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A B S T R A C T

This work presents an innovative deep-learning approach for multi-variate optimization, focusing on the
identification of Mg(OH)2 precipitation kinetics parameters. The study employs three distinct experimental
datasets, one for the Population Balance Model (PBM) fitting and two for validation. These datasets explore
the impact on Particle Size Distributions (PSDs) of (i) increasing the initial reactant concentrations from 0.125
to 1 M and (ii) decreasing the flow rate from 12 to 4 m/s, both in a T-mixer, (iii) increasing the initial
reactant concentration over a wider concentration range from 0.01 to 1 M in a more complex Y-mixer system.
Leveraging PBM, we create a dataset to train a Neural Network (NN), referred to as the ‘mirror model,’
which predicts kinetics parameters based on experimental sizes. Notably, the PBM, fitted with dataset (i),
excels at describing changes in flow rate (dataset (ii)) and substantial reductions in reactant concentrations
in the Y-mixer (dataset (iii)), even though these conditions were not encountered during the fitting step.
Key Performance Indicators (KPIs) reveal that the mirror model consistently outperforms two widely used
algorithms, Conjugate Gradient (CG) and Particle Swarm Optimization (PSO), highlighting its remarkable
potential for practical applications.
. Introduction

In recent years, the list of Critical Raw Materials (CRMs) has grown,
ith magnesium being included in this category [1,2]. A highly effec-

ive method for magnesium recovery involves using it as a precursor to
ynthesize magnesium hydroxide (Mg(OH)2), which finds applications
cross numerous industries [3–9]. Mg(OH)2 serves as a flame-retardant
iller, offering fire-retardant properties through endothermic dehydra-
ion at elevated temperatures. It also excels as an efficient acidic waste
eutralizer, aligning with environmentally friendly practices. Within
he pharmaceutical sector, Mg(OH)2 acts as an excipient, playing an
mportant role in various drug formulations. Additionally, it extends its
tility to the pulp and paper sector, where it serves as a preservative,
nhancing the quality and longevity of paper products. The traditional
ethod for Mg(OH)2 synthesis has been the hydrothermal route [10].
owever, this route comes with the primary drawback of a high energy
emand due to the elevated temperature requirements. Consequently,
here has been a shift towards precipitation as a more cost-effective and
ustainable synthesis route [11].

The precipitation process involves using magnesium sources such as
rines or bitterns, which react with an alkaline solution [12]. As a con-
equence of the reaction, Mg(OH)2 is formed and remains in solution as
ong as the concentration remains below the solubility limit. When the
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concentration exceeds this limit, Mg(OH)2 precipitates forming particles
of different sizes. Precipitation can be, therefore, described through a
Population Balance Model (PBM) [13,14] that can track the evolution
of the particle size distribution (PSD). Multiple phenomena influence
the PSD, including primary nucleation, molecular growth, and aggre-
gation. Therefore, the identification of precipitation kinetics becomes
crucial in optimizing the PSD required for each application [15,16].
In line with numerous chemical engineering processes [17–19], the
precipitation kinetics set can be identified by comparison between
the PBM outcomes and experimental data through an optimization
algorithm. The effectiveness of optimization algorithms has grown over
the years, driven by the increasing computational power available.
These advancements are particularly significant in various engineering
domains, including process engineering, where researchers frequently
encounter large-scale multi-variate problems (LSMVPs) [20]. LSMVPs
are typically characterized by extensive search spaces which classical
optimization algorithms, such as the conjugate gradient (CG), might not
be able to fully explore. An alternative approach involves modifying the
CG method by tailoring the line search [21,22]. While these modified
methods are more robust and reliable, they may still be inefficient for
multi-variate optimizations [23], where the optimized solution strongly
depends on the first-attempt value. A viable alternative that has found
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widespread use in recent years is the employment of heuristic [24]
and meta-heuristic methods [25]. Heuristic optimization is a method
designed to discover the optimal solution to a problem within a search
space that is too extensive to be thoroughly explored using conven-
tional approaches [26]. Meta-heuristic optimization is a higher-level
procedure that aims to find, select, and calibrate a heuristic algorithm
that can provide the optimal solution for a specific LSMVP [27]. The
former includes Particle Swarm Optimization (PSO) [28], while the
latter includes Crow Search Optimization (CSO) [29]. These methods
offer significant improvements over classical optimization but may
require a high number of iterations for precise solutions. A promis-
ing compromise between accuracy and computational time involves
leveraging artificial intelligence [30]. Hybrid models that integrate
first principles models with experimental data through artificial intel-
ligence have shown effectiveness in recent studies [31]. These models
combine mechanistic equations that describe physical phenomena with
experimental evidence to create a comprehensive understanding of the
system.

