
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Asymptotic Optimality of Spectral Coarse Spaces / Ciaramella, Gabriele; Vanzan, Tommaso. - 145:(2023), pp.
187-195. (Intervento presentato al  convegno Domain Decomposition Methods in Science and Engineering XXVI)
[10.1007/978-3-030-95025-5_18].

Original

On the Asymptotic Optimality of Spectral Coarse Spaces

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-030-95025-5_18

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Domain Decomposition Methods in
Science and Engineering XXVI. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-
030-95025-5_18

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987924 since: 2024-05-08T14:19:17Z

Springer



On the Asymptotic Optimality of Spectral
Coarse Spaces

Gabriele Ciaramella and Tommaso Vanzan

1 Introduction
The goal of this work is to study the asymptotic optimality of spectral coarse spaces
for two-level iterative methods. In particular, we consider a linear system 𝐴u = f,
where 𝐴 ∈ R𝑛×𝑛 and f ∈ R𝑛, and a two-level method that, given an iterate u𝑘 ,
computes the new vector u𝑘+1 as

u𝑘+1/2 = 𝐺u𝑘 + 𝑀−1f, (smoothing step) (1)

u𝑘+1 = u𝑘+1/2 + 𝑃𝐴−1
𝑐 𝑅(f − 𝐴u𝑘+1/2). (coarse correction) (2)

The smoothing step (1) is based on the splitting 𝐴 = 𝑀 − 𝑁 , where 𝑀 is the
preconditioner, and 𝐺 = 𝑀−1𝑁 the iteration matrix. The correction step (2) is
characterized by prolongation and restriction matrices 𝑃 ∈ R𝑛×𝑚 and 𝑅 = 𝑃⊤, and
a coarse matrix 𝐴𝑐 = 𝑅𝐴𝑃. The columns of 𝑃 are linearly independent vectors
spanning the coarse space 𝑉𝑐 := span {p1, . . . , p𝑚}. The convergence of the one-
level iteration (1) is characterized by the eigenvalues of𝐺, 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑛 (sorted in
descending order by magnitude). The convergence of the two-level iteration (1)-(2)
depends on the spectrum of the iteration matrix 𝑇 , obtained by substituting (1) into
(2) and rearranging terms:

𝑇 = [𝐼 − 𝑃(𝑅𝐴𝑃)−1𝑅𝐴]𝐺. (3)

The goal of this short paper is to answer, though partially, the fundamental question:
given an integer 𝑚, what is the coarse space of dimension 𝑚 which minimizes
the spectral radius 𝜌(𝑇)? Since step (2) aims at correcting the error components
that the smoothing step (1) is not able to reduce (or eliminate), it is intuitive to
think that an optimal coarse space 𝑉𝑐 is obtained by defining p 𝑗 as the eigenvectors
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of 𝐺 corresponding to the 𝑚 largest (in modulus) eigenvalues. We call such a
𝑉𝑐 spectral coarse space. Following the idea of correcting the ‘badly converging’
modes of𝐺, several papers proposed new, and in some sense optimal, coarse spaces.
In the context of domain decomposition methods, we refer, e.g., to [2, 3, 4], where
efficient coarse spaces have been designed for parallel, restricted additive and additive
Schwarz methods. In the context of multigrid methods, it is worth mentioning the
work [6], where the interpolation weights are optimized using an approach based on
deep-neural networks. Fundamental results are presented in [7]: for a symmetric 𝐴,
it is proved that the coarse space of size 𝑚 that minimizes the energy norm of 𝑇 ,
namely ∥𝑇 ∥𝐴, is the span of the𝑚 eigenvectors of𝑀𝐴 corresponding to the𝑚 lowest
eigenvalues. Here,𝑀 := 𝑀−1+𝑀−⊤−𝑀−⊤𝐴𝑀−1 is symmetric and assumed positive
definite. If 𝑀 is symmetric, a direct calculation gives 𝑀𝐴 = 2𝑀−1𝐴 − (𝑀−1𝐴)2.
Using that 𝑀−1𝐴 = 𝐼 − 𝐺, one can show that the 𝑚 eigenvectors associated to the
lowest 𝑚 eigenvalues of 𝑀𝐴 correspond to the 𝑚 largest modes of 𝐺. Hence, the
optimal coarse space proposed in [7] is a spectral coarse space. The sharp result of
[7] provides a concrete optimal choice of 𝑉𝑐 minimizing ∥𝑇 ∥𝐴. This is generally an
upper bound for the asymptotic convergence factor 𝜌(𝑇). As we will see in Section
2, choosing the spectral coarse space, one gets 𝜌(𝑇) = |𝜆𝑚+1 |. The goal of this work
is to show that this is not necessarily the optimal asymptotic convergence factor.
In Section 2, we perform a detailed optimality analysis for the case 𝑚 = 1. The
asymptotic optimality of coarse spaces for 𝑚 ≥ 1 is studied numerically in Section
3. Interestingly, we will see that by optimizing 𝜌(𝑇) one constructs coarse spaces
that lead to preconditioned matrices with better condition numbers.

