
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Noise induced oscillations in a second order circuit with nonvolatile memristor / Bonnin, Michele; Song, Kailing; Corinto,
Fernando; Bonani, Fabrizio; Traversa, Fabio L.; Escudero Lopez, Manuel; Brivio, Stefano; Spiga, Sabina. -
ELETTRONICO. - (2023), pp. 1-4. (Intervento presentato al  convegno 2023 International Conference on Noise and
Fluctuations (ICNF) tenutosi a Grenoble (France) nel 17-20 October 2023) [10.1109/icnf57520.2023.10472751].

Original

Noise induced oscillations in a second order circuit with nonvolatile memristor

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/icnf57520.2023.10472751

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987944 since: 2024-04-21T07:57:33Z

IEEE



Noise induced oscillations in a second order circuit
with nonvolatile memristor

Michele Bonnin
DET Department

Politecnico di Torino
Torino, Italy

michele.bonnin@polito.it

Kailing Song
DET Department

Politecnico di Torino
Torino, Italy

kailing.song@polito.it

Fernando Corinto
DET Department

Politecnico di Torino
Torino, Italy

fernando.corinto@polito.it

Fabrizio Bonani
DET Department

Politecnico di Torino
Torino, Italy

fabrizio.bonani@polito.it

Fabio L. Traversa
MemComputing Inc.

San Diego, CA, USA
ftraversa@memcpu.com

Manuel Escudero Lopez
CNR-IMM

Unit of Agrate Brianza
Agrate Brianza, Italy

manuel.escudero@mdm.imm.cnr.it

Stefano Brivio
CNR-IMM

Unit of Agrate Brianza
Agrate Brianza, Italy

stefano.brivio@mdm.imm.cnr.it

Sabina Spiga
CNR-IMM

Unit of Agrate Brianza
Agrate Brianza, Italy

sabina.spiga@mdm.imm.cnr.it

Abstract—The addition of a small amount of noise in non-
linears system can play an important role, inducing transitions
between dynamical regimes and producing complex dynamics. In
this work, we present the analysis of a second order circuit with a
nonvolatile memristive device, subject to additive noise perturba-
tions. Memristive devices are two terminal elements suitable for
implementing circuits with complex dynamic behaviors, that can
be used to perform bio-inspired computational tasks. We show
that, depending on noise intensity, the dynamic behavior of the
system undergoes multiple qualitative changes. We use numerical
simulations and nonlinear dynamics concepts to analyze these
transitions.

I. INTRODUCTION

In recent years we have seen growing evidence that noise,
for long considered exclusively a nuisance to be eliminated
or at least reduced as much as possible, can play an impor-
tant constructive role in nonlinear dynamical systems. Ran-
dom noise can induce transitions between different dynamic
regimes [1], and can be responsible of counter-intuitive phe-
nomena, such as stochastic resonance [2]. A properly chosen
level of noise can actually improve the performance of a
system. When noise is added to a system that is initially
unable to detect or transmit a weak signal, the system can
exhibit enhanced sensitivity or improved signal-to-noise ratio,
making the signal more detectable or easier to distinguish from
background noise.

Nonlinearities can be introduced in electrical circuits
through specifically designed elements. Memristive devices are
two-terminal electrical elements that switch their resistance
state in response of an applied stimulus. They are promising
solutions for the realization of memories due to their non-
volatile properties, but they can also exhibit nonlinear and dy-
namic attributes, such as threshold switching, volatile switch-
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ing, or negative differential resistance, that can be exploited
to realize nonlinear circuits with complex dynamic behaviors
[3]. For example, they can be used to design chaotic circuits
[4], [5], or extremely compact oscillators exhibiting self-
sustained periodic oscillations [6], [7]. Surprisingly enough,
nonvolatility is rarely exploited in oscillators. For instance,
a memristive device was used as a programmable resistor in
conventional relaxation oscillators in [8].

