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Correlated Client Availability

Angelo Rodio⇤, Francescomaria Faticanti⇤, Othmane Marfoq⇤†, Giovanni Neglia⇤, Emilio Leonardi‡
⇤Inria, Université Côte d’Azur, France. Email: {firstname.lastname}@inria.fr,

†Accenture Labs, Sophia-Antipolis, France. Email: {firstname.lastname}@accenture.com,
‡Politecnico di Torino, Turin, Italy. Email: {firstname.lastname}@polito.it

Abstract—In Federated Learning (FL), devices – also referred to
as clients – can exhibit heterogeneous availability patterns, often
correlated over time and with other clients. This paper addresses
the problem of heterogeneous and correlated client availability in
FL. Our theoretical analysis is the first to demonstrate the neg-
ative impact of correlation on FL algorithms’ convergence rate
and highlights a trade-off between optimization error (related to
convergence speed) and bias error (indicative of model quality).
To optimize this trade-off, we propose Correlation-Aware FL
(CA-Fed), a novel algorithm that dynamically balances the
competing objectives of fast convergence and minimal model bias.
CA-Fed achieves this by dynamically adjusting the aggregation
weight assigned to each client and selectively excluding clients
with high temporal correlation and low availability. Experimental
evaluations on diverse datasets demonstrate the effectiveness
of CA-Fed compared to state-of-the-art methods. Specifically,
CA-Fed achieves the best trade-off between training time and
test accuracy. By dynamically handling clients with high temporal
correlation and low availability, CA-Fed emerges as a promising
solution to mitigate the detrimental impact of correlated client
availability in FL.

Index Terms—Federated Learning, Correlated Client Availability,
Markov Chains.

I. INTRODUCTION

The enormous amount of data generated by mobile and IoT de-
vices motivated the development of distributed machine learn-
ing training paradigms [2], [3]. Federated Learning (FL) [4]–
[7] is an emerging framework where geographically distributed
devices (or clients) participate in the training of a shared
Machine Learning (ML) model without sharing their local
data. FL was proposed to reduce the overall cost of collecting
a large amount of data as well as to protect potentially
sensitive users’ private information. In the original Federated
Averaging algorithm (FedAvg) [5], a central server selects
a random subset of clients from the set of available clients
and broadcasts them the shared model. The sampled clients
perform a number of independent Stochastic Gradient Descent
(SGD) steps over their local datasets and send their local
model updates back to the server. Then, the server aggregates
the received client updates to produce a new global model, and
a new training round begins. At each iteration of FedAvg, the
server typically samples randomly a few hundred devices to
participate [8], [9].

This research was supported by the French government through the 3IA
Côte d’Azur Investments in the Future project by the National Research
Agency (ANR) with reference ANR-19-P3IA-0002, and by Groupe La Poste,
sponsor of Inria Foundation, in the framework of FedMalin Inria Challenge.

A first version of this work was presented at IEEE INFOCOM 2023 [1].

In real-world scenarios, the availability of clients is dictated
by exogenous factors that are beyond the control of the
orchestrating server and hard to predict. For instance, only
smartphones that are idle, under charge, and connected to
broadband networks are commonly allowed to participate in
the training process [5], [10]. These eligibility requirements
can make the availability of devices correlated over time and
space [8], [11]–[13]. For example, temporal correlation may
origin from a smartphone being under charge for a few consec-
utive hours and then ineligible for the rest of the day. Similarly,
the activity of a sensor powered by renewable energy may
depend on natural phenomena intrinsically correlated over
time (e.g., solar light). Spatial correlation refers instead to
correlation across different clients, which often emerges as
consequence of users’ different geographical distribution. For
instance, clients in the same time zone often exhibit similar
availability patterns, e.g., due to time-of-day effects.

Temporal correlation in the data sampling procedure is known
to negatively affect the performance of ML training even in
the centralized setting [14], [15] and can potentially lead to
catastrophic forgetting: the data used during the final training
phases can have a disproportionate effect on the final model,
“erasing” the memory of previously learned information [16],
[17]. Catastrophic forgetting has also been observed in FL,
where clients in the same geographical area have more similar
local data distributions and clients’ participation follows a
cyclic daily pattern (leading also to spatial correlation) [8],
[11], [12], [18]. Despite this evidence, a theoretical study of
the convergence of FL algorithms under both temporally and
spatially correlated client participation is still missing.

This paper presents the first convergence analysis of
FedAvg [5] under heterogeneous and correlated client avail-
ability. We assume that the clients’ availability follows an
arbitrary finite-state Markov chain, modeling both temporal
and spatial correlation while maintaining analytical tractabil-
ity. Our theoretical analysis provides valuable insights by
(i) quantitatively measuring the negative impact of correla-
tion on the algorithm’s convergence rate through a novel
additional term that depends on the spectral properties of
the Markov chain, and (ii) highlighting an important trade-
off between two conflicting objectives: slow convergence to
the optimal model and fast convergence to a biased model
that minimizes a different objective function from the ini-
tial target. To leverage this trade-off, we propose CA-Fed,
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an algorithm which achieves an optimal balance between
maximizing convergence speed and minimizing model bias
through dynamic adjustment of aggregation weights assigned
to clients. Depending on their contribution to the learning
process, CA-Fed can decide to exclude clients exhibiting low
availability and high temporal correlation. Our experimental
results demonstrate that excluding such clients is a simple, but
effective approach to handle the heterogeneous and correlated
client availability in FL. Across synthetic and real datasets,
CA-Fed consistently outperforms the state-of-the-art methods
F3AST [19] and AdaFed [20] in terms of test accuracy. These
results underscore the importance of optimizing the training
process to leverage available client resources effectively and
mitigate the impact of less available and correlated clients, a
task successfully accomplished by CA-Fed.

The remainder of this paper is organized as follows. Section II
introduces the problem of correlated client availability in FL
and discusses the main related works. Section III provides
a convergence analysis of FedAvg under heterogeneous and
correlated client availability. CA-Fed, our correlation-aware
FL algorithm, is presented in Section IV. We evaluate CA-Fed
in Section V, comparing it with state-of-the-art methods
on synthetic and real-world data. Section VI concludes the
paper. Supplementary material, comprising Appendices A–H,
provides detailed proofs and further discussions on CA-Fed
not included in the main text due to space constraints.

