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Abstract: In this paper, an algorithm for SISO Pole Placement based on linear algebra
concepts it’s developed. This algorithm uses the knowledge of the degrees of certain polynomials
associated to the Internal Model Principle and Stable Zero-Pole cancellations involved in the
equation of the closed loop and it’s coefficients, generating a linear system of equations for the
desired closed loop poles in a systematic way.
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1. INTRODUCTION

The central problem in control is to find a way to act
on a given process such that it behaves close to a desired
behavior. Furthermore, this approximate behavior should
be achieved in presence of uncertainty of the process and of
uncontrollable external disturbances acting on the process.
That means, given the closed loop of one degree of freedom
shown in Figure 1, where the nominal model of the process
to be controlled is G0(s), find a controller K(s) that ensure
that the nominal loop is stable and, if it’s possible, to reach
a desire behavior previously defined.
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Fig. 1. Closed loop of one degree of freedom

In the loop shown in Figure 1 we use transfer functions and
Laplace transforms to describe the relationships between
signals in the loop, where R(s) is the reference input, U(s)
is the control signal, Y (s) is the output of the loop, Di(s)
is the input disturbance, D0(s) is the output disturbance
and Dm(s) is the measurement noise. We also use x0

to denote the initial conditions of the model. For linear
time-invariant (LTI) systems, the nominal model and the
controller can be written as

G0(s) =
B(s)

A(s)
K(s) =

P (s)

L(s)

The poles of the four sensitivity functions governing the
closed loop belong to the same set, namely the roots of
the characteristic equation A(s)L(s) +B(s)P (s) = 0. The

poles have a deep impact on the dynamics of a transfer
function; they define the stability of the loop. In this
way, there exists a technique which deals with the choice
of the roots of the characteristic equation, that is, given
polynomials A(s), B(s) (defining the model) and given a
polynomial Acl(s) (defining the desired location of closed
loop poles), it is possible to find polynomials P (s) and
L(s) such that

A(s)L(s) +B(s)P (s) = Acl(s) (1)

The Equation (1) is known as a Diophantine equation
and the controller synthesis by solving it is known as
pole placement. Polynomial Diophantine equations play
a crucial role in the polynomial theory of control systems
synthesis. Systems are described by input-output relations,
similarly to the classical control techniques, however, the
transfer functions are not regarded as functions of complex
variable but as algebraic objects. Applications include
closed loop pole placement (Kučera, 1993), minimum
variance control (Hunt, 1993), LQ and LQG optimal
compensators (Kučera, 1991) or adaptive and predictive
control (Hunt, 1993). It is well known that, if the controller
is biproper, the solution of the equation exists if

deg{P (s)} = deg{L(s)} ≥ n− 1

with n = deg{A(s)}. In this context, the minimum order
controller is then of degree n − 1 and the condition on
coprimeness between A(s) y B(s) is necessary to guarantee
the existence and uniqueness of the solution (Sylvester
theorem) (Goodwin et al., 2001). Solving this equation
basically implies solving a linear system of equations,
which involves a Sylvester matrix. A suitable and fast
algorithm for invert this type of matrices was developed
in (Li, 2011).

Many times control objective for the closed loop is to
track a specific reference or reject a disturbance of a
known frequency. In order to accomplish this we present
a systematic way to solve the system equation obtained
from using Internal Model Principle (IMP) defined for the
first time in (Francis and Wonham, 1975), which establish
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that the reference or disturbance generating polynomial (o
simply generating polynomial) must be in the denominator
of K(s) (Goodwin et al., 2001). This can also be achieved
by solving the Diophantine equation (1). Sometimes it is
desirable to force the controller to cancel a subset of stable
poles and/or zeros of the plant model, this is also taking
into account by this systematization, which arises to an
algorithm to solve this problem in an automatic way. This
approach can be used for design adaptive controllers, or
simply synthesize PID controllers.

2. LINEAR TRANSFORMATION APPROACH

2.1 Notation

Let X(s) = xn s
n + xn−1 s

n−1 + · · · + x1 s + x0 be a
polynomial with real coefficients.