In this work we propose an implementation of a simple
second order nonlinear oscillator with a nonvolatile memristive
device. The nonvolatile memristive device can be used as
a tunable nonlinear resistor, so as to enrich the obtained
dynamics. We consider here the influence of additive noise,
modelled as white Gaussian noise, on the circuit dynamic
response. We show how the circuit dynamics changes as the
noise intensity is varied. For comparison, we also analyze the
circuit dynamics when the random voltage source is replaced
by a periodic source, and the interplay between noise and such
periodic voltage.

II. PHYSICAL IMPLEMENTATION OF THE RRAM DEVICE

In this work, we consider a resistive random-access memory
(RRAM) devices consisting of 50 nm Pt/5.5 nm HfO2/40 nm
TiN stacks with a 40×40 µm2 area. Device manufacturing and
modelling is described in detail in [9], [10]. After a proper
electroforming procedure, the RRAM device shows resistive
switching properties. Fig. 1 shows the typical v − i, bipolar
resistive switching cycle exhibited by the device. Starting from
the low resistive state (LOW), a RESET operation gradually
programs the device to a high resistive state (HIGH) by ap-
plying a positive RESET voltage (in the figure, VRESET = 2
V). Applying a properly negative voltage (VSET ) the opposite
transition is obtained, with the device abruptly switching back
to a low resistive state. LOW and HIGH are qualitative terms
that refer to the RRAM device state after the SET and RESET



Fig. 1. Current-voltage characteristic of the realized RRAM device.
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Fig. 2. Second order circuit with nonvolatile memristive device.

operations. The internal state of the device is defined through
the resistance R(x) at 0.1 V, as shown in Fig. 1.

The v − i characteristics in the HIGH resistive state is
strongly nonlinear. A polynomial fitting of the measurements
shows that the v− i characteristics can be modelled as a fifth
order polynomial

iN (v) =

5∑
k=1

Gk v
k (1)

where the conductance coefficients are summarized in table I.

III. CIRCUIT MODEL AND RESULTS

We have used the RRAM device to implement a pro-
grammable nonlinear resistor in a second order nonlinear
oscillator, shown in Fig. 2. The circuit is composed of two
reactive elements, an inductor and a capacitor, connected in
series with a linear resistor. A random voltage source is
included, to model external and internal noise, such as thermal
noise in the linear resistor or the influence of the environment.
A shunted resistor, characterized by negative conductance
(−G) is connected in parallel with the nonvolatile memristive
element, that provides the nonlinearity thanks to its nonlinear
v − i characteristic.

Using Kirchhoff laws, the following state equations are
derived:

dx1

dτ
= x2 −R iN (x1) +RGx1 (2a)

dx2

dτ
= −R2C

L
(x1 + x2) +

R2C

L
vn(τ) (2b)

where x1 = v, x2 = R i are the normalized voltages, iN (x1)
is the v− i characteristic assumed for the memristor and τ =
t/(RC) is the dimensionless time . Circuit’s parameters used
in our analysis are summarized in table I.

R = 49.820 kΩ L = 24.82 H C = 10 nF
G1 = 1.91 µS G2 = 0.31 µS/V G3 = 19.1 µS/V2

G4 = −5.2 µS/V3 G5 = 1.77 µS/V4 G = 33.893 µS

TABLE I
CIRCUIT’S PARAMETERS

Fig. 3. Nullclines showing locations of equilibrium points

The autonomous system is obtained setting vn(τ) = 0.
It exhibits three equilibrium points, that can be located by
looking at the intersections of the nullclines (the set of points
such that dx1/dτ = dx2/dτ = 0), as shown in Fig. 3. By
looking at the eigenvalues of the Jacobian matrix

J(x1, x2) =

[
RG+R i′N (x1) 1

−R2C/L −R2C/L

]
(3)

it turns out that the origin x∗
0 is an unstable equilibrium

of saddle type (two real valued eigenvalues, one positive
and one negative), whereas x∗

1 and x∗
2 are asymptotically

stable equilibrium points of focus type (complex conjugate
eigenvalues with negative real parts). The basins of attraction
of the two stable equilibrium points are separated by the
separatrix, represented by the stable manifold W s

x∗
0

of the
saddle point, the red line shown in Fig. 4.

