeStξ(0).

Definition 3. We call the matrix CΠ ≡ Ȳ the moment-
domain equivalent of y(t).

3. WEC CONTROL PROBLEM FORMULATION

In this study, a flap-type WEC is considered, hinged on
one axis, as illustrated in Figure 2. This flap device is
considered in (Giorgi and Ringwood, 2018) and is hinged
at a depth h = 13[m], with a thickness D = 2[m] and
width W = 26[m]. Applying Euler’s second law of motion
to the flap-type device, the following linear hydrodynamic
formulation is obtained:

mẍ(t) = Fr(t) + Fh(t) + Fexc(t) + u(t), (8)

where m is the moment of inertia of the body with respect
to the hinged axis, x(t) the oscillation amplitude, Fexc(t)
the wave excitation torque , Fr(t) the radiation torque,
Fh(t) the hydrostatic restoring torque, and u(t) is the
control input applied through the PTO system. The hy-
drostatic torque can be linearly approximated as −shx(t)
where sh > 0 is the hydrostatic restoring coefficient. The
radiation torque Fr(t) is also modelled based on linear
potential theory and, using the well-known Cummins’
equation (Cummins, 1962), is

Fr(t) = −m∞ẍ(t)−
∫ +∞

0

ζ(τ)ẋ(t− τ)dτ, (9)

where m∞ > 0 represents the added-inertia at infinite fre-
quency and ζ(t) is the (causal) radiation impulse response.
Finally, the linearized equation of motion of the WEC is
given by

(m+m∞)ẍ(t)+ζ(t)∗ ẋ(t)+shx(t) = Fexc(t)−u(t), (10)

The equation of motion (10) is of a Volterra integro-
differential form, specifically of the convolution class. The
internal stability of such an equation, for the WEC case,
has been analysed and guaranteed for any physically
meaningful values of the parameters and the convolution
kernel ζ(t) involved (Falnes, 2002).
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Definition 1. (Brewer, 1978) The Kronecker sum be-
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state behaviour of dynamical systems in (Scarciotti and
Astolfi, 2016). A brief summary of the key elements of
this moment-based theory is presented in the following.

2.1 Moments for Linear Systems

In this subsection, the notion of moment for linear
systems, as formulated in (Astolfi, 2010), is recalled.
Consider a finite-dimensional, single-input, single-output,
continuous-time system described, for t ≥ 0, by the state-
space model
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y(t) = Cx(t),
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and C ∈ R1×n. Consider the associated transfer function

H(s) = C(sIn −A)−1B (3)

and assume that (2) is controllable and observable.

Definition 2. (Antoulas, 2005) The 0-moment of sys-
tem (2) at si ∈ C is the complex number η0(si) =

C (siIn −A)
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B. The k-moment of system (2) at si ∈ C
is the complex number

ηk(si) =
(−1)k
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(
C(sIn −A)−1B

)]

s=si

, (4)

with k ≥ 1 integer.

In (Astolfi, 2010), it is shown that the moments of sys-
tem (2) are in a one-to-one relation with the steady-
state response (provided it exists) of the output of the
interconnection between a signal generator and system
(2). This result is recalled, without proof, in the following
theorem (the reader is referred to (Astolfi, 2010; Scarciotti
and Astolfi, 2017b) for a comprehensive proof).

Theorem 1. (Astolfi, 2010; Scarciotti and Astolfi, 2017b,a)
Consider system (2) and the signal generator

ξ̇(t) = S ξ(t),

u(t) = L ξ(t),
(5)

with ξ(t) ∈ Rν×1, S ∈ Rν×ν , L ∈ R1×ν and ξ(0) ∈ Rν×1.
Assume that the triple (L, S, ξ(0)) is minimal, σ(A) ⊂ C−,
σ(S) ⊂ C0 and the eigenvalues of S are simple. Let Π ∈
Rn×ν be the (unique) solution of the Sylvester equation

AΠ+BL = ΠS. (6)

Then, there exists a one-to-one relation between the mo-
ments η0(s1), η0(s2), . . . , η0(sν), with si ∈ σ(S) for all
i = 1, . . . , ν, and the steady-state response CΠξ of the
output y of the interconnection of system (2) with the
signal generator (5) (as in Figure 1). In fact, the moments
are uniquely determined by the matrix CΠ.

