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Optimal selection of the most informative
nodes in Opinion Dynamics on Networks

Roberta Raineri ∗, Giacomo Como ∗, Fabio Fagnani ∗

∗ Department of Mathematical Sciences “G.L. Lagrange”, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (e-mail:

{roberta.raineri, giacomo.como, fabio.fagnani}@polito.it)

Abstract: Finding the optimal subset to observe in a network system is a fundamental problem
in science and engineering, with a wide range of applications like monitoring spatial phenomena,
control of epidemic spread, feature selection in machine learning, or active surveying in social
studies. The goal of this paper is to address the subset selection problem on an Opinion Dynamics
model where the variable of interest Y is the average opinion of the community. We consider the
opinion vector X to be updated according to a Friedkin-Johnsen opinion dynamics model where
every agent i is equipped with an original unknown belief ui, which is assumed to be normally
distributed, and a parameter λi describing its openness to interactions. The objective function
of the optimization problem is the variance reduction from the observation of the steady-state
opinions of a subset K⊆V of agents. We show how this functional can be rewritten in terms of
the Bonacich centrality and the cycle centrality of the agents in social network when the subset
selection is of cardinality 1, providing particular graph-theoretic interpretations related to the
network itself. In addition, first exploratory simulations highlight a behaviour which deviates
from the one of known centrality measures depending on the choice of model parameters. Finally,
we show that the submodularity of the functional is not guaranteed in our case and thus results
taken from known literature are non-enforceable. This paves the way for further analysis.

Keywords: Opinion Dynamics, Centrality measures, Network centrality, Network systems,
Subset selection, Probabilistic Graphical Models, Gaussian Random Fields.

1. INTRODUCTION

A crucial algorithmic question in many data-driven appli-
cations is that of selecting the most informative subset
of observable variables, among a large set at disposal,
in order to most accurately predict another quantity of
interest. This is typically known as the subset selection
problem. The setting is the following: a large number n of
variables Xi can in principle be observed and we want to
infer the value of another variable Y . What is known is
the statistical description in terms of covariances among
the Xi’s and Y assumed to be prior knowledge to the
problem. Based on this information, the goal is now to
select a subset of k << n variables to ‘best’ predict Y .

Applications are many (Krause et al. (2008b)), ranging
from feature selection in machine learning, sparse approxi-
mation and compressed sensing in signal processing, sensor
placement for environmental monitoring, risk assessing in
medical studies, active surveying in social studies. Most
recent applications deal with the smart testing problem
aimed to find an efficient strategy to control epidemic
spread(Batlle et al. (2022)).

⋆ Giacomo Como is also with the Department of Automatic Con-
trol, Lund University, Sweden. This research was carried on within
the framework of the MIUR-funded Progetto di Eccellenza of the
Dipartimento di Scienze Matematiche G.L. Lagrange, Politecnico di
Torino, CUP: E11G18000350001.

In many of these scenarios, a natural way to formalize the
optimization problem is to consider as target functional
the variance reduction on Y , namely the difference be-
tween the variance of Y and the variance of Y conditioned
on the observed variables, and let the optimal subset to
select the one that maximizes this quantity.

This problem is known to be NP-hard and not submodular
in general, see, e.g., Das and Kempe (2018) and Natarajan
(1995). The work by Das and Kempe (2008) contains
various results on the complexity of the problem when
the graph associated to the covariance matrix has specific
properties (trees, existence of large independent sets) and
the analysis of a natural greedy algorithm (called forward
regression) where variables are chosen in a recursive fash-
ion, each time maximizing the variance reduction. They
obtain bounds on the performance of the greedy algorithm
for small covariances. They also discuss the existence of
submodularity in the assumption of lack of the so called
suppressor variables, a condition that is however not easy
to be checked. In Das and Kempe (2018) authors prove an
approximate submodularity capable of giving bounds on
the greedy algorithm. In Ma et al. (2013), authors study
the special case when the processX is a Gaussian graphical
model with precision matrix given by the Laplacian of an
undirected graph and show that in this case the variance
reduction is submodular. The submodularity property is
crucial because, as proven by Nemhauser et al. (1978),
it guarantees a near-optimal solution adopting a greedy



approximation for maximizing the functional of interest
subject to a cardinality constraint.

