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 
Abstract—As low-cost Internet-of-Thing-based PD monitors 

for medium-voltage apparatuses in distribution power systems 
increase, developing an effective PD de-noising algorithm is 
crucial to improve their robustness to on-site noise. Yet, 
de-noising PD signals in the monitoring devices is challenging 
primarily due to three critical reasons, i.e., high-level field noises, 
uncertain PD waveform, and limited computing resources. This 
work describes an adaptive and efficient PD de-noising algorithm 
based on the improved spectral decomposition of the noisy PD 
signal. PD pulses are accurately extracted from the noisy signal by 
selecting the dominant components via a low-rank singular value 
decomposition of the time-frequency spectrogram of the signal, 
thus reducing the size of the involved matrices and the 
computational complexity. The performance of the proposed 
de-noising algorithm is first demonstrated on a synthetic PD 
signal and compared with state-of-the-art alternatives 
implemented on three embedded systems commonly used for PD 
monitoring. Finally, the strength and the effectiveness of the 
proposed approach are further validated on experimental data 
based on the measurement of Internet-of-Thing-based PD 
monitors for 35-kV switchgears. 
 

Index Terms— Partial discharge de-noising, embedded systems, 
short-time Fourier transform, randomized singular value 
decomposition, kurtosis criteria. 

I. INTRODUCTION 

A. Background 

artial discharge (PD) monitoring is a promising technique 
for assessing the health of electrical insulation within 

high-voltage apparatuses, capable of revealing incipient 
insulation failures [1, 2]. With the rapid development of 
advanced internet techniques, e.g., Internet-of-Thing (IoT), 
Edge Computing, etc., a mass of low-cost IoT-based PD 
monitoring devices (e.g., using a microcontroller with the 
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Cortex-M4 core [3]) have been deployed on power apparatuses 
in power distribution networks, transportation systems, 
petrochemical plants, etc. [4], and they have successfully 
predicted many insulation failures.  

Nevertheless, many application experiences show that the 
sensitivity and accuracy of PD diagnosis are significantly 
reduced by field interferences, with unavoidable detrimental 
effects induced by discrete spectral interference and white 
noise. Discrete spectral interference mainly arises from higher 
harmonics of the power system, high-frequency protection 
signals, carrier frequency signals (e.g., power line 
communication), and radio signals [5]. White noise is caused 
by equipment thermal noise, ground noise, rand noise, etc. [6].  

Yet, de-noising PD signals in IoT-based monitoring devices 
with minimal computing resources is challenging primarily due 
to three critical reasons. The first one is that the magnitude of 
field noises (i.e., mV level) is often the same as or even higher 
than that of PD signals [5, 6], causing PD signals to be wholly 
drowned in noises. The second one is that the PD waveforms 
are always various, which depends on the size, location, and 
materials of the PD source, the transfer functions of the PD 
propagation path, and the used PD sensors [7, 8]. Such 
uncertainties on PD signal waveforms pose great difficulty in 
setting the algorithms’ proper de-noising parameters. The last 
and most important one is that the hardware resources in the 
low-cost PD monitoring devices are minimal, e.g., the clock 
frequency and memory of the Cortex-M4 core used in [2,3] are 
only 80 MHz and Kbytes, leading to possible data-overrun 
error or too long computation time and too much power 
consumption of the de-noising algorithms. Therefore, 
developing an adaptive and efficient de-noising algorithm that 
can be embedded into PD monitors with minimal computing 
resources becomes vital. 

B. Related works 

In the past twenty years, various PD signal de-noising 
methods have been proposed to reduce or eliminate noise. 
Wavelet transform (WT) has demonstrated excellent 
performance in de-noising PD signals with high noise levels in 
cases where the mother wavelet and decomposition levels have 
been chosen appropriately [9]. However, identifying the ideal 
mother wavelet and decomposition level requires prior 
knowledge of the waveform characteristics of the PD signal, 
which is often difficult to determine in on-site measurements. 
To mitigate the above limitation, the paper [10] presents an 
adaptive empirical mode decomposition (EMD) algorithm in 
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which no prior knowledge is required. But, such a method 
suffers from mode-mixing issues. Variational mode 
decomposition (VMD) addresses this specific challenge [11], 
and its effectiveness has been successfully demonstrated in 
de-noising PD [12]. Nevertheless, iterations are required in the 
VMD algorithm, leading to a non-negligible computational 
cost. [13] explores using the machine learning method for PD 
de-noising, which is proven to extract PDs automatically in 
various noise environments. However, the technique requires 
lots of labeled data to train the de-noising model. 