Moreover, system (2) has a global invariant manifold
described by M = {(x, ξ) ∈ Rn+ν×1 : x = Πξ}. Hence,
the expression, ∀t ≥ 0,

x(t) = Πξ(t) + eAt(x(0)−Πξ(0)), (7)

holds.

Figure 1. Schematic of the interconnection between the
system (2) and the signal generator (5) (adapted from
(Astolfi, 2010)).

As discussed in (Scarciotti and Astolfi, 2017a), the as-
sumption on the eigenvalues of S is a sensible hypothesis,
since any contribution from a stable mode will decay expo-
nentially to zero. The minimality of the triple (L, S, ξ(0))
implies the observability of (L, S) and the controllability
of (S, ξ(0)).

Remark 1. Note that the steady-state output yss of the
interconnected system in Figure 1 can be computed from
(7) as yss(t) = CΠeStξ(0).

Definition 3. We call the matrix CΠ ≡ Ȳ the moment-
domain equivalent of y(t).

3. WEC CONTROL PROBLEM FORMULATION

In this study, a flap-type WEC is considered, hinged on
one axis, as illustrated in Figure 2. This flap device is
considered in (Giorgi and Ringwood, 2018) and is hinged
at a depth h = 13[m], with a thickness D = 2[m] and
width W = 26[m]. Applying Euler’s second law of motion
to the flap-type device, the following linear hydrodynamic
formulation is obtained:

mẍ(t) = Fr(t) + Fh(t) + Fexc(t) + u(t), (8)

where m is the moment of inertia of the body with respect
to the hinged axis, x(t) the oscillation amplitude, Fexc(t)
the wave excitation torque , Fr(t) the radiation torque,
Fh(t) the hydrostatic restoring torque, and u(t) is the
control input applied through the PTO system. The hy-
drostatic torque can be linearly approximated as −shx(t)
where sh > 0 is the hydrostatic restoring coefficient. The
radiation torque Fr(t) is also modelled based on linear
potential theory and, using the well-known Cummins’
equation (Cummins, 1962), is

Fr(t) = −m∞ẍ(t)−
∫ +∞

0

ζ(τ)ẋ(t− τ)dτ, (9)

where m∞ > 0 represents the added-inertia at infinite fre-
quency and ζ(t) is the (causal) radiation impulse response.
Finally, the linearized equation of motion of the WEC is
given by

(m+m∞)ẍ(t)+ζ(t)∗ ẋ(t)+shx(t) = Fexc(t)−u(t), (10)

The equation of motion (10) is of a Volterra integro-
differential form, specifically of the convolution class. The
internal stability of such an equation, for the WEC case,
has been analysed and guaranteed for any physically
meaningful values of the parameters and the convolution
kernel ζ(t) involved (Falnes, 2002).
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Figure 2. Flap-type wave energy converter

3.1 Path Constraints

As stated in Section 1, any approach to an optimal
control solution for WECs must consider the physical
limitations constraining the body’s motion and the PTO
characteristics.

Constraints are often considered, for the WEC control
problem formulation, on the amplitude (displacement)
x(t), velocity ẋ(t) and on the control input (PTO force)
u(t), which can be written in a compact form as

|x(t)| ≤ Xmax,

|ẋ(t)| ≤ Vmax

|u(t)| ≤ Umax,

∀t ∈ R, (Xmax, Vmax, Umax) ∈ R+3

.

(11)

3.2 Optimal Control Formulation

The main objective of a wave energy device is harvesting
energy from the incoming wave field, in which the device
is immersed. Therefore, the optimal control objective is
to maximise the absorbed energy over the time interval
[t, t+ T ], given by

J =

∫ t+T

t

u(τ)ẋ(τ) dτ, (12)

while respecting the path constraints defined in (11). Con-
sequently, the optimal control objective can be formulated
as,

max
u(t)

J

subject to

{
system dynamics (10),

path constraints (11).

