
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Finding differential trails on ChaCha by means of state functions / Bellini, Emanuele; Grados, Juan; Makarim, Rusydi H.;
Sanna, Carlo. - In: INTERNATIONAL JOURNAL OF APPLIED CRYPTOGRAPHY. - ISSN 1753-0563. - 4:3/4(2023), pp.
156-175.

Original

Finding differential trails on ChaCha by means of state functions

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987931 since: 2024-04-19T13:24:01Z

Inderscience

Noname manuscript No.
(will be inserted by the editor)

Finding differential trails on ChaCha by means of
state functions

Emanuele Bellini · Rusydi Makarim ·
Carlo Sanna

Received: date / Accepted: date

Abstract We provide fast algorithms to compute the exact additive and XOR
differential probabilities of ChaCha20 half quarter-round H and, under an inde-
pendence assumption, an approximation of the differential probabilities of the full
quarter-round. We give experimental evidence of the correctness of our approx-
imation, and show that the independence assumption holds better for the XOR
differential probability than the additive differential probability. We then propose
an efficient greedy strategy to maximize differential characteristics for the full
quarter-round, and use it to determine explicit differential trails for the ChaCha
permutation. We believe these results might bring new insights in the differential
cryptanalysis of ChaCha20 and of similar ARX ciphers.

Keywords ChaCha20 · differential cryptanalysis · additive differential probabil-
ity · XOR differential probability · state functions

1 Introduction

Due to their efficiency in software, to their simple description, and to their resis-
tance against timing attacks, ARX ciphers have become among the most popular
symmetric constructions. These ciphers are based on only three basic bitwise op-
erations: modular Addition, bitwise Rotation, and eXclusive OR, hence the name
ARX.

A non-exhaustive list of the most popular ARX symmetric ciphers includes:

E. Bellini
Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
E-mail: emanuele.bellini@tii.ae

R. Makarim
Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
E-mail: rusydi.makarim@tii.ae

C. Sanna
Politecnico di Torino, Torino, Italy
member of GNSAGA of INdAM and of CrypTO, the group of Cryptography and
Number Theory of Politecnico di Torino
E-mail: carlo.sanna.dev@gmail.com

2 E. Bellini, R. Makarim, C. Sanna

1. Cryptographic permutations such as SPARKLE (SCHWAEMM and ESCH)
[4] (2019), candidate to the NIST Lightweight Cryptography standardization
process (NIST LWC) [27].

2. Block ciphers such as the Rivest cipher RC5 [28] (1994), the South Korean
Electronic and Telecommunication Research Institute cipher LEA [18] (2013)
the NIST LWC candidate Limdolen [22] (2019, using a Feistel structure and
ARX operations to achieve diffusion), the American NSA cipher Speck [3]
(2013) standardization in ISO/IEC 29167-22, the Tiny Encryption Algorithm
TEA [31] (1994) and Threefish [16] (2010), used as Skein internal permutation.

3. Stream ciphers such as Bernstein’s Salsa20 [6,9] (2005) and ChaCha20 [7]
(2008). The latter one is part of the TLS 1.3 standard.

4. Hash functions such as the SHA-3 Project [26] finalists (2007 - 2012) BLAKE2
[2] and Skein [16], and other SHA-3 candidates, Blue Midnight Wish [17],
CubeHash [8], Shabal [12], SIMD [19].

5. Message Authentication Codes such as Chaskey [24] (2014), standardized in
ISO/IEC 29192-6.

A common technique to evaluate the security of a symmetric cipher is differen-
tial cryptanalysis. In order for this technique to be successful, the attacker needs
to find input/output pairs of a cipher such that they have a fixed difference, called
differential characteristic, with respect to a certain operation. These characteris-
tics must occur more or less often than how they would occur in a random function.
In order to compute the probability for such a characteristic to occur, one has to
break the cipher in smaller components and study how the probability propagates
through these components. Despite several works investigated the problem just
described in the case of ARX constructions, its accurate calculation still remains
an open problem for those ARX ciphers with large components and/or a large
state, as it is the case, for example, for Salsa20, ChaCha20, or BLAKE2.

1.1 Related works

As mentioned above, one of the first steps to assess the security against differential
cryptanalysis, is to efficiently and accurately evaluate the probability with which
differences with respect to a certain operation propagate through the basic com-
ponents of a cipher and through their composition. In the case of ARX ciphers,
one might consider differences with respect to the three ARX operations. In this
work, we will only focus on exclusive or and modular addition differences.

The first to determine an exact formula to compute the XOR differential prob-
ability of modular addition, denoted as xdp�, in a linear time with respect to the
input size, were Lipmaa and Moriai, in 2001 [20]. Note that, in general, if n is the
size of the input, it is not possible to perform such operation faster than O(n), as
one must read the entire input at least (although faster than O(n) is possible if
differences are sparse, see [25]). In 2004, Lipmaa, Wallén, and Dumas [21] obtained
the dual result of [20], by computing the additive differential probability of the
XOR operation, denoted by adp⊕.

In 2005, in his Ph.D. thesis [14], Daum collected a set of differential properties
of bit rotation, in particular he defined the additive and the XOR differential
probability of bitwise rotation, adp≪ and xdp≪.

Finding differential trails on ChaCha by means of state functions 3

Taking inspiration from the cryptanalysis techniques for SHA-1 by De Cannière
and Rechberger [15,23], the results of [20] and [21] were generalized by Mouha et
al. in 2010 [25]. In this work, the authors introduced the elegant theory of state
functions (S-functions in brief). These provided a unified framework to compute
the XOR differential probability of modular addition, even when this has more
then two inputs, and, consequently, of multiplication by a constant, and the ad-
ditive differential probability of the XOR operation. S-functions allow to derive
differential properties by means of simple matrix multiplications.

Even knowing how the probability with which additive or XOR differences
propagates through basic operations, such as modular addition, XOR or rotation,
it is not straightforward to compute how this probability propagates through com-
positions of these operations. In particular, in 2011, Velichkov et al. [29] showed
how to compute the additive differential probability of what they called the ARX
operation, i.e. ARX(a, b, r, d) = ((a � b)≪ r)⊕ d. They also showed that, due to
the input/output dependency of the three operations, this differential probability
differs significantly from the simple multiplication of the differential probability of
each operation. Indeed, the accurate calculation of the probability of a differential
characteristic still remains an open problem for many ARX constructions.

The just mentioned results have been used to mount cryptographic attacks to
several ciphers. Aumasson et al., in 2009 [1], use the algorithms provided in [20] for
computing differential properties of modular addition to find modular differentials
and mount a boomerang attack on Threefish. Since the methods from [29] do
not scale well with large components, In 2012, Velichkov et al. [30] introduced
the concept of a UNAF difference, representing a set of specially chosen additive
differences. This allows them to find a 3-round differential trail in Salsa stream
cipher of probability 2−4, and then to mount a key recovery attack on Salsa reduced
to 5 rounds, with data complexity of 27 chosen plaintexts and time complexity of
2167 encryptions. A couple of years later, the results from [20], [21], [25], and [29]
were used by Biryukov et al. to instantiate automatic search of differential trails
in TEA, XTEA, RAIDEN [10], and in SPECK [11] block ciphers.

Currently, the best known attack on ChaCha20 stream cipher is [5], where 6
rounds are attacked using 277.4 time and 258 data, while 7 rounds are attacked
using 2230.86 time and 248.83 data. The attack is a combination of differential and
linear cryptanalysis.