Notation 1. The set of all coefficients of X(s) (in decreas-
ing power order) is denoted by CX = {xn, xn−1, · · · , x1, x0}
Notation 2. The degree of X(s) is denoted by deg{X(s)}

Let V,W be finite-dimensional vector spaces over a field
K and choose bases V = {v1, . . . , vm} for V and W =
{w1, . . . , wn} for W.

Notation 3. The dimension of V is denoted by dim {V}.
Notation 4. Let v∗ ∈ V. The coordinates of v∗ in the basis
V are denoted by (v∗)V ∈ Rm.

Notation 5. Let T : V −→ W be a linear transformation
from V to W. The matrix associated to T choosing bases
V and W is denoted by TVW .

Definition 1. The external direct sum of V and W, de-
noted by V⊕̃W is defined as the set of all ordered pairs
(v, w) with v ∈ V and w ∈ W. Scalar multiplication is
defined by c(v, w) = (cv, cw) with c ∈ K, and addition is
defined by (v, w) + (v′, w′) = (v + v′, w + w′). One checks
the other classical axioms for a vector space.

Note that the external direct sum of V and W can be
expressed as the internal direct sum of (V, 0) and (0,W).
A basis for V⊕̃W is given by{

{(vi, 0)}
⋃
{(0, wj)}

}

2.2 Pole Placement

Given the control loop of one degree of freedom as in
Figure 1. Let G0(s) be the process nominal model and
K(s) the biproper controller defined as

G0(s) =
B(s)

A(s)
≡ B

A
K(s) =

P (s)

L(s)
≡ P

L

where

A = an s
n + an−1s

n−1 + · · ·+ a1 s+ a0

B = bm s
m + bm−1s

m−1 + · · ·+ b1 s+ b0

P = pn−1 s
n−1 + pn−2s

n−2 + · · ·+ p1 s+ p0

L = ln−1 s
n−1 + ln−2s

n−2 + · · ·+ l1 s+ l0
The degrees of the polynomials are as it follows

deg{A} = n

deg{B} = m m ≤ n
deg{P} = n− 1

deg{L} = n− 1

The closed loop polynomial Acl(s) ≡ Acl is given by the
following Diophantine equation

AL+B P = Acl
where

deg{Acl} = deg{A}+ deg{L} = 2n− 1

and so

Acl = c2n−1 s
2n−1 + c2n−2 s

2n−2 + · · ·+ c1 s+ c0
Let Vl, Vp, W be finite-dimensional vector spaces over R
such as

Vl = span{sn−1, sn−2, . . . , s, 1}
Vp = span{sn−1, sn−2, . . . , s, 1}
W = span{s2n−1, s2n−2, . . . , s, 1}

Notice that L ∈ Vl, P ∈ Vp and Acl ∈ W. Although
in this case Vl is exactly the same space as Vp, we keep
the subscripts for the sake of clarity. Let Vl⊕̃Vp be the
external direct sum of Vl and Vp. Let V and W be a basis
for Vl⊕̃Vp and W respectively, such as

V =

{
{(sn−1, 0), (sn−2, 0), . . . , (s, 0), (1, 0)}

⋃
(2)

{(0, sn−1), (0, sn−2), . . . , (0, s), (0, 1)}
}

W = {s2n−1, s2n−2, . . . , s, 1} (3)

Define the linear transformation Φ as it follows
Φ : Vl⊕̃Vp −→W
Φ{(l, p)} 7→ A l +B p

The construction of the matrix associated to the linear
transformation Φ in the bases V and W starts by comput-
ing the transformation of every vector of V

Φ{(sn−1, 0)} 7→ Asn−1 = an s
2n−1 + · · ·+ a0 s

n−1

Φ{(sn−2, 0)} 7→ Asn−2 = an s
2n−2 + · · ·+ a0 s

n−2

...
...

Φ{(s, 0)} 7→ As = an s
n+1 + · · ·+ a0 s

Φ{(1, 0)} 7→ A = an s
n + · · ·+ a0

Φ{(0, sn−1)} 7→ B sn−1 = bm s
m+n−1 + · · ·+ b0 s

n−1

Φ{(0, sn−2)} 7→ B sn−2 = bm s
m+n−2 + · · ·+ b0 s

n−2

...
...