(13)

To maximise the absorbed energy, as stated in (13), future
knowledge of the excitation force is required, which only
becomes trivial in the case in which the input Fexc(t) is
monochromatic, i.e. it can be represented by Fexc(t) =
F cos(ω0t). This is no longer true in a realistic sea case, in
which the excitation force is polychromatic, i.e. it is com-
posed of several harmonics of a fundamental frequency ω0,
and prediction of the future values of Fexc(t) is required
within this energy-maximising objective framework. The

optimal control formulation stated in (13) has been solved
using different strategies, including diverse modifications
on the system dynamics considered, objective function,
optimisation method and optimisation algorithms involved
(Faedo et al., 2017).

4. MOMENT-BASED WEC CONTROL
FORMULATION

In this section, the moment-based theory is considered for
the WEC energy-maximising optimal control formulation
described in (13). Since the moment-domain theory for
linear systems is based on a state-space representation,
the WEC dynamics given in (10) are re-written in a more
suitable structure, namely

ϕ̇(t) = Aϕϕ(t) +BϕU (t), yϕ(t) = Cϕϕ(t), (14)

where ϕ(t) = [x(t), ẋ(t)]ᵀ ∈ Rn×1, with n = 2, is the state-
vector of the continuous-time model and yϕ(t) = ẋ(t) ∈ R
is the output of the system. The function U (t), assumed
to be the input of system (14), is defined as

U (t) = Fexc(t)− u(t)− ζ(t)∗ ẋ(t), (15)

where the actual physical inputs are the excitation torque
Fexc(t) and the control law u(t). The radiation torque
convolution term is included as a feedback term, being a
pure algebraic manipulation to develop a state-space rep-
resentation of (10). Under this assumption, the matrices
in (14) are given by

Aϕ =




0 1

− sh
m+ µ∞

0


 , Bϕ =




0

1

m+ µ∞


 , Cϕ = [0 1] .

(16)

Following the moment-based theory, both inputs of (14),
Fexc(t) and u(t), are represented by signal generators,
written in implicit form as

ξ̇exc(t) = S ξexc(t),

Fexc(t) = Lexc ξexc(t),

ξ̇u(t) = S ξu(t),

u(t) = Lu ξu(t),
(17)

where ξexc(t) ∈ Rν×1, ξu(t) ∈ Rν×1, with ξexc(0) �= 0,
ξu(0) �= 0 and S ∈ Rν×ν . The pairs (S,Lexc) and (S,Lu)
are assumed to be observable, with Lu ∈ R1×ν and Lexc ∈
R1×ν . Note that Lu and Lexc are the moment-domain
equivalents of the control input and the excitation torque,
respectively. Furthermore, without loss of generality, it is
assumed that ξu(0) = ξexc(0) = ξ(0) = εν . The matrix S
in (17), can be written in a simple block-diagonal form as

S =
k⊕

p=1

[
0 ωp

−ωp 0

]
, (18)

where ν = 2k. Then, the steady-state response yϕss
(t)

of system (14) driven by the sum of the outputs of both
signal generators in (17) can be computed using a Sylvester
equation (see Remark 1). Considering superposition, the
resulting Sylvester equation for the WEC device case is
given by

AϕΠϕ +Bϕ(Lexc − Lu − R̄) = ΠϕS, (19)

where Πϕ ∈ Rn×ν and R̄ is the moment-domain rep-
resentation of the radiation convolution term, which is
discussed later in this section. Note that the moment-
domain equivalent of the velocity can be simply expressed
in terms of the solution of (19) as V̄ = CϕΠϕ.
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Proposition 1. (Faedo et al., 2018) The moment-domain
equivalent of the convolution integral in (9) can be com-
puted as

R̄ = V̄ R, (20)

where R ∈ Rν×ν is a block-diagonal matrix defined by

R =

f⊕
p=1

[
rωp −mωp

mωp
rωp

]
, (21)

and its entries depend on the radiation added-mass A(ω)
and radiation damping B(ω) of the device at each specific
frequency induced by the eigenvalues of S (the reader is
referred to (Falnes, 2002) for a comprehensive definition of
A(ω) and B(ω)), as

rωp
= B(ωp), mωp

= −ωp [A(ωp)− µ∞] . (22)

With the analytical definition of the moment-domain
equivalent of the radiation torque convolution term, the
following proposition is recalled from (Faedo et al., 2018),
which facilitates the solution of (19).