In recent years, singular value decomposition (SVD), a 
non-parametric and self-adaptive method, has been explored 
for PD de-noising. In [14], the PD signal is embedded into a 
Hankel matrix, and then PD de-noising is achieved via applying 
SVD and principal component analysis to the Hankel matrix. 
However, the survey in [15] reveals that the Hankel 
matrix-based SVD suffers from poor de-noising performance in 
a low signal-to-noise environment due to the difficulty of 
selecting the correct number of singular values. In [16], a 
short-time SVD algorithm is developed by reducing the rank of 
the input matrix to be decomposed and developing an automatic 
singular value selection approach based on the minimum 
description length criteria. A few hybrid methods that combine 
SVD with WT, EMD, and VMD are presented in [17, 18, 19]. 
However, these methods suffer from the same problems as WT, 
EMD, and VMD. In [20], a PD de-noising based on the 
so-called generalized S-transform and module time-frequency 
matrix is proposed, but the S-transform is expensive and leads 
to significant computational time. [21] offers an alternative 
solution that combines the SVD and the time-frequency 
complex matrix (or spectrogram) of a noisy PD signal obtained 
by the short-time Fourier transform (STFT). The STFT-SVD 
method can adaptively reduce noise in various PD pulses. 
However, the technique, as well as the above other algorithms, 
is time-consuming due to the expensive SVD, making it 
challenging to apply in low-cost PD monitors with minimal 
computing resources, e.g., the Cortex-M4 core. 

C. Contributions and paper organization 

The current study was motivated by the limitations of the 
above-mentioned PD de-noising methods in hardware 
resource-limited PD monitors, offering the following 
improvements: 
1) Algorithm improvement. An adaptive and efficient 

STFT-randomized SVD (STFT-RSVD) algorithm is 
developed based on the previous work in [21] with the 
aim of heavily reducing the computational complexity of 
the proposed algorithm, including PD identification 
criteria to avoid unnecessary computation, decomposing 
the spectrogram using a more efficient RSVD algorithm, 
and selecting dominant components via a more 
straightforward approach. 

2) Hardware comparison and selection. Embedded 
systems commonly used for PD monitoring are surveyed, 
and the implementation of the proposed algorithm in 
these systems is described in detail. To the best of our 
knowledge, no reports or publications addressed a 
systematic comparative study on implementing PD noise 
reduction in embedded systems used in PD monitors. 

3) Validation by simulation. Simulation experiments of 
de-noising a representative synthetic PD signal are 
conducted based on the selected embedded systems. The 
effectiveness and feasibility of the proposed algorithm are 
thus validated, along with the discussion of the effects and 
sensitivity of its key parameters. 

4) Validation by measurements. The proposed algorithm 
is successfully applied to de-noise real PD signals with an 
extremely low signal-to-noise ratio, measured by 
IoT-based PD monitors of medium-voltage switchgears. 

5) Cross-comparison and proposed proven solution. A 
comparison with alternative state-of-the-art solutions is 
conducted in synthetic and measured PD signals, 
demonstrating the proposed algorithm's better de-noising 
performance and lower computational cost. 

The rest of this paper is structured as follows: Section II 
introduces the principles of the improved STFT-RSVD 
de-noising algorithm. Section III describes the implementation 
of PD de-noising in embedded systems. Section IV discusses 
the simulation results of de-noising a synthetic signal in the 
embedded systems. In Section V, the feasibility of the 
developed algorithm is confirmed by applying it to de-noise PD 
data in real resource-limited PD monitors. Finally, conclusions 
and final remarks are drawn in Section VI. 

II. PRINCIPLES OF THE IMPROVED STFT-RSVD DE-NOISING 

ALGORITHM 

This section describes the principles of the proposed 
STFT-RSVD de-noising algorithm. To explain the algorithm 
better, the previous STFT-SVD de-noising method is briefly 
reviewed, and then three improvements of the proposed 
algorithm in terms of computational complexity reduction are 
described in detail. 