1.2 Our contribution

In this work, we slightly generalize the theory of S-functions, to be able to compute
the exact additive and XOR differential probability of ChaCha20 half quarter-
round H. Supposing independence among two consecutive applications of H, we
are able to compute also the differential probability of the full quarter-round.
We also provide experimental evidence of the correctness of our approximation,
and show that the independence assumption seems to hold better for the xdp
rather than the adp. We also propose a greedy strategy to maximize differential
characteristic probability for the full quarter-round, and then use this strategy to
find explicit XOR and additive differential trails up to 3 rounds, with probability,
respectively, 2−166 and 2−98. We believe these results might bring new insights in
the differential cryptanalysis of ChaCha20 and of similar constructions.

4 E. Bellini, R. Makarim, C. Sanna

1.3 Outline

In section 2, we introduce the necessary notions to describe our result. We devote
from subsection 3.1 to subsection 3.3 to the maximization of the XDP for ChaCha
quarter round, while from subsection 3.5 to subsection 3.6 we deal with the same
problem in the ADP case. In section 4, we provide explicit differential trails and
simple statistics on the minimum, maximum and average quarter round differential
characteristic probability. Finally, in section 5 we draw the conclusions and point
to possible future developments of this research.

2 Preliminaries

In this section, we first define the notation we adhere to, we recall ChaCha20
specifications, formally define the concept of XDP and ADP, and the theory of
S-functions.

2.1 Notation

For every positive integer n, let Wn denote the set of n-bits words. For all x, y ∈
Wn, we use the following notation:

x[i] ith bit of x
x⊕ y bitwise XOR of x and y
x� y addition modulo 2n of x and y
x� y subtraction modulo 2n of x and y
x≪ r left rotation of x by r bits
x≫ r right rotation of x by r bits
x || y concatenation of x and y

Moreover, for vectors x,y ∈Wk
n, all the previous operations are extended component-

wise. Also, we write F2 for the field of two elements, and btc for the greatest integer
not exceeding t.

2.2 ChaCha stream cipher

ChaCha20 stream cipher has a state of 512 bits, which can be seen as a 4 × 4
matrix whose elements are binary vectors of w = 32 bits, i.e.

X = {xi,j}i=0,...,3
j=0,...,3

=

x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 ∈Mn×n(Fw
2) .

Definition 1 (ChaCha half quarter round) Let xi, yi, i = 0, 1, 2, 3 be w-bit
words and r1, r2 ∈ {1, . . . ,w − 1}. Then we define ChaCha half quarter round
(y0, y1, y2, y3) = HQRr1,r2(x0, x1, x2, x3) as follows:

y0 = x0 � x1

Finding differential trails on ChaCha by means of state functions 5

≪ r1

≪ r2

x0 x1 x2 x3

y0 y1 y2 y3

Fig. 1 The ChaCha half quarter round diagram.

y3 = (y0 ⊕ x3)≪ r1

y2 = y3 � x2

y1 = (y2 ⊕ x1)≪ r2.

Definition 2 (ChaCha quarter round) Let xi, yi, i = 0, 1, 2, 3 be w-bit words
and r1, r2, r3, r4 ∈ {1, . . . ,w−1}. Then we define ChaCha quarter round (y0, y1, y2, y3) =
QR(x0, x1, x2, x3) as follows:

(y′0, y
′
1, y
′
2, y
′
3) = HQRr1,r2(x0, x1, x2, x3)

(y0, y1, y2, y3) = HQRr3,r4(y′0, y
′
1, y
′
2, y
′
3)

We show in Fig. 1 a schematic drawing of Chacha half quarter round. The
permutation used in ChaCha20 stream cipher performs 20 rounds or, equivalently,
10 double rounds. Two consecutive rounds (or a double round) of ChaCha permu-
tation consist in applying the quarter round four times in parallel to the columns
of the state (first round), and then four times in parallel to the diagonals of the
state (second round). More formally:

Definition 3 (ChaCha column/diagonal round) We let X = {xi,j}i=0,...,3
j=0,...,3

and Y = {yi,j}i=0,...,3
j=0,...,3

be two n× n matrices with entries in Fw
2 .

A column round Y = RC(X) is defined as follows, with i = 0, 1, 2, 3:

(y0,i, y1,i, y2,i, y3,i) = QR(x0,i, x1,i, x2,i, x3,i) .

A diagonal round Y = RD(X) is defined as follows, for i = 0, 1, 2, 3 and where
each subscript is computed modulo n = 4:

(y0,i, y1,i+1, y2,i+2, y3,i+3) = QR(x0,i, x1,i+1, x2,i+2, x3,i+3) .

6 E. Bellini, R. Makarim, C. Sanna

si fi si+1

y[i]

x1[i] x2[i]

· · ·
xk[i]

Fig. 2 Representation of the ith block of an S-machine.

2.3 Definition of differential probability

Definition 4 Let f be a function from Fn1
2 to Fn2

2 . The XOR differential proba-
bility (XDP) of f with respect to the input/output pair (∆x,∆y) ∈ Fn1

2 × Fn2
2 is

defined as

xdpf (∆x,∆y) = xdpf (∆x
f−→ ∆y) =

#{x ∈ Fn1
2 : f(x⊕∆x) = f(x)⊕∆y}

#{x ∈ Fn1
2 }

The additive differential probability (ADP) of f with respect to the input/output
pair (∆x,∆y) ∈ Fn1

2 × Fn2
2 is defined as

adpf (∆x,∆y) = adpf (∆x
f−→ ∆y) =

#{x ∈ Fn1
2 : f(x�∆x) = f(x)�∆y}

#{x ∈ Fn1
2 }

2.4 S-functions

This section contains the preliminaries on S-functions (short for “state functions”)
needed for the computation of the ADP of half quarter round performed in Sec-
tion 3.4. Actually, we shall develop a bit more theory than the one strictly necessary
for Section 3.4.

S-functions were introduced in [25] and were already applied to the differential
cryptanalysis of some ARX primitives [25,29]. Here we redefine S-functions in a
slightly more general way, which is better suited for our purposes. Throughout
this section, let n and k be fixed positive integers.

Definition 5 An S-machine is a (n+ 2)-tuple (S, sin, f0, . . . , fn−1) consisting of:

– A finite set of states S;
– An initial state sin ∈ S;
– n partial functions fi : S × Fk2 → S × F2 called transitions functions;

An S-machine can be represented as a device built of n blocks labeled by
i = 0, . . . , n − 1 (see Figure 2). Starting from i = 0, the ith block takes as input
the current state si and the bits x1[i], . . . , xk[i]. If (si, x1[i], . . . , xk[i]) ∈ dom(fi)
then the block returns as output y[i] and the next state si+1, which is fed to the
(i+1)th block, if any. If (si, x1[i], . . . , xk[i]) /∈ dom(fi) then the computation stops.
Considering when the computation is performed through all the n blocks leads to
the definition of S-functions.

Finding differential trails on ChaCha by means of state functions 7

si fi si+1

x1[i] x2[i]

· · ·
xk[i]

ti gi ti+1

+

y[i]

· · ·

Fig. 3 The ith block of the XOR of two S-functions.

Definition 6 An S-function F is a partial function (Fn2)k → Fn2 such that there
exists an S-machine (S, sin, f0, . . . , fn−1) with the following property: For every
(x1, . . . , xk) ∈ dom(F) there exist some states s0 = sin, s1, . . . , sn ∈ S such that

(si, x1[i], . . . , xk[i]) ∈ dom(fi),

(si+1, y[i]) = fi(si, x1[i], . . . , xk[i]) for i = 0, 1, . . . , n− 1,

where y = F (x1, . . . , xk). In other words, an S-function is a partial function that
is computed by an S-machine.