Proposition 2. (Faedo et al., 2018) The moment-domain
equivalent of the output yϕ of system (14) can be com-
puted as

V̄ = (Lexc − Lu)Φ
R
ϕ , (23)

where

ΦR
ϕ =

[
(Iν +ΦϕRᵀ)

−1
Φϕ

]ᵀ
,

Φϕ = (Iν ⊗ Cϕ)
(
S ⊕̂Aϕ

)−1
(Iν ⊗−Bϕ),

(24)

with ΦR
ϕ ∈ Rν×ν and Φϕ ∈ Rnν×nν .

The objective function (13) depends explicitly on the
average power absorbed by the PTO system over a time
interval [t, t+T ], where T is now defined as T = 2π/ω0, and
denotes the fundamental period. Likewise, ω0 represents
the fundamental frequency. This is consistent with the
assumption for the numerical representation of the wave
excitation force: Fexc(t) can be expressed as the sum of
k harmonics of the fundamental frequency ω0 (Mérigaud
and Ringwood, 2018). The following proposition allows
the optimal control objective J (13) to be written in the
moment-domain.

Proposition 3. (Faedo et al., 2018) Define the constant
values of S in (18) as ωp = pω0, ∀ p = 1, . . . , k with k ≥ 1
integer (i.e. k harmonics of the fundamental frequency ω0).
Then, the energy-maximising optimal control formulation
over the time period [t, t + T ], where T = 2π/ω0, can be
written in the moment-domain as

max
Lu

1

2
V̄ Lᵀ

u. (25)

Substituting V̄ (23) into the optimal control formulation
(25), the energy-maximising controller can be designed by
maximising the absorbed energy as

max
Lu

−1

2
LuΦ

R
ϕ Lᵀ

u +
1

2
LexcΦ

R
ϕ Lᵀ

u, (26)

which represents a quadratic program (QP) involving only
Lu. The mixed state-input formulation (25) has been
transformed into an unconstrained quadratic program.

In the following, an important result regarding the con-
cavity of the quadratic program involved in the moment-
domain control formulation, defined in (26), is recalled.

Proposition 4. (Faedo et al., 2018) The QP formulation
in (26) is strictly concave for any physically meaningful
values of the system parameters in (16).

Remark 2. Proposition 4 implies that the unconstrained
moment-domain optimal control formulation for the WEC
device (26) always has a unique (global) maximum, allow-
ing the utilisation of well-known and efficient quadratic
programming solvers (Boyd and Vandenberghe, 2004) to
compute the optimal control law in real-time.

4.1 Force, Velocity and Amplitude constraints

As discussed in Section 3.1, constraints on the control
input, the oscillation amplitude and velocity, reflect phys-
ical limitations on the device. These constraints can be
considered in the moment-domain framework as follows.
Recall (11) and, using the result on moment-based theory
stated in Remark 2, the following mappings



|u(t)| ≤ Umax,

|u(t)| ≤ Vmax,

|x(t)| ≤ Xmax,

�→




|Lu e

Stεν | ≤ Umax,

|V̄ eStεν | ≤ Vmax,

|X̄ eStεν | ≤ Xmax,

(27)

where X̄ represents the moment-domain equivalent of the
amplitude x(t), hold.

One possible approach to deal with the constraints defined
in (27) is to enforce them only at a set of specified time
instants (collocation points), i.e. t1, . . . , tNc . Define the
vectors Λ ∈ Rν×Nc and ∆ ∈ Rν×2Nc as

Λ =
[
eS t0εν . . . eS tNc εν

]
, ∆ = [Λ −Λ] . (28)

Then, the following proposition is recalled from (Faedo
et al., 2018).