A. The STFT-SVD de-noising method 

Figure 1 collects the principle of the STFT-SVD method 
based on a four-step procedure as follows [21]: 

Step 1) The time-domain signal is first transformed into a 
time-frequency spectrogram via STFT. 

Step 2) The spectrogram is preprocessed via a soft-masking 
function to reduce part of the white noise, and then it is 
decomposed into multiple components via SVD. 

Step 3) Each component is transformed back to time-domain 
sub-signals via inverse STFT.  

Step 4) The sub-signals with distinct pulsed characteristics 
are selected via Principal Component Analysis and kurtosis 
criteria, and they are finally summed to reconstruct the 
de-noised PD signal. 

The STFT-SVD de-noising method has been validated to 
perform outstandingly in extremely low signal-to-noise ratio 
environments. However, the computational complexity of the 
STFT-SVD algorithm is too high to be executed in most 
embedded systems due to the two following reasons: i) the 
SVD algorithm is costly as it leads to colossal computational 
complexity and requires much memory; ii) The ISTFT requires 
to be used multiple times to transform all selected components 
(i.e., sub-spectrogram) back to time-domain signals (see the 
third step in Fig.1), leading to a huge computation. 
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Fig. 1. Illustration of the basic principle of the STFT-SVD de-noising method in [21]. 
 

 
Fig. 2. Block diagram of the improved STFT-RSVD algorithm. 
 

B. The proposed STFT-RSVD de-noising algorithm 

To reduce the computational complexity of the STFT-SVD 
algorithm, the more efficient STFT-RSVD algorithm is 
developed, as shown in Fig. 2. Compared with the STFT-SVD 
algorithm, the proposed algorithm has three improvements: 
 Kurtosis criteria is added between the STFT and SVD 

steps, aiming at avoiding applying the expensive SVD 
to the useless data without PDs. 

 RSVD is used to decompose the time-frequency 
spectrogram automatically. Compared with the   SVD, 
the RSVD requires less memory, leading to 
significantly smaller computational complexity. 

 The component selection is carried out before the 
ISTFT step to avoid executing the computationally 
expensive ISTFT multiple times, significantly reducing 
the computational complexity of this step. 

Based on the three improvements, the following paragraphs 
describe the proposed STFT-RSVD algorithm in detail 
according to the scheme in Fig. 2 and data processing following 
all the blocks involved from left to right. 

1) Time-frequency transform via STFT (step 1) 
The sampled noisy PD signal is stored in a vector 𝒙 =

[𝑥(𝑡ଵ), 𝑥(𝑡ଶ), … , 𝑥(𝑡௅)]்  defined as: 

𝑥(𝑡௟) = 𝑠(𝑡௟) + 𝑤(𝑡௟), 𝑡௟ = (𝑙 − 1)∆𝑡, 𝑙 = 1,2, … , 𝐿 ,   (1)  

where 𝑠(𝑡௟)  is the discretized noise-free PD signal, 𝑤(𝑡௟) 
represents the superimposed noise (i.e., white or discrete spectrum 
noises), ∆𝑡 is the sampling interval, and L is the number of time 
samples. 

The STFT of the signal 𝒙 is computed by sliding an analysis 
window g(n) (e.g., a Gaussian window with a width factor of 2.5 
in this work) of length M over the signal and calculating the fast 
Fourier transform of each segment of windowed data. The 

window hops over the original signal at intervals of H samples. 
The STFT matrix has 𝑁 =  ⌊(𝐾 − 𝑀 + 𝐻)/𝐻⌋ columns, where 
the ⌊·⌋ symbol denotes the floor function. The nth column of the 
STFT matrix 𝑿 = [𝑿ଵ, 𝑿ଶ, … , 𝑿௡ , … , 𝑿ே] ( 𝑿 ∈ ℂெ×ே) contains 
the fast Fourier transform of the windowed data centered about 
time nH: 

𝑋௡(𝑓௠) = ෍ 𝑥(𝑡௟)
௅

௟ୀଵ
𝑔(𝑡௟ − 𝑛𝐻∆𝑡)𝑒ି௝ଶగ௧೗௙೘∆𝑡,     (2) 

where 𝑓௠ = (2𝑚 − 𝑀)/(2𝑀∆𝑡) (  𝑚 = 1,2, … , 𝑀 ) are the 
discrete frequency, and 𝑋௡(𝑓௠)  (also labeled as Xm,n) is the 
element in the mth row and nth column of the matrix 𝑿. 

