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APPENDIX A
PROOF OF THEOREM 1

Theorem 1 (Decomposing the total error). Let  := L/µ. Under Assumptions 2–4, the optimization error of the target global
objective ✏ = F (w)� F

⇤ can be bounded as follows:

✏  22(FB(w)� F
⇤

B| {z }
:=✏opt

+F (w⇤

B)� F
⇤

| {z }
:=✏bias

). (10)

Moreover, let �2
↵kp :=

PN
k=1 (↵k � pk)2/pk. Then:

✏bias  2 · �2
↵kp · �
| {z }

:=✏̄bias

. (11)

The proof of Theorem 1 employs well-established techniques from convex optimization. It is based on the proof presented
in [33, Theorem 2].

Proof of Theorem 1. By leveraging the L-smoothness and µ-strong convexity properties of F , we obtain:

F (w)� F
⇤  1

2µ
krF (w)k2 (21)

 L
2

2µ
kw �w⇤k2 (22)

 L
2

µ
(kw �w⇤

Bk
2 + kw⇤

B �w⇤k2) (23)

 2L2

µ2

⇣
FB(w)� F

⇤

B| {z }
:=✏opt

+F (w⇤

B)� F
⇤

| {z }
:=✏bias

⌘
, (24)

where the inequality in (21) follows from Assumption 4 and is commonly referred to as the Polyak-Lojasiewicz inequality;
the inequality in (22) is derived using the fact that rF (w⇤) = 0 (Assumption 2) and the definition of L-Lipschitz continuous
gradient for F (Assumption 3); the inequality in (23) is based on (a+ b)2  2(a2 + b

2); lastly, the inequality in (24) follows
from the µ-strong convexity of both FB and F (Assumptions 4), and uses rFB(w⇤

B) = 0 and rF (w⇤) = 0 (Assumption 2).
The obtained results complete the first part of the proof, establishing the bound in (10).

Next, to prove the relation in (11), we proceed by bounding the term ✏bias as follows:

✏bias := (F (w⇤

B)� F
⇤)  1

2µ
krF (w⇤

B)k
2
, (25)

where the inequality in (25) directly follows from the Polyak-Lojasiewicz inequality (Assumption 4).

Furthermore, we bound the term krF (w⇤

B)k as follows:

krF (w⇤

B)k =

�����

NX

k=1

(↵k � pk)rFk(w
⇤

B)

����� (26)


NX

k=1

|↵k � pk| krFk(w
⇤

B)k (27)

 L

NX

k=1

|↵k � pk| kw⇤

B �w⇤

kk (28)

 L

r
2

µ

NX

k=1

|↵k � pk|
q
(Fk(w⇤

B)� F
⇤

k ), (29)

where, in (26), we use rFB(w⇤

B) = 0 (Assumption 2) and apply the definitions of F and FB given in (1) and (4), respectively.
The bound in (27) follows from the triangle inequality. Next, the inequality in (28) uses rFk(w⇤

k) = 0 (Assumption 2) and
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the L-smoothness of Fk (Assumption 3). Finally, the inequality in (29) leverages the µ-strong convexity of Fk (Assumption 4)
and rFk(w⇤

k) = 0 (Assumption 2), and follows multiplying and dividing by ppk.

By squaring both sides of Equation (29), we obtain:

krF (w⇤

B)k
2  2L2

µ

 
NX

k=1

|↵k � pk|p
pk

q
pk(Fk(w⇤

B)� F
⇤

k )

!2

(30)

 2L2

µ

 
NX

k=1

(↵k � pk)2

pk

! 
NX

k=1

pk(Fk(w
⇤

B)� F
⇤

k )

!
(31)

 2L2

µ
· �2

↵kp · �, (32)

where the inequality in (31) follows from the Cauchy-Schwarz inequality. Furthermore, the inequality in (32) holds because:

NX

k=1

pk(Fk(w
⇤

B)� F
⇤

k ) = F
⇤

B �
NX

k=1

pkF
⇤

k (33)

 FB(w
⇤)�

NX

k=1

pkF
⇤

k (34)

=
NX

k=1

pk(Fk(w
⇤)� F

⇤

k ) (35)

 max
k2K

{Fk(w
⇤)� F

⇤

k } := �. (36)

We remark that the inequality in (34) only holds if w⇤

B is the global minimizer of FB , as guaranteed by Assumption 2.
By replacing (32) into (25), we have:

✏bias 
1

2µ
krF (w⇤

B)k
2  L

2

µ2
· �2

↵kp · �, (37)

which concludes the proof of Equation (11), and therefore, of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

B1. Algorithm Overview and Supplementary Notation

Let wk
t,j represent the model parameter maintained by the k-th client during the t-th global communication round and the j-th

local step. The t-th global communication round can be described as follows: 1) The server broadcasts the model parameter
wt,0 to the active clients, which adopt it as their local model, i.e., wk

t,0 = wt,0 for k 2 At; 2) Each active client k 2 At

generates a sequence of local models {wk
t,j}Ej=1 using the local-SGD update rule defined in (2); 3) The active clients send

their model updates �k
t := wk

t,E �wt,0 back to the server; 4) The server aggregates the model updates using the aggregation
rule specified in (3), resulting in the new global model parameter wt+1,0.

8
><

>:

wk
t,j+1 = wk

t,j � ⌘trFk(w
k
t,j ,Bk

t,j) for j = 0, . . . , E � 1; (2)

wt+1,0 = ProjW (wt,0 +
X

k2At

qk

�
wk

t,E �wt,0

�
) for j = E. (3)

The projection operator in (3) ensures that the current iterate wt+1,0 in the optimization algorithm defined by (2) and (3)
remains within the feasible region W .
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Sources of randomness: In the system, we model two sources of randomness. The first arises from the availability of random
clients, which follows a Markov process as stated in Assumption 1. The second source of randomness originates from the
random sampling of batches for computing stochastic gradients. Remember that At denotes the random set of clients available
at the t-th communication round and that Bk

t,j denotes the random batch independently sampled from client-k’s local dataset
at round t, local iteration j. For the analysis, we introduce the following additional notation:

• Ai:j := {Ai, . . . ,Aj}: the family of random sets of clients available from the i-th to the j-th communication rounds, i<j;

• Bk
t := {Bk

t,j}E�1
j=0 : the set of random batches sampled by the k-th client at the t-th communication round;

• Bt := {Bk
t }k2At : the set of random batches sampled by the available clients (At) in the t-th communication round;

• Bk
t,i:j := {Bk

t,i, . . . ,Bk
t,j}: the set of random batches sampled by the k-th client at the t-th communication round between

the i-th and the j-th local iterations, i < j;

• Bi:j := {Bi, . . . ,Bj}: the set of random batches sampled by the available clients (Ai:j) between the i-th and j-th
communication rounds, i < j.

With this notation established, the randomness in the t-th communication round, which starts with the initial model wt,0 and
yields the updated model wt+1,0, is fully determined by the sets At and Bt. This implies that the evolution of the algorithm,
governed by the update rules in (2) and (3), from round 0 to round t can be completely described by the tuple:

Ht := (A0, . . . ,At�1;B0, . . . ,Bt�1) , (38)

which represents the historical information up to the t-th communication round.

We introduce the following additional quantities for our analysis:

gt(At,Bt) :=
X

k2At

qk

E�1X

j=0

rFk(w
k
t,j ,Bk

t,j), (39)

and

ḡt(At,Bt) :=
X

k2At

qk

E�1X

j=0

rFk(w
k
t,j), (40)

where gt(At,Bt) denotes the global pseudo-gradient computed at communication round t, aggregated from the active clients
in At, and ḡt(At,Bt) denotes its expected value with respect to the choices of the random batches Bk

t,j , for all j = 0, . . . , E�1
and k 2 At. With this notation established, the global update rule for the t-th communication round can be expressed as:

wt+1,0 = ProjW (wt,0 � ⌘tgt(At,Bt)). (41)

B2. Supporting Lemmas

In this section, we introduce several lemmas that are instrumental in proving Theorem 2. Firstly, we prove Lemma 1, introduced
in Section III-A. Its proof relies on the convexity and compactness of the hypothesis class W (Assumption 2), on the L-
smoothness of the functions {Fk}k2K (Assumption 3), and on the bounded variance of the stochastic gradients (Assumption 5).