Proposition 5. (Faedo et al., 2018) The constraint map-
pings defined in (27), evaluated at the collocation points,
can be written as a set of linear inequalities given by

Lu∆ ≤ Umax11×2Nc
,

Lu(−ΦR
ϕ )∆ ≤ Vmax11×2Nc − LexcΦ

R
ϕ ∆,

Lu(−ΦR
ϕ )S−1∆ ≤ Xmax11×2Nc − LexcΦ

R
ϕ S−1∆.

(29)

Finally, the inequality constrained QP optimal control
formulation can be written as

max
Lu

−1

2
LuΓ

R
∗ Lᵀ

u +
1

2
LexcΓ

R
∗ Lᵀ

u,

subject to:

Lu∆ ≤ Umax11×2Nc
,

Lu(−ΦR
ϕ )∆ ≤ Vmax11×2Nc − LexcΦ

R
ϕ ∆,

Lu(−ΦR
ϕ )S−1∆ ≤ Xmax11×2Nc − LexcΦ

R
ϕ S−1∆.

(30)

where the uniqueness of the global maximum, for the
unconstrained case, is guaranteed by Proposition 4.

5. NUMERICAL RESULTS

In this section, a flap-type WEC device is considered to
illustrate the effectiveness of the proposed strategy. The
hydrodynamic coefficients that characterise this device
(added-mass and radiation damping) can be appreciated
in Figure 3 . Simulations of the control strategy are given
both for regular and irregular waves scenarios.

When regular waves are considered, all the numerical
results observe a wave period of 10 seconds and a wave
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Proposition 1. (Faedo et al., 2018) The moment-domain
equivalent of the convolution integral in (9) can be com-
puted as

R̄ = V̄ R, (20)

where R ∈ Rν×ν is a block-diagonal matrix defined by

R =

f⊕
p=1

[
rωp −mωp

mωp
rωp

]
, (21)

and its entries depend on the radiation added-mass A(ω)
and radiation damping B(ω) of the device at each specific
frequency induced by the eigenvalues of S (the reader is
referred to (Falnes, 2002) for a comprehensive definition of
A(ω) and B(ω)), as

rωp
= B(ωp), mωp

= −ωp [A(ωp)− µ∞] . (22)

With the analytical definition of the moment-domain
equivalent of the radiation torque convolution term, the
following proposition is recalled from (Faedo et al., 2018),
which facilitates the solution of (19).

Proposition 2. (Faedo et al., 2018) The moment-domain
equivalent of the output yϕ of system (14) can be com-
puted as

V̄ = (Lexc − Lu)Φ
R
ϕ , (23)

where

ΦR
ϕ =

[
(Iν +ΦϕRᵀ)

−1
Φϕ

]ᵀ
,

Φϕ = (Iν ⊗ Cϕ)
(
S ⊕̂Aϕ

)−1
(Iν ⊗−Bϕ),

(24)

with ΦR
ϕ ∈ Rν×ν and Φϕ ∈ Rnν×nν .

The objective function (13) depends explicitly on the
average power absorbed by the PTO system over a time
interval [t, t+T ], where T is now defined as T = 2π/ω0, and
denotes the fundamental period. Likewise, ω0 represents
the fundamental frequency. This is consistent with the
assumption for the numerical representation of the wave
excitation force: Fexc(t) can be expressed as the sum of
k harmonics of the fundamental frequency ω0 (Mérigaud
and Ringwood, 2018). The following proposition allows
the optimal control objective J (13) to be written in the
moment-domain.

Proposition 3. (Faedo et al., 2018) Define the constant
values of S in (18) as ωp = pω0, ∀ p = 1, . . . , k with k ≥ 1
integer (i.e. k harmonics of the fundamental frequency ω0).
Then, the energy-maximising optimal control formulation
over the time period [t, t + T ], where T = 2π/ω0, can be
written in the moment-domain as

max
Lu

1

2
V̄ Lᵀ

u. (25)

Substituting V̄ (23) into the optimal control formulation
(25), the energy-maximising controller can be designed by
maximising the absorbed energy as

max
Lu

−1

2
LuΦ

R
ϕ Lᵀ

u +
1

2
LexcΦ

R
ϕ Lᵀ

u, (26)

which represents a quadratic program (QP) involving only
Lu. The mixed state-input formulation (25) has been
transformed into an unconstrained quadratic program.