2 A perturbation approach
Let 𝐺 be diagonalizable with eigenpairs (𝜆 𝑗 , v 𝑗 ), 𝑗 = 1, . . . , 𝑛. Suppose that v 𝑗 are
also eigenvectors of 𝐴: 𝐴v 𝑗 = 𝜆 𝑗v 𝑗 . Concrete examples where these hypotheses are
fulfilled are given in Section 3. Assume that rank 𝑃 = 𝑚 (dim𝑉𝑐 = 𝑚). For any
eigenvector v 𝑗 , we can write the vector 𝑇v 𝑗 as

𝑇v 𝑗 =
𝑛∑︁
ℓ=1

𝑡̃ 𝑗 ,ℓvℓ , 𝑗 = 1, . . . , 𝑛. (4)

If we denote by 𝑇 ∈ R𝑛×𝑛 the matrix of entries 𝑡̃ 𝑗 ,ℓ , and define 𝑉 := [v1, . . . , v𝑛],
then (4) becomes 𝑇𝑉 = 𝑉𝑇⊤. Since 𝐺 is diagonalizable, 𝑉 is invertible, and thus 𝑇
and 𝑇⊤ are similar. Hence, 𝑇 and 𝑇 have the same spectrum. We can now prove the
following lemma.

Lemma 1 (Characterization of 𝑇)
Given an index 𝑚 ≥ 𝑚 and assume that 𝑉𝑐 := span {p1, . . . , p𝑚} satisfies

𝑉𝑐 ⊆ span {v 𝑗 }𝑚̃𝑗=1 and 𝑉𝑐 ∩ {v 𝑗 }𝑛𝑗=𝑚̃+1 = {0}. (5)

Then, it holds that
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𝑇 =

[
𝑇𝑚̃ 0
𝑋 Λ𝑚̃

]
,

Λ𝑚̃ = diag (𝜆𝑚̃+1, . . . , 𝜆𝑛),
𝑇𝑚̃ ∈ R𝑚̃×𝑚̃, 𝑋 ∈ R(𝑛−𝑚̃)×𝑚̃.

(6)

Proof The hypothesis (5) guarantees that span {v 𝑗 }𝑚̃𝑗=1 is invariant under the action of
𝑇 . Hence, 𝑇v 𝑗 ∈ span {v 𝑗 }𝑚̃𝑗=1 for 𝑗 = 1, . . . , 𝑚, and, using (4), one gets that 𝑡̃ 𝑗 ,ℓ = 0
for 𝑗 = 1, . . . , 𝑚 and ℓ = 𝑚+1, . . . , 𝑛. Now, consider any 𝑗 > 𝑚. A direct calculation
using (4) reveals that𝑇v 𝑗 = 𝐺v 𝑗−𝑃(𝑅𝐴𝑃)−1𝑅𝐴𝐺v 𝑗 = 𝜆 𝑗v 𝑗−