Remark 1 Our definition of S-function differs from the one given in [25] in two
ways. First, in [25] the transition functions fi for i = 0, . . . , n− 1 are all equal to
a single function f , although a generalization with different transition functions is
already suggested. Second, and more important, our definition lets the transition
functions be partial functions, while in [25] only total functions are considered.

It is easy to see that, among the functions (Fn2)k → F2, all projections (x1, . . . , xk) 7→
xj , with j ∈ {1, . . . , n}, and all constant functions (x1, . . . , xk)→ c, with c ∈ Fn2 ,
are S-functions. The next lemma shows that the set of S-functions is closed by
addition and XOR.

Lemma 1 If F and G are S-functions, then F ⊕G and F �G are S-functions.

Proof Let (S, sin, f0, . . . , fn−1) and (T , tin, g0, . . . , gn−1) be the S-machines of F
and G, respectively. The S-machine computing F ⊕ G has set of states S × T ,
initial state (sin, tin), and ith block built from fi and gi as shown in Figure 3. The
S-machine computing F �G is only slightly more complex, because it has to take
care of the propagation of carries. It has set of states S × T × F2, initial state
(sin, tin, 0), and ith block built from fi and gi as shown in Figure 4.

Remark 2 In general, rotations cannot be computed by S-functions. Indeed, al-
ready the simple rotation x1 ≪ 1 cannot be computed by an S-function, since the
least significant bit of x1 ≪ 1 is x1[n−1], which is not a function of x1[0], . . . , xk[0].

8 E. Bellini, R. Makarim, C. Sanna

si fi si+1

x1[i] x2[i]

· · ·
xk[i]

ti gi ti+1

· · ·

ci +

y[i]

ci+1
carry

Fig. 4 The ith block of the addition of two S-functions.

Definition 7 Let F be an S-function with S-machine (S, sin, f0, . . . , fn−1), and
let i ∈ {0, . . . , n− 1} and γ ∈ F2. Also, let s1 := sin, s2, . . . , sh be all the elements
of S. The ith transition matrix of F is the h×h matrix Ai,γ = (aj,`)1≤j,`≤h where
aj,` is equal to the number of χ1, . . . , χk ∈ F2 such that (sj , χ1, . . . , χk) ∈ dom(fj)
and (s`, γ) = fj(sj , χ1, . . . , χk).

The next theorem is the key result about counting solutions of equations in-
volving S-functions.

Theorem 1 Let F be an S-function and let y ∈ Fn2 . Then the number of (x1, . . . , xk) ∈
dom(F) such that F (x1, . . . , xk) = y is equal to

LA0,y[0]A1,y[1] · · ·An−1,y[n−1]C

where L := (1, 0, . . . , 0) is a row vector of length h, C = (1, 1, . . . , 1)> is a column
vector of length h, and Ai,γ are the transition matrices of F .

Proof Let (S, sin, f0, . . . , fn−1) be the S-machine of F and let s1 := sin, s2, . . . , sh
be all the states in S. We build a directed graph G in the following way. The
vertices of G are the pairs (i, sj), where i = 0, . . . , n− 1 and j = 1, . . . , h. For all
i = 0, . . . , n−2, j, ` = 1, . . . , h, and χ1, . . . , χk ∈ F2, if (s`, y[i]) = fi(sj , χ1, . . . , χk)
then we draw an edge from (i, sj) to (i + 1, s`). (Note that we can draw mul-
tiple edges between two vertices). Hence, by the definition of S-function, the
(x1, . . . , xk) ∈ dom(F) such that F (x1, . . . , xk) = y are in bijection with the
direct paths from (0, s1) to one of (n, s1), . . . , (n, sh). Moreover, Ai,y[i] is the
adjacency matrix of the subgraph consisting of vertices (i, sj), (i + 1, s`). By
a well-known result of graph theory [13], the (j, `) entry of the matrix B :=
A0,y[0]A1,y[1] · · ·An−1,y[n−1] is equal to the number of direct paths from (0, sj)
to (n, s`). Then the claim follows since LBC is equal to the sum of the elements
in the first row of B.

Remark 3 More generally, the (i, j) entry of the matrix

A0,y[0]A1,y[1] · · ·An−1,y[n−1]

Finding differential trails on ChaCha by means of state functions 9

is equal to the number of (x1, . . . , xk) ∈ dom(F) that leads the S-machine associ-
ated to F from state i to state j.

2.5 Rotate, add, and rotate back

For every integer r ∈ [0, n), let us define the operator
←−
� r by

x
←−
� ry :=

−−−−→←−x �←−y

for all x, y ∈ Wn, where the arrows denote left/right rotations by r bits. Letting
x = xL || xR and y = yL || yR, where xL, yL ∈Wr and xR, yR ∈Wn−r, it follows
that

x
←−
� ry =

−−−−−−−−−−−−−−−−→←−−−−−−
(xL || xR)�

←−−−−−−
(yL || yR)

=
−−−−−−−−−−−−−−−−→
(xR || xL)� (yR || yL)

=
−−−−−−−−−−−−−−−−−−−→
(xR � yR � c) || (xL � yL)

= (xL � yL) || (xR � yR � c),

where c := b(xL+yL)/2rc. Hence, the computation x
←−
� ry proceeds almost as the

addition modulo 2n addition of x and y, with the only differences that: there is no
carry propagation from the (n− r)th digit; and there the carry c of the nth digit

is added to the least significant digit. In particular, note that x
←−
� ry cannot be

computed by an S-function, since its least significant bit depends on c, which in
turn depends on the bits of x and y after the (n−r)th position. However, assuming

that we know the value of c in advance, we can compute x
←−
� ry by an S-machine

an check at the end that the nth carry is actually equal to c. This would be our
strategy to prove Lemma 5 later.

2.6 XDPs and ADPs of composite functions

In general, given two functions F : Wk
n → Wh

n and G : Wh
n → W`

n, there is no
simple way to express the XDP of the composite function F ◦ G in terms of the
XDPs of F and G. However, assuming that F and G are sufficiently “independent”,
a heuristic formula for the XDP of G◦F can be given. Precisely, for every ∆x ∈Wk

n

and ∆z ∈W`
n, we have

xdpG◦F (∆x→ ∆z) = Pr
[
G
(
F (x�∆x)

)
= G

(
F (x)

)
�∆z

]
=

∑
∆y∈Wk

n

Pr
[
F (x�∆x)

)
= F (x)�∆y ∧G

(
F (x)�∆y

)
= G

(
F (x)

)
�∆z

]
=

∑
∆y∈Wk

n

Pr
[
F (x�∆x)

)
= F (x)�∆y

]
Pr
[
G
(
F (x)�∆y

)
= G

(
F (x)

)
�∆z

]
(1)

=
∑

∆y∈Wk
n

Pr
[
F (x�∆x)

)
= F (x)�∆y

]
Pr
[
G
(
w �∆y

)
= G

(
w
)
�∆z

]
(2)

10 E. Bellini, R. Makarim, C. Sanna

=
∑

∆y∈Wk
n

xdpF (∆x→ ∆y) xdpG(∆y→ ∆z),

where in (1) we assumed that the two events in the probability of the previous line
are independent, while in (2) we assumed that the change of variable F (x) = w
does not affect the probability.

Reasoning in exactly the same way, we get that the following heuristic formula
for the ADP of G ◦ F

adpG◦F (∆x→ ∆z) =
∑

∆y∈Wk
n

adpF (∆x→ ∆y) adpG(∆y→ ∆z),

assuming that F and G are sufficiently “independent”.

3 XOR and additive differential probability of ChaCha round

In this section, we first give an exact formula for the XOR (respectively, additive)
differential probability of the half quarter round of ChaCha. Then we provide a
heuristic formula for the XDP (respectively, ADP) of ChaCha quarter round, under
the assumption that the two half quarter rounds are ”independent”. Finally, we
illustrate a greedy strategy to find the best XDP (respectively, ADP) of ChaCha
full round. For the ease of exposition, we keep the exposition of XDP and ADP
independent.