In the following, an important result regarding the con-
cavity of the quadratic program involved in the moment-
domain control formulation, defined in (26), is recalled.

Proposition 4. (Faedo et al., 2018) The QP formulation
in (26) is strictly concave for any physically meaningful
values of the system parameters in (16).

Remark 2. Proposition 4 implies that the unconstrained
moment-domain optimal control formulation for the WEC
device (26) always has a unique (global) maximum, allow-
ing the utilisation of well-known and efficient quadratic
programming solvers (Boyd and Vandenberghe, 2004) to
compute the optimal control law in real-time.

4.1 Force, Velocity and Amplitude constraints

As discussed in Section 3.1, constraints on the control
input, the oscillation amplitude and velocity, reflect phys-
ical limitations on the device. These constraints can be
considered in the moment-domain framework as follows.
Recall (11) and, using the result on moment-based theory
stated in Remark 2, the following mappings



|u(t)| ≤ Umax,

|u(t)| ≤ Vmax,

|x(t)| ≤ Xmax,

�→




|Lu e

Stεν | ≤ Umax,

|V̄ eStεν | ≤ Vmax,

|X̄ eStεν | ≤ Xmax,

(27)

where X̄ represents the moment-domain equivalent of the
amplitude x(t), hold.

One possible approach to deal with the constraints defined
in (27) is to enforce them only at a set of specified time
instants (collocation points), i.e. t1, . . . , tNc . Define the
vectors Λ ∈ Rν×Nc and ∆ ∈ Rν×2Nc as

Λ =
[
eS t0εν . . . eS tNc εν

]
, ∆ = [Λ −Λ] . (28)

Then, the following proposition is recalled from (Faedo
et al., 2018).

Proposition 5. (Faedo et al., 2018) The constraint map-
pings defined in (27), evaluated at the collocation points,
can be written as a set of linear inequalities given by

Lu∆ ≤ Umax11×2Nc
,

Lu(−ΦR
ϕ )∆ ≤ Vmax11×2Nc − LexcΦ

R
ϕ ∆,

Lu(−ΦR
ϕ )S−1∆ ≤ Xmax11×2Nc − LexcΦ

R
ϕ S−1∆.

(29)

Finally, the inequality constrained QP optimal control
formulation can be written as

max
Lu

−1

2
LuΓ

R
∗ Lᵀ

u +
1

2
LexcΓ

R
∗ Lᵀ

u,

subject to:

Lu∆ ≤ Umax11×2Nc
,

Lu(−ΦR
ϕ )∆ ≤ Vmax11×2Nc − LexcΦ

R
ϕ ∆,

Lu(−ΦR
ϕ )S−1∆ ≤ Xmax11×2Nc − LexcΦ

R
ϕ S−1∆.

(30)

where the uniqueness of the global maximum, for the
unconstrained case, is guaranteed by Proposition 4.

5. NUMERICAL RESULTS

In this section, a flap-type WEC device is considered to
illustrate the effectiveness of the proposed strategy. The
hydrodynamic coefficients that characterise this device
(added-mass and radiation damping) can be appreciated
in Figure 3 . Simulations of the control strategy are given
both for regular and irregular waves scenarios.

When regular waves are considered, all the numerical
results observe a wave period of 10 seconds and a wave
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Figure 3. WEC hydrodynamic coefficients B(ω) and A(ω).

height of 5 metres. Two separate simulation scenarios are
considered. The first scenario is a partially constrained
optimal control case, where the oscillation amplitude x(t)
and velocity ẋ(t) of the device are constrained, with max-
imum allowed values given by Xmax = 45 [deg] and
Vmax = 30 [deg/s] (performance denoted in the subse-
quent figures with a dotted-black line), respectively. In the
second scenario, an additional constraint is considered for
the control torque u(t), set to a value of Umax = 2.5× 107

[Nm] (performance denoted in the subsequent figures with
a solid-green line). Before going further with this numer-
ical example, a simple analysis is performed to select an
appropriate number of frequency components (harmonics)
to represent the control input u(t), which can be done by
taking into account the trade-off between computational
time, smoothness of the control signal and final energy
absorption (the reader is referred to (Faedo et al., 2018)
for further details on this trade-off). The smoothness of
u(t) is not discussed in this paper due to space restriction.
Figure 4 depicts the ratio of absorbed energy computed
as Rf = Ek/E50, where Ek is the final absorbed energy
obtained when considering k frequency components to
describe u(t). The value E50 is considered as the max-
imum energy achievable, since almost an imperceptible
improvement can be obtained when considering more than
50 components.