2) Pulse identification via kurtosis criteria (step 2) 
PD pulses have a short duration, leading to outliers in the 

local area of the spectrogram 𝑿. At the same time, white and 
discrete spectral interferences tend to lack outliers in the time 
dimension (i.e., each row of the spectrogram). Such a statistical 
difference between PD pulses and the noises allows us to 
identify whether one PD pulse occurs by detecting these 
outliers. Since the real parts of the spectrogram have outliers 
similar to those of the spectrogram, PD identification can be 
achieved by applying kurtosis criteria directly to the real parts 
of the rows of the obtained spectrogram to reduce 
computational cost. The criteria is formulated as follows: 

⎩
⎨

⎧ yes, ൬෍ logical(kur(𝑿௜
୰ୣ)

ெ

௜ୀଵ
> 𝛽)൰ ≥ 𝜀

 no,         ൬෍ logical(kur(𝑿௜
୰ୣ) > 𝛽)

ெ

௜ୀଵ
൰ < 𝜀 

,      (3) 

where 𝑿௜
୰ୣ is the real parts of the 𝑖th row of the spectrogram, 𝑀 

is the total number of rows of the spectrogram, 𝛽 is a threshold 
set to 4, an empirical value suggested in [22], 𝜀 is a threshold to 
identify whether a PD occurs and is better to be selected as 2~5  
since too small or large 𝜀 may lead to wrong or missed PD 
identification, kur(∙) is the kurtosis calculation function given 
in [18], and logical(∙) is the logical function and returns 0 or 1. 

3) Signal enhancement via soft masking (step 3) 
As shown in the spectrogram in Fig. 1, the PD pulses turn out 

to be localized in the specific zones and have significantly 
higher amplitude than the white noise. Such difference between 
the PD signal and the white noise allows us to pre-process the 
matrix 𝑿 ∈ ℂெ×ே to remove parts of the white noise via a soft 
masking function as [21,23]: 
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𝑋௠,௡ = ቊ
𝑇௠,௡ ∙ 𝑋௠,௡ if ห𝑋௠,௡ห < 3𝜀

𝑋௠,௡            if ห𝑋௠,௡ห ≥ 3𝜀
,              (4) 

where ε is the standard deviation of X, and Tm,n is the attenuation 
coefficients defined as: 

𝑇௠,௡ = ฬ
𝑋௠,௡

3𝜀
ฬ

௤

,                                (5) 

where q is the attenuation control factor, and it is set as 2, an 
empirical value suggested in [21]. After the soft masking, the 
spectrogram 𝑿 is updated to a new spectrogram, in which parts 
of white noise are removed while discrete spectrum noise and 
some residual white noise still exist. It is essential to point out 
that soft masking improves the signal-to-noise ratio of the PD 
signal, thus facilitating the subsequent matrix factorization and 
component selection. 

4) Matrix factorization via randomized SVD (step 4) 
Since the elements belonging to the PD signal always 

concentrate at the local area of the spectrogram 𝑿, we can 
perform low-rank approximation to reduce the size of the input 
matrix of the expensive SVD, which can be achieved via the 
randomized algorithm described in [24]. The randomized 
algorithm and SVD combination are named randomized SVD 
(RSVD) [25]. The noisy input matrix 𝑿 ∈ ℂெ×ே is decomposed  
into four matrices via RSVD, yielding: 

𝑿 = 𝑸𝑼୕𝑺୕𝑽୕
ு  ,                                  (6) 

where 𝑸 ∈ ℂெ×௉  is a given matrix with P ( P ≪ 𝑀 , 𝑁 ) 
orthonormal columns which can be obtained via the 
randomized algorithm [25], 𝑼୕  is a 𝑃 × 𝑃  left orthonormal 
matrix (𝑼୕ =[𝒖ଵ, 𝒖ଶ, . . . , 𝒖௉] , 𝒖௜ ∈ ℂ௉×ଵ ), 𝑺୕  is a real 𝑃 × 𝑃 
rectangular matrix with the singular values 𝜎ଵ > 𝜎ଶ > ⋯ > 𝜎௉ 
in the diagonal entries, and 𝑽୕ is a 𝑃 × 𝑁 right orthonormal 
matrix ( 𝑽୕ = [𝒗ଵ, 𝒗𝟐, . . . , 𝒗௉] , 𝒗௜ ∈ ℂே×ଵ ). The total 
computational complexity of the RSVD is O(4𝑀𝑁log𝑃 +
4(𝑀 + 𝑁)𝑃ଶ) [25], which is much less than that of the classical 
SVD (i.e., O(4𝑁𝑀ଶ)) as P  can be set much less than 𝑀 and N. 

