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Abstract: In global optimization problems, diversification approaches are often necessary to overcome
the convergence toward local optima. One approach is the multi-start method, where a set of different
starting configurations are taken into account to designate the best local minimum returned by
the multiple optimization procedures as the (possible) global optimum. Therefore, parallelization
is crucial for multi-start. In this work, we present a new multi-start approach for gradient-based
optimization methods that exploits the reverse Automatic Differentiation to perform efficiently. In
particular, for each step, this Automatic Differentiation-based method is able to compute the N
gradients of N optimization procedures extremely quickly, exploiting the implicit parallelization
guaranteed by the computational graph representation of the multi-start problem. The practical
advantages of the proposed method are illustrated by analyzing the time complexity from a theoretical
point of view and showing numerical examples where the speed-up is between ×40 and ×100, with
respect to classic parallelization methods. Moreover, we show that our AD-based multi-start approach
can be implemented by using tailored shallow Neural Networks, taking advantage of the built-in
optimization procedures of the Deep Learning frameworks.

Keywords: global optimization; multi-start methods; Automatic Differentiation; Neural Networks

MSC: 90C26; 90C30; 90C35; 65Y20

1. Introduction

Multi-start methods [1–5] are approaches used to increase the possibility of finding a
global optimum instead of a local optimum in global optimization problems. This family of
methods consists of making comparisons between many local optima obtained by running
a chosen optimization procedure with respect to different starting configurations. Alter-
natively, multi-start is adopted when a set of local optima is desired by the optimization
task. For these reasons, multi-start methods can be applied both to unconstrained and
constrained optimization, both to derivative-free and derivative-based procedures, and
both to meta-heuristic and theoretical-based optimization methods.

In global optimization problems, other approaches include population-based methods,
like Genetic Algorithms (see, [6–9]) and Swarm Intelligence-based methods (e.g., Particle
Swarm Optimization methods, see [10–12]). These nature-inspired methods are somehow
similar to multi-start methods since they are based on a set of starting guesses; however,
this set is used as a swarm of interacting agents that move in the domain of the loss
function, looking for a global minimizer. Even if these latter methods are very efficient,
they suffer a lack of understanding of the convergence properties, and it is not clear how
much their efficiency is preserved if applied to large-scale problems [13]. Therefore, in
high-dimensional domains, multi-start methods based on optimization procedures with
well-known convergence properties can be preferred.
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In the literature, sometimes the term multi-start is used to denote general global search
methods, e.g., a random search or a re-start method can be defined as multi-start (see [14]),
or vice-versa (see [15]). Nonetheless, in this work and according to [5], we denote as
multi-start methods only those methods that consist in running the same optimization
procedure with respect to a set of N ∈ N distinct starting points x(0)1 , . . . , x(0)N ∈ Rn.
Obviously, this approach can be modified into more specialized and sophisticated methods
(e.g., [15–18]), but it is also useful in its basic form; indeed, it is implemented even in the
most valuable computational frameworks (e.g., see [19]). However, the main difficulty
of using a multi-start approach is that the number N of starting points typically must
be quite large, due to the unknown number of local minima. For this reason, parallel
computing is very important in this context, and the real exploitation of multi-start seems
to be restricted to specific algorithms that are able to take advantage of the computer
hardware for parallelization [16,17,20,21]. According to [21,22], three main parallelization
approaches can be determined: (i) parallelization of the loss function computation and/or
the derivative evaluations; (ii) parallelization of the numerical methods performing the
linear algebra operations; and (iii) modifications of the optimization algorithms in a manner
that improves the intrinsic parallelism (e.g., the number of parallelizable operations). In
this work, we focus on the parallelization schemes of the first case (i), specifically on the
parallelization of the derivative evaluations, because they are typically used for generating
general purpose parallel software [21].

The main drawback of parallelization for multi-start methods is the difficulty of
finding a trade-off between efficiency and easy implementation, especially for solving
optimization problems of moderate dimensions on non-High Performance Computing (non-
HPC) hardware. Typically, the simplest parallelization approach consists in distributing
the computations among the available machine workers (e.g., via routines as [23,24]);
however, very rarely is this also the most efficient method. Alternatively, a parallel program
specifically designed for the optimization problem and for the hardware can be developed,
but the time spent in writing this code may not be worth it. Of course, the cost of the
parallelization of the derivative evaluations also depends on the computation methods
used; when the gradient of the loss function is not available, Finite Differences are typically
adopted in literature but, as observed in [22], the advent of Automatic Differentiation in
recent decades has presented new interesting possibilities, allowing for the adoption of this
technique for gradient computation in optimization procedures (e.g., see [25–29]).

The reverse Automatic Differentiation (AD), see [30] (Ch. 3.2)), was originally devel-
oped by Linnainmaa [31] in the 1970s, to be re-discovered by Neural Network researchers
(who were not aware of the existence of AD [32]) in the 1980s under the name of backprop-
agation [33]. Nowadays, reverse AD characterizes almost all the training algorithms for
Deep Learning models [32]. AD is a numerical method useful for computing the derivatives
of a function, through its representation as an augmented computer program made of a
composition of elementary operations (arithmetic operations, basic analytic fuctions, etc.)
for which the derivatives are known. Then, using the chain rule of calculus, the method
combines these derivatives to compute the overall derivative [32,34]. In particular, AD
is divided into two sub-types: forward and reverse AD. The forward AD, developed in
the 1960s [35,36], conceptually is the simplest one; it computes the partial derivative of
a function ∂ f /∂xi by recursively applying the chain rule of calculus with respect to the
elementary operations of f . On the other hand, reverse AD [31,33] “backwardly” reads the
composition of elementary operations constituting the function f ; then, still exploiting the
chain rule of calculus, it computes the gradient ∇ f . Both the AD methods can be extended
to vectorial functions F : Rn → Rm and used for computing the Jacobian. Due to the nature
of the two AD methods, usually the reverse AD is more efficient if n > m because it can
compute the gradient of the j-th output of F at once; otherwise, if n < m, the forward AD
is the more efficient method because it computes the partial derivatives with respect to xi
for all the outputs of F at once (see [30] (Ch. 3)). The characteristic described above for the
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reverse AD is the base for the new multi-start method proposed in this work, where we
focus on the unconstrained optimization problem of a scalar function f : Rn → R.