Φ{(0, s)} 7→ B s = bm s
m+1 + · · ·+ b0 s

Φ{(0, 1)} 7→ B = bm s
m + · · ·+ b0

(4)
Getting coordinates in basis W yields

(Asn−1)W = (CA, 0, 0, . . . . . . . . . . . . , 0, 0, 0)

(Asn−2)W = (0, CA, 0, . . . . . . . . . . . . , 0, 0, 0)

...

(As)W = (0, 0, 0, . . . . . . . . . . . . , 0, CA, 0)

(A)W = (0, 0, 0, . . . . . . . . . . . . , 0, 0, CA)

(B sn−1)W = (

n−m︷ ︸︸ ︷
0, . . . , 0, CB , 0, 0, . . . , 0, 0, 0)

(B sn−2)W = (0, . . . , 0, 0, CB , 0, . . . , 0, 0, 0)

...

(B s)W = (0, . . . , 0, 0, 0, 0, . . . , 0, CB , 0)

(B)W = (0, . . . , 0, 0, 0, 0, . . . , 0, 0, CB)

(5)

Notice that every vector in R2n defined above it’s a shift of
the coefficients ofA andB polynomials respectively. Define
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the following submatrices ξA ∈ R2n×n and ξB ∈ R2n×n (in
columns)

ξA =
[

(Asn−1)TW · · · (A)TW
]

︸ ︷︷ ︸
dim{Vl}=n

ξB =
[

(B sn−1)TW · · · (B)TW
]

︸ ︷︷ ︸
dim{Vp}=n

Then, the matrix associated to the transformation in the
bases V and W (in columns)

ΦVW = [ ξA ξB ]

Where ΦVW ∈ R2n×2n is a Sylvester Matrix associated
to the polynomials A and B, and |ΦVW | 6= 0 because
A and B are coprime. Moreover, because of the shifting
property of the columns of ξA and ξB (and knowing the
dimensions of Vl, Vp and W) constructing the matrix it’s
straightforward. With ΦVW computed (which is system-
atic) knowing the coefficients of L and P it’s reduced to
solve the following linear system of equations:

[ ξA ξB ]

[
CL
CP

]
= CAcl

−→
[
CL
CP

]
= [ ξA ξB ]

−1
CAcl

2.3 Internal Model Principle

Adding the Internal Model Principle to the loop, given by
the generating polynomial Γ(s) ≡ Γ where

deg{Γ} = q

the pole placement problem can be reformulated: the gen-
erating polynomial must appear as part of the denominator
of the controller. To accomplish that goal, one chooses

L = ΓL̄

and the closed loop equation can be rewritten as

Ā L̄+B P = Acl where Ā = ΓA

including Γ inside the term that represents the denomina-
tor of the plant, creating an equivalent model of degree
n̄ = n + q. Now, using the same criterion of design a
biproper controller with one degree less than the plant:

deg{P} = n̄− 1 = n+ q − 1

deg{L} = n̄− 1 = n+ q − 1

deg{Acl} = 2n+ q − 1

and
deg{L̄} = deg{L} − deg{Γ} = n− 1

Let IVl̄, IVp, IW be vector spaces over R such as
IVl̄ = span{sn−1, sn−2, . . . , s, 1}
IVp = span{sn+q−1, sn+q−2, . . . , s, 1}
IW = span{s2n+q−1, s2n+q−2, . . . , s, 1}

So that L̄ ∈ IVl̄, P ∈ IVp and Acl ∈ IW. Let IVl̄⊕̃IVp be
the external direct sum of IVl̄ and IVp. Construct bases
IV and IW in the same way as in (2) and (3). Define the
linear transformation IΦ as it follows

IΦ : IVl̄⊕̃IVp −→W
IΦ{(l̄, p)} 7→ Ā l̄ +B p

(6)

Computing the corresponding maps to every vector in IV
in the same way as in (4) and getting it’s coordinates
in the basis IW as in (5), construct the submatrices