Lemma 1. Under Assumptions 2, 3, and 5, there exist constants D, G, and H > 0, such that, for w 2 W and k 2 K,
we have:

krFk(w)k  D, (6)
E krFk(w, ⇠)k2  G

2
, (7)

|Fk(w)� Fk(w
⇤

B)|  H. (8)

Proof of Lemma 1. The boundedness of the hypothesis class W (Assumption 2) provides a bound on the sequence (wt,0)t�0

generated by the scheme defined in Equations (2) and (3). Moreover, since w⇤

k minimizes rFk(w), we have rFk(w⇤

k) = 0.
Furthermore, the L-smoothness of {Fk}k2K (Assumption 3) leads to the following inequality:

krFk(w)k = krFk(w)�rFk(w
⇤

k)k  L kw �w⇤

kk := D < +1. (42)
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The bound in (6) is directly derived from (42), while the bound in (8) follows from the continuity of {Fk}k2K over the
compact set W (Assumption 2). Finally, the inequality in (7) requires a bound on the variance of the stochastic gradients
(Assumption 5). In particular, it holds that:

E krFk(w, ⇠)k2  D
2 +max

k2K
{�2

k} := G
2
. (43)

The following lemma proves that the global pseudo-gradient gt(At,Bt) is an unbiased estimator of ḡt(At,Bt). A similar result
has been used in previous works, specifically in [33, Appendix C1]. Here, we provide a comprehensive proof for this result.

Lemma 2. Let gt(At,Bt) and ḡt(At,Bt) be defined as in (39) and (40), respectively. The following equality holds:

E
Bt|At,Ht

[gt(At,Bt)] = E
Bt|At,Ht

[ḡt(At,Bt)] . (44)

Proof of Lemma 2.

E
Bt|At,Ht

[gt(At,Bt)] = (45)

= E
Bt|At,Ht

2

4
X

k2At

qk

E�1X

j=0

rFk(w
k
t,j ,Bk

t,j)

3

5 (46)

=
X

k2At

qk E
B

k
t

2

4
E�1X

j=0

rFk(w
k
t,j ,Bk

t,j)

3

5 (47)

=
X

k2At

qk

"
E

B
k
t,0

[rFk(wt,0,Bk
t,0)] + E

B
k
t,0,B

k
t,1

[rFk(w
k
t,1,Bk

t,1)] + · · ·+ E
B

k
t,0:E�1

[rFk(w
k
t,E�1,Bk

t,E�1)]

#
(48)

=
X

k2At

qk

"
rFk(wt,0) + E

B
k
t,0

h
E

B
k
t,1|B

k
t,0

⇥
rFk(w

k
t,1,Bk

t,1)
⇤ i

+ · · ·+ E
B

k
t,0:E�2

h
E

B
k
t,E�1|B

k
t,0:E�2

⇥
rFk(w

k
t,E�1,Bk

t,E�1)
⇤ i
#

(49)

=
X

k2At

qk

"
rFk(wt,0) + E

B
k
t,0

[rFk(w
k
t,1)] + · · ·+ E

B
k
t,0:E�2

[rFk(w
k
t,E�1)]

#
(50)

=
X

k2At

qk E
B

k
t,0:E�2

2

4
E�1X

j=0

rFk(w
k
t,j)

3

5 (51)

= E
Bt|At,Ht

2

4
X

k2At

qk

E�1X

j=0

rFk(w
k
t,j)

3

5 = E
Bt|At,Ht

[ḡt(At,Bt)] , (52)

where, in (47), we considered that both the evolution of the local models {wk
t,j}E�1

j=0 and the choices of the random batches
{Bk

t,j}E�1
j=0 are independent among different clients k 2 At within the same communication round t 2 T .

For the sake of simplicity, we will henceforth denote gt(At,Bt) and ḡt(At,Bt) as gt and ḡt, respectively. The following
lemma decomposes the optimization error into multiple components, which we will bound separately in subsequent lemmas.

Lemma 3 (Decomposition of the error in a global communication round). Let Assumption 2 hold. We have:

E
Bt|At,Ht

kwt+1,0 �w⇤

Bk
2 kwt,0 �w⇤

Bk
2�2⌘t E

Bt|At,Ht

hwt,0 �w⇤

B , ḡti
| {z }

bounded in Lemma 4

+ ⌘
2
t E
Bt|At,Ht

kḡtk2

| {z }
bounded in Lemma 5

+ 2⌘t E
Bt|At,Ht

hwt,0 �w⇤

B � ⌘tḡt, ḡt � gti
| {z }

bounded in Lemma 6

+ ⌘
2
t E
Bt|At,Ht

kgt � ḡtk2

| {z }
bounded in Lemma 7

. (53)

Proof of Lemma 3.

kwt+1,0 �w⇤

Bk
2 = kProjW (wt,0 � ⌘tgt)�ProjW (w⇤

B)k
2 (54)
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 kwt,0 � ⌘tgt �w⇤

B + ⌘tḡt � ⌘tḡtk2 (55)

= kwt,0 �w⇤

B � ⌘tḡtk
2 + 2⌘thwt,0 �w⇤

B � ⌘tḡt, ḡt � gti+ ⌘
2
t kgt � ḡtk2 (56)

= kwt,0 �w⇤

Bk
2 � 2⌘thwt,0 �w⇤

B , ḡti+ ⌘
2
t kḡtk

2 + 2⌘thwt,0 �w⇤

B � ⌘tḡt, ḡt � gti+ ⌘
2
t kgt � ḡtk2 ,

(57)
where, in (54), we used Assumption 2; whereas, the inequality in (55) is due to the contracting property of projection.
We observe that (55) does not hold in general if w⇤

B 62W .

In what follows, we present a series of lemmas to establish bounds for the error in (53).

Lemma 4. Let Assumption 3 hold and the local functions {Fk}Nk=1 be convex. We have:

�2⌘thwt,0 �w⇤

B , ḡti  � 2⌘t(1� ⌘tL)
X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� Fk(w

⇤

B)
�

+
X

k2At

qk

E�1X

j=0

��wk
t,j �wt,0

��2

| {z }
bounded in Lemma 9

+2⌘2tLE
X

k2At

qk (Fk(w
⇤

B)� F
⇤

k )

| {z }
bounded in Lemma 10

. (58)

Proof of Lemma 4. We decompose the term �2⌘thwt,0 �w⇤

B , ḡti, by adding and subtracting wk
t,j :

�2⌘thwt,0 �w⇤

B , ḡti = �2⌘thwt,0 �wk
t,j , ḡti| {z }

developed in Eq. (60)

�2⌘thwk
t,j �w⇤

B , ḡti| {z }
developed in Eq. (64)

. (59)

We bound the two terms separately. We bound the first term in (59) as:

�2⌘thwt,0�wk
t,j , ḡti = �2⌘t

X

k2At

qk

E�1X

j=0

hrFk(w
k
t,j),wt,0 �wk

t,ji (60)

 ⌘2t
X

k2At

qk

E�1X

j=0

��rFk(w
k
t,j)
��2 +

X

k2At

qk

E�1X

j=0

��wk
t,j �wt,0

��2 (61)

 2⌘2tL
X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� F

⇤

k

�
+
X

k2At

qk

E�1X

j=0

��wk
t,j �wt,0

��2 (62)

= 2⌘2tL
X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� Fk(w

⇤

B)
�
+
X

k2At

qk

E�1X

j=0

��wk
t,j �wt,0

��2 + 2⌘2tLE
X

k2At

qk (Fk(w
⇤

B)� F
⇤

k ) ,

(63)

where, in (61), we used |ha, bi|  1
2 kak

2 + 1
2 kbk

2; in (62), we applied the L-smoothness of {Fk(w)}k2K (Assumption 3);
in (63), we added and subtracted Fk(w⇤

B).

We bound the second term in (59) as:

�2⌘thwk
t,j �w⇤

B , ḡti = �2⌘t
X

k2At

qk

E�1X

j=0

hwk
t,j �w⇤

B ,rFk(w
k
t,j)i (64)

 �2⌘t
X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� Fk(w

⇤

B)
�
, (65)

where, in (65), we use the convexity of {Fk(w)}k2K.

By summing the bounds provided in (63) and (65), we conclude the proof.

Lemma 5 (Bound on the squared norm of a global gradient step). Let Assumption 3 hold. We have:

⌘
2
t kḡtk

2  2⌘2tLEQ

X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� Fk(w

⇤

B)
�
+ 2⌘2tLE

2
Q

X

k2At

qk (Fk(w
⇤

B)� F
⇤

k )

| {z }
bounded in Lemma 10

. (66)

15



Proof of Lemma 5.