II. BACKGROUND AND RELATED WORKS

We consider a finite set K of N clients. Each client k 2 K
holds a local dataset Dk. Clients aim to jointly learn the
parameters w 2 W ✓ Rd of a global ML model (e.g., the
weights of a neural network architecture). During training, the
quality of the model with parameters w on a data sample
⇠ 2 Dk is measured by a loss function f(w; ⇠). The clients
solve, under the orchestration of a central server, the following
optimization problem:

min
w2W✓Rd

"
F (w) :=

X

k2K

↵kFk(w)

#
, (1)

where Fk(w) := 1
|Dk|

P
⇠2Dk

f(w; ⇠) is the average loss
computed on client k’s local dataset, and ↵ = (↵k)k2K are
positive coefficients such that

P
k ↵k = 1. They represent

the target importance assigned by the central server to each
client k. Typically (↵k)k2K are set proportional to the clients’
dataset size |Dk|, such that the objective function F in (1)
coincides with the average loss computed on the union of the
clients’ local datasets D = [k2KDk.

Under proper assumptions, precised in Section III, Problem (1)
admits a unique solution. We use w⇤ (resp. F

⇤) to denote
the minimizer (resp. the minimum value) of F . Moreover, for
k 2 K, Fk admits a unique minimizer. We use w⇤

k (resp. F ⇤

k )
to denote the minimizer (resp. the minimum value) of Fk.

Problem (1) is commonly solved through iterative algo-
rithms [5], [9] requiring multiple communication rounds be-

tween the server and the clients. At round t > 0, the server
broadcasts the latest estimate of the global model wt,0 to
the set of available clients (At). Client k 2 At updates the
global model with its local data through E � 1 steps of local
Stochastic Gradient Descent (SGD):

wk
t,j+1 = wk

t,j � ⌘trFk(wk
t,j ,Bk

t,j) j = 0, . . . , E � 1, (2)

where ⌘t > 0 is an appropriately chosen learning rate,
referred to as local learning rate; Bk

t,j is a random batch
sampled from client-k’s local dataset at round t and step j;
rFk(·,B) := 1

|B|

P
⇠2B
rf(·, ⇠) is an unbiased estimator of

the local gradient rFk. Then, each client sends its local model
update �k

t := wk
t,E �wk

t,0 to the server. The server computes
�t :=

P
k2At

qk ·�k
t , a weighted average of the clients’ local

updates with non-negative aggregation weights q = (qk)k2K.
The choice of the aggregation weights defines an aggregation
strategy (we will discuss different aggregation strategies later).
The aggregated update �t can be interpreted as a proxy for
�rF (wt,0); the server applies it to the global model:

wt+1,0 = ProjW (wt,0 + ⌘̄ ·�t), (3)

where ProjW (·) denotes the projection over the set W , and
⌘̄ > 0 is an appropriately chosen learning rate, referred to as
the server learning rate.1

The aggregate update �t is generally a biased estimator
of the pseudo-gradient �rF (wt,0), to which each client k

contributes proportionally to its frequency of appearance in
the set At and its aggregation weight qk. More specifically,
under proper assumptions specified in Section III, we will
prove in Theorem 2 that the update rule described by (2)
and (3) converges to the unique minimizer of a biased global
objective FB . This objective function depends depends both
on the clients’ availability (i.e., on the sequence (At)t>0) and
on the aggregation strategy (i.e., on q = (qk)k2K

):

FB(w) :=
PN

k=1 pkFk(w), with pk := ⇡kqkPN
h=1 ⇡hqh

, (4)

where ⇡k represents the asymptotic availability of client k,
defined as ⇡k := limt!+1 P(k 2 At). We denote ⇡ =
(⇡k)k2K. Moreover, the coefficients p = (pk)k2K in (4) can
be interpreted as the biased importance the server is giving
to each client k during training, in general different from the
target importance ↵. In what follows, w⇤

B (resp. F ⇤

B) denotes
the minimizer (resp. the minimum value) of FB .

In some large-scale FL applications, like training Google
keyboard next-word prediction models, each client participates
in training at most for one round. The orchestrator usually
selects a few hundred clients at each round for a few thousand
rounds (e.g., see [6, Table 2]), but the available set of clients
may include hundreds of millions of Android devices. In this
scenario, it is difficult to address the potential bias unless there
is some a-priori information about each client’s availability.

1The aggregation rule (3) has been considered also in other works, e.g., [9],
[21], [22]. In other FL algorithms, the server computes an average of clients’
local models. This aggregation rule can be obtained with minor changes to (3).
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Anyway, FL can be used by service providers with access
to a much smaller set of clients (e.g., smartphone users that
have installed a specific app). In this case, a client participates
multiple times in training: the orchestrating server may keep
track of each client’s availability and try to compensate for
the potentially dangerous heterogeneity in their participation.

Much previous effort on federated learning [5], [18]–[20],
[23]–[26] considered this problem and, under different as-
sumptions on the clients’ availability (i.e., on (At)t>0), de-
signed aggregation strategies that unbias �t through an appro-
priate choice of q. Reference [23] provides the first analysis of
FedAvg on non-iid data under clients’ partial participation.
Their analysis covers both the case when active clients are
sampled uniformly at random without replacement from K and
assigned aggregation weights equal to their target importance
(as assumed in [5]), and the case when active clients are
sampled iid with replacement from K with probabilities ↵
and assigned equal weights (as assumed in [24]). However,
references [5], [23], [24] ignore the variance induced by the
clients stochastic availability. The authors of [25] reduce such
variance by considering only the clients with important up-
dates, as measured by the value of their norm. References [18]
and [26] reduce the aggregation variance through clustered and
soft-clustered sampling, respectively.

Some recent works [19], [20], [27] do not actively pursue the
optimization of the unbiased objective. Instead, they derive
bounds for the convergence error and propose heuristics to
minimize those bounds, potentially introducing some bias.
Our work follows a similar development: we compare our
algorithm with F3AST from [19] and AdaFed from [20].