In this contribution, a PBM is employed along with three experimen-
tal datasets (one for PBM fitting and two for validation) from previous
publications of ours [32,33]. The PBM describes particle size evolution
due to primary nucleation (homogeneous and heterogeneous), molec-
ular growth, and irreversible aggregation resulting from cementation
between particles. The PBM is solved through the Quadrature Method
of Moments (QMOM) [34,35]. It generates numerical data for training
a deep-learning fully connected neural network (NN), which is guided
by experimental data to identify unknown PBM parameters.

The manuscript is organized as follows: in Section 2, we provide
an overview of the experimental protocols and datasets gathered from
both T- and Y-mixer systems, covering diverse operating conditions.
Section 3 offers a presentation of the PBM, with a specific focus on
its inputs and outputs. Our novel deep learning-assisted methodology is
detailed in Section 4. Lastly, Section 5 presents the results and conducts
a comparative analysis between the NN and CG and PSO performances.
Conclusions are drawn in Section 6.

2. Methodology

To provide the necessary context, a brief background on the used
experimental rigs and collected experimental data is presented.

Experimental datasets. In our previous works [32,33], we developed
an experimental protocol to characterize Mg(OH)2 suspensions ob-
tained under various operating conditions in different systems. This
protocol was, therefore, applied to suspensions obtained through two
experimental apparatuses, each equipped with a high-mixing efficiency
device: (i) a T-mixer and (ii) a Y-mixer, followed by two divergent
channel sections and a final coil with a constant diameter, as illustrated
in Fig. 1.

Although the experimental protocol is extensively detailed in the
aforementioned publications, the key steps are reported here. Magne-
sium chloride (MgCl2) and sodium hydroxide (NaOH) solutions were
fed into the mixers’ inlets. The solutions reacted in the mixing channel
leading to the formation of Mg(OH)2 suspension following the reaction:

Mg2+(aq) + 2OH−
(aq) → Mg(OH)2(s) ↓ (1)

he suspension was collected, stabilized, and analyzed using the Dy-
amic Light Scattering (DLS) technique to obtain the PSDs. From each
SD, the 𝑗th order moment, 𝑚𝑗 , can be calculated as follows:

𝑗 = ∫

∞

0
𝐿𝑗𝑓 (𝐿)𝑑𝐿 (2)

ere, 𝐿 is the particle size and 𝑓 (𝐿) is the PSD. Once the moments
are calculated, characteristic sizes, defined by the ratio of consecutive
moments, can be obtained:

𝑑𝑖,𝑗 =
𝑚𝑖 , (𝑖 = 𝑗 + 1) (3)
2

𝑚𝑗
his protocol aimed to evaluate the impact of various process variables
n the PSDs, including initial reactant concentrations and flow rates.
he investigated operating conditions in both mixers are detailed in
able 1.

Two sets of experiments were conducted in the T-mixer: #1 focused
n increasing the concentration of Mg2+ from 0.125 to 1 M at a constant
low rate of 2320 ml/min in the T-mixer, while #2 studied the effect
f decreasing flow rate to 1602 and 773 mL/min in the T-mixer at a
onstant concentration of Mg2+ of 1 M. Experiments in #3 explored

variations in the concentration of Mg2+ over a wider range from 0.01
to 1 M at a constant flow rate of 835 mL/min in the Y-mixer. The Y-
mixer’s design allowed for the investigation of lower concentrations due
to the final pipe, which could be extended to ensure sufficiently long
residence times for the reaction completion. In Table 1 the Reynolds
number and flow rate refer to the mixing channel, the NaOH concentra-
tion is kept at the stoichiometric ratio (1:2) for each experiment and the
mixing time was estimated using Eq. (6) in Schikarski et al. [36]. Four
characteristic sizes (𝑑10, 𝑑21, 𝑑32, 𝑑43) are experimentally derived for
each operating condition and used in numerical optimization. Dataset
#1 (20 points) is used for fitting the PBM parameters, whereas datasets
#2 and #3 (32 points) are used for testing. For the sake of clarity,
the discussion primarily focuses on 𝑑10 as the other characteristic sizes
exhibit a similar qualitative trend but with higher values (𝑑10 < 𝑑21 <
𝑑32 < 𝑑43) [33]. The 𝑑10 values for each dataset are presented in Fig. 2.