3.1 XDP of ChaCha half quarter round

Here, we give a formula for the XOR differential probability of the half quarter
round of ChaCha. First, we need a formula for the XDP of modular addition. This
was computed in [25] using S-functions.

First let us define the matrices that are going to be used in the next lemma:

A000 =

(
2 0
0 0

)
A001 =

(
0 0
1 1

)
A011 =

(
1 1
0 0

)
A111 =

(
0 0
0 2

)

with the remaining matrices given by A010 = A100 = A001 and A101 = A110 =

A011, and L =
(
1 0
)
, C =

(
1 1
)T

.

Lemma 2 Let Aw, L, and C be the matrices defined above. Then, for all ∆x0,∆x1,∆y ∈
Wn, we have

xdp�(∆x0,∆x1 → ∆y) = 2−nLAw[0]Aw[1] · · ·Aw[n−1]C,

where w[i] := ∆x0[i] || ∆x1[i] || ∆y[i] for i = 0, 1, . . . , n− 1.

Proof See [21, Theorem 4]. Note that, our Aw, L, C are the transposes of the Aw,
L, C in [21], hence the order of the product is reversed.

Now we express the XDP of the half quarter round in terms of the XDPs of
the modular additions.

Finding differential trails on ChaCha by means of state functions 11

Lemma 3 For all ∆x,∆y ∈W4
n, we have

xdpHQRr1,r2 (∆x→ ∆y) 6= 0

only if

∆y0 ⊕∆x3 = ∆y3 ≫ r1 (3)

∆y2 ⊕∆x1 = ∆y1 ≫ r2. (4)

In such a case

xdpHQRr1,r2 (∆x→ ∆y) = xdp�(∆x0,∆x1 → ∆y0) · xdp�(∆y3,∆x2 → ∆y2).

Proof By the definition of HQRr1,r2 , we have that

HQRr1,r2(x⊕∆x) = HQRr1,r2(y)⊕∆y

is equivalent to

(x0 ⊕∆x0)� (x1 ⊕∆x1) = (x0 � x1)⊕∆y0 (5)(
(y0 ⊕∆y0)⊕ (x3 ⊕∆x3)

)
≪ r1 =

(
(y0 ⊕ x3)≪ r1

)
⊕∆y3 (6)

(y3 ⊕∆y3)� (x2 ⊕∆x2) = (y3 � x2)⊕∆y2 (7)(
(y2 ⊕∆y2)⊕ (x1 ⊕∆x1)

)
≪ r2 =

(
(y2 ⊕ x1)≪ r2

)
⊕∆y1. (8)

Equations (6) and (8) simplify at once to (3) and (4), respectively, which do not
depend on x and y. Therefore, they are necessary conditions for the XDP to be
nonzero.

Since the map W4
n →W4

n : x 7→ z given by

z0 = x0

z1 = x1

z2 = x2

z3 = ((x0 � x1)⊕ x3)≪ r1

is a bijection, we can make the change of variable x 7→ z without changing the
XDP, and Equations (5) and (7) turn into

(z0 ⊕∆x0)� (z1 ⊕∆x1) = (z0 � z1)⊕∆y0 (9)

(z2 ⊕∆y3)� (z3 ⊕∆x2) = (z2 � z3)⊕∆y2. (10)

Note that (9) and (10) are independent, since the first is an equation in z0, z1
while the second is an equation in z2, z3. The claim follows.

At this point, using Lemmas 2 and 3, the XDP of ChaCha half quarter round
can be computed in time O(n).

12 E. Bellini, R. Makarim, C. Sanna

3.2 XDP of ChaCha quarter round

The next lemma provides a heuristic formula for the XDP of ChaCha quarter
round, under the assumption that the two half quarter rounds are “independent”.

Lemma 4 Assuming that HQRr1,r2 and HQRr3,r4 are “independent”, for every
∆x,∆z ∈W4

n we have

xdpHQR(∆x→ ∆z) =xdp�(∆x0,∆x1 → ∆y0) · xdp�(∆y3,∆x2 → ∆y2)

·xdp�(∆y0,∆y1 → ∆z0) · xdp�(∆z3,∆y2 → ∆z2), (11)

where ∆y ∈W4
n is given by

∆y0 = ∆x3 ⊕ (∆y3 ≫ r1) (12)

∆y1 = ∆z2 ⊕ (∆z1 ≫ r4)

∆y2 = ∆x1 ⊕ (∆y1 ≫ r2)

∆y3 = ∆z0 ⊕ (∆z3 ≫ r3).

Proof Since QR = HQRr3,r4 ◦ HQRr1,r2 , by the reasoning of Section 2.6 we have

xdpQR(∆x→ ∆z) =
∑

∆y∈Wk
n

xdpHQRr1,r2 (∆x→ ∆y) xdpHQRr3,r4 (∆y→ ∆z). (13)

Furthermore, from the first part of Lemma 3, we get that the addend of (13) is
non-zero only if it holds the following system of equations

∆y0 ⊕∆x3 = ∆y3 ≫ r1

∆y2 ⊕∆x1 = ∆y1 ≫ r2

∆z0 ⊕∆y3 = ∆z3 ≫ r1

∆z2 ⊕∆y1 = ∆z1 ≫ r2,

which solved gives a unique value of ∆y by (12). Then the claim follows from the
second part of Lemma 3.

For small word sizes n = 5, 6, 7, 8, and for a random sample of ∆x’s and ∆y’s,
we compared the values of the XDP of the quarter round (with r1 = 4, r2 = 3,
r3 = 2, r4 = 1) given by the heuristic formula of Lemma 4 with the exact values
computed by brute force. Actually, since the XDP is zero for most of the choices of
∆x and ∆y, we generated ∆x randomly, then we generated a random x ∈W4

n and
we picked ∆y = QR(x⊕∆x)⊕QR(x), which guarantees that the XDP is nonzero.
We collect the results in Table 1 and Figure 5, which shows the distribution of
L = log(exact value of xdpHQR/heuristic value of xdpHQR), given by Lemma 4 as
the input/output differences ranges over our 16,000 samples. For example, the top
left graph shows that slightly less than 5,000 input/output differences have L in [-
1, -0.5]. Notice that the reason for the deviation is due to the lack of independence
of HQRr1,r2 and HQRr3,r4 .

Finding differential trails on ChaCha by means of state functions 13

Table 1 E is the average factor which the heuristic formula of Lemma 4 is off from the exact
XDP, and σ is the standard deviation (sample size N = 16000)

n 5 6 7 8
E 0.67 0.63 0.60 0.57
σ 0.52 0.56 0.61 0.65

Fig. 5 Distribution of the logarithm of the ratio between the XDP given by Lemma 4 and
the correct value of the XDP, for n = 5 (top-left), n = 6 (top-right), n = 7 (bottom-left), and
n = 8 (bottom-right).

3.3 Maximizing the XDP of the half quarter round

We now illustrate an algorithm, based on the previous results, that takes as input
∆x ∈ W4

n and returns as output ∆y ∈ W4
n such that xdpHQRr1,r2 (∆x → ∆y) is

high. Assuming the independence of the half quarter rounds, this algorithm can
then be applied multiple times to obtain high XDPs for the quarter round, or even
iterated of the quarter round up to a full round.