⌘
2
t kḡtk

2 = ⌘
2
t

����
X

k2At

qk

E�1X

j=0

rFk(w
k
t,j)

����
2

(67)

 ⌘2t
X

k02At

qk0

X

k2At

qk

����
E�1X

j=0

rFk(w
k
t,j)

����
2

(68)

 ⌘2tQE

X

k2At

qk

E�1X

j=0

��rFk(w
k
t,j)
��2 (69)

 2⌘2tQLE

X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� F

⇤

k

�
(70)

= 2⌘2tLEQ

X

k2At

qk

E�1X

j=0

�
Fk(w

k
t,j)� Fk(w

⇤

B)
�
+ 2⌘2tLE

2
Q

X

k2At

qk (Fk(w
⇤

B)� F
⇤

k ) , (71)

where, in (68) and in (69), we applied the Jensen’s inequality; in (69), we also observed that
P

k2At
qk 

P
k2K

qk := Q;
in (70), we used the L-smoothness of {Fk(w)}k2K (Assumption 3); in (71), we added and subtracted Fk(w⇤

B) to the sum.

Lemma 6. Let Assumption 5 hold. We have:

2⌘t E
Bt|At,Ht

[hwt,0 �w⇤

B � ⌘tḡt, ḡt � gti]  2⌘2tLEQ

X

k2At

qk

E�1X

j=1

E
B

k
t |At,Ht

⇥
Fk(w

k
t,j)� Fk(w

⇤

B)
⇤

+
1

2
⌘
2
tE(E � 1)

X

k2At

q
2
k�

2
k

+ 2⌘2tLE
2
Q

X

k2At

qk (Fk(w
⇤

B)� F
⇤

k )

| {z }
bounded in Lemma 10

. (72)

Proof of Lemma 6. We decompose the term hwt,0 �w⇤

B � ⌘tḡt, ḡt � gti in two parts:

2⌘thwt,0 �w⇤

B � ⌘tḡt, ḡt � gti = 2⌘thwt,0 �w⇤

B , ḡt � gti � 2⌘2t hḡt, ḡt � gti. (73)

From Lemma 2, we conclude that EBt|At,Ht
hwt,0 �w⇤

B , ḡt � gti = 0.

We now focus on:

� 2⌘2t E
Bt|At,Ht

[hḡt, ḡt � gti] = (74)

= �2⌘2t E
Bt|At,Ht

2

4
X

k2At

X

k02At

qkqk0

E�1X

j=0

E�1X

j0=0

hrFk(w
k
t,j),rFk0(wk0

t,j0)�rFk0(wk0

t,j0 ,Bk0

t,j0)i

3

5 (75)

= �2⌘2t E
Bt|At,Ht

2

4
X

k2At

q
2
k

E�1X

j=0

E�1X

j0=0

hrFk(w
k
t,j),rFk(w

k
t,j0)�rFk(w

k
t,j0 ,Bk

t,j0)i

3

5

� 2⌘2t E
Bt|At,Ht

2

664
X

k2At

X

k0
2At

k0
6=k

qkqk0

E�1X

j=0

E�1X

j0=0

hrFk(w
k
t,j),rFk0(wk0

t,j0)�rFk0(wk0

t,j0 ,Bk0

t,j0)i

3

775 (76)

= �2⌘2t
X

k2At

q
2
k E
B

k
t |At,Ht

2

4
E�1X

j=0

E�1X

j0=0

hrFk(w
k
t,j),rFk(w

k
t,j0)�rFk(w

k
t,j0 ,Bk

t,j0)i

3

5
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� 2⌘2t
X

k2At

X

k0
2At

k0
6=k

qkqk0

E�1X

j=0

E�1X

j0=0

h E
B

k
t |At,Ht

⇥
rFk(w

k
t,j)
⇤
, E
B

k0
t,0:j0�1

|At,Ht

"
E

B
k0
t,j0 |B

k0
t,0:j0�1

,At,Ht

h
rFk0(wk0

t,j0)�rFk0(wk0

t,j0 ,Bk0

t,j0)
i#

| {z }
=0

i,

(77)
where, in (75), we replaced the definitions of gt and ḡt given in (39) and in (40), respectively; in (76), we consider the cases
k = k

0 and k 6= k
0 separately; (77) follows from the consideration that local models of different clients evolve independently

and then all the terms with k
0 6= k equal zero because rFk(w,B) is an unbiased estimator of rFk(w). It follows that:
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where, in (80), we consider the cases j0 < j and j
0 � j separately; then, in (81) and in (82), we use the law of total expectation.

Finally, we bound the remaining term in the right-hand side of (82) as follows:
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where, in (85), we used |ha, bi|  1
2 kak

2 + 1
2 kbk

2; in (87), we applied Assumption 5; in (88), we used the L-smoothness
of {Fk(w)}k2K; in (89), we added and subtracted Fk(w⇤
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k=1 qk := Q. Noting that E� 1 < 2E concludes the proof of Lemma 6.

Lemma 7 (Bound on the variance of the stochastic gradients). Let Assumption 5 hold. Similarly to [23, Lemma 2], we have:
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where, in (94), (95), and (96), we used the law of total expectation; in (97), we applied Assumption 5.
Multiplying both sides of (97) by ⌘2t completes the proof of Lemma 7.

Lemma 8. Let Assumption 3 hold and let the local functions {Fk}Nk=1 be convex. Define �t := 2⌘t(1� ⌘tL(1 + 2EQ)).
For a diminishing step-size 0 < ⌘t  1

2L(1+2EQ) , satisfying �t > 0, we have:
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Proof of Lemma 8. In the following, we require �t > 0.
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where, in (100), we added and subtracted Fk(wt,0) to the sum; in (101), we used the convexity of {Fk(w)}k2K; note that (101)
also requires �t > 0; in (102), we used the inequality |ha, bi|  1

2 kak
2 + 1

2 kbk
2; in (103), we applied the L-smoothness of

{Fk(w)}k2K (Assumption 3); finally, in (104), we added and subtracted Fk(w⇤

B) to the sum.

In particular, for �t := 2⌘t(1� ⌘tL(1 + 2EQ)) > 0, since 0 < ⌘t  1
2L(1+2EQ) , we further obtain:
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where, in (105), we used 0 < ⌘t  1
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2⌘t
 1.

Lemma 9 (Bound on the divergence of local models). Let Assumption 2, 3, and 5 hold, the local functions {Fk}Nk=1 be convex
and G be defined as in Lemma 1, Equation (7). Similarly to [23, Lemma 3], we obtain the following inequality:
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Proof of Lemma 9.
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where, in (108), we used the triangle and the Jensen’s inequalities; in (109), we applied the bound in Lemma 1, Equation (7);
finally, in (110), we developed the sum of sequence of squares
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Lemma 10 (Bound on the dissimilarity of local functions). Let Assumption 1 hold and (At)t�0 defined therein. We have:
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where � is defined in (9).
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Proof of Lemma 10.
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where, in (112), we solved the total expectation, observing that E
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Lemma 11 (Convergence results under heterogeneous client availability). Let Assumptions 1–3 and 5 hold and the functions
{Fk}Nk=1 be convex. For a diminishing step-size 0 < ⌘t  1
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Proof of Lemma 11. We take expectation over Bt | At,Ht on Lemma 3:
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Replacing Lemmas 4–7 in (117), we obtain:
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We apply Lemmas 8 and 9 to (118) with �t := 2⌘t(1� ⌘tL(1 + 2EQ)). We observe that �t > 0 because:
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We obtain:
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Computing the total expectation on (120), we have:
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Applying Lemma 10 to (121) and considering E
⇥P

k2At
ak

⇤
=
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k=1 ⇡kak (Assumption 1), the following inequality holds:
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Rearranging and summing over t = t0, . . . , T , we obtain the following inequality:
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The first term in the right-hand side of (123) is a telescoping sum and we remove the negative term �E kwT+1,0 �w⇤
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Finally, by noting that kwt0,0 �w⇤

Bk  diam(W ) and
PT

t=t0
⌘
2
t 

P+1

t=1 ⌘
2
t < +1, we complete the proof of Lemma 11.