3. Population balance model

To enhance clarity and accessibility, a concise description of the
PBM used is provided, focusing on the model’s inputs and outputs.
The PBM is mono-dimensional (1D) and assumes that the system be-
haves like a Plug-Flow Reactor (PFR). This model uses Computational
Fluid Dynamics (CFD) simulations to incorporate information about the
flow field and turbulence. Specifically, it relies on Reynolds-Averaged
Navier–Stokes (RANS) simulations. The micro-mixing is addressed by
tracking the evolution of the mixture fraction variance, which is in-
corporated into the PBM using the 𝛽-PDF approach. The model solves
the Population Balance Equation (PBE), via the Quadrature Method of
Moments (QMOM), returning as outputs the characteristic particle sizes
(𝑑10, 𝑑21, 𝑑32, 𝑑43) in terms of moment ratios and these characteristic
sizes can be compared with those provided by the experimental tests.
Mg(OH)2 precipitation takes place when Mg2+ and OH− ions reach the
molecular scale and react (Eq. (1)) generating supersaturation (𝑆):

𝑆 =
𝛾3±

(

𝑐Mg2+ 𝑐
2
OH−

)

− 𝑘sp
𝑘sp

(4)

Here, 𝛾± is the multi-component solution activity coefficient, 𝑐Mg2+
and 𝑐OH− are the concentrations of ions reacting as a result of their

icro-mixing and 𝑘sp is the solubility product. The supersaturation
generation triggers the nucleation of nuclei, which can then grow
(‘primary particles’) and aggregate, leading to the formation of bigger
clusters (‘secondary particles’ or, shortly, ‘particles’). The processes of
primary nucleation, molecular growth, and aggregation can be effec-
tively modeled using constitutive equations, also known as kernels.
In our model, we employed the Volmer-Weber equation to describe
the nucleation rate (𝐽 ), accounting for both the homogeneous and
heterogeneous contributions:

𝐽 = 𝐴1e

(

− 𝐵1
ln (𝑆+1)2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Homogeneous

+𝐴2e

(

− 𝐵2
ln(𝑆+1)2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Heterogeneous

(5)

Here, 𝐴1 and 𝐴2
(

particle no. m−3s−1
)

are parameters describing the
nucleation rate at infinite supersaturation (𝑆 → ∞) and 𝐵1 and 𝐵2
(dimensionless) describe the interaction between the liquid and the
g(OH)2 particles surface or foreign solids surface, respectively. For

the molecular growth rate (𝐺), a power law expression was chosen:

𝐺 = 𝑘 𝑆𝑔 (6)
g
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Fig. 1. Experimental setups: T-mixer (top) and Y-mixer (bottom).
Table 1
Investigated operating conditions for the T- and Y-mixer.

Dataset Geometry Operating conditions

Concentration Residence Reynolds Flow rate Estimate
(M) time (ms) number (⋅104) (mL/min) mixing time (ms)

#1 T-Mixer

0.125 ∼ 3 2.7 2320 2
0.25 ∼ 3 2.7 2320 2
0.5 ∼ 3 2.7 2320 2
0.75 ∼ 3 2.7 2320 2
1 ∼ 3 2.7 2320 2

#2 T-Mixer 1 ∼ 5 1.7 1602 2.8
1 ∼ 10 0.8 773 5.9

#3 Y-Mixer

0.01 ∼ 9 ⋅ 103 1.7 835 0.6
0.025 ∼ 9 ⋅ 103 1.7 835 0.6
0.05 ∼ 9 ⋅ 103 1.7 835 0.6
0.125 ∼ 3.6 ⋅ 102 1.7 835 0.6
0.5 ∼ 3.6 ⋅ 102 1.7 835 0.6
1 ∼ 3.6 ⋅ 102 1.7 835 0.6
Fig. 2. Experimental 𝑑10 trends: dataset #1 (left), dataset #2 (center), dataset #3 (right).
𝛽
Here, 𝑘𝑔
(

ms−1
)

is a parameter describing the rate at which particles
grow while 𝑔 (dimensionless) describes the mechanism by which growth
ccurs. Furthermore, the aggregation rate

(

𝛽agg
)

was described as the
product of collision frequency

(

𝛽coll
)

and sticking probability (𝜓), using
he following equation:

agg = 𝛽coll𝜓 (7)

e assumed that the collision frequency depended on both turbulent
luctuations (𝛽 tr) and thermal, or Brownian, fluctuations (𝛽br), while
he sticking probability was a function of the cementation time (𝑡c) and
he interaction time (𝑡i):