In this paper, we undertake a study of the subset selec-
tion problem in the context of a social network where
the observable variables are the opinions of the various
individuals and the quantity that we want to estimate is
the average opinion Y of the community. Opinions of the
individuals are assumed to be determined by their original
beliefs, here assumed to be Gaussian random variables,
and by the network interaction, in such a way to minimize
what in social science is called the cognitive dissonance of
the system.

Our contribution is twofold. We show that our processX is
a Gaussian random field on an augmented graph obtained
triangulating the graph that describes the social network,
with a precision matrix that may possess positive off diag-
onal values. For the special case when the subset selection
is of cardinality 1, we give an interpretation of the variance
reduction in terms of the classical Bonacich centrality of a
graph and the cycle centrality, first introduced in Talamas
and Tamuz (2017), to study optimal intervention problems
in quadratic games. Finally, we observe that our case does
not satisfy the assumptions of the problem described in
Ma et al. (2013), as in our case the precision matrix is not
a graph Laplacian, thus the analysis of submodularity is
more complicate. In particular, we show by some examples
that the functional is not submodular in the general case.
Neverthless, the introduced centrality measure is relevant
pointing out a behaviour that strays from the one of
common known ones.

2. MODEL

Consider a network of agents V whose interactions are
encoded by row-stochastic matrix P in RV×V

+ . 1 Let the
sparsity pattern of P be represented by the directed graph
GP = (V, E) such that (i, j) ∈ E if and only if Pij > 0.

Every agent i is equipped with an original belief ui and
a parameter λi in (0, 1) describing its openness to social
interaction. The equilibrium opinion of the social system
is a vector x in RV such that

xi = λi

∑
j∈V

Pijxj + (1− λi)ui .

If we indicate with x and u the corresponding vectors of
opinions and original beliefs, with A the matrix such that
Aij = λiPij , and with B the diagonal matrix such that
Bii = 1− λi, this can be written as

x = Ax+Bu .

As the spectral radius of A is strictly below 1, such
equation has just one solution that can be represented as

x = (I −A)−1Bu . (1)

The value x determined by (1) has various sociological
interpretations. It can be shown to be the unique Nash
equilibrium of a quadratic game where individuals have as
utility function their cognitive dissonance

ui(x) = λi

∑
j∈V

Pij(xi − xj)
2 + (1− λi)(xi − ui)

2 .

1 Recall that a row-stochastic matrix P is a nonnegative square
matrix such that P1 = 1, where 1 is the all-1 vector.

It also coincides with the asymptotic outcome of the
Friedkin-Johnsen’s opinion dynamics model

x(t+ 1) = Ax(t) +Bu .

In this paper, we assume the belief vector to be ran-
dom vector U having multivariate Gaussian distribution
N(µ,Σ) with mean vector µ and covariance matrix Σ. The
corresponding opinions vector

X = (I −A)−1BU (2)

then has itself multivariate Gaussian distribution N(ν, C)
with mean vector ν = (I−A)−1Bµ and covariance matrix

C = (I −A)−1BΣB(I −A′)−1 . (3)

Observe that, since

M = (I −A)−1B =

+∞∑
k=0

AkB

is a nonnegative matrix, then the covariance matrix

C = MΣM ′

of the opinions vector is nonnegative whenever the covari-
ance matrix Σ of the original beliefs is nonnegative.