∑𝑚̃
ℓ=1 𝑥 𝑗−𝑚̃,ℓvℓ , where

𝑥𝑖,𝑘 are the elements of 𝑋 ∈ R(𝑛−𝑚̃)×𝑚̃. Hence, the structure (6) follows. □

Notice that, if (5) holds, then Lemma 1 allows us to study the properties of 𝑇
using the matrix 𝑇 and its structure (6), and hence 𝑇𝑚̃.
Let us now turn to the questions posed in Section 1. Assume that p 𝑗 = v 𝑗 , 𝑗 =

1, . . . , 𝑚, namely𝑉𝑐 = span {v 𝑗 }𝑚𝑗=1. In this case, (5) holds with𝑚 = 𝑚, and a simple

argument1 leads to 𝑇𝑚̃ = 0, 𝑇 =

[
0 0
𝑋 Λ𝑚̃

]
. The spectrum of 𝑇 is {0, 𝜆𝑚+1, . . . , 𝜆𝑛}.

This means that 𝑉𝑐 ⊂ kern𝑇 and 𝜌(𝑇) = |𝜆𝑚+1 |. Let us now perturb the coarse
space 𝑉𝑐 using the eigenvector v𝑚+1, that is 𝑉𝑐 (𝜀) := span {v 𝑗 + 𝜀 v𝑚+1}𝑚𝑗=1. Clearly,
dim𝑉𝑐 (𝜀) = 𝑚 for any 𝜀 ∈ R. In this case, (5) holds with 𝑚 = 𝑚 + 1 and 𝑇 becomes

𝑇 (𝜀) =
[
𝑇𝑚̃ (𝜀) 0
𝑋 (𝜀) Λ𝑚̃

]
, (7)

where we make explicit the dependence on 𝜀. Notice that 𝜀 = 0 clearly leads
to 𝑇𝑚̃ (0) = diag (0, . . . , 0, 𝜆𝑚+1) ∈ R𝑚̃×𝑚̃, and we are back to the unper-
turbed case with 𝑇 (0) = 𝑇 having spectrum {0, 𝜆𝑚+1, . . . , 𝜆𝑛}. Now, notice that
min𝜀∈R 𝜌(𝑇 (𝜀)) ≤ 𝜌(𝑇 (0)) = |𝜆𝑚+1 |. Thus, it is natural to ask the question: is this
inequality strict? Can one find an 𝜀̃ ≠ 0 such that 𝜌(𝑇 (𝜀̃)) = min𝜀∈R 𝜌(𝑇 (𝜀)) <
𝜌(𝑇 (0)) holds? If the answer is positive, then we can conclude that choosing the
coarse vectors equal to the dominating eigenvectors of 𝐺 is not an optimal choice.
The next key result shows that, in the case 𝑚 = 1, the answer is positive.

Theorem 1 (Perturbation of 𝑉𝑐)
Let (v1, 𝜆1), (v2, 𝜆2) and (v3, 𝜆3) be three real eigenpairs of 𝐺, 𝐺v 𝑗 = 𝜆 𝑗v 𝑗

such that with 0 < |𝜆3 | < |𝜆2 | ≤ |𝜆1 | and ∥v 𝑗 ∥2 = 1, 𝑗 = 1, 2. Denote by 𝜆 𝑗 ∈ R
the eigenvalues of 𝐴 corresponding to v 𝑗 , and assume that 𝜆1𝜆2 > 0. Define 𝑉𝑐 :=
span {v1 + 𝜀v2} with 𝜀 ∈ R, and 𝛾 := v⊤1 v2 ∈ [−1, 1]. Then