IξĀ ∈ R2n+q×n and IξB ∈ R2n+q×n+q as it follows (in
columns)

IξĀ =
[

(Ā sn−1)TIW · · · (Ā)TIW
]

︸ ︷︷ ︸
dim{IVl̄}=n

IξB =
[

(B sn+q−1)TIW · · · (B)TIW
]

︸ ︷︷ ︸
dim{IVp}=n+q

Then, the matrix associated to the transformation in the
bases IV and IW (in columns)

IΦIV IW =
[

IξĀ
IξB

]

Where IΦIV IW ∈ R2n+q× 2n+q is a Sylvester Matrix as-
sociated to the polynomials Ā and B; and |IΦIV IW | 6= 0
because Ā and B are coprime.

Example 1. Given

G0(s) =
s+ 1

s2 + 4 s+ 4
we aim to design a biproper controller applying the In-
ternal Model Principle with the generating polynomial
Γ = s(s2 + 1).

The degrees of the polynomials

deg{A} = n = 2

deg{B} = m = 1

deg{Γ} = q = 3

deg{L} = deg{P} = n+ q − 1 = 4

deg{L̄} = n− 1 = 1

deg{Acl} = 2n+ q − 1 = 6

The corresponding dimensions

dim{IVl̄} = 2, dim{IVp} = 5, dim{IW} = 7 (7)

Computing Ā yields

Ā = ΓA = s5 + 4 s4 + 5 s3 + 4 s2 + 4 s

CĀ = {1, 4, 5, 4, 4, 0}
After defining the transformation IΦ as in (6) the corre-
sponding IξĀ ∈ R7×2 and IξB ∈ R7×5 (which are shifts of
the coefficients of the polynomials Ā and B according to
the dimensions stated in (7))

IξĀ =




1 0
4 1
5 4
4 5
4 4
0 4
0 0




︸ ︷︷ ︸
dim{IVl̄}

IξB =




0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1




︸ ︷︷ ︸
dim{IVp}

Computing the coefficients of L̄ and P involves the follow-
ing linear system




l̄1
l̄0
p4

p3

p2

p1

p0




=




1 0 0 0 0 0 0
4 1 1 0 0 0 0
5 4 1 1 0 0 0
4 5 0 1 1 0 0
4 4 0 0 1 1 0
0 4 0 0 0 1 1
0 0 0 0 0 0 1




−1

︸ ︷︷ ︸
IΦ−1

IV IW




c6
c5
c4
c3
c2
c1
c0
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Where CAcl
= {c6, c5, c4, c3, c2, c1, c0} are the coefficients

of the desired closed loop polynomial Acl. If we choose
Acl = (s + 3)6, then the controller transfer function is
given by

K(s) =
45s4 + 209s3 + 482s2 + 853s+ 729

s(s2 + 1)(s− 31)
(8)

The steady state response of the closed loop of Figure 1
is indeed the one chosen, but the transient response is
affected by the dynamics of the zeros of the controller
and the nominal model. The behavior of this zeros is
undesirable if they are located at the right side of the
poles in the left semi-plane of the complex plane (Seron
et al., 1997). This can be sometimes avoided if we propose
Stable Zero-Pole cancellations between the controller and
the plant, as we explain in the following section.

2.4 Stable Zero-Pole cancellations

In addition to the implementation of the Internal Model
Principle, it’s from interest to obtain a systematic way
to perform Stable Zero-Pole cancellations. To achieve that
goal, the controller denominator(numerator) must include
the pole(zero) dynamics to cancel. Suppose that the stable
dynamics to cancel are represented by two polynomials
α(s) ≡ α (poles) and β(s) ≡ β (zeros) such that

A = α Ã

B = β B̃

where
deg{α} = w

deg{β} = z

The Diophantine equation associated to the closed loop

AL+B P = Acl −→ α ÃL+ β B̃ P = Acl (9)