Lemma 12. Let Assumptions 2 and 3 hold, and the local functions {Fk}Nk=1 be convex. We have:

|Fk(v)� Fk(w)|  D · kv �wk , 8v,w 2W (125)

Proof of Lemma 12. In Lemma 1, under Assumptions 2 and 3, we have already proved that:

krFk(w)k  D. (6)

Moreover, from the convexity of {Fk}k2K, it follows that:

hrFk(v),v �wi  Fk(v)� Fk(w)  hrFk(w),v �wi. (126)

The Cauchy–Schwarz inequality completes the proof of Lemma 12:

|Fk(v)� Fk(w)|  max{krFk(v)k , krFk(w)k} · kv �wk  D · kv �wk . (127)

Lemma 13. Let Assumptions 2, 3, and 5 hold. We have:
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. (128)

Proof of Lemma 13. The proof is based on [15, Proposition 1.4].
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where, in (130), we used the triangle inequality and the law of total expectation; in (131), we applied Lemma 1, Equation (7).

Similarly to [15, Theorem 1], we provide the following definition.

Definition 1. For communication round t � 1, denote the positive integer Jt as follows:

Jt := min

⇢
max

⇢⇠
ln (2CPHt)

ln (1/�(P ))

⇡
, TP

�
, t

�
. (132)

The parameter Jt is crucial in our analysis: it represents the communication rounds needed to bound the stationary distribution
convergence of the Markov process (At)t>0. It will play a key role in Lemmas 14–18 and in the proof of Theorem 2.
We remark that, by definition: TP  Jt  t.

Our definition of Jt corrects a typo in [15, (6.27)], which considered ln (t/(2CPH)) rather than ln (2CPHt). In fact,
we observe that [15, (6.28)] and consequently [15, (6.35)] do not hold when Jt is defined as in [15, (6.27)].

Lemma 14 (Convergence results under heterogeneous and correlated client availability after Jt communication rounds).
Let Assumptions 1–3, and 5 hold, the local functions {Fk}Nk=1 be convex, and the parameter Jt  t be as in Definition 1.
For a diminishing step-size {⌘t}t�1 satisfying

P+1

t=1 ln(t) · ⌘2t , for any t0  T , we have:
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where:

C1 := EDGQ

 
NX
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+1X
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!
. (134)

Proof of Lemma 14. This proof is based on [15, Equation (6.31)].
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where, in (135), we used
P

k2At
qkak 

PN
k=1 qkak  (

PN
k=1 qk) ·maxk2K {ak} = Q ·maxk2K {ak}; in (136), we applied

Lemma 12; in (137), we used the triangle inequality and the law of total expectation; in (138), we applied Lemma 13 and
again the law of total expectation; in (139), we observed that E

⇥P
k2Ad

qk

⇤
=
PN

k=1 ⇡kqk (Assumption 1); in (140), we used
2ab  a
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2; finally, in (141), we applied ⌘t < ⌘d  ⌘t�Jt due to the diminishing learning rate.

We apply then the definition of Jt in (132) and we observe that
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ln(1/�(P ))
. (143)

Finally, we conclude that C1 is finite. To this purpose, we observe that Jt  a ln(t)+ b, for opportune positive values a and b.
Let t0 be a positive integer such that t � a ln(t) + b for any t � t

0. Then:
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Lemma 15. Let Assumptions 2, 3 and 5 hold, the local functions {Fk}Nk=1 be convex, and Jt  t be as in Definition 1.
Let the step-size be decreasing and satisfy:

P+1

t=1 ln(t) · ⌘2t < +1. For any t0  T , we have:
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where:
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Proof of Lemma 15. This proof is based on [15, Equation (6.38)].
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where, in (149), we applied FB(w) =
PN

k=1 pkFk(w), where pk = ⇡kqkPN
h=1 ⇡hqh

; in (150), we applied Lemma 12; in (151),
we applied the triangle inequality and the law of total expectation; in (152), we applied Lemma 13; in (153), we used
2ab  a

2 + b
2; in (154), we observed that ⌘2t + ⌘

2
d  2⌘2t�Jt

due to the diminishing learning rate; finally, in (155), we applied
the definition of Jt given in (132) and we observed that

PT
t=t0

ln(t)⌘2t�Jt
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t=1 ln(t)⌘
2
t�Jt

< +1 and then C1 < +1.

Lemma 16 (Bound on the distance dynamics between the current and the stationary distributions of the Markov process).
Let Assumption 1 hold, and P , ⇢ defined therein. The following inequality holds:

max
i,j2[M ]

��[P t]i,j � ⇢j
��  CP · �(P )t, for t � TP , (5)

where CP and TP are positive constants defined as:
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! 1
2

· kUkF kU�1kF , (156)

TP := max

(
max
1id

(&
2ni(ni � 1)(ln( 2ni

ln�(P )/|�̄2(P )|
)� 1)

(ni + 1) ln(�(P )/|�̄2(P )|)

')
, 0

)
. (157)

Here, d, ni, and U are quantities related to the Jordan canonical form of P . Specifically, P = UJU�1, where J denotes the
Jordan M⇥M matrix with d blocks Ji, i = 2, . . . , d. Each block Ji, i = 2, 3, . . . , d, has a dimension ni � 1, and

Pd
i=1 ni = M .

Moreover, |U |F denotes the Frobenius norm of the matrix U .
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Furthermore, let Assumptions 2 and 3 hold, H be defined as in Lemma 1, Equation (8), and TP  Jt  t be defined in (132).
We obtain the additional inequality:

��[PJt ]i,j � ⇢j
��  CP · �(P )t  CP�(P )Jt =

1

2Ht
, 8i, j 2 [M ] and 8t � TP . (158)

Proof of Lemma 16. The inequality in (5) is proven in [15, Lemma 1] and holds for any t � TP . Here, TP is a constant
dependent on the transition matrix P of the Markov chain (At)t�0 defined in Assumption 1. To prove (158), we further
observe that 0 < �(P )  1 and TP  Jt  t. The last inequality in (158) follows from the definition of Jt in (132).

We remark that the bounds in [15, Lemma 1], and consequently our (158), require t � TP . Therefore, the derivations in [15,
(6.28)] and [15, (6.35)–(6.37)] are not accurate, since they hold for t � TP . We address this problem with Lemmas 17 and 18.

Lemma 17. Let Assumptions 1–3 hold, and TP be defined as in (157). The following inequality holds:
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Proof of Lemma 17.
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where, in (161), we used the definition of FB from (4), and in (162), we applied Lemma 1, Equation (8), which holds
for any w 2W . Lastly, it is worth noting that C2 is a sum of finite elements, and is therefore finite.

Lemma 18. Let Assumptions 1–3 and 5 hold, and {Fk}Nk=1 be convex. Recall the definitions of Jt and TP in (132) and in (157),
respectively. Let the step-size (⌘t)t�1 decrease and satisfy ⌘1  1

2L(1+2EQ) ,
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t=1 ⌘
2
t < +1, and
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For t � TP , we have:
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where:
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Proof of Lemma 18. Assume t � TP . With a similar proof technique to [15, (6.35)], we derive the following lower bound:
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where, in (166), we applied the definition of expected value to the random variable At, with a representing a realization
of At, that is a state in the state space M, and P(At = a | At�Jt ,Ht�Jt) denoting the conditional probability of
the event At = a given (At�Jt ,Ht�Jt); in (167), we applied the Markov property (Assumption 1), observing that
P(At = a | At�Jt) = [PJt ]At�Jt ,a

, where [P k]i,j denotes the (i, j)-th element of the k-th power of the transition
matrix P ; in (168), we applied Lemma 16, Equation (158); for the first term in (169), we used

P
a2M
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P

k2a f(k) =P
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PN

k=1 1{k2a}f(k) =
PN

k=1 f(k)
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⇢a1k2a =
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k=1 f(k)E [1k2At ], where 1k2At is the indicator function

that equals 1 if and only if k 2 At; in (170), we used E [1k2At ] = P(k 2 At) := ⇡k for the first term, andP
k2a qkf(k) 

PN
k=1 qkf(k)  (

PN
k=1 qk)(maxk2K f(k)) = Qmaxk2K f(k) and

P
a2M

1 = M for the second term;
finally, in (171), we used the definition of FB in (4) for the first term, and we used Lemma 1, Equation (8) for the second term.

Our derivations in (170) and (171) correct a typo in [15, (6.35)], which considered Q/(2t) instead of (MQ)/(2t). In (171),
the dimension (M ) of the state space (M) of the Markov chain (At)t�0 appears in the numerator of the second term.

Note that the steps in (168)–(171) require t � TP . Multiplying by ⌘t and summing for t = TP , . . . , T , rearranging,
and computing the total expectation, we obtain the following inequality:
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⌘t E
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bounded with Lemma 11 + Lemma 14

+
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where, in (173), we used 2ab  a
2 + b

2 and we observed that
PT

t=TP

�
⌘
2
t +

1
t2

�

PT

t=1

�
⌘
2
t +

1
t2

�
since t > 0 and ⌘t > 0.