First, in light of Lemma 2, we have Algorithm 1, which is a greedy algorithm
that takes as input ∆x0,∆x1 ∈ Wn and c ∈ Wn, and returns as ouput ∆y ∈ Wn

and p such that p = xdp�(∆x0,∆x1 → ∆y) is high. If the parameter c is changed,
then a different ∆y is returned (c = 0 means that ∆y is obtained in a completely
greedy way). This is to avoid being trapped in a local maximum.

Then, accordingly to Lemma 3, to obtain a high XDP for the half quarter
round two calls to Algorithm 1 are sufficient, as done in Algorithm 2. Note that
Algorithm 2 has two parameters c0, c1 that when changed give different values of
∆y.

14 E. Bellini, R. Makarim, C. Sanna

Algorithm 1:

1 Function Greedy XDP Add(∆x0, ∆x1, c):
2 ∆y ← 0 (n bits word)
3 B ← 4 × 4 identity matrix
4 p← 1
5 for i = 0, 1, . . . , n− 1 do
6 B0 ← BA∆x0[i] ||∆x1[i] || 0
7 B1 ← BA∆x0[i] ||∆x1[i] || 1

8 p0 = 4−(i+1)LB0C

9 p1 = 4−(i+1)LB1C
10 if (p0 ≥ p1 and c[i] = 0) or

(p0 < p1 and c[i] = 1) then
11 ∆y[i]← 0
12 B ← B0

13 p← p0
14 else
15 ∆y[i]← 1
16 B ← B1

17 p← p1

18 return ∆y, p

Algorithm 2:

1 Function
Greedy XDP HQR(r1, r2, ∆x0, ∆x1, ∆x2, ∆x3, c0, c1):

2 ∆y0, p0 ← Greedy XDP Add
(∆x0, ∆x1, c0)

3 ∆y3 ← (∆x3 ⊕∆y0)≪ r1
4 ∆y2, p1 ← Greedy XDP Add

(∆y3, ∆x2, c1)
5 ∆y1 ← (∆x1 ⊕∆y2)≪ r2
6 p← p0p1
7 return ∆y0, ∆y1, ∆y2, ∆y3, p

3.4 ADP of ChaCha half quarter round

Here, we give a formula for the additive differential probability of the half quarter
round of ChaCha.

First, let us define the matrices that are going to be used in the next lemma.
These are

A000 =

4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0

 A001 =

0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1

 A010 =

0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1

A011 =

1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0

 A100 =

0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1

 A101 =

1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

A110 =

1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0

 A111 =

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4

 R =

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0

L0 = (1 0 0 0 0 0 0 0) L1 = (0 1 0 0 0 0 0 0)

C0 = (1 0 1 0 1 0 1 0)T C1 = (0 1 0 1 0 1 0 1)T

Lemma 5 Let Aw, Li, Ci, and R be the matrices defined as above. For all con-
stants a0, a1, a01 ∈ Wn and every integer r ∈ [0, n), the number of solutions

Finding differential trails on ChaCha by means of state functions 15

(x0, x1) ∈W2
n of the equation

(x0 � a0)⊕ (x1 � a1) = (x0 ⊕ x1)
←−
� ra01 (14)

is equal to ∑
i∈{0,1}

LiAw[0]Aw[1] · · ·Aw[n−r−1]RAw[n−r] · · ·Aw[n−1]Ci,

where w[i] := a0[i] || a1[i] || a01[i] for i = 0, 1, . . . , n− 1.

Proof The result follows from the theory developed in Section 2.4. First, we con-
sider

y = (x0 � a0)⊕ (x1 � a1)⊕
(
(x0 ⊕ x1)� a01

)
, (15)

noticing that y = 0 gives (14) with
←−
� r replaced by�. We represent the states of the

S-function associated to (15) by the 3-bits words c0 || c1 || c01, where c0, c1, c01 are
the carries in the first, second, and third addition of (15), respectively. We identify
each state c0 || c1 || c01 with the corrisponding 3-bit integer 4c0 + 2c1 + c01. The
S-function for (15) is defined by the recurrences

y[i]← (x0[i]⊕ a0[i]⊕ c0)⊕ (x1[i]⊕ a1[i]⊕ c1)⊕ (x0[i]⊕ x1[i]⊕ a01[i]⊕ c01),

c0 ← b(x0[i] + a0[i] + c0)/2c,
c1 ← b(x1[i] + a1[i] + c1)/2c,
c01 ←

⌊(
(x0[i]⊕ x1[i]) + a01[i] + c01

)
/2
⌋
,

the first of which can be simplified to y[i] ← a0[i]⊕ a1[i]⊕ a01[i]⊕ c0 ⊕ c1 ⊕ c01.
By Theorem 1, the number of (x0, x1) ∈W2

n such that y = 0 is equal to

LAw[0]Aw[1] · · ·Aw[n−1]C

where L := (1, 0, . . . , 0) and C = (1, 0, . . . , 0)> are vectors of length 8 (the number
of states), and the (i, j) entry of Aα0||α1||α01

is equal to the number of (χ0, χ1) ∈
W2

2 such that

α0 ⊕ α1 ⊕ α01 ⊕ c0 ⊕ c1 ⊕ c01 = 0, c′0 = b(χ0 + α0 + c0)/2c,
c′1 = b(χ1 + α1 + c1)/2c, c′01 =

⌊(
(χ0 ⊕ χ1) + α01 + c01

)
/2
⌋
,

with i = 4c0 + 2c1 + c01 and i = 4c′0 + 2c′1 + c′01. Finally, in light of Remark 3 and

Section 2.5, we introduce the matrices R, Li, and Ci to handle
−→
� r: the projection

matrix R has the purpose to not propagate the carry c01 of the (n − r)th digit;
and Li, Ci have the purpose of counting only the (x0, x1) ∈ Wn such that the
initial and final state have the same c01.

Now define Jr(x0, x1) := (x0 ⊕ x1)≪ r for every integer r ∈ [0, n) and every
x0, x1 ∈Wn.

Lemma 6 Let Aw, Li, Ci, and R be the matrices of Lemma 5. For all ∆x ∈W2
n,

∆y ∈Wn, and every integer r ∈ [0, n), we have

adpJr (∆x→ ∆y) = 4−n
∑

i∈{0,1}
LiAw[0]Aw[1] · · ·Aw[n−r−1]RAw[n−r] · · ·Aw[n−1]Ci,

where w[i] := ∆x0[i] || ∆x1[i] || (∆y≫ r)[i] for i = 0, 1, . . . , n− 1.

16 E. Bellini, R. Makarim, C. Sanna

Proof Noting that Jr(x0 � ∆x0, x1 � ∆x1) = Jr(x0, x1) � ∆y is equivalent to

(x0�∆x0)⊕ (x1�∆x1) = (x0⊕x1)
←−
� r(∆y≫ r), the claim follows immediately

from Lemma 5.

Lemma 7 For all ∆x,∆y ∈W4
n, we have

adpHQRr1,r2 (∆x→ ∆y) 6= 0

only if

∆x0 �∆x1 = ∆y0 (16)

∆y3 �∆x2 = ∆y2. (17)

In such a case

adpHQRr1,r2 (∆x→ ∆y) = adpJr1 (∆y0,∆x3 → ∆y3) · adpJr2 (∆x1,∆y2 → ∆y1).
(18)

Proof By the definition of HQRr1,r2 , we have that

HQRr1,r2(x�∆x) = HQRr1,r2(y)�∆y

is equivalent to

(x0 �∆x0)� (x1 �∆x1) = (x0 � x1)�∆y0 (19)(
(y0 �∆y0)⊕ (x3 �∆x3)

)
≪ r1 =

(
(y0 ⊕ x3)≪ r1

)
�∆y3 (20)

(y3 �∆y3)� (x2 �∆x2) = (y3 � x2)�∆y2 (21)(
(y2 �∆y2)⊕ (x1 �∆x1)

)
≪ r2 =

(
(y2 ⊕ x1)≪ r2

)
�∆y1. (22)

Equations (19) and (21) simplify at once to (16) and (17), respectively, which do
not depend on x and y. Therefore, they are necessary conditions for the adp to
be nonzero.