On the other hand, the precision matrix W = C−1 of the
opinions vector satisfies

W = (M ′)−1Σ−1M−1 = D − (A′D +DA) +A′DA , (4)

where D = B−1Σ−1B−1. Notice that W is not an L-
matrix in general, i.e., its extra-diagonal elements are
not necessarily all nonpositive. E.g., in the special case
when the original beliefs are independent and identically
distributed with variance σ2

i = 1, and λi = α in (0, 1) for
every i in V, then

Wij = − α

(1− α)2
(Pij + Pji) +

α2

(1− α)2

∑
k∈V

PkiPkj > 0 ,

for every two nodes i ̸= j that are not directly linked to
each other in GP (so that Pij = Pji = 0), but have a
common in-neighbor k in V \ {i, j} (so that PkiPkj > 0).

Remark 1. Notice that, in the terminology of probabilistic
graphical models (see, e.g., Wainwright and Jordan (2008),
Lauritzen (1996)), the multivariate normal variable X
is viewed as a Gaussian random field defined on an
underlying undirected concentration graph G∗ = (V, E∗)
with the same sparsity pattern as the precision matrix W ,
i.e., Wij ̸= 0 for some i ̸= j if and only if {i, j} in E∗ is an
undirected link in G∗.

We highlight a particular relation between the original
graph G and G∗. Firstly, define the converse graph G′ of
the directed graph G, that is retriven from G keeping the
same set of vertices V and reversing the orientation of all
the edges in E . Then, G∗ is obtained from G′ by adding
links between all nodes that share an out-neighbor and
then making all links undirected. In the literature, G∗ is
defined as the moral graph of G′.

3. PROBLEM

We focus on the problem of estimating the arithmetic
average of the opinions vector

Y =
1

n

∑
i∈V

Xi

from the observation of the opinions of a subset K ⊆ V of
the agents, with |K| < n.



Formally, let XK = (Xi)i∈K be the restriction of the
opinions vector X to the observed set K. Consider the
map F : 2V → R+, defined by

F (K) = V ar(Y )− E[V ar(Y |XK)] ,

returning the variance reduction in the variable Y from
the observation of the opinions XK as a function of the
set of observed agents K ⊆ V. Then, for a given positive
integer s, we aim at studying the optimization problem

max
|K| ≤ s

F (K) . (5)

Remark 2. It is a well known fact that the best estimator
(in mean square error sense) of Y that is measurable w.r.

to XK is given by Ŷ = E[Y |XK]. Moreover,

E[Y − Ŷ ]2 = E[V ar(Y |XK)]

This implies that problem (5) is equivalent to finding the
subset K such that |K| ≤ s that allows for an estimation
of Y with minimal mean square error.

Optimization problem (5) is in fact an instance of more
general subset selection problems, that are known to be
NP-hard (Das and Kempe (2018)). While some of the
literature on subset selection problems has in fact studied
variance reduction problems for Gaussian random vectors,
such as, e.g., Ma et al. (2013), such works usually assume
that the precision matrix W is an L-matrix. In this case,
it is known that the functional F (K) is submodular, i.e.,

F (A ∪ {k})− F (A) ≥ F (B ∪ {k})− F (B) (6)

for every A ⊆ B ⊆ V and k ∈ V\B.
However, as already explained in Section 2, the precision
matrix W of the opinions vector X fails to be an L-
matrix, so that the aforementioned results do not apply
to our model. In fact, as the following examples show, the
functional F (K) is not in general submodular in our case.

Example 1. Let us take as example the undirected line
graph in Fig. 1.

1 2 3 4 5

Fig. 1. Undirected line graph with 5 nodes.

Consider the subsets of nodesA={3},B={2, 3}, {k}={4}
and define the function

Φ = F (A ∪ {k})− F (A)− F (B ∪ {k})− F (B) .
Analysing the sign of function Φ we can deduce if the
inequality in (6) is satisfied (i.e, F is submodular iff Φ ≥ 0).
As shown in Fig. 2, for any choice of the model parameter
λ, which represents the openness to interactions of agents,
the function Φ(λ) < 0 and so the variance reduction is not
submodular.

We highlight a more complex behaviour if we take as
example the cycle graph with 5 nodes. In that case we
observe that the submodularity of the variance reduction
depends on the choice of the model parameter λ as shown
in Fig. 3.