IV. NOISE ANALYSIS

To investigate the influence of noise, we have assumed that
the voltage source is a white Gaussian process, and we have

Fig. 4. Equilibrium points and their stable/unstable manifolds for the
autonomous circuits. Blue lines are the unstable manifolds of the saddle
equilibrium point. W s

x∗
0

(the red line) is the stable manifold, which is also
the separatrix between the basins of attraction of stable equilibria.



integrated the resulting stochastic differential equations using
two different stochastic integration methods: Euler-Maruyama
and stochastic Runge-Kutta method with strong order of
convergence equal to one. Under this assumption, equation
(2) becomes a system of stochastic differential equations (SDE
system):

dXt = n(Xt)dt+B dWt (4)

where Xt : Ω × [0,+∞] 7→ R2 is a vector of stochastic
processes (Ω is a sample space) that defines the state of the
circuit, n : R2 7→ R2 is a smooth vector field that satisfy
a Lipschitz condition to guarantee existence and uniqueness
of the solutions, and B is a constant vector. Finally Wt is a
Wiener process, also called Brownian motion, the integral of
a white Gaussian noise.

Because matrix B is constant, noise is unmodulated, or
additive. In this case the two main interpretations adopted for
SDEs, namely Itô or Stratonovich, coincide. In our analysis, to
perform computations we have adopted the Itô interpretation.
It is worth mentioning that, for SDE systems, the change of
variables and change of time formula is different from the
ordinary differential equations case. In particular, for a linear
change of variables Y = PX, where P is a regular matrix,
and the change of time τ = ωt, ω > 0, if Xt is a solution of
(4), then Yτ solves:

dYτ =
1

ω
Pn(P−1Yτ )dτ +

1√
ω
PB dWτ (5)

Moreover, Xt and Yτ converge only weakly, i.e. they coin-
cide only in distribution [11], [12]. As a consequence, only
information about the probability distribution can be inferred
from the scaled SDEs.

Application of equation (5), transforms the SDE system (2)
into:

dx1 = (x2 −R iN (x1) +RGx1)dτ (6a)

dx2 = −R2C

L
(x1 + x2)dτ +D

R

L

√
RC dWτ (6b)

where D denotes the noise strength.
The SDE system (6) has been solved numerically, using

both the two methods mentioned above. The time simulation
length was set to ∆τ = 104 (dimensionless time), the number
of samples was N = 227, and the fixed time integration step
was δτ = ∆τ/N ≈ 7.45 · 10−5.

For small values of the noise intensity the voltages exhibit
small random fluctuations around one of the two stable equi-
librium points, which one ultimately determined by the initial
condition, as it can be seen in Fig. 5(a). Fig. 5(b) shows
the corresponding marginal probability density function (PDF)
p(x1, τ), for τ large enough. The PDF shows a single peak,
centred around one of the stable equilibrium points. It is worth
mentioning that for τ → +∞, the system is expected to shows
transitions from the basin of attraction of one equilibrium point
to the other with probability one. This is because the variance
of the Wiener process grows unbounded with time. However,
on a finite time scale and for small enough noise intensities,
no transition is observed.

Fig. 5. (a) Normalized voltages x1 (blue line) and x2 (red line) versus time.
(b) Marginal probability density function p(x1). Normalized noise intensity
is D = 10−3.

Fig. 6. (a) Normalized voltages x1 (blue line) and x2 (red line) versus time.
(b) Marginal probability density function p(x1). Normalized noise intensity
is D = 3 · 10−3.

If the noise intensity is increased, amplitude of fluctuations
increases correspondingly. When the noise intensity exceeds
a certain threshold, random jumps occur between the basins
of attraction of the two equilibrium points, and the circuit
dynamics resemble that of a particle in a double-well potential.
The corresponding PDF for large, but still finite τ , shows two
peaks centred at the two equilibrium points, see Fig. 6.