= 10𝐶1
(

𝛽 tr + 𝛽br
)

(8)
3

coll
tr =
√

8𝜋
15

√

𝜀
𝜈
(𝐿 + 𝜆)3

8
(9)

𝛽br =
2𝑘B𝑇
3𝜇

(𝐿 + 𝜆)2

𝐿𝜆
(10)

𝜓(𝐴P, 𝜀) = e
− 𝑡c(𝐴P ,𝜀)

𝑡i (𝜀) (11)

Here, 𝐶1 (dimensionless) is a correction factor added to the equation
to account for any deviation from ideality, while 𝐴p

(

Nm−2) is pro-
portional to the strength of the crystalline bridge formed between
the particles, 𝜀 is the dissipation of turbulent kinetic energy, 𝜈 is the
kinematic viscosity of the fluid, 𝐿 and 𝜆 are the sizes of the colliding
particles, 𝑘 is the Boltzmann constant, 𝑇 the fluid temperature, 𝜇 the
B
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Fig. 3. Model flowchart.

ynamic viscosity of the fluid. Cementation and interaction time, on
he other hand, are expressed as:

c =
𝐷b
𝑓s𝐺

(12)

𝑡i =
√

𝜈
𝜀

(13)

𝐷b =
𝐿eq𝜌0.5c (𝜀𝜈)0.25

𝐴0.5
p

(14)

𝐿eq =
𝐿𝜆

(

𝐿2 + 𝜆2 − 𝐿𝜆
)0.5

(15)

Here, 𝑓s is a shape function [37] and 𝜌c is the crystal density. In total,
then, eight parameters need to be identified: four from the primary
nucleation

(

𝐴1, 𝐴2, 𝐵1, 𝐵2
)

, two from the molecular growth
(

𝑘𝑔 , 𝑔
)

and
two from the aggregation rate equations

(

𝐶1, 𝐴p
)

. The values of these
parameters dictate the magnitude of source terms in the equations that
describe the moments’ evolution:
d
(

𝑢̄𝑚𝑗
)

d𝑦
= 𝐿𝑗c𝐽 + ∫

∞

0
𝑗𝐿𝑗−1𝐺𝑓d𝐿 + 𝐵𝑗 − 𝐷̄𝑗 (16)

Here, 𝐿c represents the critical size of stable nuclei (1 nm) whereas 𝐵𝑗
nd 𝐷̄𝑗 address the birth and death contribution due to aggregation.

Fig. 3 presents the flowchart of the PBM framework, with a focus
n inputs and outputs. Initially, CFD simulations are conducted for a
pecified flow rate in the mixing channel, corresponding to a velocity
̄mc, and turbulent fields (i.e. the turbulent kinetic energy, 𝑘, and the
urbulent dissipation rate, 𝜀) are integrated into the PBM. Operating
onditions, including MgCl2 and NaOH initial inlet concentrations, are

set. Different sizes (𝑑10, 𝑑21, 𝑑32, 𝑑43) are obtained as PBM output
depending on the kinetics parameter set. It is essential to highlight
that kinetics parameters are not free to vary but must adhere to
physical constraints, which can be established through references to the
scientific literature [38]. For instance, in the case of poorly soluble com-
pounds such as Mg(OH)2 or barium sulfate (BaSO4) [39], the literature
presents clear guidelines. Karpiński and Bałdyga [40] reported for these
systems a solution particle density

(

particle no. m−3) ranging from 1017

to 1022 from which the lower and upper bounds for parameter 𝐴1 can
be derived accordingly. In line with Classical Nucleation Theory (CNT),
𝐴1 and 𝐴2 can vary by several orders of magnitude. Once the range for
𝐴1 is chosen, the range for 𝐴2 follows. The range values of 𝐵1 and 𝐵2,
on the other hand, can be chosen knowing some physical properties of
the system such as the interfacial tension [41]. The growth rate, whose
intensity is modulated by 𝑘g, cannot be higher than it would be in the
diffusion-controlled regime and 𝑔 varies between 1 and 2 depending
on the mechanism by which the particles grow (diffusion- or surface
integration-controlled respectively) [42]. Ultimately, 𝐶1 corrects any
deviation from ideality (namely 𝐶1 = 0) up to a correction of one
order of magnitude (namely 𝐶1 = 1) [13,32], while 𝐴p range is
tabulated [38]. For each parameter, the lower and upper limits are
4

given in the Table 2:
Table 2
Parameter constraints and units.