The novelty of our study is in considering the spatial and
temporal correlation in clients’ availability dynamics. As dis-
cussed in the introduction, such correlations are also intro-
duced by clients’ eligibility criteria, e.g., smartphones being
under charge and connected to broadband networks. The effect
of correlation has been ignored until now, probably due to the
additional complexity in studying FL algorithms’ convergence.
To the best of our knowledge, the only exception is [19], which
scratches the issue of spatial correlation by proposing two
different algorithms for the case when clients’ availabilities
are uncorrelated and for the case when they are positively
correlated (there is no smooth transition from one algorithm
to the other as a function of the degree of correlation).

The effect of temporal correlation on centralized stochastic
gradient methods has been addressed in [13]–[15], [28]: these
works study a variant of stochastic gradient descent where
samples are drawn according to a Markov chain. Refer-
ence [13] extends its analysis to a FL setting where each client
draws samples according to a Markov chain. In contrast, our
work does not assume a correlation in the data sampling but
rather in the client’s availability. Nevertheless, some of our
proof techniques are similar to those used in this line of work
and, in particular, we rely on some results in [15].

III. ANALYSIS

A. Main assumptions
We consider a time-slotted system where a slot corresponds
to a single FL communication round. We assume that clients’
availability over the timeslots t 2 N follows a discrete-time
Markov chain (At)t�0.2

Assumption 1. The Markov chain (At)t�0 on the M -finite
state space M is time-homogeneous, irreducible, and ape-
riodic. It has transition matrix P , stationary distribution ⇢,
and has state distribution ⇢ at time t = 0.

Markov chains have already been used in the literature to
model the dynamics of stochastic networks where some nodes
or edges in the graph can switch between active and inactive
states [29], [30]. The previous Markovian assumption, while
allowing a great degree of flexibility, still guarantees the
analytical tractability of the system. The distance dynamics
between the current and the stationary distributions of the
Markov process can be characterized in terms of the spectral
properties of its transition matrix P [31]. Let �̄2(P ) denote the
the second largest module of the eigenvalues of P . Previous
work [15] has shown that:

max
i,j2[M ]

|[P t]i,j � ⇢j |  CP · �(P )t, for t � TP , (5)

where the parameters �(P ) := (�̄2(P ) + 1)/2, CP , and TP

are positive constants whose values are defined in [15,
Lemma 1] and reported for completeness in Appendix B2,
Lemma 16.3 Note that �(P ) quantifies the correlation of the
Markov process (At)t�0: the closer �(P ) is to one, the slower
the Markov chain converges to its stationary distribution.

In our analysis, we make the following additional assumptions.

Assumption 2. The hypothesis class W is convex and com-
pact with diameter diam(W ), and contains the minimizers
w⇤

,w⇤

B ,w
⇤

k in its interior.

The following assumptions concern clients’ local objective
functions {Fk}k2K. Assumptions 3 and 4 are standard in
the literature on convex optimization [32, Sections 4.1, 4.2].
Assumption 5 is a standard hypothesis in the analysis of
federated optimization algorithms [9, Section 6.1].

Assumption 3 (L-smoothness). The local functions {Fk}Nk=1
have L-Lipschitz continuous gradients: Fk(v)  Fk(w) +
hrFk(w),v �wi+ L

2 kv �wk22, 8v,w 2W .

Assumption 4 (Strong convexity). The local functions
{Fk}Nk=1 are µ-strongly convex: Fk(v) � Fk(w) +
hrFk(w),v �wi+ µ

2 kv �wk22 , 8v,w 2W .

Assumption 5 (Bounded variance). The variance of stochas-
tic gradients in each device is bounded: E krFk(w,B) �
rFk(w)k2  �2

k, k = 1, . . . , N .

2In Section III-D we will focus on the case where this chain is the
superposition of N independent Markov chains, one for each client.

3Note that (5) holds for different definitions of �(P ) as long as �(P ) 2
(�̄2(P ), 1). The specific choice for �(P ) changes the values of CP and TP .
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Assumptions 2–5 imply the following properties for the local
functions, described by Lemma 1 (proof in Appendix B).

Lemma 1. Under Assumptions 2–5, there exist constants D,
G, and H > 0, such that, for all w 2W and k 2 K, we have:

krFk(w)k  D, (6)
E krFk(w,B)k2  G

2
, (7)

|Fk(w)� Fk(w
⇤

B)|  H. (8)

Similarly to other works [9], [23], [24], [33], we introduce a
metric to quantify the heterogeneity of clients’ local datasets,
typically referred to as statistical heterogeneity:

� := max
k2K

{Fk(w
⇤)� F

⇤

k }. (9)

If the local datasets are identical, the local functions {Fk}k2K

coincide among them and with F , w⇤ is a minimizer of each
local function, and � = 0. In general, � is smaller the closer
the distributions the local datasets are drawn from.

B. Main theorems

Theorem 1 (Decomposing the total error). Let  := L/µ.
Under Assumptions 2–4, the optimization error of the target
global objective ✏ = F (w)� F

⇤ can be bounded as follows:

✏  22(FB(w)� F
⇤

B| {z }
:=✏opt

+F (w⇤

B)� F
⇤

| {z }
:=✏bias

). (10)

Moreover, let �2
↵kp :=

PN
k=1 (↵k � pk)2/pk. Then:

✏bias  2 · �2
↵kp · �
| {z }

:=✏̄bias

. (11)

Theorem 1 (proof in Appendix A) decomposes the error
of the target objective (✏) as the sum of an optimization
error for the biased objective (✏opt) and a bias error (✏bias).
The term ✏opt, evaluated on the trajectory determined by
scheme (3), quantifies the optimization error associated with
the biased objective FB and asymptotically vanishes (see The-
orem 2 below). The non-vanishing bias error ✏bias captures the
discrepancy between F (w⇤

B) and F
⇤. This term is bounded by

the chi-square divergence �2
↵kp between the target and biased

probability distributions ↵ = (↵k)k2K and p = (pk)k2K, and
by �, that quantifies the degree of heterogeneity of the local
functions. When all local functions are identical (� = 0),
the bias term ✏bias also vanishes. For � > 0, the bias error
can still be controlled by the aggregation weights assigned
to the devices. In particular, the bias term vanishes when
qk / ↵k/⇡k, 8k 2 K. Since it asymptotically cancels the bias
error, we refer to this choice as unbiased aggregation strategy.