Since the map W4
n →W4

n : x 7→ z given by

z0 = x0 � x1, z1 = x1, z2 =
((

(x0 � x1)⊕ x3
)
≪ r1

)
� x2, z3 = x3

is a bijection, we can make the change of variable x 7→ z without changing the
adp, and Equations (20) and (22) turn into(

(z0 �∆y0)⊕ (z3 �∆x3)
)
≪ r1 =

(
(z0 ⊕ z3)≪ r1

)
�∆y3 (23)(

(z1 �∆x1)⊕ (z2 �∆y2)
)
≪ r2 =

(
(z1 ⊕ z2)≪ r2

)
�∆y1. (24)

Note that (23) and (24) are independent, since the first is an equation in z0, z3
while the second is an equation in z1, z2. Moreover, they can be rewritten as

Jr1
(
(z0, z3)� (∆y0,∆x3)

)
= Jr1(z0, z3)�∆y3

Jr2
(
(z1, z2)� (∆x1,∆y2)

)
= Jr2(z1, z2)�∆y1,

which are the equations in the ADPs of Jr1 and Jr2 , and the claim follows.

At this point, using Lemmas 6 and 7, the ADP of ChaCha half quarter round
can be computed in time O(n).

Finding differential trails on ChaCha by means of state functions 17

3.5 ADP of ChaCha quarter round

The next lemma provides a heuristic formula for the ADP of ChaCha quarter
round, under the assumption that the two half quarter rounds are “independent”.

Lemma 8 Assuming that HQRr1,r2 and HQRr2,r3 are “independent”, for every
∆x,∆z ∈W4

n we have

adpQR(∆x→ ∆z) =adpJr1 (∆y0,∆x3 → ∆y3)

·adpJr2 (∆x1,∆y2 → ∆y1)

·adpJr3 (∆z0,∆y3 → ∆z3)

·adpJr4 (∆y1,∆z2 → ∆z1), (25)

where ∆y ∈W4
n is given by

∆y0 = ∆x0 �∆x1 (26)

∆y1 = ∆z0 �∆x0 �∆x1

∆y2 = ∆z2 �∆z3

∆y3 = ∆z2 �∆z3 �∆x2.

Proof Since QR = HQRr3,r4 ◦ HQRr1,r2 , by the reasoning of Section 2.6 we have

adpQR(∆x→ ∆z) =
∑

∆y∈Wkn

adpHQRr1,r2 (∆x→ ∆y) adpHQRr3,r4 (∆y→ ∆z). (27)

Furthermore, from the first part of Lemma 7, we get that the addend of (27) is
non-zero only if it holds the following system of equations

∆x0 �∆x1 = ∆y0,∆y3 �∆x2 = ∆y2,∆y0 �∆y1 = ∆z0,∆z3 �∆y2 = ∆z2,

which solved gives a unique value of ∆y by (26). Then the claim follows from the
second part of Lemma 7.

Table 2 E is the average factor which the heuristic formula of Lemma 8 is off from the exact
ADP, and σ is the standard deviation (sample size N = 15000)

n 5 6 7 8
E 0.43 0.31 0.31 0.27
σ 0.85 0.97 1.02 1.11

For small word sizes n = 5, 6, 7, 8, and for a random sample of ∆x’s and ∆y’s,
we compared the values of the ADP of the quarter round (with r1 = 4, r2 = 3,
r3 = 2, r4 = 1) given by the heuristic formula of Lemma 8 with the exact values
computed by brute force. Actually, since the ADP is zero for most of the choices
of ∆x and ∆y, we generated ∆x randomly, then we generated a random x ∈W4

n

and we picked ∆y = HQR(x�∆x)�HQR(x), which guarantees that the ADP is
nonzero. We collect the results in Table 2 and Figure 6.

18 E. Bellini, R. Makarim, C. Sanna

Fig. 6 Distribution of the logarithm of the ratio between the ADP given by Lemma 8 and
the correct value of the ADP, for n = 5 (top-left), n = 6 (top-right), n = 7 (bottom-left), and
n = 8 (bottom-right).

3.6 Maximizing the ADP of the half quarter round

Now, we illustrate an algorithm, based on the previous results, that given as input
∆y ∈ W4

n returns as output ∆x ∈ W4
n such that adpHQRr1,r2 (∆x → ∆y) is high.

Note that this works backward (it takes as input∆y and returns∆x) respect to the
algorithm given in Section 3.3 to maximize the XDP. Assuming the independence
of the half quarter rounds, this algorithm can then be applied multiple times to
obtain high ADPs for the quarter round, or even iterated of the quarter round up
to a full round.

First, in light of Lemma 6, we have Algorithm 3, which is a greedy algorithm
that takes as input ∆x1,∆y ∈Wn and c ∈Wn, and returns as output ∆x0 ∈Wn

and p such that p = adpJr (∆x0,∆x1 → ∆y) is high.

Then, accordingly to Lemma 7, to obtain a high ADP for the half quarter
round two calls to Algorithm 3 are sufficient, as done in Algorithm 4. Note that
Algorithm 4 has two parameters c0, c1 that when changed give different values of
∆x.

Remark 4 Taking as input∆y and returning as output∆x, instead of the contrary,
might seem unnatural. We do so because, once ∆y is fixed, the two factors of
the product for the ADP of half quarter round (18) are independent functions
of ∆x1 and ∆x3 and consequently they can be independently maximized using
Algorithm 3. On the contrary, if ∆x is fixed, the two factors are not independent

Finding differential trails on ChaCha by means of state functions 19

functions of ∆y0,∆y3 and ∆y1,∆y2, because equations (16) and (17) have to be
taken into account, and consequently they cannot be independently maximized.

Algorithm 3:

1 Function Greedy ADP J(r,∆x1, ∆y, c):
2 ∆x0 ← 0 (n bits word)
3 B ← 8 × 8 identity matrix
4 p← 1
5 for i = 0, 1, . . . , n− 1 do
6 B0 ← BA0 ||∆x1[i] || (∆y≫r)[i]

7 B1 ← BA1 ||∆x1[i] || (∆y≫r)[i]

8 if i = n− r − 1 then
9 B0 ← B0R

10 B1 ← B1R

11 end
12 p0 =

4−(i+1)(L0B0C0 + L1B0C1)
13 p1 =

4−(i+1)(L0B1C0 + L1B1C1)
14 if (p0 ≥ p1 and c[i] = 0) or

(p0 < p1 and c[i] = 1) then
15 ∆x0[i]← 0
16 B ← B0

17 p← p0
18 else
19 ∆x0[i]← 1
20 B ← B1

21 p← p1
22 end

23 end
24 return ∆x0, p

Algorithm 4:

1 Function
Greedy ADP HQR(r1, r2, ∆y0, ∆y1, ∆y2, ∆y3, c0, c1):

2 ∆x3, p0 ← Greedy ADP J
(r1, ∆y0, ∆y3, c0)

3 ∆x1, p1 ← Greedy ADP J
(r2, ∆y2, ∆y1, c1)

4 ∆x0 ← ∆y0 �∆x1

5 ∆x2 ← ∆y2 �∆y3
6 p← p0p1
7 return ∆x0, ∆x1, ∆x2, ∆x3, p

4 Experimental results

In this section, we provide some experimental results. In particular, we show the
best differential characteristics for ChaCha half quarter round that can be found
with our method. We also provide explicit differential trails and their correspond-
ing probability for ChaCha permutation.