(A) The spectral radius of 𝑇 (𝜀) is 𝜌(𝑇 (𝜀)) = max{|𝜆(𝜀, 𝛾) |, |𝜆3 |}, where

𝜆(𝜀, 𝛾) = 𝜆1𝜆2𝜀
2 + 𝛾(𝜆1𝜆2 + 𝜆2𝜆1)𝜀 + 𝜆2𝜆1

𝜆2𝜀2 + 𝛾(𝜆1 + 𝜆2)𝜀 + 𝜆1
. (8)

1 Let v 𝑗 be an eigenvector of 𝐴 with 𝑗 ∈ {1, . . . , 𝑚}. Denote by e 𝑗 ∈ R𝑛 the 𝑗th canonical
vector. Since 𝑃e 𝑗 = v 𝑗 , 𝑅𝐴𝑃e 𝑗 = 𝑅𝐴v 𝑗 . This is equivalent to e 𝑗 = (𝑅𝐴𝑃)−1𝑅𝐴v 𝑗 , which gives
𝑇v 𝑗 = 𝜆 𝑗 (v 𝑗 − 𝑃 (𝑅𝐴𝑃)−1𝑅𝐴v 𝑗 ) = 𝜆 𝑗 (v 𝑗 − 𝑃e 𝑗 ) = 0.
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(B) Let 𝛾 = 0. If 𝜆1 > 𝜆2 > 0 or 0 > 𝜆2 > 𝜆1, then min
𝜀∈R

𝜌(𝑇 (𝜀)) = 𝜌(𝑇 (0)).
(C) Let 𝛾 = 0, If 𝜆2 > 0 > 𝜆1 or 𝜆1 > 0 > 𝜆2, then there exists an 𝜀̃ ≠ 0 such that

𝜌(𝑇 (𝜀̃)) = |𝜆3 | = min
𝜀∈R

𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).
(D) Let 𝛾 ≠ 0. If 𝜆1 > 𝜆2 > 0 or 0 > 𝜆2 > 𝜆1, then there exists an 𝜀̃ ≠ 0 such that
|𝜆(𝜀̃, 𝛾) | < |𝜆2 | and hence 𝜌(𝑇 (𝜀̃)) = max{|𝜆(𝜀̃, 𝛾) |, |𝜆3 |} < 𝜌(𝑇 (0)).

(E) Let 𝛾 ≠ 0. If 𝜆2 > 0 > 𝜆1 or 𝜆1 > 0 > 𝜆2, then there exists an 𝜀̃ ≠ 0 such that
𝜌(𝑇 (𝜀̃)) = |𝜆3 | = min

𝜀∈R
𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).

Proof Since 𝑚 = 1, a direct calculation allows us to compute the matrix

𝑇𝑚̃ (𝜀) =

𝜆1 − 𝜆1𝜆1 (1+𝜀𝛾)

𝑔 −𝜀 𝜆1𝜆1 (1+𝜀𝛾)
𝑔

−𝜆2𝜆2 (𝜀+𝛾)
𝑔 𝜆2 − (𝜀𝜆2𝜆2) (𝜀+𝛾)

𝑔


,

where 𝑔 = 𝜆1 + 𝜀𝛾 [𝜆1 +𝜆2] + 𝜀2𝜆2. The spectrum of this matrix is {0, 𝜆(𝜀, 𝛾)}, with
𝜆(𝜀, 𝛾) given in (8). Hence, point (A) follows recalling (7).
To prove points (B), (C), (D) and (E) we use some properties of the map

𝜀 ↦→ 𝜆(𝜀, 𝛾). First, we notice that

𝜆(0, 𝛾) = 𝜆2, lim
𝜀→±∞𝜆(𝜀, 𝛾) = 𝜆1, 𝜆(𝜀, 𝛾) = 𝜆(−𝜀,−𝛾). (9)