𝐴1 𝐴2 𝐵1 𝐵2 𝑘g g 𝐶1 𝐴p

Lower bound (lb) 1019 1010 200 10 10−15 1 0 100

Upper bound (ub) 1029 1018 400 102 10−9 2 1 107

Units particle no. m N

m3s1 s m2

Fig. 4. Traditional optimization loop scheme.

PBM computational details. The PBM is a mono-dimensional frame-
work coded in MATLAB, with the system of differential equations
(Eq. (16)) solved using ‘ode15s’. To capture the fluid dynamics within
both the T-mixer and Y-mixer, OpenFOAM simulations were conducted,
followed by the integration of turbulent property profiles into the
mono-dimensional model. For more comprehensive insights, readers
are directed to Raponi et al. [32,33].

4. Parameters identification

Parameter identification through optimization loops is the initial
step in fine-tuning model parameters for process description. In this
case, it is applied to determine the parameters that describe the precip-
itation of Mg(OH)2. Generally, the traditional optimization loop can be
represented as shown in Fig. 4:

The traditional optimization loop aims to optimize the model’s
outputs by comparison with experimental data. The PBM, for instance,
takes as inputs the kinetics parameters (i.e., the control variables).
These are identified by comparing the PBM outputs (i.e., the tar-
get variables) with experimental sizes at various operating condi-
tions. Let ⃖⃖⃗𝜑 be the vector representing the eight unknown parameters
(

⃖⃖⃗𝜑 = 𝜑
(

𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝑘𝑔 , 𝑔, 𝐶1, 𝐴p
))

, and ⃖⃗𝑑 be the vector containing the
model’s outputs

(

⃖⃗𝑑 = 𝑑
(

𝑑10, 𝑑21, 𝑑32, 𝑑43
)

)

, namely the four characteris-
tic sizes. After implementing the model and identifying the parameters
to be tuned, physical limits (i.e., the search space) are defined for
each parameter (see Table 2). The core of the optimization loop is the
optimization algorithm. Various algorithms are available, depending on
the task and problem size, namely the number of parameters to be iden-
tified. Once the optimization algorithm is chosen, it is initialized with a
first-attempt value

(

⃖⃖⃗𝜑I , either random or user − def ined
)

. The PBM uses
this value to calculate a first-attempt output

(

⃖⃗𝑑I
)

, which is compared
with experimental data. The goodness of the PBM output is quantified
through an error that settles the distance from the experimental values.
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Since the first-attempt values often return the wrong solution, the op-
timization algorithm iteratively adjusts the input parameters until the
model and experimental data (ideally) align. However, there are lim-
itations to traditional optimization methods, despite their robustness.
Firstly, the choice of the initial first-attempt value can heavily influence
the optimization process, particularly when expert guidance is lacking.
Algorithms like the CG method are susceptible to this limitation. An
alternative approach to address this issue is to assume a population
of first-attempt values, as in the case of the PSO. Yet, this increases
computational costs as the PBM must be evaluated for a larger number
of points. The second limitation pertains to the definition of the error,
which is user-dependent. Moreover, traditional optimization algorithms
can lead to a local minimum, necessitating a large number of runs to
explore the entire search space. These algorithms require simplified
models (e.g., mono-dimensional) that can quickly return outputs when
they are called. Lastly, an important consideration in optimization
algorithms is the possibility that different combinations of parameters
may lead to the same outcome. When parameter correlations are
present, additional techniques such as sensitivity analysis or parameter
screening may be required to identify the most influential parameters
and streamline the parameter space. However, in our study, we did
not encounter redundancy in outputs; consistent results were obtained
across variations in the kinetics parameter sets.

Deep learning aided optimization: the mirror model. In this paragraph,
we introduce a novel methodology for multi-variate optimization that
leverages NNs. This innovative approach addresses the limitations dis-
cussed earlier and substantially reduces computational costs. The initial
step involves creating a suitable numerical dataset using the PBM,
which takes eight kinetics parameters (⃖⃖⃗𝜑) and the concentration of
Mg2+ as inputs (Fig. 3). For the simulations, kinetics parameter values
(

⃖⃖⃗𝜑(𝑖)) were randomly selected within their physical variability range, as
outlined in Table 2 (for further details, see ‘supporting information’).
Therefore, a large search space could be covered by the PBM. Since it
was used for fitting, the five concentrations from experimental dataset
#1 were used in the simulations. The primary objective of the NN is
to replace the whole optimization loop by creating a surrogate opti-
mization algorithm capable of identifying precipitation kinetics (NN
outputs) starting from experimental sizes (NN inputs). This NN, which
mirrors the PBM inputs and outputs, is referred to as the ‘mirror model’
and represents a data-driven optimization algorithm. Therefore, the
mirror model was trained using the four characteristic sizes at an initial
Mg2+ concentration (five inputs) from simulations run with kinetics
parameters that now serve as the mirror model outputs (eight outputs).
The mirror model is schematically represented in Fig. 5.