To improve the efficiency in exploiting the chain rule, the computational frameworks
focused on AD (e.g., [37]) are based on computational graphs, i.e., they compile the pro-
gram as a graph where operations are nodes and data “flow” through the network [38–40].
This particular configuration guarantees high parallelization and high efficiency (both for
function evaluations and for AD-based derivative computations). Moreover, the computa-
tional graph construction is typically automatic and optimized for the hardware available,
keeping the implementation relatively simple.

In this paper, we describe a new efficient multi-start method where the parallelization
is not explicitly defined, thanks to the reverse Automatic Differentiation (see [30] (Ch. 3.2))
and the compilation of a computational graph representing the problem [39,40]. The
main idea behind the proposed method is to define a function G : RnN → R such that
G(x1, . . . , xN) := f (x1)+ · · ·+ f (xN), for any set of N ∈ N vectors in Rn, where f : Rn → R
is the loss function of the optimization problem and N is fixed. Since the gradient of G
with respect to (x1, . . . , xN) ∈ RnN is equivalent to the concatenation of the N gradients
∇ f (x1), . . . ,∇ f (xN), by applying the reverse AD on G we can compute the N gradients
of the loss function very efficiently; therefore, we can implicitly and efficiently parallelize
a multi-start method of N procedures running one AD-based optimization procedure
for the function G. The main advantage of this approach is the good trade-off between
efficiency and easy implementation. Indeed, nowadays the AD frameworks (e.g., [37])
compile functions and programs as computational graphs that automatically but very
efficiently exploit the available hardware; then, with the proposed method, the user just
needs to define the function G and the differentiation through the reverse AD, obtaining
a multi-start optimization procedure that (in general) is more time-efficient than a direct
parallelization of the processes, especially excluding an HPC context. Moreover, the method
can be extended, implementing it by using tailored shallow Neural Networks and taking
advantage of the built-in optimization procedures of the Deep Learning frameworks.

The work is organized as follows. In Section 2, we briefly recall and describe the AD
method. In Section 3, we start introducing a new formulation of the multi-start problem
that is useful for the exploitation of the reverse AD, and the time complexity estimations
are illustrated. Then, we show numerical results illustrating a context where the proposed
method is advantageous with respect to a classic parallelization. In Section 4, we show how
to implement the AD-based multi-start approach using a tailored shallow Neural Network
(NN) in those cases where the user wants to take advantage of the optimization procedures
available in most of the Deep Learning frameworks. In particular, we illustrate an example
where the new multi-start method is implemented as a shallow NN and used to find three
level set curves of a given function. Finally, some conclusions are drawn in Section 5.

2. Automatic Differentiation

Automatic Differentiation (AD) is a numerical method to compute the exact derivatives
of a function, representing it as an augmented computer program made of a composition
of elementary operations for which the derivatives are known [30] (Ch. 3.2); typically, this
program is represented as a graph connecting the elementary operations (e.g., see Figure 1).

The first idea about AD dates back to the 1950s [35], and the forward mode AD was
developed in the 1960s [36]. In the 1970s, Linnainmaa developed the reverse mode AD [31].
This latter method is equivalent to the one independently developed by NN researchers
in the late 1980s, with the name of backpropagation [33]. Nowadays, backpropagation is
recognized as the application of the reverse mode AD for derivatives computation in NNs.
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Figure 1. Example of computational graph representing f (x1, x2) as a composition of elementary
functions g3, . . . , g8.

2.1. Forward Mode AD

The forward AD is conceptually the simplest of the two methods. Given a scalar
function f : Rn → R, this method consists of a recursive application of the chain rule
of calculus for computing the partial derivative ∂ f /∂xi, for a fixed i ∈ {1, . . . , n}. More
specifically, let us us assume that f is the result of a composition of M elementary operations
with known derivatives. Let us denote with yj the intermediate variables such that yj = xj,
for each 1 ≤ j ≤ n, and yj is the result of the elementary operation gj applied to a subset of
“previous” intermediate variables, for each j = n + 1, . . . , n + M; for the ease of notation,
we use the same index j both for the elementary operation gj and the intermediate variable
yj returned by it (see Figure 1).

Now, let xi ∈ {x1, . . . , xn} be a fixed input variable and ẏj := ∂yj/∂xi. Then, it holds
that

ẏj =

{
δij , ∀ j = 1, . . . , n

∑yk parent of yj

∂yj
∂yk

ẏk , ∀ j > n
, (1)

where the term “parent of” refers to the computational graph of f (see Figure 1). Then, we
can build another “composition graph” with the same connectivity of the one of f but with
elementary operations given by (1). Therefore, given a vector x∗ ∈ Rn, we can compute the
value of the derivative ∂ f (x∗)/∂xi with the following steps:

1. We compute f (x∗), and we store all the intermediate variable values involved in the
computations of the second “forward AD graph”;

2. We compute the output value of the forward AD graph, giving as input (a.k.a. seed) the
canonical basis vector ei (i.e., selecting xi as input variable for the partial derivatives).

2.2. Reverse Mode AD

The reverse mode of AD “backwardly” reads the connections of the composition graph
of the function to exploit the differentiation dependencies. This procedure is somehow
equivalent to “exploding” the partial derivatives ∂z/∂xi and identifying their elementary
functions. Let us introduce the following quantities:

ỹi := ∑
yj child of yi

∂yi
∂yj

ỹj and z̃ := 1 . (2)

Then , for each i = 1, . . . , n, the following holds:

ỹi =
∂z
∂xi

.
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It is easy to observe that the differentiation dependencies written in (2) are evident
when reading the computational graph of f (see Figure 1) from right to left. Then, the
reverse mode AD consists of building another composition graph that has the same con-
nectivity but is executed in the opposite way and where the elementary operations are
given by (2). If we consider the example function of Figure 1, we can build the “reverse AD
graph” illustrated in Figure 2.

ỹ1

ỹ2

∂ f
∂x1

(x1, x2)

∂ f
∂x2

(x1, x2)

ỹ3

ỹ4

ỹ5

ỹ6

ỹ7

ỹ8 z̃ = 1

Figure 2. Example of reverse AD computational graph for f as in Figure 1.

Then, given a vector x∗ ∈ Rn, we can compute the value of the entire gradient ∇ f (x∗)
with the following steps:

1. We compute f (x∗), and we store all the intermediate variable values involved in the
computations of the reverse AD graph;

2. We compute the output values of the function represented by the reverse AD graph,
giving as the seed the scalar value equal to 1 (i.e., z̃ = 1).