Second, the derivative of 𝜆(𝜀, 𝛾) with respect to 𝜀 is

𝑑𝜆(𝜀, 𝛾)
𝑑𝜀

=
(𝜆1 − 𝜆2)𝜆1𝜆2 (𝜀2 + 2𝜀/𝛾 + 1)𝛾
(𝜆2𝜀2 + 𝛾(𝜆1 + 𝜆2)𝜀 + 𝜆1)2

. (10)

Because of 𝜆(𝜀, 𝛾) = 𝜆(−𝜀,−𝛾) in (9), we can assume without loss of generality
that 𝛾 ≥ 0.
Let us now consider the case 𝛾 = 0. In this case, the derivative (10) becomes

𝑑𝜆(𝜀,0)
𝑑𝜀 = (𝜆1−𝜆2)𝜆1𝜆22𝜀

(𝜆2𝜀2+𝜆2
1)2
. Moreover, since 𝜆(𝜀, 0) = 𝜆(−𝜀, 0) we can assume that

𝜀 ≥ 0.
Case (B). If 𝜆1 > 𝜆2 > 0, then 𝑑𝜆(𝜀,0)

𝑑𝜀 > 0 for all 𝜀 > 0. Hence, 𝜀 ↦→ 𝜆(𝜀, 0)
is monotonically increasing, 𝜆(𝜀, 0) ≥ 0 for all 𝜀 > 0 and, thus, the minimum
of 𝜀 ↦→ |𝜆(𝜀, 0) | is attained at 𝜀 = 0 with |𝜆(0, 0) | = |𝜆2 | > |𝜆3 |, and the result
follows. Analogously, if 0 > 𝜆2 > 𝜆1, then 𝑑𝜆(𝜀,0)

𝑑𝜀 < 0 for all 𝜀 > 0. Hence,
𝜀 ↦→ 𝜆(𝜀, 0) is monotonically decreasing, 𝜆(𝜀, 0) < 0 for all 𝜀 > 0 and the minimum
of 𝜀 ↦→ |𝜆(𝜀, 0) | is attained at 𝜀 = 0.
Case (C). If 𝜆1 > 0 > 𝜆2, then 𝑑𝜆(𝜀,0)

𝑑𝜀 > 0 for all 𝜀 > 0. Hence, 𝜀 ↦→ 𝜆(𝜀, 0)
is monotonically increasing and such that 𝜆(0, 0) = 𝜆2 < 0 and lim𝜀→∞ 𝜆(𝜀, 0) =
𝜆1 > 0. Thus, the continuity of the map 𝜀 ↦→ 𝜆(𝜀, 0) guarantees the existence of an
𝜀̃ > 0 such that 𝜆(𝜀̃, 0) = 0. Analogously, if 𝜆2 > 0 > 𝜆1, then 𝑑𝜆(𝜀,0)

𝑑𝜀 < 0 for all
𝜀 > 0 and the result follows by the continuity of 𝜀 ↦→ 𝜆(𝜀, 0).
Let us now consider the case 𝛾 > 0. The sign of 𝑑𝜆(𝜀,𝛾)𝑑𝜀 is affected by the term

𝑓 (𝜀) := 𝜀2 + 2𝜀/𝛾 + 1, which appears at the numerator of (10). The function 𝑓 (𝜀)
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is strictly convex, attains its minimum at 𝜀 = − 1
𝛾 , and is negative in (𝜀1, 𝜀2) and

positive in (−∞, 𝜀1) ∪ (𝜀2,∞), with 𝜀1, 𝜀2 = − 1∓
√

1−𝛾2

𝛾 .
Case (D). If 𝜆1 > 𝜆2 > 0, then 𝑑𝜆(𝜀,𝛾)