However, in practice, FL training is limited to a finite number
of iterations T (typically a few hundreds [6], [8]), and the
previous asymptotic considerations may not apply. In this
regime, the unbiased aggregation strategy can be sub-optimal,
since the minimization of ✏bias not necessarily leads to the

minimization of the total error ✏  22(✏opt + ✏bias). This
motivates the analysis of the optimization error ✏opt.

Theorem 2 (Convergence of the optimization error ✏opt).
Let Assumptions 1–5 hold and the constants M,L,D,G,H,�,
�k, CP , TP , and �(P ) defined above. Let Q :=

P
k2K

qk.
We require a diminishing step-size ⌘t > 0 satisfying:

⌘1  1
2L(1+2EQ) ,

+1P
t=1

⌘t = +1,

+1P
t=1

ln(t) · ⌘2t < +1. (12)

Let T denote the total communication rounds. For T � TP ,
the expected optimization error can be bounded as follows:

E[FB(w̄T,0)� F
⇤

B ] 

1
2q

|⌃q+�

⇡|q +  + �
ln(1/�(P ))

(
PT

t=1 ⌘t)
,

| {z }
:=✏̄opt

(13)

where w̄T,0 :=
PT

t=1 ⌘twt,0PT
t=1 ⌘t

, and

⌃ := diag(2(E + 1)�2
k⇡k

P+1

t=1 ⌘
2
t ),

� := 2
E diam(W )2 + 1

4MQ
P+1

t=1 (⌘
2
t +

1
t2 ),

 := (4L(1 + EQ)�+ 2E2
G

2)
P+1

t=1 ⌘
2
t +H(

PTP�1
t=1 ⌘t),

Jt :=min {max {dln (2CPHt)/ln (1/�(P ))e , TP } , t} ,
� := 2EDGQ

P+1

t=1 ln(2CPHt)⌘2t�Jt
.

Theorem 2 (proof in Appendix B) proves convergence of
the expected biased objective FB to its minimum F

⇤

B under
correlated client participation. Our bound (13) captures the
effect of correlation through the factor ln (1/�(P )): a high
correlation worsens the convergence rate. In particular, we
found that the numerator of (13) has a quadratic-over-linear
fractional dependence on q. Minimizing ✏̄opt leads, in general,
to a different choice of q than minimizing ✏̄bias.

C. Minimizing the total error ✏  22(✏̄opt + ✏̄bias)

Our analysis points out a trade-off between minimizing ✏̄opt
or ✏̄bias. Our goal is to find the optimal aggregation weights q⇤

that minimize the upper bound on total error ✏(q) in (10):

minimize
q

✏̄opt(q) + ✏̄bias(q);

subject to q � 0,

kqk1 = Q.

(14)

In Appendix D we prove that (14) is a convex optimization
problem, which can be solved with the method of Lagrange
multipliers. However, its solution lacks practical utility be-
cause the constants in (10) and (13) (e.g., L, µ, �, CP ) are
in general problem-dependent and difficult to estimate during
training. In particular, � poses particular difficulties as it is
defined in terms of the minimizer of the target objective F , but
the FL algorithm generally minimizes the biased function FB .
Moreover, the bound in (10), as well as the bound in [33],
diverges when setting some qk values equal to 0, but this
divergence is merely an artifact of the proof technique. For
more practical considerations, we present the following result
(proof in Appendix C):
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Theorem 3 (An alternative bound on the bias error ✏bias).
Under the same assumptions of Theorem 1, define �0 :=
maxk{Fk(w⇤

B)� F
⇤

k }. The following result holds:

✏bias  42 · d2TV (↵,p) · �0

| {z }
:=✏̄0bias

, (15)

where dTV (↵,p) := 1
2

PN
k=1|↵k � pk| is the total variation

distance between the probability distributions ↵ and p.

The new constant �0 is defined in terms of w⇤

B , and then
it is easier to evaluate during training. However, �0 depends
on q, because it is evaluated at the point of minimum of FB .
This dependence makes the minimization of the right-hand
side of (15) more challenging (for example, the corresponding
problem is not convex). We study the minimization of the two
terms ✏̄opt and ✏̄0bias separately and learn some insights, which
we use to design the new FL algorithm CA-Fed.

D. Minimizing ✏̄opt

The minimization of ✏̄opt is still a convex optimization problem
(Appendix E). In particular, at the optimum, non-negative
weights are set accordingly to q

⇤

k = a(◆⇤⇡k � ✓
⇤) with

a and ◆
⇤ positive constants (Appendix E2). It follows that

clients with smaller availability get smaller weights in the
aggregation. In particular, this suggests that clients with the
smallest availability can be excluded from the aggregation,
leading to the following guideline:

Guideline A: to accelerate convergence, we can exclude clients
with low availability ⇡k by setting q

⇤

k = 0.

This guideline can be justified intuitively: updates from clients
with low participation may be too sporadic to allow the FL
algorithm to keep track of their local objectives. Their updates
act as a noise slowing down the algorithm’s convergence. It
may then be advantageous to exclude these clients.

We observe that the choice of the aggregation weights q
does not affect the clients’ availability process and, in particu-
lar, �(P ). However, if the algorithm excludes some clients, it
is possible to consider the state space of the Markov chain that
only specifies the availability state of the remaining clients,
and this Markov chain may have different spectral properties.
For the sake of concreteness, unless otherwise specified, we
consider from now on the particular case when the availability
of each client k evolves according to a Markov chain (Ak

t )t�0

with transition probability matrix Pk and these Markov chains
are all independent [31, Exercise 12.6]. In this case, the
aggregate process is described by the product Markov chain
(At)t�0 with transition matrix P =

N
k2K

Pk and �(P ) =
maxk2K �(Pk), where Pi

N
Pj denotes the Kronecker prod-

uct between matrices Pi and Pj (Appendix F2). In this setting,
it is possible to redefine the Markov chain (At)t�0 by taking
into account the reduced state space defined by the clients with
a non-null aggregation weight, i.e., P 0 =

N
k0

2K|qk0>0 Pk0

and �(P 0) = maxk0
2K|qk0>0 �(Pk0), which is potentially

smaller w.r.t. the case when all clients participate to the aggre-
gation. These considerations lead to the following guideline:

Guideline B: to accelerate convergence, we can exclude clients
with high correlation (high �(Pk)) by setting their q

⇤

k = 0.