Mirror model computational details. In this study, we conducted a pre-
liminary investigation to determine the optimal size of the numerical
dataset required for the effective generalization of patterns within the
mirror model. We explored dataset sizes ranging from 100 to 400
simulations, ultimately finding that 200 simulations were sufficient.
Out of these, 160 simulations were allocated for training the mirror
model, with the remaining 40 reserved for testing purposes. For each
dataset size, we evaluated four different neural network architectures,
varying in the number of layers and neurons. Specifically, architectures
included (i) 32-32, (ii) 32-64-32, (iii) 64-128-64, and (iv) 64-128-128-
64 configurations. Following architectural evaluations, we assessed the
impact of learning rate variation across two orders of magnitude (from
10−5 to 10−3). The chosen mirror model architecture comprised three
hidden layers with 64, 128, and 64 neurons, respectively, utilizing a
learning rate of 10−4. To mitigate overfitting, we employed the ’early-
stopping’ method. We utilized a fully connected deep learning model
with Rectified Linear Unit (ReLU) activation functions for neurons in
the input and hidden layers, and a linear activation function for the
output layer and the Adam optimizer. The training was performed in
Python utilizing TensorFlow and Keras libraries. Details regarding the
mirror model structure and training/testing process can be found in the
5

‘Supporting Information’.
5. Results and discussion

The mirror model serves as a valuable tool for identifying kinetics
parameters. It operates as a data-driven model, leveraging experi-
mental data. To illustrate its utility, let us assume to provide the
four experimental characteristic sizes at a concentration of 0.125 M
(corresponding to the first experimental condition in dataset #1, as
detailed in Table 1) as inputs to the trained mirror model. In response,
the mirror model will generate a kinetic parameter set as output. By
repeating this process for the following four concentrations in dataset
#1 (i.e., 0.25, 0.5, 0.75, and 1 M), four additional ⃖⃖⃗𝜑 predictions are
obtained. The five vectors ⃖⃖⃗𝜑 obtained using the data-driven mirror
model are ideally expected to be identical since the precipitation kinet-
ics are solely related to the compound (Mg(OH)2). However, in practice,
achieving a perfect identity is challenging due to various sources of
error, both experimental and model-related. The first category includes
errors, which relate to (i) the device used for characterization, (ii) the
method used for quenching to stabilize the suspension, and (iii) the
time elapsed between particle synthesis and their stabilization. The
second category encompasses model-related errors, which consist of (i)
intrinsic numerical errors, (ii) assumptions and simplifications made
during the modeling process, and (iii) stochasticity introduced during
the neural network training. Considering these factors, it becomes ev-
ident that the five parameter vectors ⃖⃖⃗𝜑 obtained using the data-driven
mirror model will not be identical but will exhibit slight variations
influenced by the error magnitudes. Nevertheless, this novel method-
ology provides a way to quantify this deviation. During the tuning
phase of the kinetics set, the mirror model was queried a number of
times equivalent to the number of operating conditions belonging to the
fitting dataset (i.e., five in the case of dataset #1). Consequently, five
sets of slightly different kinetics were obtained. For the 𝑖th parameter,
therefore, a mean value (𝜑̄𝑖) and a standard deviation (𝜑̄′2

𝑖 ) have been
calculated starting from these five values. The average values, denoted
concisely as ⃖⃖̄⃗𝜑, serve as a measure to evaluate the overall average
performance of the PBM. On the other hand, the confidence interval
for precipitation kinetics, proportional to the standard deviation for
each parameter ⃖⃖⃖⃖⃖⃗𝜑̄′2, is employed to quantify the uncertainty associated
with the PBM trend. Let us assume, therefore, to run a statistically
significant number of PBM simulations for each concentration (see
‘supporting information’). These PBM simulations have inputs in the
form of vectors ⃖⃖⃗𝜑 chosen as follows: a random vector that falls within
the range between ⃖⃖̄⃗𝜑 − ⃖⃖⃖⃖⃖⃗𝜑̄′2 and ⃖⃖̄⃗𝜑 + ⃖⃖⃖⃖⃖⃗𝜑̄′2 is selected. This procedure
allows for quantifying, through the PBM, the average trend and the
confidence interval as the operating conditions vary. The kinetics set
and its confidence interval is, then, tested for datasets #2 and #3 as
shown in Fig. 6:

While we have previously discussed average trends in two of our
prior publications [32,33], the proposed methodology allows for a
more detailed analysis. Indeed, the combined use of the mirror model
and PBM make it possible to understand, through the solved equa-
tions, the interaction among the phenomena involved. To begin, we
briefly outline the interpretation of average trends. Comparing the
PBM outcomes for dataset #1 (Fig. 6-left), we observe that in the T-
mixer there is a monotonically increasing trend in particle size as the
concentration increases. On the other hand, when we analyze the PBM
trend with dataset #2 (Fig. 6-center), we find no significant changes
in particle sizes with decreasing flow rate within the mixing channel
(or equivalently, as 𝑢̄mc decreases). Finally, when the system transitions
from a simple T-mixer to a more complex Y-mixer with diverging
channels and a final pipe, the PBM continues to accurately predict the
particle size trend, including the minimum (Fig. 6-right). This shifting
from the T- to the Y-mixer is accounted for in the PBM by running
additional CFD simulations to characterize the new flow and turbulent
fields (see Fig. 3, ‘CFD simulations’ box). It is worth emphasizing that
the PBM consistently and correctly predicted particle size trends under

entirely different conditions, even though these conditions were not
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Fig. 5. Schematic representation of the mirror model focusing on inputs and outputs.
Fig. 6. PBM outcomes vs experimental datasets. Dataset #1 (left) is used for fitting, datasets #2 (center) and #3 (right) are used for validation.
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riginally part of the fitting stage. Moreover, this new methodology
nables a quantitative assessment of the deviation in particle size,
epresented as a confidence interval. As the concentration increases, the
onfidence interval expands for both datasets #1 and #3. The rising
oncentration amplifies the significance of turbulence-related contri-
utions (e.g., turbulent aggregation), making the sizes more prone to
ariations [33]. Conversely, for dataset #2, the confidence interval
idens as the flow rate decreases. When velocity decreases, the un-

ertainty associated with the RANS turbulent model increases when
ransitioning from a fully developed turbulent regime to a regime with
educed turbulence [32,43]. Furthermore, although certain combina-
ions of kinetics parameters have successfully replicated dataset #2
xperimental trend, particularly at the lower end of the confidence
nterval (Fig. 6-center), these results should be carefully considered.
t is important to acknowledge the potential influence of quenching
imes on the measurements, which may have led to slight deviations
rom what is typically reported in the literature. Generally, as the
low rate decreases or, equivalently, as mixing time increases, one can
nticipate larger particle sizes [44], which aligns with the upper end
f the confidence interval. In the end, it is important to emphasize
he potential applications of the mirror model. Since no assumptions
ere made about the model, the numerical dataset could consist of
odeling approaches more complex than the one employed here. For
6

xample, instead of decoupling the flow and turbulent fields, by using
simplified PBE, as done in this work, the model could be based on
hree-dimensional fully-coupled CFD-PBM simulations. As a result, the
roposed methodology allows for precise adjustments, if required, for
ny model, regardless of its complexity. Notably, this flexibility is not
vailable with CG and PSO.

ey performance indicators. This section compares the performance of
two conventional optimization methods, CG and PSO, with the mirror
model. Although CG and PSO are components within the optimization
loop as illustrated in Fig. 4 (‘Optimization Method’ box), both methods
are referred to as if they represent the entire optimization loop. The
analysis focuses on two Key Performance Indicators (KPIs): (i) the
number of times the PBM is called and (ii) the time required to reach
a solution. The mirror model generates a kinetic parameter set for
each operating condition, specifically the five concentrations of dataset
#1 in the fitting dataset. In contrast, classical optimization methods
optimize all operating conditions in the fitting dataset simultaneously
as outlined in our previous publications [32,33]. Therefore, during each
optimization cycle of CG and PSO, only one set of kinetic parameters is
obtained, representing the optimized solution for all operating condi-
tions in the dataset. To conduct a thorough comparative performance
analysis, classical optimization methods were executed five times. The
resulting five kinetic parameter sets allowed for the calculation of the
mean values and their standard deviation for the parameters. Consid-
ering the substantial variations in the ranges of each parameter, often
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Fig. 7. ⃖⃖̄⃗𝜑 and confidence interval.
Fig. 8. KPIs for CG (green), PSO (blue) and NN (red).

spanning orders of magnitude, a radar plot (Fig. 7) has been included
for visualization. In this plot, each parameter range was normalized
between zero and one using the respective minimum and maximum
values detailed in Table 2.