In RSVD, only one parameter (i.e., P) is required to be set in 
advance. On the one hand, we want the basis matrix 𝑸  to 
contain as few columns as possible to reduce the computational 
complexity. On the other hand, accurately approximating the 
input matrix is even more critical. Therefore, P can be slightly 
larger than the PD components’ estimated rank to guarantee 
this approximation's accuracy. Accordingly, an empirical rule to 
roughly determine 𝑃 can be formulated as follows: 

𝑃 = 𝑀
∆𝑓୔ୈ

𝑓ୱ

+ 𝑟,                                   (7) 

where ∆𝑓୔ୈ is the estimated frequency bandwidth of the PD 
signal, 𝑓ୱ  is the sampling frequency, the term of 𝑀∆𝑓୔ୈ/𝑓ୱ 
denotes the estimated rank of the PD components, and 𝑟 is the 
redundancy factor in guaranteeing reliable noise reduction 
performance. It can be set from 3 to 5 [25]. 

5) Components selection and signal reconstruction 
(steps 5 and 6) 

Since the right orthonormal eigenvectors 𝒗ଵ, 𝒗ଶ, . .., and 𝒗௉ 
(obtained via RSVD) also contain the time-dimension 
characteristics of the components, we can apply kurtosis 
criteria to the eigenvectors to select pulse-type components 
before ISTFT, thus avoiding executing the ISTFT multiple 
times. The components with larger kurtosis values are chosen 

to reconstruct the noiseless matrix 𝑿′ ∈ ℂெ×ே, which can be 
formulated as: 

𝑿ᇱ = 𝑎ଵ𝜎ଵ𝑸𝒖ଵ𝒗ଵ
ு + 𝑎ଶ𝜎ଶ𝑸𝒖ଶ𝒗ଶ

ு + ⋯ + 𝑎௉𝜎௉𝑸𝒖௉𝒗௉
ு , (8) 

where 𝑎௜ = logical{𝑘𝑢𝑟(𝒗௜
୰ୣ) > 4}, where 𝒗௜

୰ୣ is the real parts 
of the right eigenvector 𝒗௜. Finally, the noiseless matrix 𝑿′ is 
transformed back to time-domain signal 𝒙′ ∈ ℝଵ×௅ via inverse 
STFT. 

An overall comparison between the computational 
complexity of the improved STFT-RSVD algorithm and the 
STFT-SVD algorithm in [21] at each algorithm step is listed in 
Tab. I. It can be observed that the added kurtosis criteria 
between STFT and RSVD leads to a negligible additional 
computational cost, while applying RSVD to decompose the 
spectrogram and exchanging the order between the component 
selection and ISTFT can significantly reduce the computational 
complexity. Moreover, it is essential to point out that although 
some other time-frequency transform tools (e.g., continuous 
wavelet transform, Wigner-Ville distribution, Hilbert-Huang 
transform, etc.) are optional to obtain the spectrogram, we still 
select the STFT since it is the most time-saving one [26]. 

TABLE I 
Computational complexity comparison between the 

STFT-SVD and the proposed STFT-RSVD algorithms 
The improved STFT-RSVD 

algorithm 
 

The STFT-SVD algorithm in 
[21] 

Steps 
Computational 

complexity 
Steps 

Computationa
l complexity 

STFT+ 
Kurtosis 
criteria 

O(𝑀𝑁log𝑀
+ 3𝑀𝑁) ≈ STFT 

O(𝑀𝑁log𝑀
+ 𝑀𝑁) 

Soft masking O(4𝑀𝑁) = Soft 
masking 

O(4𝑀𝑁) 

RSVD 
O(4𝑀𝑁log𝑃 +
4(𝑀 + 𝑁)𝑃ଶ) 
(𝑃 ≪ 𝑀, 𝑁) 