Intuition also supports this guideline. Clients with large �(Pk)
tend to be available or unavailable for long periods of time.
Due to the well-known catastrophic forgetting problem affect-
ing gradient methods [34], [35], these clients may unfairly
steer the algorithm toward their local objective when they
appear at the final stages of the training period. Moreover,
their participation in the early stages may be useless, as their
contribution will be forgotten during their long absence. The
FL algorithm may benefit from directly neglecting such clients.

We observe that Guideline B strictly applies to this specific
setting where clients’ dynamics are independent (and there is
no spatial correlation). We do not provide a corresponding
guideline for the case when clients are spatially correlated
(we leave this task for future research). However, in this more
general setting, it is possible to ignore Guideline B but still
draw on Guidelines A and C, or still consider Guideline B
if the spatially correlated clients can be grouped in clusters,
each cluster evolving as an independent Markov chain (see
Section V-B, Paragraph e).

E. Minimizing ✏̄0bias

The bias error ✏̄0bias in (15) vanishes when the total variation
distance between the target importance ↵ and the biased
importance p is zero, i.e., when qk / ↵k/⇡k, 8k 2 K.
Then, after excluding the clients that contribute the most
to the optimization error and particularly slow down the
convergence (Guidelines A and B), we can assign to the
remaining clients an aggregation weight inversely proportional
to their availability, such that the bias error ✏̄0bias is minimized.

Guideline C: to minimize the bias error, we assign q
⇤

k /
↵k/⇡k to the clients not excluded by the previous guidelines.

IV. PROPOSED ALGORITHM

Guidelines A and B in Section III suggest that minimizing ✏̄opt
can lead to the exclusion of some available clients from the
aggregation step (3), in particular those with low availability
and/or high correlation. For the remaining clients, Guide-
line C proposes setting their aggregation weight inversely
proportional to their availability to reduce the bias error ✏̄0bias.
Motivated by these insights, we propose CA-Fed, a client
aggregation strategy that considers the problem of correlated
client availability in FL, described in Algorithm 1. CA-Fed
learns during training which clients to exclude and how to set
the aggregation weights of the remaining clients to achieve
a good trade-off between ✏̄opt and ✏̄

0

bias. While Guidelines A
and B indicate which clients to remove, the exact number of
clients to remove at round t is identified by minimizing ✏

(t)

as a proxy for the bounds in (10) and (15):

✏
(t) := FB(wt,0)� F

⇤

B| {z }
✏opt

+ 4̄2 · d2TV (↵,p)�0

| {z }
✏̄0bias

, (16)

where ̄2 � 0 is a hyper-parameter that weights the relative
importance of the optimization and bias error (see Sec. IV-C).
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A. CA-Fed’s core steps
At each communication round t, the server sends the current
model wt,0 to all active clients and each client k sends back
a noisy estimate F

(t)

k of the current loss computed on a batch
of samples Bk

t,0, i.e., F (t)

k = 1
|B

k
t,0|

P
⇠2B

k
t,0

f(wt,0, ⇠) (line 3).
The server uses these values and the information about the
current set of available clients At to refine its own estimates
of each client’s loss (F̂ (t) = (F̂ (t)

k )k2K), and each client’s loss
minimum value (F̂ ⇤ = (F̂ ⇤

k )k2K), as well as of �0, ⇡k, �(Pk),
and ✏

(t), denoted as �̂
0
(t), ⇡̂(t)

k , �̂(t)

k , and ✏̂
(t), respectively

(possible estimators are described below) (line 4).

The server decides whether excluding clients whose avail-
ability pattern exhibits high correlation (high �̂

(t)

k ) (line 6).
First, the server considers all clients in descending order of
�̂(t) (line 14), and evaluates if, by excluding them (line 17),
✏̂
(t) appears to be decreasing by more than a threshold ⌧ � 0

(line 19). Then, the server considers clients in ascending order
of ⇡̂(t), and repeats the same procedure to possibly exclude
some of the clients with low availability (low ⇡̂

(t)

k ) (lines 7).

Once the participating clients (those with qk > 0) have
been selected, the server notifies them to proceed updating
the current models (lines 9–10) according to (2), while the
other available clients stay idle. Finally, model’s updates are
aggregated according to (3) (line 12).

B. Estimators
We now briefly discuss possible implementation of the esti-
mators F̂ (t)

k , F̂ ⇤

k , �̂
0
(t), ⇡̂(t)

k , and �̂(t)

k . Server’s estimates for the
clients’ local losses (F̂ (t) = (F̂ (t)

k )k2K) can be obtained from
the received active clients’ losses (F (t) = (F (t)

k )k2At ) through
an auto-regressive filter with parameter � 2 (0, 1]:

F̂ (t) = (1� �1At)� F̂ (t�1) + �1At � F (t)
, (17)

where � denotes the component-wise multiplication between
vectors, and 1At is a N -dimensions binary vector whose k-th
component equals 1 if and only if client k is active at round t,
i.e., k 2 At. The server can estimate client-k’s loss minimum
value F

⇤

k as F̂
⇤

k = mins2[0,t] F̂
(s)

k . The values of FB(wt,0),
F

⇤

B , �0, and ✏(t) can be estimated as follows:

F̂
(t)

B � F̂
⇤

B = hF̂ (t) � F̂ ⇤
, ⇡̂(t)�̃q(t)i, (18)

�̂
0
(t) = maxk2K(F̂

(t)

k � F̂
⇤

k ), (19)

✏̂
(t) = F̂

(t)

B � F̂
⇤

B + 4̄2 · d2TV (↵, ⇡̂(t)�̃q(t))�̂
0
(t)
. (20)

where ⇡�̃q 2 RN , such that
�
⇡�̃q

�
k
:= ⇡kqkPN

h=1 ⇡hqh
, k 2 K.

For ⇡̂
(t)

k , the server can simply keep track of the total
number of times client k was available up to time t and
compute ⇡̂(t)

k using a Bayesian estimator with beta prior, i.e.,
⇡̂

(t)

k = (
P

st 1k2As +nk)/(t+nk +mk), where nk and mk

are the initial parameters of the beta prior.