Moreover, if the step-size (⌘t)t�1 decreases and satisfies ⌘1  1
2L(1+2EQ) ,

P+1

t=1 ⌘
2
t < +1, and

P+1

t=1 ln (t) · ⌘2t < +1,
we can further bound the first term in (173) by combining Lemma 11 and Lemma 14 for t0 = TP , and we obtain:
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 C0 +

C1
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where:

C0 :=
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E
diam(W )2 + (E + 1)
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Finally, plugging (174) into (173), observing that
PT

t=1

�
⌘
2
t +

1
t2

�

P+1

t=1

�
⌘
2
t +

1
t2

�
< +1 because

P+1

t=1 ⌘
2
t < +1 andP+1

t=1
1
t2 = ⇡

6 < +1, and denoting C3 := C0 +
MQ
4

P+1

t=1

�
⌘
2
t +

1
t2

�
< +1, we conclude the proof of Lemma 18.
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B3. Proof of Theorem 2

Theorem 2 (Convergence of the optimization error ✏opt). Let Assumptions 1–3 and 5 hold and the functions {Fk}Nk=1 be convex.
Recall the constants M,L,D,G,H,�, �k, CP , TP ,Jt, and �(P ) defined above. Let Q =

P
k2K

qk.
Let the step-size ⌘t > 0 decrease and satisfy:

⌘1 
1

2L(1 + 2EQ)
,

+1X

t=1

⌘t = +1,

+1X

t=1

ln(t) · ⌘2t < +1. (12)

Let T denote the total communication rounds.
For T � TP , the expected optimization error E[FB(w̄T,0)� F

⇤

B ] can be bounded as follows:

E[FB(w̄T,0)� F
⇤

B ] 
1
2q

|⌃q+�
⇡|q +  + �

ln(1/�(P ))

(
PT

t=1 ⌘t)
, (13)

where w̄T,0 =
PT

t=1 ⌘twt,0PT
t=1 ⌘t

, and:

⌃ := diag
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E
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 := 4L(1 + EQ)�
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G
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� := 2EDGQ

 
+1X

t=1

ln(2CPHt) · ⌘2t�Jt

!
. (179)

Proof of Theorem 2. The proof involves three main steps.

Step 1: From Lemma 15, observe that:
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!
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where:

C1 := EDGQ

 
NX

k=1

⇡kqk

! 
+1X

t=1

ln (2CPHt) · ⌘2t�Jt

!
< +1. (181)

Step 2: By combining Lemma 17 and Lemma 18, we obtain:
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where C1 is defined in (181), and:
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Step 3: By summing the results from Steps 1 and 2, given in (180) and (182), respectively, we have:
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⇡kqk

!
TX
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⌘t E[FB(wt,0)� F
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2C1

ln(1/�(P ))
+ C2 + C3 < +1. (185)

With the convexity of FB(·), applying the Jensen’s inequality, we complete Step 3:
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 2C1

ln(1/�(P ))
+ C2 + C3 < +1, (187)

where w̄T,0 :=
PT

t=1 ⌘twt,0PT
t=1 ⌘t

, and the constants C1, C2, and C3 are defined in (181), (183), and (184), respectively.

By dividing (186) and (187) by
⇣PT

t=1 ⌘t

⌘
·
⇣PN

k=1 ⇡kqk

⌘
, we obtain the expression for Theorem 2 given in (13).

APPENDIX C
PROOF OF THEOREM 3

Theorem 3 (An alternative bound on the bias error ✏bias). Under the same assumptions of Theorem 1, define
�0 := maxk{Fk(w⇤

B)� F
⇤

k }. The following result holds:

✏bias  42 · d2TV (↵,p) · �0

| {z }
:=✏̄0bias

, (15)

where dTV (↵,p) := 1
2

PN
k=1|↵k � pk| denotes the total variation distance between the probability distributions ↵ and p.

Proof of Theorem 3. The proof follows the same steps as in Theorem 1, proceeding from (29) as follows:

krF (w⇤

B)k  L

r
2

µ

NX
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|↵k � pk|
q
(Fk(w⇤

B)� F
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k ) (29)

 2L

r
2

µ
dTV (↵,p)

p
�0, (188)

where, in (188), we applied the definitions of dTV (↵,p) := 1
2

PN
k=1|↵k � pk| and �0 := maxk{Fk(w⇤

B)� F
⇤

k }.

Squaring (188), we obtain the following expression:

krF (w⇤

B)k
2  8L2

µ
d
2
TV (↵,p)�0

. (189)

Then, replacing (189) in (25), we obtain:

✏bias := (F (w⇤

B)� F
⇤)  1

2µ
krF (w⇤

B)k
2  4

L
2

µ2
d
2
TV (↵,p)�0

| {z }
:=✏̄0bias

, (190)

which concludes the proof of Theorem 3.

APPENDIX D
CONVEXITY OF ✏̄OPT + ✏̄BIAS

For the proof of the convexity of ✏̄opt(q), please refer to Appendix E1. To prove that ✏̄bias(q) is also convex, we need to study
the convexity of �2

↵kp :=
PN

k=1 (↵k � pk)2/pk in q 2 {qk > 0 8k, kqk1 = Q > 0}. To this purpose, we define the following
functions:

hk : RN
�0 \ {0}! R�0, hk(q) :=

⇡kqkPN
k0=1 ⇡k0qk0

; (191)

gk : R>0 ! R�0, gk(pk) :=
(pk � ↵k)

2

pk
. (192)
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Finally, we write the chi-square divergence �2
↵kp between the target and biased probability distributions ↵ and p as:

�
2
↵kp(q) =

NX

k=1

(gk � hk)(q) =
NX

k=1

gk(hk(q)). (193)

We observe that:

• hk(q) is a particular case of linear-fractional functions [40, Example 3.32, p. 97];

• gk(·) is a convex in pk over R>0 because sum of convex functions;

• each gk�hk is quasi-convex in q 2 RN
>0 because composition of a convex function (gk) and a linear-fractional function (hk)

[40, p. 102].

However, note that the sum of quasi-convex functions is not necessarily quasi-convex.

Proposition 1. The function �2
↵kp(q) is not convex over RN

>0.

Proof of Proposition 1. To analyze the convexity of �2
↵kp(q) =

PN
k=1(gk �hk)(q) over RN

>0, a possible approach is to check
whether each function (gk � hk)(q) is convex over RN

>0. In what follows, we show that (gk � hk) is not convex over RN
>0.

Consider the case when ⇡k = 1 8k 2 K. We can rewrite (gk � hk)(q) as follows:

(gk � hk)(q) =

⇣
qk

kqk1
� ↵k

⌘2

qk
kqk1

. (194)

We show that this function fails to satisfy the definition of convexity, i.e., 9 q, q0 2 RN
>0, ⇣ 2 [0, 1] such that:

(gk � hk) (⇣q + (1� ⇣)q0) > ⇣ (gk � hk) (q) + (1� ⇣) (gk � hk) (q
0). (195)

The left-hand side (LHS) of (195) is:

(gk � hk) (⇣q + (1� ⇣)q0) =

⇣
⇣qk+(1�⇣)q0k
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. (196)

If we take q : kqk1 = 1, qk = ↵k, ⇣ = 1
2 , q0 = Q

N 1, and we let Q! +1, then the LHS in (196) converges to:

lim
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�2
1
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. (197)

On the other hand, for the same choices of qk, q, q0, and ⇣, and if we let Q! +1, the right-hand side (RHS) of (195) is:

⇣ (gk � hk) (q) + (1� ⇣) (gk � hk) (q
0) = 0 +

1

2

�
1
N � ↵k

�2
1
N

. (198)

Finally, comparing (197) and (198), we conclude that, for Q large enough, the LHS in (195) is larger than the RHS.

Proposition 2. The function �2
↵kp(q) is convex over RN

>0 \ {q : kqk1 = Q > 0}.

Proof of Proposition 2. To verify the convexity of �2
↵kp(q) =

PN
k=1(gk � hk)(q) over RN

>0 \ {q : kqk1 = Q > 0}, one
possible approach is to demonstrate the convexity of each function (gk � hk)(q) over the set RN

>0 \ {q : kqk1 = Q > 0}.