4. MAIN RESULTS

The fact that the process is Gaussian, allows a useful
explicit rewriting of the functional F in terms of the

Fig. 2. Analysis of submodularity of variance reduction
depending on model parameter λ for a line graph with
5 nodes. Study of the sign of function Φ(λ), given the
subset selection A={3},B={2, 3}, {k}={4}.

Fig. 3. Analysis of submodularity of variance reduction
depending on model parameter λ over the cycle graph
with 5 nodes. Study of the sign of function Φ(λ), given
the subset selection A={3},B={2, 3}, {k}={4}.

matrices A and B, and the covariance matrix Σ. We define
C as in (3) and for any subsets K,J ⊆ V, we let CK,J to
denote the submatrix of C having rows in K and columns
in J .

Proposition 1. The functional F (K) admits the following
representation

F (K) = (C1)′K(CK,K)
−1(C1)K . (7)

Proof. It is a standard result that the process X−K
conditioned to XK is Gaussian

X−K|XK ∼ N
(
µ(K), C(K)

)
where

µ(K) = µ−K + C−K,K(CK,K)
−1(XK − µK)

C(K) = C−K,−K − C−K,K(CK,K)
−1CK,−K .

Consequently, we have that

Y |XK ∼ N
(
µ(K) +XK,1

′C(K)1
)
.

Therefore, the functional F (K) in (5) takes the form

F (K) = V ar(Y )− V ar(Y |XK) = 1′C1− 1′C(K)1 . (8)

We now observe that

1′C−K,−K1 = 1′C1− 1′C−K,K1− 1′CK,−K1− 1′CK,K1



and
1′C−K,K1 = 1′(C1)K − 1′CK,K1 .

Substituting in (8) we obtain the thesis. 2

In the special case when |K| = 1, the form of the functional
takes a particularly simple form. Denote

vk =
∑
i

Mik

and
ck =

∑
i

M2
kiσ

2
ik .

Corollary 1. For K = {k}, the functional F takes the
following form

F (k) =
(C1)2k
Ckk

=
(MΣv)2k

ck
. (9)

Analysing the functional in (9) we highlight that variables
v and ck correspond in particular to two known centrality
measures, that are respectively the Bonacich centrality
defined by Bonacich (1987) and the cycle centrality defined
by Talamas and Tamuz (2017). These measures provide
particular information on the graph.
The Bonacich centrality vk for node k ∈ V coincides with
the sum of all the paths in G that start at k: both cycles
from k to k and outer paths from k to general node i ∈ V.
The cycle centrality ck of node k ∈ V coincides instead
with the weighted sum of the number of network cycles
the agent is in. Indeed, if we rewrite the M matrix of the
defined model through the power series expansion:

M =

[ ∞∑
l=0

Al

]
B

and if we assume equal openness degree λ for all the agents
i ∈ V, then

M2
ki = (1− λ)2

( ∞∑
l=0

∞∑
m=0

(Al)ki(A
m)ki

)

= (1− λ)2

( ∞∑
r=0

r∑
s=0

(As)ki(A
r−s)ki

)
.

(10)

5. EXAMPLES AND SIMULATIONS

Firstly, recall that given a graph G, two agents i and j
have the same role, and thus the same centrality measure,
if there is a symmetry on G or if we can define a proper
relabelling which maps i to j. Given this statement, we
can neglect in our analysis the case of simple cycles where
by symmetry all agents have the same role.
In the following examples, let the original beliefs be inde-
pendent and identically distributed with variance σ2

i = 1
and Λ be such that Λii = λ for all i ∈ V and λ ∈ (0, 1) to
analyse the effect of parameter λ on the selection.

Consider the star graph. In this case there are only
two possible roles, fulfilled by the central agent and the
external (or leaf) one. It can be proven analytically that,
in this case, for any possible choice of the parameter λ, the
optimal choice consists in the observation of the central
node whichever is the centrality measure chosen.
The numerator of (9) can be found solving the linear
system Mv=b, that is

(I −A′)(I −A)b

(1− λ)2
= 1 .