The data in Fig. 7-left indicates that five optimization cycles are
insufficient for CG to generate reliable kinetic parameters with a small
standard deviation. This outcome is due to the practice of initializing
CG with a completely random initial guess in each cycle. It is worth
reiterating that the implementation of this measure was intended to
mitigate the influence of user experience on the optimization process
and subsequent performance comparison. Additionally, it aimed to
ensure that the CG could effectively explore a wide range of the search
space. PSO, instead, is acknowledged for its robustness in overcoming
the initial guess limitations of CG, consistently yielding more reliable
results. As highlighted in Fig. 7-center, PSO provides an average kinetic
parameter set closer to the one offered by the mirror model (Fig. 7-
right) and with a smaller standard deviation than the one provided by
CG. In addition, variations in PSO results, even after algorithm conver-
gence, can stem from two main factors. Firstly, the problem structure
may include multiple optimal solutions or complex topography, leading
to locally optimal but not globally optimal solutions. Secondly, the
presence of randomness in algorithms like PSO can result in slightly
different solutions even post-convergence, due to its stochastic na-
ture. These factors contribute to result variations despite algorithm
convergence. However, it proves to be more computationally consum-
ing, particularly when dealing with large optimization problems, as
depicted in Fig. 8.

On the left of Fig. 8, the iteration number indicates the number
of times the PBM is called. On the right, the cumulative execution
time is reported. For CG and PSO, both the iteration number and the
execution time represent the total, which is the sum of all five cycles.
For the mirror model, the iteration number corresponds to the size of
the numerical dataset, which includes 200 simulations (red bar on the
left). The execution time, instead, covers the dataset generation time,
7

approximately 3 min, and the training time, roughly 5 min (red bar
on the right). The contrast between the CG-PSO and the mirror model
is striking. CG and PSO respectively make roughly 2000 PBM calls
(depicted by the green-blue bars on the left), a stark contrast to the
mirror model’s 200 PBM calls. However, the real standout is evident in
the execution time. The mirror model accomplishes its tasks in under
10 min, whereas CG and PSO demand nearly 4 h (green-blue vs red bars
on the right). Additionally, it is important to note that CG and PSO
would still need more cycles to narrow down the confidence interval,
and expert knowledge would remain invaluable in such cases. Classical
methods can get trapped in minima that meet the stopping criteria
locally but may not be the optimal solution.

6. Conclusions

In this study, we present an innovative deep learning-based ap-
proach for multi-variate optimization, with a primary focus on char-
acterizing Mg(OH)2 precipitation kinetics using experimental data. Our
research leveraged three distinct datasets: one for PBM fitting and
two for PBM validation. The first dataset explored the influence of
increasing initial Mg2+ concentrations on particle sizes within a T-
mixer, while the second dataset delved into the effects of reduced
flow rates in the same system. The third dataset examined the impact
of increasing initial Mg2+ concentrations on particle sizes in a more
complex system, featuring a Y-mixer, two divergent channels, and a
final pipe. Our methodology exploited a mono-dimensional PBM. This
model takes kinetics parameters and concentration as inputs, yielding
four characteristic sizes as outputs. We harnessed the PBM to generate
a numerical dataset, which was used to train a NN which mirrored
the PBM inputs and outputs (consequently called the ‘mirror model’).
The mirror model took characteristic sizes and Mg2+ concentrations
as inputs and returned kinetics parameters as outputs. The mirror
model played a crucial role in predicting kinetics parameters from
experimental sizes from the first dataset. These predictions were used to
compute an average set and standard deviation. Surprisingly, the PBM
proved highly adept at describing changes in flow rates and substantial
reductions in Mg2+ concentrations within the new Y-mixer system, even
when these conditions were unprecedented. To further evaluate the
mirror model’s performance, we assessed two KPIs: (i) the iteration
number and (ii) the execution time. These KPIs were then compared
with those provided by two widely used algorithms, CG and PSO. The
outcome of this comparison underscores the enormous potential of the
mirror model, with KPIs consistently at least an order of magnitude
lower than those of CG and PSO.
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