For �̂(t)

k , the server can assume the client’s availability evolves
according to a Markov chain with two states (active and
inactive), track the corresponding number of state transitions,

Algorithm 1: CA-Fed (Correlation-Aware FL)
Input : w0,0, ↵, q(0), {⌘t}T

t=1, ⌘̄, E, ̄2, �, ⌧
1 Initialize F̂ (0), F̂ ⇤, �̂

0
(0), ⇡̂(0), and �̂(0);

2 for t = 1, . . . , T do
3 Receive set of active client At, loss vector F (t);
4 Update F̂ (t), �̂

0
(t), ⇡̂(t), and �̂(t);

5 Initialize q(t) = ↵
⇡̂(t) ;

6 q(t)  get(q(t)
,↵, F̂ (t)

, F̂ ⇤
, �̂

0
(t)
, ⇡̂(t)

, �̂(t));
7 q(t)  get(q(t)

,↵, F̂ (t)
, F̂ ⇤

, �̂
0
(t)
, ⇡̂(t)

, 9⇡̂(t));
8 for client {k 2 At; q

(t)
k > 0}, in parallel do

9 for j = 0, . . . , E � 1 do
10 wk

t,j+1 = wk
t,j � ⌘trFk(wk

t,j ,Bk
t,j) ;

11 �k
t  wt,E �wt,0;

12 wt+1,0  ProjW (wt,0 + ⌘̄
P

k2At
q
(t)

k ·�k
t );

13 Function get(q, ↵, F , F ⇤, �, ⇡, ⇢):
14 Sort K by descending order in ⇢;
15 ✏̂ hF � F ⇤

,⇡�̃qi+ 4̄2 · d2TV (↵,⇡�̃q)�;
16 for k 2 K do
17 q

+
k  0;

18 ✏̂
+  hF�F ⇤

,⇡�̃q+i+4̄2·d2TV (↵,⇡�̃q+)�;
19 if ✏̂� ✏̂+ � ⌧ then
20 ✏̂ ✏̂

+;
21 q  q+;
22 return q

and estimate the transition matrix P̂ (t)

k through a Bayesian
estimator similarly to what done for ⇡̂

(t)

k . Finally, �̂(t)

k is
obtained computing the eigenvalues of P̂ (t)

k .

C. The role of the hyper-parameter ̄2

Theorems 1 and 3 suggest that the condition number 2 has
a significant impact on the minimization of the total error ✏.
Our algorithm uses a proxy (✏(t)) for the total error (see (16)).
To account for the effect of 2, we introduced the hyper-
parameter ̄2 � 0, which weights the relative importance of
the optimization and bias error in (16). In practice, ̄2 controls
the number of excluded clients by CA-Fed. A small value
of ̄2 penalizes the bias term in favor of the optimization error,
resulting in a larger number of excluded clients. Conversely,
the bias term dominates for large values of ̄2, and CA-Fed
tends to include more clients. Asymptotically, for ̄2 ! 1,
CA-Fed reduces to the unbiased aggregation strategy.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup
a) Federated system simulator: In our experiments, we con-
sider a population of N = |K| = 100 clients. We model the
activity of each client k 2 K as a two-state homogeneous
Markov process with state space S = {“active”, “inactive”},
characterized by a transition matrix Pk, a stationary distribu-
tion ⇡(k), and a second largest absolute eigenvalue �̄2(Pk)
(see Appendix F3 for details). Our goal is to simulate realistic
dynamics of federated systems featuring varying levels of
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(a) Synthetic (b) MNIST (c) CIFAR-10 (d) Cumulative importance

Fig. 1: Average test accuracy among N = 100 clients achieved by the algorithms on the Synthetic, MNIST, and CIFAR-10
datasets. Cumulative importance assigned by the algorithms to the clients after T = 200 rounds on the Synthetic dataset.

clients’ availability and correlation. To introduce heterogeneity
in clients’ availability patterns, we divide the population in
two equally-sized classes: the “more available” clients with a
steady-state probability of being active ⇡k,active = 1/2+g, and
the “less available” clients with ⇡k,active = 1/2� g. Here, the
parameter g 2 (0, 1/2) controls the degree of heterogeneity
in clients’ availability. We furthermore divide each class of
clients in two equally-sized sub-classes: clients exhibiting a
largely correlated time behavior (in the following referred to
as “correlated” clients) that tend to persist in the same state for
rather long periods (�k = ⌫ with values of ⌫ close to 1), and
clients exhibiting a weakly correlated time behavior (referred
to as “weakly correlated” clients) that are almost as likely to
keep as to change their state at every t (�k ⇠ N (0, "2), with
" close to 0). We use g = 0.4, ⌫ = 0.9, and " = 10�2.
b) Datasets and models: We conduct experiments on the
LEAF Synthetic dataset [36], a benchmark for multinomial
classification tasks, and on the real-world MNIST [37] and
CIFAR-10 [38] datasets, respectively for handwritten dig-
its and image recognition tasks. To simulate the statistical
heterogeneity present in the federated learning system, we
use common approaches in the literature. For the Synthetic
dataset, we tune the parameters (�, �), which control data
heterogeneity among clients [23]. For MNIST and CIFAR-
10, we distribute samples from the same class across the
clients according to a symmetric Dirichlet distribution with
parameter & , following the same approach as [39]. Unless
otherwise indicated, we set � = � = & = 0.5. We use the
original training/test data split of MNIST and reserve 20% of
the training dataset as the validation dataset. For Synthetic and
MNIST, we use a linear classifier with a ridge penalization
of parameter 10�2, which corresponds to a strongly convex
objective function. For CIFAR-10, we use a neural network
with two convolutional and one fully connected layers.
c) Benchmarks: We compare CA-Fed, defined in Algo-
rithm 1, with four baselines including two state-of-the-art
FL algorithms discussed in Section II: 1) Unbiased, which
aggregates the active clients k 2 At with weights qk = ↵k/⇡k;
2) More available, which considers only the “more avail-
able” clients and always excludes the “less available” ones;
3) AdaFed [20], which, similarly to Unbiased, aggregates
all active clients, but normalizes their aggregation weights

(i.e., it considers qk = ↵k/⇡kP
k2At

↵k/⇡k
); 4) F3AST [19], which,

oppositely to More available, favors the “less available”
clients. For all algorithms, we tuned the learning rates ⌘, ⌘̄ via
grid search. For CA-Fed, we use � = ⌧ = 0. Unless otherwise
specified, we assume that the algorithms can access an oracle
providing the true availability parameters for each client:
in practice, all the algorithms rely on the exact knowledge
of ⇡k,active; in addition, CA-Fed also receives �(Pk). In
Section V-B, Paragraph d, we will relax this assumption by
considering the estimators ⇡̂

(t)

k and �̂
(t)

k . The code for this
paper is available at: https://github.com/arodio/CA-Fed.