𝑑𝜀 > 0 for all 𝜀 > 𝜀2. Hence, 𝑑𝜆(0,𝛾)𝑑𝜀 > 0,
which means that there exists an 𝜀̃ < 0 such that |𝜆(𝜀̃, 𝛾) | < |𝜆(0, 𝛾) | = |𝜆2 |. The
case 0 > 𝜆2 > 𝜆1 follows analogously.
Case (E). If 𝜆1 > 0 > 𝜆2, then 𝑑𝜆(𝜀,𝛾)𝑑𝜀 > 0 for all 𝜀 > 0. Hence, by the continuity

of 𝜀 ↦→ 𝜆(𝜀, 𝛾) (for 𝜀 ≥ 0) there exists an 𝜀̃ > 0 such that 𝜆(𝜀̃, 𝛾) = 0. The case
𝜆2 > 0 > 𝜆1 follows analogously. □

Theorem 1 and its proof say that, if the two eigenvalues 𝜆1 and 𝜆2 have opposite
signs (but they could be equal in modulus), then it is always possible to find an
𝜀 ≠ 0 such that the coarse space 𝑉𝑐 := span{v1 + 𝜀v2} leads to a faster method than
𝑉𝑐 := span{v1}, even though both are one-dimensional subspaces. In addition, if
𝜆3 ≠ 0 the former leads to a two-level operator 𝑇 with a larger kernel than the one
corresponding to the latter. The situation is completely different if 𝜆1 and 𝜆2 have
the same sign. In this case, the orthogonality parameter 𝛾 is crucial. If v1 and v2
are orthogonal (𝛾 = 0), then one cannot improve the effect of 𝑉𝑐 := span{v1} by a
simple perturbation using v2. However, if v1 and v2 are not orthogonal (𝛾 ≠ 0), then
one can still find an 𝜀 ≠ 0 such that 𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).
Notice that, if |𝜆3 | = |𝜆2 |, Theorem 1 shows that one cannot obtain a 𝜌(𝑇) smaller

than |𝜆2 | using a one-dimensional perturbation. However, if one optimizes the entire
coarse space 𝑉𝑐 (keeping 𝑚 fixed), then one can find coarse spaces leading to better
contraction factor of the two-level iteration, even though |𝜆3 | = |𝜆2 |. This is shown
in the next section.

3 Optimizing the coarse-space functions
Consider the elliptic problem

−Δ𝑢 + 𝑐 (𝜕𝑥𝑢 + 𝜕𝑦𝑢) = 𝑓 in Ω = (0, 1)2, 𝑢 = 0 on 𝜕Ω. (11)

Using a uniform grid of size ℎ, the standard second-order finite-difference scheme
for the Laplace operator and the central difference approximation for the advection
terms, problem (11) becomes 𝐴u = f, where 𝐴 has constant and positive diagonal
entries, 𝐷 = diag(𝐴) = 4/ℎ2𝐼. A simple calculation shows that, if 𝑐 ≥ 0 satisfies
𝑐 ≤ 2/ℎ, then the eigenvalues of 𝐴 are real. The eigenvectors of 𝐴 are orthogonal if
𝑐 = 0 and non-orthogonal if 𝑐 > 0.
One of the most used smoothers for (11) is the damped Jacobi method: u𝑘+1 =

u𝑘 + 𝜔𝐷−1 (f − 𝐴u𝑘), where 𝜔 ∈ (0, 1] is a damping parameter. The corresponding
iteration matrix is𝐺 = 𝐼 −𝜔𝐷−1𝐴. Since 𝐷 = 4/ℎ2𝐼, the matrices 𝐴 and𝐺 have the
same eigenvectors. For 𝑐 = 0, it is possible to show that, if 𝜔 = 1 (classical Jacobi
iteration), then the nonzero eigenvalues of 𝐺 have positive and negative signs, while
if 𝜔 = 1/2, the eigenvalues of 𝐺 are all positive. Hence, the chosen model problem
allows us to work in the theoretical framework of Section 2.
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Fig. 1: Behavior of |𝜆(𝜀, 𝛾) | and 𝜌(𝑇 (𝜀)) as functions of 𝜀 for different 𝑐 and 𝛾. Top left panel:
𝑐 = 0, 𝜔 = 1/2; top right panel: 𝑐 = 0, 𝜔 = 1; bottom left panel: 𝑐 = 10, 𝜔 = 1/2; bottom right
panel: 𝑐 = 10, 𝜔 = 1.