We prove this result for a more general case. We show that, if

g̃ is a convex function over its domain Dg (199)

30



and

h̃(q) =
Aq + b

c|q + d
, (200)

then

g̃ � h̃ is convex over D = RN
>0 \ {q : c|q + d = Q > 0,

Aq + b

c|q + d
2 Dg}. (201)

It is then sufficient to apply this result to each pair (gk, hk) to conclude that (gk � hk) is convex and then �2
↵kp(q) is convex.

By direct inspection, for all q, q0 2 D, 8 ⇣ 2 [0, 1], the following equality holds:
⇣
g̃ � h̃

⌘
(⇣q + (1� ⇣)q0) = g̃

⇣
h̃ (⇣q + (1� ⇣)q0)

⌘
= g̃

✓
⇣
0
Aq + b

c|q + d
+ (1� ⇣ 0)Aq0 + b

c|q0 + d

◆
, (202)

where:

⇣
0 =

⇣ (c|q + d)

⇣ (c|q + d) + (1� ⇣) (c|q0 + d)
2 [0, 1]. (203)

Applying the convexity of g̃, we bound Equation (202) as follows:

g̃

✓
⇣
0
Aq + b

c|q + d
+ (1� ⇣ 0)Aq0 + b

c|q0 + d

◆
convexity of g̃
 ⇣

0
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✓
Aq + b

c|q + d

◆
+ (1� ⇣ 0)g̃

✓
Aq0 + b

c|q0 + d

◆
(204)

= ⇣
0

⇣
g̃ � h̃

⌘
(q) + (1� ⇣ 0)

⇣
g̃ � h̃

⌘
(q0). (205)

Finally, to conclude the proof, we show that ⇣ 0 = ⇣. This is true because, for any q and q0 2 D, c|q+d = c|q0+d = Q > 0.
In fact, by using this condition in Equation (203), we have that:

⇣
0 =

⇣Q

⇣Q+ (1� ⇣)Q = ⇣, (206)

which establishes the convexity of g̃ � h̃ by definition.

APPENDIX E
MINIMIZING ✏̄OPT

Equation (13) can be rewritten as:
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+ C := J(q), (208)

where:

A := ⌃ = diag
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; (210)

C :=  +
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ln(1/�(P ))
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�
4L(1 + EQ)�+ 2E2

G
2
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!
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!
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TP�1X

t=1
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!
. (211)

The minimization of (208), defines the following optimization problem:

minimize
q

J(q) :=
1
2q

|Aq +B

⇡|q
+ C; (212a)

subject to q � 0, (212b)
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⇡|q > 0, (212c)
kqk1 = Q. (212d)

Remark. In Problem (212a)–(212d), when setting some qk to zero, we do not consider the possibility of redefining the Markov
chain (At)t�0 in Assumption 1 by considering the reduced state space of clients with qk > 0. In this case, the redefined
Markov chain would have a different transition matrix P 0 6= P with �(P 0) 6= �(P ), resulting in C no longer being constant.

E1. The optimization problem in (212a)–(212d) is convex
Let us rewrite the problem by adding a variable s := 1/⇡|q and then replacing y := sq. We have:

J(y, s) = s

✓
1

2

y|

s
A

y

s
+B

◆
+ C = s ·K

✓
y

s

◆
+ C, (213)

where K : RN ! R, K(q) := 1
2q

|Aq +B is a (strictly) convex function, and:

minimize
y, s

J(y, s) =
1

2s
y|Ay +Bs+ C (214a)

subject to y � 0, (214b)
s > 0, (214c)
⇡|y = 1, (214d)
kyk1 = Qs. (214e)

Note that the objective function J(y, s) : RN+1 ! R, J(y, s) = s · K(y/s) + C in (213) is the perspective of the convex
function K(q) + C, and is therefore convex [40, pp. 89–90]. Moreover, the constraints in (214b)–(214e) define a convex set,
and then the optimization problem defined by (214a)–(214e) is convex. We solve it with the method of Lagrange multipliers.

E2. Support for Guideline A (Section III)
The Lagrangian function L is as follows:

L(y, s, ◆, ✓,!) =
1

2s
y|Ay +Bs+ C + ◆(1� ⇡|y) + ✓(kyk1 �Qs)� !|y. (215)

Since the constraint s > 0 defines an open set, the set defined by the constraints in (214b)–(214e) is not closed. However, the
solution of the optimization problem defined by (214a)–(214e) is never on the boundary s = 0 because L! +1 as s! 0+,
therefore we can consider s � 0. Moreover, strong duality holds for the Slater’s constraint qualification for convex problems.

The KKT conditions read:
8
>>>>>>>>><

>>>>>>>>>:

@L
@s

(y⇤
, s

⇤
, ◆

⇤
, ✓

⇤
,!⇤) = 0, (216)

ryL(y⇤
, s

⇤
, ◆

⇤
, ✓

⇤
,!⇤) = 0, (217)

⇡|y⇤ � 1 = 0, (218)
ky⇤k1 �Qs = 0, (219)
!⇤|y⇤ = 0, (220)
y⇤

,!⇤ � 0. (221)

In particular, the KKT condition for y⇤ read:

ryL(y⇤
, s

⇤
, ◆

⇤
, ✓

⇤
,!⇤) =

1

s⇤
Ay⇤ � ◆⇤⇡ + ✓

⇤1� !⇤ = 0, (222)

which is satisfied when:
@L
@y

⇤

k

=
1

s⇤
Akky

⇤

k � ◆⇤⇡k + ✓
⇤ � !⇤

k = 0, 8k 2 K, (223)

where Aij denotes the element on the i-th row and the j-th column of matrix A.

Furthermore, the Complementary Slackness conditions in (220) and (221) present two cases:

1) If y⇤k > 0 (and q
⇤

k > 0), then !⇤

k = 0 and:

y
⇤

k =
s
⇤

Akk
(◆⇤⇡k � ✓⇤), q

⇤

k =
1

Akk
(◆⇤⇡k � ✓⇤); (224)
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2) y
⇤

k = q
⇤

k = 0 otherwise.

By replacing the equality constraint (214d) in Problem (214a)–(214e) with the inequality constraint ⇡|y � 1, we establish an
equivalent optimization problem. The equivalence holds because, for any feasible solution y0 with ⇡|y0

> 1, we can consider
the solution y00 = y0

⇡|y0 < y0, leading to a lower objective function value. Additionally, the new problem states that the
Lagrange multiplier (◆⇤) associated with the inequality constraint must be non-negative. By considering Akk � 0 and ◆⇤ � 0
in Equation (224), we conclude that q⇤k increases with ⇡k, providing analytical support for Guideline A.

E3. Closed-form solution of the optimization problem in (212a)–(212d)
The solution of the optimization problem in (212a)–(212d) is not of practical utility because its constants (e.g., L, !, �, CP )
are in general problem-dependent and difficult to estimate during training. In particular, � poses particular difficulties as it is
defined in terms of the minimizer of the target objective F , but the FL algorithm generally minimizes the biased function FB .
Nevertheless, we include the closed-formed solution of the optimization problem in (212a)–(212d) for completeness.

We use the active-set method: let X be the set of coordinates corresponding to the active inequalities, i.e., X = {k | y⇤k = 0}.

From the KKT condition in (218), we derive a relation between ◆⇤ and ✓⇤:

⇡|y⇤ =
X

k 62X

⇡ky
⇤

k =
X

k 62X
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X

k 62X
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Akk
= 1. (225)

We use the KKT condition in (219) to derive another relation between ◆⇤ and ✓⇤:

ky⇤k1 =
X

k 62X

y
⇤

k =
X

k 62X

s
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Akk
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Q+ ✓

⇤
P

k 62X

1
AkkP

k 62X

⇡k
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, (226)

and, replacing (226) in (225), we derive the closed-form solution for ✓⇤:

✓
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P
k 62X

⇡k
Akk
�Qs

⇤
P

k 62X

⇡2
k

Akk
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·
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APPENDIX F
BACKGROUND ON MARKOV CHAINS

F1. Markov Chain for the Analysis (Section III)
We recall some existing results [15], [31] for the Markov chain (At)t�0 used in our analysis (Assumption 1).

Assumption 1. The Markov chain (At)t�0 on the M -finite state space M is time-homogeneous, irreducible, and aperiodic.
It has transition matrix P , stationary distribution ⇢, and has state distribution ⇢ at time t = 0.

Let ⇢(t) = [⇢(t)1 , ⇢
(t)
2 , . . . , ⇢

(t)
M ],

PM
i=1 ⇢

(t)
i = 1 be the state probability distribution on the Markov chain (At)t�0 at time step t.