Choosing L = β L̃ and P = α P̃ the equation (9) can be
expressed as

Ã L̃+ B̃P̃ = Ãcl

with Acl = αβ Ãcl so that the remaining closed loop
poles after the cancellations (Ãcl) can be chose arbitrarily.
The corresponding degrees using the same design criterion
(biproper controller of one degree less than the plant)
remains as follows

deg{L̃} = n− z − 1

deg{P̃} = n− w − 1

deg{Ãcl} = 2n− z − w − 1

Let ZVl̃,
ZVp̃, ZW be vector spaces over R such as

ZVl̃ = span{sn−z−1, sn−z−2, . . . , s, 1}
ZVp̃ = span{sn−w−1, sn−w−2, . . . , s, 1}
ZW = span{s2n−z−w−1, s2n−z−w−2, . . . , s, 1}

So that L̃ ∈ ZVl̃, P̃ ∈ ZVp̃ and Ãcl ∈ ZW. Let ZVl̃⊕̃ZVp̃ be

the external direct sum of ZVl̃ and ZVp̃. Construct bases
ZV and ZW in the same way as in (2) and (3). Define the
linear transformation ZΦ as it follows

ZΦ : ZVl̃⊕̃ZVp̃ −→ ZW
ZΦ{(l̃, p̃)} 7→ Ã l̃ + B̃ p̃

Using the same criterion as in (4) and (5) with bases ZV
and ZW respectively, the submatrices ZξÃ ∈ R2n−z−w×n−z

and ZξB̃ ∈ R2n−z−w×n−w (in columns)

ZξÃ =
[

(Ã sn−z−1)TZW · · · (Ã)TZW
]

︸ ︷︷ ︸
dim{ZVl̃}=n−z

ZξB̃ =
[

(B̃ sn−w−1)TZW · · · (B̃)TZW
]

︸ ︷︷ ︸
dim{ZVp̃}=n−w

Then, the matrix associated to the transformation in the
bases ZV and ZW

ZΦZV ZW =
[

ZξÃ
ZξB̃

]

Where ZΦZV ZW ∈ R2n−z−w× 2n−z−w is a Sylvester Matrix
associated to the polynomials Ã and B̃; and |ZΦZV ZW | 6= 0

because Ã and B̃ are coprime.

3. DEVELOPMENT OF THE ALGORITHM

Combining the criterion developed in Section 2.3 and
Section 2.4 one can construct a linear transformation
that takes into account the Internal Model Principle and
Stable Zero-Pole cancellations at the same time, providing
a systematic way to obtain the matrix involved in the
determination of the coefficients of the desired closed loop
polynomial. Choosing

L = ΓβL∗

P = αP ∗

Acl = αβA∗cl

(10)

The corresponding Diophantine equation remains as fol-
lows

A∗L∗ +B∗P ∗ = A∗cl
where

A∗ =
Γ

α
A and B∗ =

1

β
B (11)

The corresponding degrees are

deg{L∗} = n− z − 1

deg{P ∗} = n+ q − w − 1

deg{A∗cl} = 2n+ q − z − w − 1

Let ∗Vl∗ , ∗Vp∗, ∗W be vector spaces over R such as
∗Vl∗ = span{sn−z−1, sn−z−2, . . . , s, 1}
∗Vp∗ = span{sn+q−w−1, sn+q−w−2, . . . , s, 1}
∗W = span{s2n+q−z−w−1, s2n+q−z−w−2, . . . , s, 1}

So that L∗ ∈ ∗Vl∗ , P ∗ ∈ ∗Vp∗ and A∗cl ∈ ∗W. Let
∗Vl∗⊕̃∗Vp∗ be the external direct sum of ∗Vl∗ and ∗Vp∗ .
Construct bases ∗V and ∗W in the same way as in (2) and
(3). Define the linear transformation ∗Φ as it follows

∗Φ : ∗Vl∗⊕̃∗Vp∗ −→ ∗W
∗Φ{(l∗, p∗)} 7→ A∗ l∗ +B∗ p∗

Using the same criterion as in (4) and (5) with bases ∗V
and ∗W respectively, the construction of the submatrices
∗ξA∗ ∈ R2n+q−z−w×n−z and ∗ξB∗ ∈ R2n+q−z−w×n+q−w