Number of frequency harmonics k
3 5 10 15 20 30 50

R
k
=

E
k
/E

5
0
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0.9

1

Figure 4. Ratio of absorbed energy Rk as a function of the
number of frequency harmonics k

Although all the computations performed for this case
study can be successfully done in real-time (implemented
in Matlab), it can be appreciated in Figure 4 that, when
selecting more than approximately 10 frequency compo-
nents, the absorption ratio Rk is almost one, suggesting
that 10 harmonics can reasonably describe the optimal
control input, avoiding an unnecessary increase in the
problem complexity.

Figure 5 depicts simulation results for a regular wave
input, for both optimal control scenarios. It can be appre-
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Figure 5. Simulation results for a regular wave input (pe-
riod 10[s] and height 5[m]), for both optimal control
scenarios: constraints considered in amplitude and ve-
locity (dotted-black) and (in addition) on the control
input (solid-green).

ciated that, in the case where only only the amplitude and
velocity are constrained to Xmax and Vmax, the control
input consistently violates the proposed maximum limit
for the PTO force Umax. This is subsequently solved by
adding the PTO constraint to the moment-domain optimi-
sation computation, as is evident from Figure 5, where all
the variables are confined between the specified maximum
absolute values.

For the polychromatic input case, the irregular waves
are generated from a JONSWAP spectrum (Hasselmann,
1973) shown in Figure 6 (peak period Tp = 10[s], signif-
icant wave height Hs = 5[m], peak enhancement factor
γ = 3.3). Figure 7 illustrates the application case with the
polychromatic input. In this scenario, and using a similar
analysis as in the regular waves case, the value of k is set
to 30. As in the monochromatic input situation, it can
be acknowledged that all the variables can be successfully
restricted to the desired maximum values, while optimising
the final energy absorption.

6. CONCLUSION

In this paper, a recently developed moment-domain based
formulation is considered to design an energy-maximising
controller for a flap-type WEC. The resulting optimal con-
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Figure 6. JONSWAP spectrum (peak period Tp = 10[s],
significant wave height Hs = 5[m], peak enhancement
factor γ = 3.3)
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Figure 7. Simulation results for an irregular wave input
(peak period 5[s] and significant wave height 5[m]),
for both optimal control scenarios: constraints con-
sidered in amplitude and velocity (dotted-black) and
(in addition) on the control input (solid-green).

trol problem is a concave quadratic program, allowing the
real-time computation of the optimal control input, based
on the availability of extremely efficient solvers that can be
used within such an optimisation scheme. Moreover, this
mathematical formulation observes physical constraints by
a suitable mapping based on moment-theory. The strategy
is tested under regular and irregular waves excitation,
considering constraints in both the oscillation amplitude
and velocity of the device, and the PTO control torque.
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Figure 6. JONSWAP spectrum (peak period Tp = 10[s],
significant wave height Hs = 5[m], peak enhancement
factor γ = 3.3)
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Figure 7. Simulation results for an irregular wave input
(peak period 5[s] and significant wave height 5[m]),
for both optimal control scenarios: constraints con-
sidered in amplitude and velocity (dotted-black) and
(in addition) on the control input (solid-green).

trol problem is a concave quadratic program, allowing the
real-time computation of the optimal control input, based
on the availability of extremely efficient solvers that can be
used within such an optimisation scheme. Moreover, this
mathematical formulation observes physical constraints by
a suitable mapping based on moment-theory. The strategy
is tested under regular and irregular waves excitation,
considering constraints in both the oscillation amplitude
and velocity of the device, and the PTO control torque.
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