Assumption 1 guarantees the existence of a stationary distribution ⇢ = limt!+1 ⇢(t) = [⇢1, ⇢2, . . . , ⇢M ] with mini{⇢i} > 0
and ⇢|P = ⇢|. Then ⇢ is a left eigenvector relative to the eigenvalue 1, which is the largest eigenvalue of the matrix P .

For the transition matrix P , we label its eigenvalues in decreasing order:

1 = �1(P ) > �2(P ) � · · · � �M (P ). (228)

We define:
�̄2(P ) := max {|�2(P )|, |�M (P )|} and �(P ) :=

�̄2(P ) + 1

2
. (229)

The second largest absolute eigenvalue �̄2(P ) of the transition matrix P characterizes the mixing time of a Markov chain.
The absolute spectral gap � := 1� �̄2(P ) and its reciprocal, the relaxation time trel :=

1
� , play a role in this relationship. To

quantify the convergence of the Markov chain towards stationarity, we use the parameter d(t) := maxa2Mk[P t]a,· � ⇢kTV ,
which measures the maximum distance between the distribution [P t]a,· and the stationary distribution ⇢ for all initial states
a 2M. The mixing time tmix(") is defined as the minimum time at which the distance d(t) becomes less than or equal to a
given threshold ": tmix(") := min {t : d(t)  "}. Upper and lower bounds exist for the mixing time based on the relaxation time
and the stationary distribution: (trel � 1) log

�
1
2"

�
 tmix(")  log

⇣
1

"⇢min

⌘
trel, where ⇢min := mina2M ⇢a [31, pp. 154–156].
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F2. Markov Chain for Guideline B (Section IV)
In Section III-D (Guideline B), we examine a specific scenario where the availability of each client k follows an independent
Markov chain (Ak

t )t�0 with transition probability matrix Pk. This setup allows us to model the aggregate process as a product
of independent Markov chains, known as a Product Chain [31, Section 12.4].

Definition 2 (Product Chain). Let P1 and P2 be transition matrices on state spaces M1 and M2 respectively, with corresponding
stationary distributions ⇡1 and ⇡2. We consider a Markov Chain on the state space M1⇥M2 that moves independently in the
first and second coordinates according to P1 and P2 respectively. The transition matrix of this Markov Chain is the Kronecker
product eP = P1 ⌦ P2, defined as:

eP ((x, y), (z, w)) = P1(x, z)P2(y, w). (230)

Proposition 3. The stationary distribution of the Markov chain defined by eP = P1⌦P2 is the Kronecker product e⇢ = ⇡1⌦⇡2.

Proof. We can observe the following:

e⇢| eP = (⇡1 ⌦ ⇡2)
| · (P1 ⌦ P2) = (⇡|

1P1)⌦ (⇡|
2P2) = ⇡|

1 ⌦ ⇡|
2 = e⇢|

, (231)

where, in (231), we used the mixed-product property of the Kronecker product in the second step, and in the third step, we
noted that ⇡1 and ⇡2 are the stationary distributions for P1 and P2, respectively. For a comprehensive list of properties that
the Kronecker product satisfies, please refer to [41, p. 597].

Proposition 4 ([31, Exercise 12.6]). Let u and v be eigenvectors of P1 and P2, respectively, with eigenvalues � and µ.
Then u⌦ v is an eigenvector of P1 ⌦ P2 with eigenvalue �µ.

Proof. We can verify the following:

(u⌦ v)|(P1 ⌦ P2) = (u|P1)⌦ (v|P2) = (�u|)⌦ (µv|) = �µ(u⌦ v)|. (232)

In (232), we used the mixed-product property and the associativity of the scalar multiplication with the Kronecker product.

In general, let P1 be a m ⇥ m matrix with eigenvalues �1, ...,�m, and P2 be a n ⇥ n matrix with eigenvalues µ1, ..., µn.
The complete eigen-decomposition of P1 ⌦P2 depends on the Kronecker product structure and involves combinations of the
eigenvalues and eigenvectors of P1 and P2.

Proposition 5 (Spectrum of the Kronecker product, [41, Exercise 7.8.11]). Let the eigenvalues of P1 2 Rm⇥m be denoted
by �i and let the eigenvalues of P2 2 Rn⇥n be denoted by µj . The eigenvalues of P1⌦P2 are the mn numbers {�iµj}m,n

i=1,j=1.

Proof. Let J1 = A�1
1 P1A1 and J2 = A�1

2 P2A2 be the respective Jordan forms for P1 and P2. We use the mixed-product
property and the inverse property of the Kronecker product to show that P1 ⌦ P2 is similar to J1 ⌦ J2:

J1 ⌦ J2 = (A�1
1 P1A1)⌦ (A�1

2 P2A2) = (A�1
1 ⌦A�1

2 )(P1 ⌦ P2)(A1 ⌦A2) = (A1 ⌦A2)
�1(P1 ⌦ P2)(A1 ⌦A2).

(233)

Consequently, the eigenvalues of P1⌦P2 coincide with those of J1⌦J2. Since J1 and J2 are upper triangular with {�i}mi=1

and {µj}nj=1 on the diagonals, respectively, J1⌦J2 is also upper triangular with diagonal entries given by {�iµj}m,n
i=1,j=1.

Proposition 6. Let �̄2(Pk) denote the second largest eigenvalue in absolute value of the transition matrix Pk associated with
the k-th client, and define �(Pk) :=

�̄2(Pk)+1
2 . For the product chain defined by P =

N
k2K

Pk, the second largest eigenvalue
in absolute value �̄2(P ) and �(P ) := �̄2(P )+1

2 satisfy:

�̄2(P ) = max
k2K

�̄2(Pk) and �(P ) = max
k2K

�(Pk). (234)

The proof of Proposition 6 follows a similar structure to the one in [31, Corollary 12.13].

Proof. From Proposition 5, we know that the eigenvalues of P =
N

k2K
Pk are given by:

(
Y

k2K

�i(Pk) : �i(Pk) an eigenvalue of Pk

)
. (235)
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Recall that �̄2(Pk) is the second largest eigenvalue of Pk in absolute value. If k
⇤ denotes the index such that �̄2(Pk⇤) =

maxk2K �̄2(Pk), the second largest eigenvalue in module of P is the product of �̄2(Pk⇤) for the k
⇤-th client and �1(Pj) = 1

for the remaining clients j 6= k
⇤. The second result in (234) follows from the definitions of �(P ) and �(Pk).

F3. Markov Chain for the Experiments (Section V)

In the experiments (Section V-A), we consider a scenario where the activity of each client k 2 K follows a two-state
homogeneous Markov process. The state space M consists of two states: “inactive” (with value 0) and “active” (with value 1):

0 1p(k)0

1� p(k)0

p(k)1

1� p(k)1

We provide detailed expressions of the transition matrix Pk, stationary distribution ⇡(k), and the second eigenvalue �2(Pk)
used in the experiments for each client k 2 K:

Pk =

"
p
(k)
0 1� p

(k)
0

1� p
(k)
1 p

(k)
1

#
=


1� (1� �2(Pk))⇡k (1� �2(Pk))⇡k
(1� �2(Pk))(1� ⇡k) �2(Pk) + (1� �2(Pk))⇡k

�
. (236)

⇡(k) = [1� ⇡k,⇡k] =
"

1� p
(k)
1

2� p
(k)
0 � p

(k)
1

,
1� p

(k)
0

2� p
(k)
0 � p

(k)
1

#
. (237)

�2(Pk) = p
(k)
0 + p

(k)
1 � 1. (238)

APPENDIX G
EXPERIMENTAL EVALUATION

G1. Details on Experimental Setup

A. Datasets and Models: In this section, we provide a detailed description of the datasets and models used in our experiments.
We considered a total of N = 100 clients. We tested CA-Fed on the benchmark synthetic LEAF dataset [36] for regularized
logistic regression tasks, which satisfy Assumptions 3-4. Additionally, we incorporated two “real-world” datasets: MNIST [37]
for handwritten digit recognition and CIFAR-10 [38] for image recognition. Detailed descriptions of the datasets and the models
used for each of them are provided below.

a) Synthetic LEAF dataset: Synthetic data provides us with precise control over heterogeneity. The Synthetic LEAF dataset
achieves this by using parameters � and �, where � determines the degree of variation among local models and � determines
the variability in the local data across different devices. The generation process follows the setup described in [23], [24]:

1) For each client k 2 K, sample the model parameters Wk 2 R10⇥60 and bk 2 R10 from a normal distribution with mean
µk and standard deviation 1, where µk is sampled from N (0, �).