To validate numerically Theorem 1, we set ℎ = 1/10 and consider 𝑉𝑐 :=
{v1 + 𝜀v2}. Figure 1 shows the dependence of 𝜌(𝑇 (𝜀)) and |𝜆(𝜀, 𝛾) | on 𝜀 and
𝛾. On the top left panel, we set 𝑐 = 0 and 𝜔 = 1/2 so that the hypotheses of point (B)
of Theorem 1 are satisfied, since 𝛾 = 0 and 𝜆1 ≥ 𝜆2 > 0. As point (B) predicts, we
observe that min

𝜀∈R
𝜌(𝑇 (𝜀)) is attained at 𝜀 = 0, i.e. min𝜀∈R 𝜌(𝑇 (𝜀)) = 𝜌(𝑇 (0)) = 𝜆2.

Hence, adding a perturbation does not improve the coarse space made only by v1.
Next, we consider point (C), by setting 𝑐 = 0 and 𝜔 = 1. Through a direct com-
putation we get 𝜆1 = −0.95, 𝜆2 = −𝜆1 and 𝜆3 = 0.90. The top-right panel shows,
on the one hand, that for several values of 𝜀, 𝜌(𝑇 (𝜀)) = 𝜆3 < 𝜆2, that is with a
one-dimensional perturbed coarse space, we obtain the same contraction factor we
would have with the two-dimensional spectral coarse space 𝑉𝑐 = span {v1, v2}. On
the other hand, we observe that there are two values of 𝜀 such that 𝜆(𝜀, 𝛾) = 0,
which (recalling (4) and (6)) implies that 𝑇 is nilpotent over the span{v1, v2}. To
study point (D), we set 𝑐 = 10, 𝜔 = 1/2, which lead to 𝜆1 = 0.92, 𝜆2 = 𝜆3 = 0.90.
The left-bottom panel confirms there exists an 𝜀∗ < 0 such that |𝜆(𝜀∗, 𝛾) | ≤ 𝜆2,
which implies 𝜌(𝑇 (𝜀∗)) ≤ 𝜆2. Finally, we set 𝑐 = 10 and 𝜔 = 1. Point (E) is
confirmed by the right-bottom panel, which shows that |𝜆(𝜀, 𝛾) | < |𝜆2 |, and thus
min𝜀 𝜌(𝑇 (𝜀)) = |𝜆3 |, for some values of 𝜀.
We have shown both theoretically and numerically that the spectral coarse space

is not necessarily the one-dimensional coarse space minimizing 𝜌(𝑇). Now, we wish
to go beyond this one-dimensional analysis and optimize the entire coarse space 𝑉𝑐
keeping its dimension 𝑚 fixed. This is equivalent to optimizing the prolongation
operator 𝑃 whose columns span 𝑉𝑐. Thus, we consider the optimization problem
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min
𝑃∈R𝑛×𝑚

𝜌(𝑇 (𝑃)). (12)

To solve approximately (12), we follow the approach proposed by [6]. Due to the
Gelfand formula 𝜌(𝑇) = lim𝑘→∞ 𝑘

√︁
∥𝑇 𝑘 ∥𝐹 , we replace (12) with the simpler opti-

mization problem min𝑃 ∥𝑇 (𝑃)𝑘 ∥2𝐹 for some positive 𝑘 . Here, ∥ · ∥𝐹 is the Frobenius
norm. We then consider the unbiased stochastic estimator [5]