B. Experimental Results

a) CA-Fed vs. baselines: Figure 1 compares the test accuracy
achieved by CA-Fed (̄2 = 1) and the baselines on the
Synthetic (Fig. 1a), MNIST (Fig. 1b), and CIFAR-10 (Fig. 1c)
datasets over 10 different runs. Across all three datasets,
CA-Fed consistently outperforms the baselines, achieving
higher test accuracy (+1.56 pp on Synthetic; +0.94 pp on
MNIST; +1.32 pp on CIFAR-10) compared to the second best
performing method, AdaFed. These results demonstrate that
CA-Fed achieves the best balance between convergence speed
and test accuracy. For deeper insights into the algorithms’
behavior, Figure 1d illustrates the cumulative aggregation
weights { 1

T

PT
t=1 q

(t)

k }k2K, representing the cumulative im-
portance that the algorithms assigned to the clients at the
end of the training. In Figure 1d, we grouped the clients
into three categories: “more available”, “less available, weakly
correlated”, and “less available, correlated”. By setting the
aggregation weights inversely proportional to the clients’
availabilities, Unbiased equalizes the importance for all
clients (see Fig. 1d), but achieves a slower convergence (as
shown in Figs. 1a, 1b, and 1c). On the contrary, by excluding
all the “less available” clients, More available achieves
a faster convergence but introduces a non-vanishing bias
error ✏bias, which, in practice, leads to poor accuracy perfor-
mance. The state-of-the-art algorithm AdaFed, similarly to
Unbiased, considers all the active clients, but normalizes
their aggregation weights at each communication round. As a
result, similarly to CA-Fed, AdaFed indeed prioritizes the
“more available” clients (as shown in Fig. 1d), and then a
convergence speed-up could be expected. However, AdaFed
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does not exclude the “less available and correlated” clients,
and therefore their presence causes a convergence slowdown.
Finally, F3AST favors the “less available, correlated” clients
and achieves a slower convergence with a non-vanishing
bias error, which corresponds to lower accuracy performance.
By opportunely excluding some of the “less available and
correlated” clients, CA-Fed achieves the best test accuracy
by the end of the training time.

b) Convergence speed vs. Bias error: The trade-off be-
tween ✏opt or ✏bias discussed in Section III is visible in our ex-
periments. In particular, Figure 2a compares the test accuracy
achieved by More available, Unbiased, and CA-Fed
on the Synthetic dataset for T = 500 communication rounds.
As expected, by targeting the minimization of ✏opt and thus
excluding the “less available” clients, More available
achieves the fastest convergence at the expense of a large
non-vanishing bias error ✏bias. On the other hand, by targeting
the minimization of ✏bias and thus equalizing the clients’
importance, Unbiased asymptotically removes this error and
ultimately achieves the highest test accuracy at communication
round T = 500, but suffers from slower convergence due to the
presence of the “correlated” clients. Our algorithm, CA-Fed,
leverages the trade-off between convergence speed and model
bias and achieves fast convergence to the neighborhood of
the target objective. To explore this trade-off, in Figure 2a,
we varied the value of the hyper-parameter ̄2 in the range
{10�2

, 10�1
, 100, 101, 102}. CA-Fed tends to exclude more

clients for low values of ̄2 and achieves a similar convergence
rate as More available for ̄2 = 10�2. For intermediate
values of ̄2, CA-Fed trades a small accuracy decrease for
faster convergence (refer, for example, to the curves ̄2 =
100, 101). For ̄2 = 102, CA-Fed reduces to Unbiased
(their curves overlap in Fig. 2a). Moreover, we observe that
the optimal value of ̄2 depends on the available time for
training. Low values of ̄2 speed-up convergence and then they
can be beneficial for short training durations (e.g., CA-Fed
(̄ = 10�1) achieves a higher test accuracy of +2.8 pp with
respect to Unbiased at communication round t = 40). For
longer training periods, a larger value of ̄2 may be preferable
as it reduces the bias error and increases the test accuracy (e.g.,
CA-Fed (̄ = 102) improves of +3.8 pp with respect to More
available at communication round t = 500). Figure 2b
illustrates the optimal value of ̄2 for different durations of
the training period T .

c) Effect of statistical heterogeneity: The bias error
bounds ✏̄bias and ✏̄

0

bias in Theorems 1 and 3 are influenced
by the degree of heterogeneity among local functions, com-
monly known as statistical heterogeneity, characterized by
the constants � and �0 in (11) and (15), respectively. To
control statistical heterogeneity, we manipulate the dissimi-
larity among the clients’ local datasets, specifically through
the parameters � and � in the case of the Synthetic dataset, as
explained in Section V-A. Figure 3 illustrates the impact of �
and � on the test accuracy achieved by CA-Fed after T = 200
communication rounds on the Synthetic dataset. As expected,

(a) Test accuracy (b) Optimal ̄2

Fig. 2: Convergence speed vs. Model bias trade-off for differ-
ent values of ̄2 on the Synthetic dataset, for � = � = 0.5.

Fig. 3: Effects of data heterogeneity on the Synthetic dataset
after T = 200 rounds.