2.3. Automatic Differentiation for Jacobians

AD can be easily extended to vectorial functions F : Rn → Rm [30] (Ch. 3.2). In
particular, given a vector x∗ ∈ Rn, the Jacobian matrix JF(x∗) ∈ Rm×n at x∗ can be com-
puted running m times the reverse AD, using the m canonical basis vectors e1, . . . , em ∈ Rm

as seeds to the reverse AD graph; alternatively, it can be computed n times running the
forward AD, using the n canonical basis vectors e1, . . . , en ∈ Rn as seeds to the forward AD
graph. In other words, the reverse AD graph with input vector ej returns the j-th row of the
Jacobian matrix, while the forward AD graph with input vector ei returns the i-th column
of the Jacobian matrix. For these reasons, in general the reverse AD is more efficient if
n > m; otherwise, if n < m, the forward AD is the more efficient method.

Focusing on scalar functions, it is trivial to observe that we can compute the gradient
running once the reverse AD instead of running the forward one n times.

3. Reverse Automatic Differentiation for Multi-Start

Let us consider the unconstrained optimization problem

min
x∈Rn

f (x) , (3)

where f : Rn → R is a given function, and let us approach the problem with a gradient-
based optimization method (e.g., the steepest descent). Moreover, we assume f is the
composition of elementary operations so that it is possible to use the reverse AD to compute
its gradient.

The main idea behind the reverse AD-based multi-start method is to define a function
G : RnN → R such that it is a linear combination of loss function evaluations at N
vectors, i.e.,

G([xT
1 , . . . , xT

N ]
T) := λ1 f (x1) + · · ·+ λN f (xN) ,
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for each xi ∈ Rn, λi ∈ R+ fixed, i = 1, . . . , N. Then, for any set of points {x̂1, . . . , x̂N} ⊂ Rn

where f is differentiable, the gradient of G at ξ̂ = [x̂T
1 , . . . , x̂T

N ]
T is equal to the concatenation

of the vectors λ1∇ f (x̂1), . . . , λN∇ f (x̂N). Therefore, using the reverse AD to compute
the gradient ∇ξG(ξ̂), we obtain a very fast method to evaluate the N exact gradients
∇ f (x̂1), . . . ,∇ f (x̂N), where ξ denotes the domain variable of G in RnN . Therefore, we can
apply the steepest descent method for G, which actually corresponds to applying N times
the steepest descent methods to f . In the following, we formalize this idea.

Definition 1 (N-concatenation). For each fixed N ∈ N, for any function f : Ω ⊆ Rn → Rm, a
function F : ΩN ⊆ RnN → RmN is an N-concatenation of f if

F([xT
1 , . . . , xT

N ]
T) = [ f (x1)

T , . . . , f (xN)
T ]T , (4)

for each set of N vectors {x1, . . . , xN} ∈ Ω.

Notation 1. For the sake of simplicity, from now on vectors [xT
1 , . . . , xT

N ]
T ∈ RnN will be denoted

by (x1, . . . , xN). Analogously, vectors returned by an N-concatenation of a function f will be
denoted by ( f (x1), . . . , f (xN)).

Definition 2 (λ-concatenation). For each fixed λ ∈ RN , for any function f : Ω ⊆ Rn → Rm, a
function F : ΩN ⊆ RnN → RmN is a λ-concatenation of f if

F((x1, . . . , xN)) = (λ1 f (x1), . . . , λN f (xN)) , (5)

for each set of N vectors {x1, . . . , xN} ∈ Ω.

Remark 1. Obviously, an N-concatenation of f is a λ-concatenation of f with λ = e =
[1, . . . , 1]T ∈ RN .

Given these definitions, the idea for the new multi-start method is based on the
observation that the steepest descent method for G, starting from ξ(0) and with step-length
factor α ∈ R+, represented by{

ξ(0) = (x(0)1 , . . . , x(0)N ) ∈ RnN

ξ(k+1) = ξ(k) − α ∇ξG(ξ(k)) , ∀ k ∈ N
, (6)

is equivalent to 
x(k+1)

1
...

x(k+1)
N

 =


x(k)1

...

x(k)N

−


α∇x f (x(k)1 )
...

α∇x f (x(k)N )

 , (7)

if the gradient of G is an N-concatenation of the gradients of f , i.e,

∇ξG((x1, . . . , xN)) = (∇x f (x1), . . . ,∇x f (xN)) . (8)

Analogously, if the gradient of G is a λ-concatenation of the gradients of f , with
λ ∈ RN , λ > 0, then (6) is equivalent to

x(k+1)
1

...

x(k+1)
N

 =


x(k)1

...

x(k)N

−


αλ1∇x f (x(k)1 )
...

αλN∇x f (x(k)N )

 , (9)

i.e., is equivalent to applying N times the steepest descent methods to f , with step-length
factors αλ1, . . . , αλN .
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Remark 2 (Extension to other gradient-based methods). It is easy to see that we can generalize
these observations to other gradient-based optimization methods than the steepest descent (e.g.,
momentum methods [41,42]). Let M be the function characterizing the iterations of a given
gradient-based method, i.e, such that

x(k+1) =M(x(k),∇g(x(k)) ; α) =


M(x(k)1 , gx1(x(k)) ; α)

...

M(x(k)n , gxn(x(k)) ; α)

 , (10)

for each n ∈ N, each step-length α ∈ R+ and each objective function g : Rn → R. Then, the
iterative process for G, starting from ξ(0), and with respect to a gradient-based method characterized
byM is ξ(0) = (x(0)1 , . . . , x(0)N ) ∈ RnN

ξ(k+1) =M
(

ξ(k),∇ξG(ξ(k)) ; α
)

, ∀ k ∈ N
, (11)

that is equivalent to the multi-start approach with respect to f :
x(k+1)

1
...

x(k+1)
N

 =


M
(

x(k)1 ,∇x f (x(k)1 ) ; α
)

...

M
(

x(k)N ,∇x f (x(k)N ) ; α
)
 . (12)

Moreover, we can further extend the generalization if we assume that, for each λ ∈ R+ and each
α ∈ R+, the following holds:

M(x(k), λ∇g(x(k));α) =M(x(k),∇g(x(k));m(λ)α) , (13)

where m : R+ → R+ is a fixed function. Indeed, if the gradient of G is a λ-concatenation of the
gradients of f , Equation (12) changes into

x(k+1)
1

...

x(k+1)
N

 =


M
(

x(k)1 ,∇x f (x(k)1 ) ; α1

)
...