≪ SVD O(4𝑀ଶ𝑁) 

Component 
selection 

O(2𝑁𝑃 +
4𝑀𝑁𝑃′)(𝑃ᇱ ≪

𝑃, 𝑅) ≪ 
ISTFT 

O(𝑀𝑁𝑅log𝑀
+ 5𝑀𝑁𝑅) 

ISTFT 
O(𝑀𝑁log𝑀
+ 𝑀𝑁) 

Component 
selection 

2𝑁𝑅 

𝑀  denotes the window length of the STFT (also the number of rows of the 
spectrogram); 𝑁 denotes the number of columns of the spectrogram, determined by 
𝑁 = ⌊(𝐾 − 𝑀 + 𝐻)/𝐻⌋, where 𝐾 is the sampling number of the signal, and 𝐻 is 
the window hops of the STFT; 𝑅 denotes the number of the components obtained 
via principal component analysis in the STFT-SVD algorithm in [21]; 𝑃 denotes 
the number of columns of the given matrix 𝑸 in RSVD; 𝑃′ denotes the number 
of the selected components in the proposed STFT-RSVD algorithm. 

III. IMPLEMENTATION OF THE PROPOSED STFT-RSVD  

ALGORITHM IN EMBEDDED SYSTEMS 

In on-site PD monitoring, PD signal detection, including 
signal acquisition, de-noising, and feature extraction (or data 
compression), is always completed in embedded systems due to 
their nominal cost, volume, power consumption, etc. This can 
improve the edge computing capability of the whole 
monitoring system and reduce the amount of data that needs to 
be stored. Embedded systems with varying hardware resources 
have been used for PD monitoring in different application 
scenarios, which depend on the testing object and the budget 
cost. 



5 
 

Three representative types of embedded systems are often 
used for PD diagnosis: System on Chip (SoC), Microprocessor 
Unit (MPU), and Microprogrammed Control Unit (MCU). SoC 
is a system-level chip with very abundant hardware resources 
(i.e., field-programmable gate array, multiple cores, high-speed 
processors, and extensive random-access memories (RAM)), 
but on the contrary, it has a very high cost and power 
consumption; it is often used for advanced PD diagnosis of 
recognition, classification, and localization, e.g., the PD 
location system for medium-voltage switchgears and cables [27, 
28, 29]. MPU is a kind of integrated Central Processing Unit 
with multiple cores, high-speed processors, and more 
functionalities but may have small random-access memories; it 
is often used for PD detection, recognition, and classification, 
e.g., online PD monitoring for high-voltage motors, gas 
insulation systems, and transformers [30, 31]. MCU is a 
chip-level chip with fewer hardware resources (i.e., a single 
core, a low-speed processor, less RAM), but it has a low cost 
and power consumption; it is often used for low-cost PD 
monitoring, e.g., online IoT-based PD monitors for widely 
distributed overhead lines, cables, switchgear, etc. [2, 3, 32,33]. 

On the embedded systems side, three representative chips  
corresponding to the above SoC, MPU, and MCU have been 
selected to test the performance of the proposed algorithm and 
its alternatives. Their characteristic parameters and reference 
prices are listed in Tab. II. The used evaluation boards integrate 
all the hardware needed for programming and debugging the 
chips, namely the JTAG interface for ZYNQ7035 and the 
ST-LINK/V2 interface for STM32MP157 and STM32L476. 
The input or output PD signals are stored in the program 
memory (flash memory), while the intermediate signals or 
matrices are stored in the RAM. All three devices have been 
clocked at their maximum speeds. 

On the computer side, communication with the above 
interfaces has been established using KELL 5.0 (for 
STM32MP157 and STM32L476) and VIVADO (for 
ZYNQ7035), free software for debugging and programming 
ARM and other systems. Once the program runs for a series of  
tests, the numerical outputs can be examined or exported 
through the debuggers, interrupting the program at convenient 
points. The timing of the single routines is computed by the 