(a) Estimation error (b) Test accuracy

Fig. 4: Estimation of the clients’ activities (⇡̂(t)

k , �̂
(t)

k ) for
different priors t 2 {101, 101.5, 102, 102.5, 103, 103.5, 104} and
test accuracy after T = 50 rounds on the MNIST dataset.

in the extreme IID setting (when � = � = 0), � and �0 are
small, and the bias error ✏bias is negligible. As a result, More
available and CA-Fed (̄2 = 10�2) reach the highest
test accuracy, whereas CA-Fed (̄2 = 102) and Unbiased
present slow convergence. Nevertheless, More available
and CA-Fed (̄2 = 10�2) perform poorly as the statistical
heterogeneity increases (i.e., � = � � 0.25). In the extreme
non-IID setting (when � = � = 1), � and �0 are large, and ✏bias
dominates. In this case, CA-Fed (̄2 = 102) and Unbiased
should be preferred. For � = � = {0.25, 0.5, 0.75}, CA-Fed
(with ̄

2 = 1 or ̄2 = 10) achieves the highest test accuracy
(+1.6 pp, +1.2 pp, and +1.0 pp with respect to Unbiased).

d) Estimation of the clients’ availability and correlation:
In this experiment, CA-Fed utilizes estimators ⇡̂(t)

k and �̂
(t)

k
to estimate the clients’ ⇡k and �k values. We employ a
Bayesian estimator with a beta prior to estimate P̂ (t)

k , which
we generate by observing the evolution of the Markov
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(a) Homogeneous/Homogeneous (b) Homogeneous/Heterogeneous (c) Heterogeneous/Heterogeneous (d) Test accuracy

Fig. 5: Clients’ activities and CA-Fed’s inclusion/exclusion decisions in the presence of spatial correlation for different degrees
of intra-cluster/inter-cluster data distributions. Average test accuracy after T = 100 rounds on the MNIST dataset.

chain defined by Pk over t
0 time-steps. We compute ⇡̂

(t)

k

and �̂
(t)

k analytically, following the methodology explained
in Section IV-B and described in detail in Appendix F3.
Figure 4a shows the estimation errors 1

N

P
k2K

|⇡̂(t)

k �⇡k| and
1
N

P
k2K

|�̂(t)

k � �k| as a function of the number of historical
observations t

0. As expected, both errors decrease with an
increasing number of observations, and the estimation error
for �k is larger than that for ⇡k. Furthermore, Figure 4b
compares the final test accuracy obtained by CA-Fed and
the baselines for varying numbers of historical observations
t
0 2 {101, 101.5, 102, 102.5, 103, 103.5, 104} when training for
T = 50 rounds on the MNIST dataset. In this setting, CA-Fed
outperforms the baselines for t

0 � 100. This value is reason-
able, because estimating �k requires a number of observations
comparable to the expected hitting time for the slowest Markov
chain, which is given by maxk2K

1
(1��k)⇡k

= 100.

e) CA-Fed with Spatial Correlation: Although CA-Fed is
primarily designed to handle temporal correlation (as dis-
cussed in Section III-D), we also evaluate its performance in
the presence of spatial correlation. In the considered spatially
correlated scenario, clients are grouped into clusters, and each
cluster c 2 C is characterized by an underlying Markov chain
that determines when all clients in the cluster are available
or unavailable. The Markov chains of different clusters are
independent. Let �c denote the second-largest eigenvalue
in magnitude of cluster c’s Markov chain. To reduce the
eigenvalue of the aggregate Markov chain, CA-Fed needs to
exclude all clients in the cluster c̄ = argmaxc2C �c. In this
experiment, we consider a population of N = 100 clients
grouped into |C| = 10 clusters. We equally split the clients, or
equivalently, the clusters, into two categories: “more available”
with ⇡c = 0.9 and �c = 0 for c = 0, . . . , 4, and “less
available, correlated” with ⇡c = 0.1 and �c = c/10 for
c = 5, . . . , 9. In Figures 5a, 5b, and 5c, each pixel represents,
for each client k 2 K and for each communication round,
the client’s activity (active/inactive) and CA-Fed’s decision
(included/excluded in training). From the experiments, we
observe that CA-Fed’s decisions depend on the degree of sta-
tistical heterogeneity among clients within a cluster (i.e., intra-
cluster) and among clusters (i.e., inter-cluster). When both
the intra-cluster and inter-cluster clients’ data distributions are

homogeneous, CA-Fed starts considering the clients in cluster
c̄ = 9 with �c̄ = 0.9, and sequentially excludes, in order, all
clients from clusters {9, 8, 7, 6} (as shown in Fig. 5a). When
the clients’ data distributions are homogeneous within clusters,
but heterogeneous among clusters (Fig. 5b), CA-Fed still
excludes all clients from clusters c = {9, 7, 6}, but decides to
include clients from cluster c = 8. This is because these clients
happen to have a lower value of F̂ (t)

k �F̂ ⇤

k , and despite having a
large �c, CA-Fed decides to include them. Finally, when both
the intra-cluster and inter-cluster clients’ data distributions are
heterogeneous (Fig. 5c), CA-Fed can partially include clients
from the more correlated clusters, even though their �c is large.
Figure 5d compares the test accuracy achieved by CA-Fed
and the baselines with spatial correlation in the same setting
as in Figure 5c. The experimental results show that CA-Fed
can operate correctly in the presence of spatial correlation and
still outperforms the baselines (+0.6 pp w.r.t. AdaFed).

VI. CONCLUSION

This paper presents the first convergence analysis of a
FedAvg-like federated learning (FL) algorithm in presence of
heterogeneous and correlated client availability. The analysis
reveals the detrimental effect of correlation on the convergence
rate and highlights a fundamental trade-off between conver-
gence speed and model bias. To navigate this tradeoff, we
introduce CA-Fed, a novel FL algorithm, which adaptively
manages the conflicting aims of enhancing convergence speed
and reducing model bias, with the ultimate objective of max-
imizing model quality within the constraints of the training
time available. CA-Fed achieves this goal by dynamically
excluding clients who exhibit high temporal correlation and
limited availability, contingent on their data distributions.
Indeed, model updates from such clients may act as noise,
increasing variance and slowing down the algorithm’s con-
vergence. CA-Fed disregards such clients unless their local
datasets notably enhance the quality of the final model. The
experimental results validate the effectiveness of our strategy,
demonstrating that CA-Fed is a versatile and resilient FL
algorithm, well-suited to address real-world scenarios char-
acterized by heterogeneous and correlated client availability.
Further discussions on the computation and communication
costs, and fairness of CA-Fed can be found in Appendix H.
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