We first show how close algorithm 2 is to find a characteristic with maximum
probability. For each 24w input difference, we computed the maximum xdp by
checking through all possible output differences and compared it to the value re-
turned by algorithm 2. The complexity of this approach for the xdp is 28w and hence
we were able to run this experiment only for 4-bit words. We repeated the same
experiment for the adp. To compute the xdp we used the result from Lemma 3,
while for the adp we used Lemma 7. In Table 3, we report the results of the exper-
iment. The row “#matches” reports the number of times that the greedy strategy
returns the actual best probability, while the “%matches” is #matches·100/24w.
In the xdp case, the greedy algorithm returns the best probability about 16% of
the time, and a probability within 50%-40% of the best probability about 35% of
the times; so that it returns a good probability (either the maximum or half of it)
half of the times. This shows that there might be room for improvement for the
greedy strategy we adopted. In the adp case, the best probability is returned more
than half of the times. So the greedy strategy seems to be more effective in the
adp case.

20 E. Bellini, R. Makarim, C. Sanna

Table 3 Precision of the greedy strategy applied in algorithm 2 and algorithm 4 (see Section 4
for explanation).

range xdp 100% (100%-50%] (50%-40%] (40%-30%] (30%-20%] (20%-10%] (10%-0%]
#matches 11,040 0 23,472 0 22,656 7,072 1,296
%matches 16.85 0.00 35.82 0.00 34.57 10.79 1.97

range adp 100% (100%-50%] (50%-40%] (40%-30%] (30%-20%] (20%-10%] (10%-0%]
#matches 34,344 15,312 3,100 5,372 5,112 2,000 296
%matches 52.41 23.36 4.73 8.19 7.80 3.05 0.45

Table 4 Maximum, minimum and average characteristic probability for half and full quarter
round, found using algorithm 2 and algorithm 4.

(c0, c1)
HQR QR

max min average max min average
xdp (0,0) 2−29.00 2−59.00 2−42.09 2−58.00 2−103.00 2−71.46

adp (0,0) 2−31.11 2−51.43 2−41.50 2−67.10 2−101.04 2−80.51

We recall that ChaCha state is a 16 32-bit word vector (s0, . . . , s15), where
s0, . . . , s3 are initialized with constant values, s4, . . . , s11 store a 256 bit key, and
s12, . . . , s15 are used for the counter and the nonce. Thus, in a single key differential
attack, only this last four words can be used to inject a difference. Furthermore,
the first application of the four parallel quarter rounds receives as input the words
s0+i, s4+i, s8+i, s12+i, with i = 0, 1, 2, 3. Thus, the attacker can only inject the dif-
ference in the last of these 4 words. Given these constrains, the differential charac-
teristic with highest probability returned by algorithm 2 is 0x00000000 00000000

00000000 00008000 -> 0x00000800 04044040 80080080 00080080, holding with
probability 2−3.

In Table 4, we report the maximum, minimum and average characteristic prob-
ability for half and full quarter round, found using algorithm 2 and algorithm 4.
The probability is computed over a sample of 216 128-bit random input differences.

In Table 5 and Table 6, we report, respectively, a XOR and an additive dif-
ferential trail covering 4 rounds. The trails were obtained in few milliseconds of
computing time. These trails could be used for example in differential-linear at-
tacks such as the one in [5]. In this work, the authors use differentials with input
difference (0, 0, 0, x) and probability 2−5 on average. Our method provides an el-
egant and automatic way of finding such differentials. Furthermore, the attack in
[5] exploits a differential characteristic for one round only. Using our method, one
extra round could be added to the attack, at the expense of decreasing the trail
probability.

Notice that, contrary to algorithm 2, algorithm 4 cannot be used as is to
mount a single key differential attack 1, since the additive differential trail is found
by searching for the input differences given an output difference. This makes it
difficult to find an input difference which is 0 in the input words s0, . . . , s11. Thus,
algorithm 4 can only be of use for an attacker if combined with other techniques.
Notice also that in Table 6, the 3 rounds differential trail from round 2 to round
4 has probability 2−98.4, which is much lower than any other 3 rounds differential
trail we were able to find for XOR differences with algorithm 2.

1 In other words algorithm 2 can be used to attack ChaCha stream cipher (in a single key
scenario), while algorithm 4 can only be used to attack ChaCha permutation, or in combination
with other techniques.

Finding differential trails on ChaCha by means of state functions 21

Table 5 4 rounds XOR differential trail (of ChaCha stream cipher), with relative and cumu-
lative probability of the differential characteristics found iterating algorithm 2.

Round ∆x ∆y
Probability

rel. cum.

1

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00008000

00000000 00000000 00000000 00080000
00000000 00000000 00000000 01011010
00000000 00000000 00000000 80800800
00000000 00000000 00000000 00800800

2−3.00 2−3.00

2

00000000 00000000 00000000 00080000
00000000 00000000 00000000 01011010
00000000 00000000 00000000 80800800
00000000 00000000 00000000 00800800

08008000 80080800 10100101 00880000
10110110 01000100 10001010 20020220
10100101 08008808 88000000 80000008
00800808 00000000 08008800 80000080

2−41.0 2−44.0

3

08008000 80080800 10100101 00880000
10110110 01000100 10001010 20020220
10100101 08008808 88000000 80000008
00800808 00000000 08008800 80000080

80081080 01080900 80110000 0AA0280A
32223132 11121001 33221232 40510514
89010889 09080088 11080808 02A8A00A
10091018 08080888 10190008 80080088

2−122. 2−166.

4

80081080 01080900 80110000 0AA0280A
32223132 11121001 33221232 40510514
89010889 09080088 11080808 02A8A00A
10091018 08080888 10190008 80080088

008A0090 10888109 15044050 889128A9
65037757 70236112 46063735 1BA3B00A
84844849 12888911 81008809 22A822A8
2A098281 18189808 32819130 92008311

2−210. 2−376.

Table 6 4 rounds additive differential trail (of ChaCha internal permutation), with relative
and cumulative probability of the differential characteristics found iterating algorithm 4.

Round ∆x ∆y
Probability

rel. cum.

1

11BC469C 222C642C 3306926E DDF975C0
2DC13904 02464248 08A714E2 21458940
A27CE21C C90A2EF7 FF3E72F8 BE7AB700
0287A010 28E22301 04222F50 81010100

BFBE7FE0 34F3AE78 FFBEF378 7F7F8000
80008000 80410020 C2844104 80000C40
77BEF7C0 FF7F0000 7FFF0000 7EFB7700
85001084 C1414040 80000080 C0008000

2−208. 2−208.

2

BFBE7FE0 34F3AE78 FFBEF378 7F7F8000
80008000 80410020 C2844104 80000C40
77BEF7C0 FF7F0000 7FFF0000 7EFB7700
85001084 C1414040 80000080 C0008000

80000000 FFFBF800 FFBEFFC0 FF800000
00000000 00040000 80408040 00800000
80000000 00000000 7FFF8000 FF7FFF80
80000080 00000800 80008000 00008000

2−77.4 2−286.

3

80000000 FFFBF800 FFBEFFC0 FF800000
00000000 00040000 80408040 00800000
80000000 00000000 7FFF8000 FF7FFF80
80000080 00000800 80008000 00008000

80000000 00000000 00000000 00000000
00000000 80000000 00000000 00000000
00000000 00000000 7FFF8000 00000000
00000000 00000000 00000000 00800000

2−19.0 2−304.

4

80000000 00000000 00000000 00000000
00000000 80000000 00000000 00000000
00000000 00000000 7FFF8000 00000000
00000000 00000000 00000000 00800000

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 80000000

2−2.00 2−306.