M
(

x(k)N ,∇x f (x(k)N ) ; αN

)
 , (14)

where αi := m(λi)α, for each i = 1, . . . , N.

3.1. Using the Reverse Automatic Differentiation

To actually exploit the reverse AD for a multi-start steepest descent (or another
gradient-based method), we need to define a function G with gradient a λ-concatenation of
the gradients of f , the objective function of problem (3).

Proposition 1. Let us consider a function f : Rn → R. Let F : RnN → RN be an N-concatenation
of f , for a fixed N ∈ N, and let Lλ : RN → R be the linear function

Lλ(y) := λTy =
N

∑
i=1

λiyi , (15)

for a fixed λ ∈ RN , λ > 0.
Then, for each set of N ∈ N points where f is differentiable, the gradient of the function

G := Lλ ◦ F is a λ-concatenation of the gradient of f .

Proof. The proof is straightforward since
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∇ξ Lλ(F((x1, . . . , xN))) = ∇ξ

(
N

∑
i=1

λi f (xi)

)
=


λ1∇x f (x1)

...

λN∇x f (xN)

 ,

for each set of N ∈ N points {x1, . . . , xN} ⊂ Rn where f is differentiable.

Assuming that the expression of∇x f is unknown, a formulation such as (14) obtained
from G = Lλ ◦ F seems to give no advantages without AD and/or tailored parallelization.
Indeed, the computation of the gradient ∇ξG through classical gradient approximation
methods (e.g., Finite Differences) needs N different gradient evaluations for each point
x(k)1 , . . . , x(k)N , respectively, and each one of them needs O(n) function evaluations (assuming
no special structures for f ); then, e.g., the time complexity of the gradient approximation
with Finite Differences for G (denoted by ∇FD

ξ G) is

T(∇FD
ξ G) = N · T(∇FD

x f ) = O(nN · T( f )) , (16)

where T( · ) denotes the time complexity.
On the other hand, reverse AD permits the efficient operation of the gradient-based

method (11), equivalent to the N gradient-based methods, even for large values of n and N.
Indeed, from [30] (Ch. 3.3), for any function g : Rn → R, it holds that the time complexity
of a gradient evaluation of g with reverse AD (in a point where the operation is defined) is
such that

T(∇ADg) ≤ 4 · T(g) , (17)

where ∇AD denotes the gradient computed with reverse AD. The following lemma char-
acterizes the relationship between the time complexity of ∇AD

ξ G and the time complexity
of f .

Lemma 1. Let f , F, and Lλ be as in Proposition 1. Let G : RnN → R be such that G := Lλ ◦ F,
and let us assume that

T(Lλ ◦ F) = O(N · T( f )) . (18)

Then, the time complexity of ∇AD
ξ G is

T(∇AD
ξ G) = O(N · T( f )) . (19)

Proof. The proof is straightforward, due to (17) and (18).

Comparing (19) and the time complexity (16) of the Finite Differences gradient approx-
imation, we observe that reverse AD is much more convenient both because it computes
the exact gradient and because of the time complexity. In the following example, we illus-
trate the concrete efficiency of using ∇AD

ξ G to compute N gradients of the n-dimensional
Rosenbrock function, assuming its gradient is unknown.

Example 1 (Reverse AD and the n-dimensional Rosenbrock function). Let f : Rn → R be
the n-dimensional Rosenbrock function [43–45]:

f (x) =
n−1

∑
i=1

100(xi+1 − x2
i )

2 + (1− xi)
2 . (20)

Assuming a good implementation of f , we have that the time complexity of the function is T( f ) =
O(log n). Then, it holds that T(∇AD

ξ G) = O(N log n). In this particular case, we observe that
the coefficient C ∈ R+, such that
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T(∇AD
ξ G) ≤ CN log n

for sufficiently large N and n is very small; specifically, for the given example, we have C < 10−4;
moreover, we observe that the reverse AD can compute N = 212 = 4096 gradients of f in a
space of dimension n = 212 = 4096 in less than one second (see Figure 3). All the computations
are performed using a Notebook PC with Intel Core i5 Processor dual-core (2.3 GHz) and 16 GB
DDR3 RAM.

Figure 3. Average computation time of the reverse AD method (blue curves) with respect to four
times the average computation time of G (orange curves) and the curve 10−4N log n, for each fixed
n = 210, 211, 212 (from left to right).

3.2. An Insight into AD and Computational Graphs

Equation (19) of Lemma 1 tells us that the time complexity of computing N times
the gradient ∇AD

x f is O(N · T( f )); then, with a proper parallelization procedure of these
N gradient computations, the construction of G seems to be meaningless. However, the
special implementation of G as a computational graph, made by the frameworks used for
AD (see Section 1), guarantees an extremely efficient parallelization, both for the evalu-
ation of G and the computation of ∇AD

ξ G. For example, during the graph compilation,
the framework TensorFlow [37] identifies separate sub-parts of the computation that are
independent and splits them [40], optimizing the code execution “aggressively” [39]; in
particular, this parallelization does not consist only in sending sub-parts to different ma-
chine workers but also in optimizing the data reading procedure such that each worker can
perform more operations almost at the same time (similarly to implementations that exploit
vectorization [46]). Then, excluding a High-Performance Computing (HPC) context, the
computational graphs representing G and ∇AD

ξ G make the AD-based multi-start method
(almost always) more time-efficient than a multi-start method where the code explicitly
parallelizes the N gradient computations of ∇AD

x f or the N optimization procedures (see
Section 3.3 below); indeed, in the parallelized multi-start case, each worker can compute
only one gradient/procedure at a time, and the number of workers is typically less than N.
Moreover, the particular structure of the available frameworks makes the implementation
of the AD-based method very easy.

As written above, the time-efficiency properties of a computational graph are some-
how similar to the ones given by the vectorization of an operation; we recall that the
vectorization (e.g., see [46]) of a function f : Rn → R is the code implementation of f as a
function F̃ :

⋃∞
N=1 RN×n → ⋃∞

N=1 RN such that, without the use of for/while-cycles, the
following holds:

F̃(X) = ( f (x1), . . . , f (xN)) ,

for each matrix X ∈ RN×n, N ∈ N, and where xi denotes the transposed i-th row of X. In
this case, especially when N ≫ 1, using F̃ is much more time-efficient than parallelizing N
computations of f , thanks to the particular data structure read by the machine workers,
which is optimized according to memory allocation, data access, and workload reduction.