Thus, given i = 1 the central node,

b1 =
λ2 + (m+ 1)λ+m

m(λ+ 1)2
,

with m = n− 1, and for all i ≥ 2

bi =
m(1 +mλ2) + λ(1 +m)

m(λ+ 1)
.

The cycle centrality ck can be computed using (10) ob-
taining:

c1 =
m+ λ2

m(1 + λ)2

ci =
(m− 1)(1− λ2)2 + 1 +mλ2

m(1 + λ)2
∀i ≥ 2

Now, comparing the expression of F (k) for the central and
the leaf node we retrieve that for every possible choice of
the parameters the centrality of the central node is always
greater then the one of the leaves.

Let now examine the line graph. For this case problem,
simulations have been done with N = 5 and N = 9. As
shown in Fig. 4 the Bonacich centrality, regardless of λ
value, is higher for nearly extremal nodes (e.g., in the
test cases node 2). The value of the proposed centrality
measure on the contrary depends on parameter λ: the
greater is λ, the more central is the selected node.

(a)

(b)

Fig. 4. Comparison of centrality measures for network roles
depending on the choice of λ for a line graph with
9 nodes: (a) Bonacich Centrality vk, (b) proposed
functional F (k).



Finally, consider the barbell graph in Fig. 5. Due to the
graph symmetry, the three possible roles on this network
are played by agents 1,2,4.

1 23

4

5

6

7

Fig. 5. Barbell graph with 7 nodes.

In Fig. 6, we represent, for various centrality measures, the
values of centrality of the various agents as functions of the
parameter λ. We observe that Bonacich centrality reaches
the maximum with node 2, while cycle centrality with
node 4, both regardless of the choice on λ. Conversely, the
best node to observe according to the proposed centrality
measure F (k) depends on the value of λ and it could be
node 1 or 2. For smaller values of λ (higher stubborn-
ness level), the choice coincides with the one related to
Bonacich centrality. Instead, for λ greater then a certain
threshold λ̄ the minimization of cycle centrality prevails in
the ratio and the optimal choice is node 1.

(a)

(b) (c)

Fig. 6. Comparison of centrality measures for network roles
depending on the choice of λ for the barbell graph
chosen: (a) proposed functional F (k), (b) Bonacich
centrality vk, (c) cycle centrality ck.

This shows that, differently than with other notions of
centrality, the ranking of nodes with respect to this new
OF centrality depends not only on the network but also
on agents’ openness to social interaction λ.

Finally, we compare the optimal performance obtained
by choosing the agent k∗ of highest OF centrality with
the performance obtained by choosing instead the agent
kB of highest Bonacich centrality. For the barbell graph
in Fig. 5 with λ = 0.8, we obtain F (k∗) = 5.70 and
F (kB) = 4.89, with an initial total varince of V ar(Y ) =

7.20. This numerical result underlines the non negligible
improvement that our new centrality allows to obtain.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we have analysed a subset selection prob-
lem for an Opinion Dynamics model. We have chosen as
objective function of the maximization problem the vari-
ance reduction of the aggregate information Y . We have
highlighted how our functional F (k) can be interpreted in
terms of known centrality measures and in particular in
terms of paths and cycles of the original graph G.
Moreover, we have shown, through some examples, that
F (k) is not submodular in our case study and thus the
problem gets more complicate since state-of-the-art results
cannot be applied. A natural follow-up of our work would
be more in-depth analyses of the submodularity aimed to
study possible correlations between topological properties
of the graph and functional sumodularity.
Finally, preliminary simulations on low dimension graphs
led to a node hierarchy which is function of the model
parameters and such behaviour deviates from the one re-
lated to known centrality measures chosen as benchmark.
Future works include so also test of the proposed centrality
measure on a wider selection of high dimensional social
networks.
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