Last, we also notice that it is easy to build mixed (additive-XOR) trails, since
one could easily match the output of the additive trail with the input of the
XOR one. For example, if we take round 3 and 4 of Table 6 and use the output
difference as the input difference to algorithm 2, we obtain a 4 round trail of
probability 2−(19+2+5+43) = 2−69, and if we started from round 2 of Table 6,
the corresponding 5 round trail would have had probability 2−(77.4+19+2+5+43) =
2−146.4. The only problem with this approach is that the input of the trail cannot
be used in the context of ChaCha20 (stream cipher), not even in the related-key
scenario, as the initial state is constrained by the constant value of the first row
of the state, whose additive difference is always 0.

5 Conclusions and future work

We proved exact formulas for the XDP and the ADP of the half quarter round of
ChaCha (Lemma 3 and Lemma 7, respectively). Both consist of matrix products
that can be computed in linear time O(n), and indeed they are very fast to compute
in practice.

22 E. Bellini, R. Makarim, C. Sanna

Under the hypothesis of independence of half quarter rounds, we find heuristic
formulas for the XDP and the ADP of the quarter round of ChaCha (Lemma 4 and
Lemma 8, respectively). For small word sizes n = 5, 6, 7, 8 (the real word size of
ChaCha is n = 32), we tested these heuristic formulas by comparing their results
with the exact values of XDP and ADP computed by brute force. We found that
(on average) these formulas are actually lower bounds for the real XDP and ADP.
Moreover, the heuristic formula for the XDP performs better than the one for
the ADP, meaning both a smaller average error and a smaller standard deviation
(see Table 1 and Table 2). In other words, the hypothesis of independence of half
quarter rounds is more accurate for the XDP than the ADP. Finally, we proposed
a greedy strategy to compute good quarter round differential characteristics, and
used this strategy to provide explicit XOR and additive differential trails for up
to three rounds.

We believe these techniques will help to better understand the security of
ChaCha stream cipher and of other similar constructions. They could be adopted
to improve current linear-differential attacks, or to build mixed XOR-additive dif-
ferential attacks. Towards this direction, we believe it would be interesting to find
optimal quarter round additive characteristics by starting from the input difference
(rather than the output one), and optimal quarter round XOR characteristics from
the output difference (rather than the input one). Also, there might exist other
greedy strategies which might be more effective and produce characteristics with
higher probability. We leave as future research how to use these techniques to
mount an attack on ChaCha and affect the security of the cipher.

References

1. Aumasson, J.P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.W., Varıcı, K.: Improved
cryptanalysis of Skein. In: International Conference on the Theory and Application of
Cryptology and Information Security, pp. 542–559. Springer (2009)

2. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler, smaller,
fast as MD5. In: International Conference on Applied Cryptography and Network Security,
pp. 119–135. Springer (2013)

3. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The SI-
MON and SPECK lightweight block ciphers. In: 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE (2015)

4. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q., Biryukov, A.: Schwaemm and esch: Lightweight
authenticated encryption and hashing using the sparkle permutation family.
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
round-1/spec-doc/SPARKLE-spec.pdf

5. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications
to arx ciphers. In: Annual International Cryptology Conference, pp. 329–358. Springer
(2020)

6. Bernstein, D.J.: Salsa20 specification. eSTREAM Project algorithm description, http:
//www.ecrypt.eu.org/stream/salsa20pf.html (2005)

7. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol. 8, pp.
3–5 (2008)

8. Bernstein, D.J.: Cubehash specification (2. b. 1). Submission to NIST (2008)
9. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New stream cipher designs, pp.

84–97. Springer (2008)
10. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In:

Cryptographers’ Track at the RSA Conference, pp. 227–250. Springer (2014)

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SPARKLE-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/SPARKLE-spec.pdf
http://www.ecrypt.eu.org/stream/salsa20pf.html
http://www.ecrypt.eu.org/stream/salsa20pf.html

Finding differential trails on ChaCha by means of state functions 23

11. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX:
application to block cipher SPECK. In: International Conference on Fast Software En-
cryption, pp. 289–310. Springer (2016)

12. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart,
T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., et al.: Shabal, a submission to nist’s
cryptographic hash algorithm competition. Submission to NIST (2008)

13. Chittenden, E.W.: On the number of paths in a finite partially ordered set. Amer. Math.
Monthly 54, 404–405 (1947)

14. Daum, M.: Cryptanalysis of hash functions of the md4-family. Ph.D. thesis, Ruhr Univer-
sity Bochum (2005)

15. De Canniere, C., Rechberger, C.: Finding SHA-1 characteristics: General results and ap-
plications. In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 1–20. Springer (2006)

16. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The skein hash function family. Submission to NIST (round 3) 7(7.5), 3 (2010)

17. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J.: Cryptographic
hash function blue midnight wish. In: 2009 Proceedings of the 1st International Workshop
on Security and Communication Networks, pp. 1–8. IEEE (2009)

18. Hong, D., Lee, J.K., Kim, D.C., Kwon, D., Ryu, K.H., Lee, D.G.: Lea: A 128-bit block ci-
pher for fast encryption on common processors. In: International Workshop on Information
Security Applications, pp. 3–27. Springer (2013)

19. Leurent, G., Bouillaguet, C., Fouque, P.A.: Simd is a message digest. Submission to the
NIST SHA-3 Competition (Round 2) (2009)

20. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties of Ad-
dition. In: FSE 2001, Lecture Notes in Computer Science, vol. 2355, pp. 336–350. Springer
(2001)

21. Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of Exclusive–
Or. In: FSE 2004, Lecture Notes in Computer Science, vol. 3017, pp. 317–331. Springer
(2004)

22. Mehner, C.E.: Limdolen (2019). https://github.com/cem-/limdolen/blob/master/
Documents/Limdolen%20Specification.pdf

23. Mouha, N., De Canniere, C., Indesteege, S., Preneel, B.: Finding collisions for a 45-step
simplified HAS-V. In: International Workshop on Information Security Applications, pp.
206–225. Springer (2009)

24. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede,
I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: International
Conference on Selected Areas in Cryptography, pp. 306–323. Springer (2014)

25. Mouha, N., Velichkov, V., De Canniere, C., Preneel, B.: The differential analysis of S-
functions. In: International Workshop on Selected Areas in Cryptography, pp. 36–56.
Springer (2010)

26. NIST: Hash Functions - SHA-3 Project. https://csrc.nist.gov/projects/
hash-functions/sha-3-project

27. NIST: Lightweight Cryptography Standardization Process. https://csrc.nist.gov/
projects/lightweight-cryptography/round-2-candidates, Accessed 07/28/2020

28. Rivest, R.L.: The rc5 encryption algorithm. In: International Workshop on Fast Software
Encryption, pp. 86–96. Springer (1994)

29. Velichkov, V., Mouha, N., De Canniere, C., Preneel, B.: The additive differential prob-
ability of ARX. In: International Workshop on Fast Software Encryption, pp. 342–358.
Springer (2011)

30. Velichov, V.e.a.: UNAF: A Special Set of Additive Differences with Application to the
Differential Analysis of ARX. In: FSE 2012, Lecture Notes in Computer Science, vol.
7549, pp. 287–305. Springer (2012)

31. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: International Work-
shop on Fast Software Encryption, pp. 363–366. Springer (1994)

https://github.com/cem-/limdolen/blob/master/Documents/Limdolen%20Specification.pdf
https://github.com/cem-/limdolen/blob/master/Documents/Limdolen%20Specification.pdf
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates

	Introduction
	Preliminaries
	XOR and additive differential probability of ChaCha round
	Experimental results
	Conclusions and future work