Mathematics 2024, 12, 1201 10 of 21

Therefore, we easily deduce that the maximum efficiency for the AD-based method is
obtained when G is built using F̃ instead of F (if possible).

Summarizing the content of this subsection, the proposed AD-based multi-start
method exploits formulation (6) to build an easy and handy solution for an implicit and
highly efficient parallelization of the procedure, assuming access to AD frameworks.

3.3. Numerical Experiments

In this section, we illustrate the results of a series of numerical experiments that
compare the computational costs (in time) of three multi-start methods for problem (3):

(i) AD-based multi-start steepest descent, exploiting vectorization (see Section 3.2);
(ii) AD-based multi-start steepest descent, without exploiting vectorization;
(iii) Parallel multi-start steepest descent, distributing the N optimization procedures

among all the available workers. In this case, the gradient of f is computed using the
reverse AD, for a fair comparison with case (i) and case (ii).

The experiments have been performed using a Notebook PC with Intel Core i5 Pro-
cessor dual-core (2.3 GHz) and 16 GB DDR3 RAM (see Example 1); in particular, each
multi-start method has been executed alone, as the unique running application on the PC
(excluded mandatory applications in the background). The methods are implemented in
Python, using the TensorFlow module for reverse AD; the parallelization of method (iii) is
based on the multiprocessing built-in module [24].

Since we want to analyze the time complexity behavior of the three methods varying
the domain dimension n and the number of starting points N, we perform the experiments
considering the Rosenbrock function (see (20), Example 1). This function is particularly
suitable for our analyses since its expression is defined for any dimension n ≥ 2, and it has
always a local minimum in e := ∑n

i=1 ei.
According to the different natures of the three methods considered, the implementation

of the Rosenbrock function changes. In particular, for method (i), in the AD framework
we implement a function G that highly exploit vectorization, avoiding any for-cycle (see
Algorithm 1); for method (ii), we implement G cycling among the set of N vectors with
respect to which we must compute the function (see Algorithm 2); for method (iii), we do
not implement G, only the Rosenbrock function (see Algorithm 3).

Algorithm 1 G-Rosenbrock implementation—Method (i)

Input:
X, matrix of n ∈ N columns, N ∈ N of rows;

Output:
y, output scalar value of G built with respect to (20).

1: X·,2:n ← submatrix of X given by all the columns, except the first one;
2: X·,1:n−1 ← submatrix of X given by all the columns, except the last one;
3: Y ← 100× (X·,2:n − X·,1:n−1 ˆ 2) ˆ 2 + (1− X·,1:n−1) ˆ 2
4: y← sum-up all the values in Y
5: return : y

We test the three methods varying all the combinations of N and n, with N ∈ {20 · i :
i = 1, . . . 10} and n ∈ {20 · i : i = 1, . . . 5}, for a total number of 50 experiments. The param-
eters of the steepest descent methods are fixed: α = 0.01, maximum number of iterations
kmax = 104, stopping criterium’s tolerance τ = 10−6 for the gradient’s norm, and fixed
starting points x(0)1 , . . . , x(0)N sampled from the uniform distribution U ([−2, 3]n); computa-
tions are performed in single precision, the default precision of TensorFlow. The choice of a
small value for α, together with the sampled starting points, and the “flat” behavior of the
function near to the minimum e ensure that the steepest descent methods always converge
toward e using all the iterations allowed, i.e., x(kmax)

i ≃ e but ∥ ∇ f (x(kmax)
i ) ∥> τ = 10−6,

for each i = 1, . . . , N.
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Algorithm 2 G-Rosenbrock implementation—Method (ii)

Input:
X, matrix of n ∈ N columns, N ∈ N of rows;

Output:
y, output scalar value of G built with respect to (20).

1: y← 0
2: for i = 1, . . . , N do
3: x1:n−1 ← sub-row Xi,1:n−1
4: x2:n ← sub-row Xi,2:n
5: yi ← 100× (x2:n − x1:n−1 ˆ 2) ˆ 2 + (1− x1:n−1) ˆ 2
6: yi ← sum up values in yi
7: y← y + yi
8: end for
9: return : y

Algorithm 3 Rosenbrock implementation—Method (iii)

Input:
x, vector in Rn;

Output:
y, output scalar value of (20).

1: x1:n−1 ← sub-row Xi,1:n−1
2: x2:n ← sub-row Xi,2:n
3: y← 100× (x2:n − x1:n−1 ˆ 2) ˆ 2 + (1− x1:n−1) ˆ 2
4: y← sum-up values in y
5: return : y

Looking at the computation times of the methods, reported in Tables 1–3 and il-
lustrated in Figure 4, the advantage of using the AD-based methods is evident, in par-
ticular when combined with vectorization; indeed, we observe that in its slowest case,
(N, n) = (200, 100), method (i) is still faster than the fastest case, (N, n) = (20, 20), of both
method (ii) and method (iii).

Table 1. Method (i). AD-based multi-start plus vectorization. Computation times w.r.t. N starting
points in Rn, k = kmax = 104 iterations. Time notation: minutes:seconds.decimals .

n\N 20 40 60 80 100 120 140 160 180 200

20 0:10.6 0:10.9 0:10.9 0:11.5 0:11.6 0:11.8 0:12.2 0:12.6 0:12.9 0:14.2

40 0:10.9 0:11.5 0:12.4 0:12.5 0:12.9 0:13.3 0:14.0 0:14.4 0:15.2 0:17.3

60 0:11.2 0:12.1 0:13.0 0:13.5 0:14.4 0:15.1 0:16.6 0:17.2 0:17.7 0:18.7

80 0:11.4 0:12.6 0:13.3 0:14.5 0:15.9 0:17.1 0:18.2 0:20.0 0:21.7 0:22.6

100 0:11.9 0:12.8 0:14.5 0:16.1 0:17.2 0:19.6 0:20.4 0:21.9 0:23.2 0:25.2

The linear behaviour of the methods’ time complexity with respect to N is confirmed
(see Figure 4); however, the parallel multi-start method’s behavior is afflicted by higher
noise, probably caused by the machine’s management of the jobs’ queue. Nonetheless, the
linear behaviors of the methods are clearly different: the AD-based multi-start methods are
shown to be faster than the parallel multi-start method, with a speed-up factor between ×3
and ×6 (method (ii)) and between ×40 and ×100 (method (i)).
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Table 2. Method (ii). AD-based multi-start, no vectorization. Computation times w.r.t. N starting
points in Rn, k = kmax = 104 iterations. Time notation: minutes:seconds.decimals.