(in columns)
∗ξA∗ =

[
(A∗ sn−z−1)T∗W · · · (A∗)T∗W

]
︸ ︷︷ ︸

dim{∗Vl∗}=n−z

∗ξB∗ =
[

(B∗ sn+q−w−1)T∗W · · · (B∗)T∗W
]

︸ ︷︷ ︸
dim{∗Vp∗}=n+q−w

(12)
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Then, the matrix associated to the transformation in the
bases ∗V and ∗W

∗Φ∗V ∗W = [ ∗ξA∗ ∗ξB∗ ]

Where Φ∗VW ∈ R2n+q−z−w× 2n+q−z−w is a Sylvester Ma-
trix associated to the polynomials A∗ and B∗.

In synthesis, the algorithm can be summarized in the
following simple steps

(i) Choose the generating polynomial Γ and the stable
dynamics to cancel α (poles) and β (zeros).

(ii) Compute A∗ and B∗ as in (11) and extract their
corresponding coefficients.

(iii) Using the information of the degrees of the denomi-
nator of the plant A (n), the generating polynomial
Γ (q), the desired pole cancellations α (w) and the
desired zero cancellations β (z) construct the subma-
trices ∗ξA∗ and ∗ξB∗ performing the corresponding
shifts to the coefficients of the polynomials A∗ and
B∗ as in (12).

(iv) Choose the desired dynamics for the closed loop
polynomial A∗cl of degree (2n+ q − z − 1).

(v) Solve the corresponding linear equation system in-
volving the matrix associated to the linear trans-
formation Φ∗ ∈ R2n+q−z−w× 2n+q−z−w to find the
coefficients of L∗ and P ∗.

(vi) Compute L, P and Acl as in (10).

Example 2. (Example 1 revisited). We recall the Example
1, but this time we will force the Stable Zero-pole cancella-
tions in addition of the Internal Model Principle using the
algorithm stated before. In this case, we cancel all stable
factors, that is z = 1 and w = 2, and

A∗ = s(s2 + 1) and B∗ = 1.

deg{L∗} = n− z − 1 = 0

deg{P ∗} = n+ q − w − 1 = 2

deg{A∗cl} = 2n+ q − z − w − 1 = 3

The corresponding dimensions

dim{∗Vl∗} = 1, dim{∗Vp∗} = 3, dim{∗W} = 4

Constructing the submatrices ∗ξA∗ ∈ R4×1 and ∗ξB∗ ∈
R4×3 yields

∗ξA∗ =




1
0
1
0




︸︷︷︸
dim{∗Vl∗}

∗ξB∗ =




0 0 0
1 0 0
0 1 0
0 0 1




︸ ︷︷ ︸
dim{∗Vp∗}

Computing the coefficients of L∗ and P ∗ involves the
following linear system



l∗0
p∗2
p∗1
p∗0


 =




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




−1

︸ ︷︷ ︸
∗Φ−1

∗V ∗W




1
9
27
27




Solving the system of equations using the matrix of the
linear transformation ∗Φ∗V ∗W computed before, the final
controller is given by the following transfer function

K(s) =
αP ∗

ΓβL∗
=

9(s+ 2)2(s2 + 2.889s+ 3)

s(s2 + 1)(s+ 1)
(13)

In Figure 2 we show the step response from reference input
to output using the controller developed in (8) and using
the controller with zero-pole cancellations (13). An output
disturbance d0(t) = sin(t) was injected at t = 5[sec.].

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

 

 

t[sec]

without cancellation

with cancellation

Fig. 2. Step response from reference input to output

4. CONCLUSIONS

In this work, we developed a simple and systematic al-
gorithm to design SISO controllers based on a input-
output mathematical model using linear algebra concepts.
It considers the Internal Model Principle and allows to
perform Stable Zero-Pole cancellations in the same linear
transformation. The extrapolation of this algorithm to the
discrete domain it’s straightforward, which implies that it
can be easily implemented in a microcontroller. In this
way, it can be coupled to a model identification system
turning the controller into an adaptive one, showing the
versatility of the algorithm developed.
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