2) For each client k 2 K, generate the client’s input data Xk 2 Rnk⇥60 as follows: sample each element (xk)j from a
normal distribution with mean vk and standard deviation 1

j1.2 , where vk is sampled from N (Bk, 1) and Bk is sampled
from N (0, �).

3) Generate synthetic samples (Xk,Yk), where Yk 2 Rnk , according to the model y = argmax(softmax(Wkx + bk)),
where x 2 R60.

The distribution of samples nk = |Dk| among the clients follows a power law, resulting in an imbalanced data distribution. We
refer to the synthetic dataset with parameters � and � as synthetic(�, �). We set (�, �) values to (0, 0), (0.25, 0.25), (0.5, 0.5),
(0.75, 0.75), and (1, 1) to investigate various levels of heterogeneity in the data.
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TABLE I: Average computation time and used CPU/GPU for each dataset.

Dataset CPU/GPU Simulation time

Binary Synthetic Intel(R) Xeon(R) CPU 10min
Synthetic LEAF Intel(R) Xeon(R) CPU 6min
MNIST [37] GeForce GTX 1080 Ti 42min
CIFAR10 [38] GeForce GTX 1080 Ti 2h37min

TABLE II: Learning rates ⌘ and ⌘̄ used for the experiments in Figure 1.

Dataset Unbiased More available CA-Fed (̄ = 1) AdaFed [20] F3AST [19]

Synthetic LEAF 2.0/2.0 1.0/7.0 2.0/3.0 1.0/1.0 2.0/2.0
MNIST 0.03/1.0 0.1/4.0 0.1/1.0 0.03/1.0 0.1/0.3
CIFAR10 0.03/1.0 0.03/3.0 0.03/1.0 0.03/1.0 0.03/0.3

b) MNIST: To classify handwritten digits in the MNIST dataset, we employ multinomial logistic regression. The model takes a
flattened 784-dimensional (28 × 28) image as input and predicts a class label from 0 to 9 as output. To introduce heterogeneity
in the data distribution, we distribute the dataset among N = 100 clients using a Dirichlet allocation method [39] with
parameter & . This allocation scheme allows for varying proportions of the dataset to be assigned to each client, contributing
to the heterogeneous nature of our experimental setting.

c) CIFAR-10: The CIFAR-10 dataset consists of 60,000 input images, sourced from a collection of 80 million tiny images,
with 10 distinct labels. To partition the CIFAR-10 dataset among N = 100 clients, we employ a Dirichlet allocation [39] with
parameter & . For this particular dataset, we train a shallow neural network comprising two convolutional layers followed by
one fully connected layer. This network architecture is designed to capture relevant features from the CIFAR-10 images and
facilitate accurate classification.

B. Implementation Details:

a) Machines: The experiments were conducted on a CPU/GPU cluster, utilizing various available GPUs such as Nvidia Tesla
V100, GeForce GTX 1080 Ti, and Quadro RTX 8000. The majority of experiments involving Synthetic datasets were executed
on an Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz. On the other hand, experiments involving MNIST and CIFAR-10 datasets
were performed using GeForce GTX 1080 Ti cards. For each dataset, we conducted approximately 50 experiments, excluding
the time dedicated to development and debugging. Due to the usage of a train batch size of 32 samples, the experiments with
MNIST and CIFAR-10 datasets exhibited slower execution times. Table I provides the average duration required to execute
one simulation for each dataset. The authors are grateful to the OPAL infrastructure from Université Côte d’Azur for providing
resources and support.

b) Libraries: We extensively employed the PyTorch deep learning framework throughout our experiments. PyTorch provided us
with a comprehensive set of tools and functionalities for model construction, training, and evaluation. It allowed us to efficiently
implement and optimize various neural network architectures, including the multinomial logistic regression model for the
MNIST dataset and the shallow neural network for the CIFAR-10 dataset. To simplify the data preparation process, we utilized
Torchvision, a PyTorch package designed for computer vision tasks. Torchvision facilitated seamless dataset management,
including the download and pre-processing of MNIST and CIFAR-10, enabling us to transform the raw image data into a
suitable format for training and evaluation.

c) Hyper-parameters: For each method and task, we performed a grid search to determine the optimal learning
rates ⌘ and ⌘̄. For the MNIST and CIFAR-10 datasets, we explored the grids ⌘ = {2.0, 1.0, 0.3, 0.1, 0.03, 0.01} and ⌘̄ =
{5.0, 4.0, 3.0, 2.0, 1.0, 0.3, 0.1}. For the Synthetic LEAF dataset, we shifted the grid to ⌘̄ = {8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0}.
Table II reports the learning rates ⌘ and ⌘̄ corresponding to the results in Figure 1 for each dataset and method. For CA-Fed,
we use the hyper-parameters � = ⌧ = 0. In the case of AdaFed, we set full device participation, where the parameter server
samples all active clients (|St| = |At|). To ensure a fair comparison, we set the number of clients sampled by F3AST to the
average number of clients included by CA-Fed, which is 45 on average. Furthermore, we set the smoothness parameter � of
F3AST to be O(1/T ), as suggested by the authors in [19, Appendix D].
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APPENDIX H
FURTHER DISCUSSION ABOUT CA-FED

H1. CA-Fed’s computation/communication cost
CA-Fed aims to improve training convergence and not to reduce its computation and communication overhead. Nevertheless,
excluding some available clients reduces the overall training cost, as we will discuss in this section referring, for the sake of
concreteness, to neural networks’ training.

In terms of computation, the available clients not selected for training are only requested to evaluate their local loss on the
current model once on a single batch instead than performing E gradient updates, which would require roughly 2⇥E�1 more
calculations (because of the forward and backward pass). The selected clients have no extra computation cost as computing
the loss corresponds to the forward pass they should, in any case, perform during the first local gradient update.

In terms of communication, the excluded clients only transmit the loss, a single scalar, much smaller than the model update.
Conversely, participating clients transmit the local loss and the model update. Still, this additional overhead is negligible and
likely fully compensated by the communication savings for the excluded clients.

H2. CA-Fed and Client Sampling
In cross-device FL, a common practice is to employ client sampling, where a small subset of clients (denoted as St) is uniformly
selected at random from the set of active clients (At) during each communication round of model training. This is primarily
done to mitigate communication overhead and enhance scalability.

In our analysis, based on Assumption 1, we assume that spatial and temporal correlations primarily concern clients’ availability
dynamics and we consider, for simplicity, St = At. However, our findings have a noteworthy implication: while the set of
available clients At exhibits correlation, the client sampling in St can be designed to make clients’ participation dynamics
independent over time and among clients. A promising direction for future research is to extend our work in this context and
derive a refined bound similar to our result in Theorem 2 which quantifies the impact of client sampling on �(P ).

Consistent with our analysis, we have designed our algorithm to align with the assumption St = At. By design, CA-Fed
excludes clients with large temporal correlation and low availability and activates, in each communication round, only clients
satisfying {k 2 At; q

(t)
k > 0} (line 8 in Algorithm 1). However, when only a small fraction of clients is excluded, CA-Fed

seamlessly integrates with client sampling. This only involves replacing At with St in Equation (17) and Algorithm 1 (server
estimates for clients’ local losses (F̂ (t) = (F̂ (t)

k )k2K) are now updated from the sampled clients’ losses (F (t) = (F (t)

k )k2St )).

H3. About CA-Fed’s fairness
Strategies that exclude clients from the training phase, such as CA-Fed, may raise concerns about fairness. The concept
of fairness in federated learning does not have a unified definition in the literature [42, Chapter 8]. Fairness goals can be
established by appropriately selecting the target weights ↵ = {↵k}k2K in the definition of the global target objective (1). For
instance, per-client fairness can be achieved by setting ↵k to be equal for every client (i.e., ↵k = 1/N), while per-sample
fairness can be accomplished by setting ↵k proportional to the local dataset size |Dk| (i.e, ↵k = |Dk|/|D|).

Assuming that the global objective in (1) truly reflects fairness concerns, then CA-Fed can be considered intrinsically fair.
This is because CA-Fed continually focuses on minimizing the total error ✏ := F (wT ) � F

⇤, which guarantees that the
performance objective of the learned model is as close as possible to its optimal value at every time. Although CA-Fed
occasionally excludes clients with low availability and high temporal correlation, the optimization problem (1) is carefully
designed to ensure that the learned model performs well for these clients. As a result, CA-Fed effectively learns a model that
is consistently accurate and fair across all clients, regardless of their availability or temporal correlation.
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