n\N 20 40 60 80 100 120 140 160 180 200

20 0:37.7 1:06.7 1:35.4 2:02.9 2:37.2 3:02.0 3:33.5 4:16.2 4:29.7 5:15.2

40 0:38.1 1:07.3 1:36.1 2:10.4 2:37.3 3:02.8 3:38.0 4:15.8 4:37.8 5:16.1

60 0:39.3 1:08.0 1:39.4 2:10.9 2:40.3 3:09.0 3:56.5 4:34.9 5:14.1 5:56.4

80 0:38.5 1:07.7 1:38.3 2:12.5 2:42.5 3:28.9 4:05.7 4:31.4 5:08.1 5:51.4

100 0:38.9 1:10.6 1:41.4 2:13.7 2:57.8 3:31.8 4:07.4 4:42.1 5:19.7 6:00.8

Table 3. Method (iii). Parallel multi-start (four workers). Computation times w.r.t. N starting points
in Rn, k = kmax = 104 iterations. Time notation: minutes:seconds.decimals.

n\N 20 40 60 80 100 120 140 160 180 200

20 1:46.1 3:35.9 5:27.8 7:28.1 9:39.6 11:53.3 15:05.5 18:49.0 34:18.6 39:07.0

40 1:47.0 3:38.3 5:29.8 7:28.5 9:50.1 11:52.8 14:41.4 17:41.9 29:21.4 43:09.4

60 1:47.8 3:39.7 5:31.2 7:33.1 9:41.6 11:55.7 14:36.4 18:14.4 33:42.5 38:36.3

80 1:47.0 3:39.9 5:30.8 7:32.2 9:41.9 11:58.2 14:35.8 17:46.1 35:09.3 19:08.5

100 1:46.5 3:40.5 5:25.6 7:32.4 9:43.4 12:09.6 14:59.0 15:11.1 17:14.2 19:15.3

Figure 4. Cases n = 20, . . . , 100, from left to right, from top to bottom. Computation times w.r.t. N
starting points in Rn of method (i) (blue color), method (ii) (orange color), and method (iii) (green
color). Dots are the computation times (in seconds) of the methods w.r.t. (N, n). Lines describe the
linear time complexity behaviour of the methods. The value m in the legends denotes the angular
coefficient of the approximating lines.

3.4. Scalability and Real-World Applications

The experiments illustrated in the subsection above are a good representation of the
general behavior that we can expect to observe in a real-world scenario, even further
increasing the number n of dimensions and/or the number N of optimization procedures.

We recall that the we are assuming that the loss function f is the composition of known
elementary operations, so that it is possible to use AD frameworks for the implementation
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of G (built on f ). Under these assumptions, the experiments with the Rosenbrock function
are a good representation of the general behavior of the proposed method with respect to a
“classically parallelized” multi-start approach. Indeed, the main difference is only in the
elementary operations necessary for implementing f and G, varying the time complexity
T( f ). Therefore, even in the worst case of no vectorization of f and/or G, the experiments
show that the AD-based method is faster with respect to the parallelized multi-start (see
method (ii) and method (iii)). Moreover, the implementation of the AD-based method
is much simpler; indeed, the user needs only to run one optimization procedure on the
function G instead of writing a code for optimally parallelizing N procedures with respect
to f .

Our AD-based approach is intended to be an easy, efficient, and implicit parallelization
of a general purpose multi-start optimization procedure, applicable to problems with f
that are relatively simple to define/implement and typically solved by excluding an HPC
context. On the other hand, for highly complex and expensive optimization problems
and/or loss functions, a tailored parallelization of the multi-start procedure is probably the
most efficient approach, possibly designed for that specific optimization problem and run
on an HPC. Of course, the AD-based method cannot be applied to optimization problems
with a loss function that is not implementable in an AD framework.

3.5. Extensions of the Method and Integration in Optimization Frameworks

The proposed AD-based multi-start method has been developed for general gradient-
based optimization methods for unconstrained optimization (see Remark 2). Nonetheless,
it has the potential to be extended to second-order methods (e.g., via matrix-free implemen-
tations [47] (Ch. 8)) and/or to constrained optimization. Theoretically, the method is also
relatively easy to be integrated in many existing optimization frameworks or software tools,
especially if they already include AD for evaluating derivatives (e.g., see [29]); indeed, the
user just needs to apply these tools/frameworks with respect to the function G, instead of
f , by asking to compute the gradient with reverse AD. Moreover, as we will see in the next
section, the AD-based method can also take advantage of the efficient training routines of
the Deep Learning frameworks for solving optimization problems.

However, the extensions mentioned above need further analysis before being imple-
mented, and some concrete limitations for the method still exist. For example, line-search
methods (e.g., see [47–50]) for the step-lengths of the N multi-start procedures have not
been considered yet; indeed, the current formulation has only one shared step-length α
for all the N procedures. Similarly, distinct stopping criteria for the procedures are not
defined. In future work, we will extend the AD-based multi-start method to the cases listed
in this subsection.

4. Multi-Start with Shallow Neural Networks

In this section, we show how to exploit the available Neural Network (NN) frame-
works to build a shallow NN that, trained on fake input–output pairs, performs a gradient-
based optimization method with respect to N starting points and a given loss function
function f . Indeed, the usage of NN frameworks (typically, coincident with or part of AD
frameworks) let us exploit the already implemented gradient-based optimization methods
defined for NN training, also taking advantage of their highly optimized code implementa-
tion. Therefore, from a practical point of view, this approach is useful to easily implement a
reverse AD-based multi-start method with respect to the built-in optimizers of the many
available NN frameworks.

In the following definition, we introduce the archetype of such a NN. Then, we
characterize its use with two propositions, to explain how to use the NN for reverse
AD-based multi-start.

Definition 3 (Multi-Start Optimization Neural Network). Let f : Rn → R be a loss function,
and let N be an NN with the following architecture:
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1. One input layer of n units;
2. One layer of N units and fully connected with the input layer. In particular, for each

i = 1, . . . , N, the unit ui of the layer returns a scalar output

ŷi = f (wi) = f ([w1i, . . . , wni]
T) , (21)

where wi = [w1i, . . . , wni]
T ∈ Rn is the vector of the weights of the connections between the

input layer units and ui.