Finally, if the noise intensity is further increased, the state
variables exhibits approximately regular jumps between the
two basins of attraction, resembling random relaxation oscil-
lations (Fig. 7). The marginal PDF still shows two marked
peaks, but the peaks begin to merge together, as it can be seen
from the fact that the PDF is not null at x1 = 0. At this point,
the amplitude of fluctuations shows little to no dependence
at all on the noise intensity. Any variation of the latter, only
reflects into a change of the switching frequency between the
two basins of attraction.

It is worth noticing that although the dynamic behaviour
of the circuit resembles that of a particle in a two wells
potential, the SDE system (6) is not a system with a quartic
potential. Instead, bi-stability is a consequence of the nonlin-
ear resistance. To understand the mechanism originating the
random relaxation oscillations, we introduce the coordinates
transformation

x = x1 (7a)
y = x2 −R iN (x1) +RGx1 (7b)



Fig. 7. (a) Normalized voltages x1 (blue line) and x2 (red line) versus time.
(b) Marginal probability density function p(x1). Normalized noise intensity
is D = 5 · 10−3.

Using Itô formula, the SDE system (6) transforms into

dx = y dτ (8a)

dy = (−U ′(x)− F (x) y)dτ +D
R

L

√
RC dWτ (8b)

where U ′(x) = x + R iN (x) − RGx and F (x) = −RG +
R i′N (x) + 1. The SDE system (8) describes a nonlinear
oscillator with potential U(x), subject to the nonlinear dis-
sipation F (x) y. In the absence of noise, the differential
equation (8) admits three equilibrium points at U ′(x) = 0,
y = 0. Equilibrium points corresponding to the minima of
U(x) are asymptotically stable, whereas the origin, which
corresponds to a local maximum of U(x), is unstable of
saddle type. In the presence of noise, the state of the system
fluctuates within one of the two potential wells of U(x),
with random oscillations corresponding to jumps between the
two potential wells. Transitions from one potential well to
the other occur when the trajectory crosses the separatrix
between the basins of attraction of the equilibrium points. In
particular, when the trajectory reaches the separatrix, there is
a 50% probability of transition into the other potential well.
Interestingly, transitions do not occur near the saddle point.
Fig. 8 shows an example of transition. The trajectory of the
noisy circuit is shown by the black line, the stable manifold
of the saddle W s

x∗
0

is in red, while the unstable manifold of
the saddle Wu

x∗
0
, which coincides with the stable manifold of

the other equilibrium points W s
x∗
1,2

is in blue. Starting from
a random initial condition, the noisy trajectory is attracted
by the stable equilibrium point. it converges to it following
its stable manifold W s

x∗
2
. The trajectory does not necessarily

reach x∗
2, but it fluctuates around the equilibrium. If during its

random wandering, the state comes close enough to W s
x∗
0
, it

is attracted by the saddle and starts to follow the separatrix.
However the manifold W s

x∗
0

is stable only along one direction.
Any perturbation transversal to the manifold is amplified, and
the trajectory may be either pushed back towards x∗

2, or it may
cross the separatrix and converge towards the other equilibrium
point x∗

1, again following the manifold Wu
x∗
0
≡ W s

x∗
1
. Because

the probability distribution has peaks centred at x∗
1 and x∗

2, and
shows a minimum at x∗

0, we expect that the separatrix crossing
occurs where the distance between Wu

x∗
0

and the equilibrium
points is minimum.

Fig. 8. Example of trajectory of the noisy circuit (black line), compared to
invariant manifolds of the deterministic system (blue and red lines).

V. CONCLUSIONS

We report on the effect of small additive noise in a
second order circuit with a nonvolatile memristive device.
The memristive device makes the circuit, and the governing
equations, nonlinear. We show that increasing the noise in-
tensity, the circuit exhibits transition from small amplitude
random fluctuations, to large amplitude random oscillations.
An explanation of this transition is given, based on an analogy
with bifurcations induced by a simple periodic forcing.
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