∥𝑇 𝑘 ∥2𝐹 = trace
(
(𝑇 𝑘)⊤𝑇 𝑘

)
= Ez

[
z⊤ (𝑇 𝑘)⊤𝑇 𝑘z

]
= Ez

[∥𝑇 𝑘z∥22
]
,

where z ∈ R𝑛 is a random vector with Rademacher distribution, i.e. P(z𝑖 = ±1) =
1/2. Finally, we rely on a sample average approach, replacing the unbiased stochastic
estimator with its empirical mean such that (12) is approximated by

min
𝑃∈R𝑛×𝑚

1
𝑁

𝑁∑︁
𝑖=1
∥𝑇 (𝑃)𝑘z𝑖 ∥2𝐹 , (13)

where z𝑖 are a set of independent, Rademacher distributed, random vectors. The
action of 𝑇 onto the vectors z𝑖 can be interpreted as the feed-forward process of a
neural net, where each layer represents one specific step of the two-level method,
that is the smoothing step, the residual computation, the coarse correction and
the prolongation/restriction operations. In our setting, the weights of most layers
are fixed and given, and the optimization is performed only on the weights of
the layer representing the prolongation step. The restriction layer is constrained to
have as weights the transpose of the weights of the prolongation layer. The cost of
constructing coarse spaces using deep neural networks can be very high, and not
practical if the problem needs to be solved only once. However, our interest here is
on theoretical aspects, and deep neural networks are used only to show the existence
of coarse spaces (asymptotically) better than the spectral ones.
We solve (13) for 𝑘 = 10 and𝑁 = 𝑛 usingTensorflow [1] and its stochastic gradient

descent algorithm with learning parameter 0.1. The weights of the prolongation
layer are initialized with an uniform distribution. Table 1 reports both 𝜌(𝑇 (𝑃)) and
∥𝑇 (𝑃)∥𝐴 using a spectral coarse space and the coarse space obtained solving (13).
We can clearly see that there exist coarse spaces, hence matrices 𝑃, corresponding
to values of the asymptotic convergence factor 𝜌(𝑇 (𝑃)) much smaller than the ones
obtained by spectral coarse spaces. Hence, Table 1 confirms that a spectral coarse
space of dimension 𝑚 is not necessarily a (global) minimizer for min

𝑃∈R𝑛×𝑚
𝜌(𝑇 (𝑃)).

This can be observed not only in the case 𝑐 = 0, for which the result of [7, Theorem
5.5] states that (recall that 𝑀 is symmetric) the spectral coarse space minimizes
∥𝑇 (𝑃)∥𝐴, but also for 𝑐 > 0, which corresponds to a nonsymmetric 𝐴. Interestingly,
the coarse spaces obtained by our numerical optimizations lead to preconditioned
matrices with better condition numbers, as shown in the last row of Table 1, where
the condition number 𝜅2 of the matrix 𝐴 preconditioned by the two-level method
(and different coarse spaces) is reported.
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𝑐 𝜔 𝑚 = 1 𝑚 = 5 𝑚 = 10 𝑚 = 15

𝜌
(𝑇
) 0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.83 0.76 - 0.78

0 1 0.95 - 0.90 0.90 - 0.80 0.80 - 0.65 0.74 - 0.53
10 1/2 0.90 - 0.90 0.85 - 0.82 0.79 - 0.74 0.73 - 0.68
10 1 0.85 - 0.80 0.80 - 0.67 0.71 - 0.55 0.66 - 0.37

∥𝑇
∥ 𝐴 0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.84 0.76 - 0.77

0 1 0.95 - 0.95 0.90 - 0.94 0.80 - 0.88 0.74 - 0.88
𝜅 2

0 1 46.91 - 29.45 18.48 - 14.40 9.37 - 8.22 6.69 - 8.53
10 1 27.25 - 23.98 22.44 - 12.36 17.34 - 11.35 13.06 - 9.71

Table 1: Values of 𝜌(𝑇) , ∥𝑇 ∥𝐴 and condition number 𝜅2 of the matrix 𝐴 preconditioned by the
two-level method for different 𝑐 and 𝜔 and using either a spectral coarse space (left number), or
the coarse space obtained solving (13) (right number).
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