Then, we define N as multi-start optimization NN (MSO-NN) of N units with respect to f .

Remark 3. We point the reader to the fact that (21) does not depend on the NN inputs but only on
the layer weights. Then, an MSO-NN does not change its output, varying the inputs. The reasons
behind this apparently inefficient property are explained in the next propositions.

Proposition 2. Let N be an MSO-NN of N units with respect to f . Let us endow N with a
training loss function ℓ such that,

ℓ(x , y ; w) = ℓ(w) := λ
N

∑
i=1

f (wi) = λ
N

∑
i=1

ŷi , (22)

for any input–output pair (x, y) ∈ Rn ×RN , where λ ∈ R+ is fixed, and w = (w1, . . . , wN) ∈
RnN denotes the vector collecting all the weights of N . Moreover, for the training process, let us
endow N with a gradient-based method that exploits the backpropagation, defined as in Remark 2.

Given N vectors x(0)1 , . . . x(0)N ∈ Rn, let us initialize the weights of N such that the weight

vector wi = w(0)
i is equal to x(0)i , for each j = 1, . . . , n and i = 1, . . . , N. Then,

1. For any training set, the updating of the weights of N at each training epoch is equivalent to
the multi-start step (14), computed with reverse AD and such that λ1 = · · · = λN = λ;

2. For each k ∈ N, the weights w(k+1) = (w(k+1)
1 , . . . , w(k+1)

N ) of N , after k + 1 training
epochs, are such that

w(k+1)
i = x(k+1)

i , ∀ i = 1, . . . , N ,

where x(k+1)
i are the vectors defined by (14) and λ1 = · · · = λN = λ.

Proof. Since the second item is a direct consequence of the first item, we prove only item 1.
The optimization method for the training of N is characterized by a functionM that

satisfies (10) and (13). Then, the training of N consists of the following iterative process
that updates the weights:w(0) = (x(0)1 , . . . , x(0)N ) ∈ RnN

w(k+1) =M
(

w(k),∇AD
w ℓ(w(k)) ; α

)
, ∀ k ∈ N

, (23)

independently of the data used for the training (see (22)). We recall that ∇AD denotes the
gradients computed with reverse AD and that it is used in (23) because the optimization
method exploits the backpropagation for hypothesis.

Now, by construction, we observe that ℓ = Lλ ◦ F, with Lλ and F defined as in
Proposition 1. Then, due to Proposition 1 and Remark 2, the thesis holds.

Proposition 3. Let N be as in the hypotheses of Proposition 2, with the exception of the loss
function ℓ that is now defined as

ℓ(x , y ; w) = ℓ(y ; w) := λ
N

∑
i=1

( f (wi)− yi)
2 = λ

N

∑
i=1

(ŷi − yi)
2 , (24)
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for any input–output pair (x, y) ∈ Rn ×RN and where λ ∈ R+ is fixed. Let T be a training set
where the input–output pairs have fixed output y = [y∗, . . . , y∗]T ∈ RN . Then,

1. Given the training set T , the updating of the weights ofN at each training epoch is equivalent
to the multi-start step (14) applied to the merit function ( f (x)− y∗)2, computed with reverse
AD and such that λ1 = · · · = λN = λ;

2. For each k ∈ N, the weights w(k+1) = (w(k+1)
1 , . . . , w(k+1)

N ) of N , after k + 1 training
epochs, are such that

w(k+1)
i = x(k+1)

i , ∀ i = 1, . . . , N ,

where x(k+1)
i are the vectors defined by the multi-start process of item 1.

Proof. The proof is straightforward, from the proof of Proposition 2.

With the last proposition, we introduced the minimization of a merit function. The
reason is that multi-start methods can be useful not only in looking for one global optimum
but also when a set of global/local optima is asked for. An example is the level curve
detection problem where, for a given function f : Rn → R and a fixed y∗ ∈ R, we look
for the level curve set Y∗ = {x ∈ Rn | f (x) = y∗} minimizing a merit function, e.g.,
( f (x)− y∗)2. In this case, a multi-start approach is very important since the detection of
more than one element of Y∗ is typically sought (when Y∗ is not empty or given by one
vector only). In the next section, we consider this case problem for the numerical tests.

We conclude this section with remarks concerning the practical implementation of
MSO-NNs.

Remark 4 (GitHub Repository and MSO-NNs). The code for implementing an MSO-NN
is available on GitHub (https://github.com/Fra0013To/AD_MultiStartOpt, accessed on 11 April
2024). The code of the example illustrated in Section 4.1 is reported and can be modified for adapting
it to other optimization problems.

Remark 5 (Avoiding overflow). In some cases, if the objective function f is characterized
by large values, an overflow may occur while using an MSO-NN to minimize f with an AD-
based multi-start approach. In particular, the overflow may occur during the computation of
G(ξ(k)) = (Lλ ◦ F)(ξ(k)) = ∑N

i=1 λi f (x(k)i ) if the parameters λi are not small enough. One of the
possible (and easiest) approaches is to select λ1 = · · · = λN = 1/N; then, in the case illustrated in
Proposition 3, it is equivalent to select ℓ as the Mean Square Error (MSE) loss function.

4.1. Numerical Example

In this section, we report the results about the use of an MSO-NN to find level curve
sets of the Himmelblau function

f (x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2 . (25)

The Himmelblau function [51] is characterized by non-negative values, with lower
bound M = 0. In particular, f has four local minima:

x∗1 = (3, 2) , x∗2 = (−2.805118, 3.131312) ,

x∗3 = (−3.779310,−3.283186) , x∗4 = (3.584428,−1.848126) ;
(26)

these local minima are also global minima since f (x∗i ) = 0, for each i = 1, . . . , 4.
For our experiments, we consider an MSO-NN N defined as in Proposition 3, with

λ = 1/N (see Remark 5). The NN is implemented using the TensorFlow (TF) framework [37],
and we endow N with the Adam optimization algorithm [52], the default algorithm for
training NNs in TF, with a small and fixed step-length α = 10−3. We use Adam to show
examples with a generic gradient-based method, and we set α = 10−3 to emphasize the

https://github.com/Fra0013To/AD_MultiStartOpt
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efficiency of the AD-based multi-start even when a large number of iterations are required
to obtain the solutions.

Remark 6 (Adam satisfies (13)). In these experiments, we can use the Adam optimization
algorithm because Equation (13) holds for Adam, with m(λ) = 1. Actually, (13) holds from a
theoretical point of view, due to a small parameter ϵ introduced in the algorithm to avoid zero
division errors during the computations. Nonetheless, in practice, Proposition 3 and Remark 2 still
hold for Adam if we set ϵ such that ϵ/λ = ϵN is sufficiently small (e.g., ϵN = 10−7).
Specifically, the Adam optimization algorithm updates the NN weights according to the rule

w(k+1) = w(k) − α
m̂(k+1)√
v̂(k+1) + ϵ

, (27)

where all the operations are intended to be element-wise; m̂(k+1) and v̂(k+1) are the first and second
bias-corrected moment estimates, respectively; and ϵ > 0 is a small constant value (typically
ϵ = 10−7) to avoid divisions by zero [52]. Then, by construction (see [52]), we observe that the
bias-corrected moment estimates m̂(k+1), v̂(k+1) with respect to a loss function ℓ are such that

m̂(k+1) = λ m̂′ (k+1) , v̂(k+1) = λ2 v̂′ (k+1) , (28)

where m̂′ (k+1), v̂′ (k+1) are the bias-corrected moment estimates with respect to another loss function
ℓ′ such that ℓ = λℓ′, λ ∈ R+. Therefore, assuming ϵ = 0 and considering the effective step, the
following holds:

α
m̂(k+1)√

v̂(k+1)
= α

m̂′ (k+1)√
v̂′ (k+1)

; (29)

on the other hand, assuming ϵ > 0, the two methods are equivalent but characterized by different
parameters to avoid divisions by zero, i.e.,

α
m̂(k+1)√
v̂(k+1) + ϵ

= α
m̂′ (k+1)√

v̂′ (k+1) + ϵ/λ
. (30)

Finding Level Curve Sets of the Himmelblau Function

Given the MSO-NN N described above, we show three cases of level-curve search:
the case with y∗ = 100 (set denoted by Y∗100), the case with y∗ = 10 (set denoted by Y∗10),
and the case with y∗ = 0 (set denoted by Y∗0 = {x∗1 , . . . , x∗4}, see (26)); in particular, the
latter case is equivalent to the global minimization problem of the function. For all the
cases, for the multi-start method we select the N = 104 points x(0)1 , . . . , x(0)N of the regular
grid as starting points

{−7.5 + ih | i = 0, . . . , 99}2 ⊂ [−7.5, 7.5]2 , (31)

where h = 15/99 (see Figure 5). Then, for each y∗ = 100, 10, 0, we train N for K = 25,000
epochs (i.e., K multi-start optimization steps), initializing the weights with x(0)1 , . . . , x(0)N .
We recall that, for each k = 0, . . . , K− 1, the (k + 1)-th training epoch of N is equivalent
to N = 104 Adam optimization steps with respect to the vectors x(k)1 , . . . , x(k)N ∈ R2. The
training is executed on a Notebook PC with Intel Core i5 Processor dual-core (2.3 GHz) and
16 GB DDR3 RAM (same PC of Example 1 and Section 3.3).
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Figure 5. Top view of the Himmelblau function in [−8, 8]2. The magenta crosses are the N = 104 grid
points of (31). In green, the level curve sets Y∗100, Y∗10, and Y∗0 (from left to right).

Now, for each k = 5000, 15,000, 25,000, in Table 4 we report the computation time and
the Mean Absolute Error (MAE) of the points x(k)i with respect to the target value y∗, i.e.,

MAE(k, y∗) =
1
N

N

∑
i=1
| f (x(k)i )− y∗| . (32)

Table 4. MAE of the points x(k)i with respect to the target value y∗ and total computation time of
k = 5000, 15,000, 25,000 iterations for the AD-based multi-start method using the MSO-NN N .

k = 5000 k = 15,000 k = K = 25,000

y∗ MAE Tot. Time (s) MAE Tot. Time (s) MAE Tot. Time (s)

100 44.7998 8.104 5.38× 10−4 24.164 2.68× 10−4 41.116

10 70.2202 8.168 0.4612 25.347 7.3× 10−5 41.897

0 74.8972 8.553 1.5838 24.570 0.01812 40.861

Looking at the values in the table and at Figure 6, we observe the very good perfor-
mances of the new multi-start method. Indeed, not only all the N sequences are convergent
toward a solution, but we observe that the average time of one minimization step, charac-
terized by the computation of N = 104 gradients in R2, is equal to 1.6× 10−3 s. The result
is interesting because the method is efficient without the need for defining any particular
parallelization routine to manage the N optimization procedures at the same time.

Figure 6. Cont.
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Figure 6. Top view of the Himmelblau function in [−8, 8]2 during the search of the level curve sets
Y∗100, Y∗10, and Y∗0 (first, second, and third row, respectively), denoted by the green curves or dots. The

magenta crosses are the N = 104 points x(k)1 , . . . , x(k)N , with respect to iteration k = 5000, 15,000, 25,000
(from left to right).

5. Conclusions

We presented a new multi-start method for gradient-based optimization algorithms,
based on the reverse AD. In particular, we showed how to write N optimization processes
for a function f : Rn → R as one optimization process for the function G = Lλ ◦ F,
computing the gradient with the reverse AD. Then, assuming no HPC availability, this
problem formulation defines an easy and handy solution for an implicit and highly efficient
parallelization of the multi-start optimization procedure.

Specifically, the method is not supposed to be applied to complex and expensive
optimization problems, where detailed and tailored parallelized multi-start methods are
probably the best choice; on the contrary, the AD-based multi-start method is intended
to be an easy and efficient alternative for parallelizing general purpose gradient-based
multi-start methods.

The efficiency of the method has been positively tested on a standard personal com-
puter with respect to 50 cases of increasing dimension and the number of starting points
obtained from an n-dimensional test function. These experiments have been performed
using a naive steepest-descent optimization procedure.

We observed that the method has the potential to be extended to second-order methods
and/or to constrained optimization. In the future, we will focus on extending the method
to these cases and implementing custom line search methods and/or distinct stopping
criteria for the N optimization procedures.

In the end, we presented a practical implementation of the AD-based multi-start
method as a tailored shallow Neural Network, and we tested it on three different values
for the level curve set identification problem on the Himmelblau function, where the
latter one is equivalent to the global minimization problem. This example highlights
another advantage of the new method: the possibility to use NNs for exploiting the
already implemented and efficient gradient-based optimization methods defined in the
NN frameworks for the models’ training.
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