SysTick timer built into the ARM cores. Since the 
recommended software (i.e., KELL 5.0 and VIVADO) only 
supports debugging and programming in the embedded systems 
in C Language, we must implement the PD de-noising 
algorithms in C Language. However, the C-languages of the 
most cost-efficient versions of some sub-functions in the 
algorithms (e.g., STFT and SVD) are unavailable. Alternatively, 
we programmed the algorithm in MATLAB codes and used a 
transcoding tool named MATLAB CODER to translate the 
MATLAB codes into C codes. On the one hand, the MATLAB 
software platform can provide all the latest sub-functions 
required in the algorithm. On the other hand, the MATLAB 
CODER allows us to allocate the dynamic memory to execute 
the algorithm according to the size of the RAM in the 
embedded systems, and it can automatically generate 
corresponding C codes [34]. This work sets the dynamic 
memories of ZYNQ7035, STM32MP157, and STM32L476 as 
900 Mbytes, 700 Kbytes, and 100 Kbytes, respectively. 
Moreover, the MATLAB CODER includes the OpenMV 
interface, which can generate the C codes that can be executed 
in parallel with multiple cores, e.g., in ZYNQ7035 or 
STM32MP157. This can further reduce the computational cost 
of the embedded algorithms. 

IV.LABORATORY EXPERIMENT 

A generic PD signal with a low signal-to-noise ratio is 
synthesized to assess the de-noising algorithms. The feasibility 
of the proposed algorithm is validated via de-noising the 
synthetic PD signal in Device 1. The de-noising performance of 
the proposed algorithm and its alternative algorithms is 
compared in Devices 1, 2, and 3. 

A. Synthetic noisy PD signal 

Figure 3 collects the time-domain waveform of the synthetic 
PD signal. Since the synthetic signal includes multiple PD 
pulses with various waveforms, which simulate a general case 
in on-site PD measurement, it can be used as a qualified test 
sample to evaluate the de-noising performance of the proposed 
algorithm. The sampling rate of the synthetic signal is 500 MS/s, 
and the sampling number is 16000. 

TABLE II 
Features of three representative embedded systems commonly used for PD monitoring 

Serial 
number 

Device models 
Pictures of the 

evaluation board 
Types ARM cores 

Clock 
frequency 

Memory 
(RAM) 

Price 
of the 
device 

Application scenarios 

Device 1 
(AX7350, 
ALINX) 

ZYNQ7035 
 

SoC 
2×Cortex-A9+ 

Kintex-7 
800 MHz 1 Gbytes 

1280 
USD 

Advanced PD diagnosis: 
recognition, 

classification, and 
localization [27, 28, 29] 

Device 2 
(ATK-DLM

P157M, 
ALIENTEK

) 

STM32MP157 

 

MPU 
Cortex-M4+ 
Cortex-A7 

209 MHz 
+800 MHz 

708 
Kbytes 

109 
USD 

PD detection, 
recognition, and 

classification [30, 31] 

Device 3 
(STM32 

Nucleo-L47
6RG, ST) 

STM32L476 
 

MCU Cortex-M4 80 MHZ 
125 

Kbytes 
12 

USD 

Low-cost and low-power 
PD detection and 

recognition [2, 3, 32, 33] 
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(a) 

 
(b) 

Fig. 3. Time-domain (a) and frequency-domain (b) waveforms 
of the synthetic noiseless and noisy PD signals. The green and 
blue lines denote the noisy and original signals, respectively. 
 

Table III collects the models and parameters of the PD pulses 
in Fig. 3. At the PD source, the PD current pulse can be 
modeled by a double exponential pulse [4], e.g., pulse 1 in Fig. 
3. However, most detected PD signals are oscillating pulses due 
to the effects of both the propagation path and the transfer 
function of the used sensor. Therefore, single exponential and 
double exponential attenuation oscillation pulses, e.g., pulses 2 
and 3 in Fig. 3, are used. Moreover, it is important to point out 
that these three pulses are recognized as typical models of PD 
signals and have been widely used in the literature, such as in [6, 
8, 9, 10, 11, 14, 17, 18, 19, 21]. Nevertheless, the real PD 
signals can be more complex than these three models, e.g., 
pulses 4 and 5 in Fig. 3. Pulse 4 originates from a fouling 
insulator and is detected by the high-frequency current 
transformer, as provided in [35]. Pulse 5 arises from the PD 
defect caused by a tree leaning on a 10-kV overhead covered 
conductor line and is detected by the same sensor. It is essential 
to point out that the sensor was deployed as close (about 20 cm) 
as possible to the defects to avoid the signal attenuation caused 
by the overhead line, to reduce the detrimental effects of noise, 
and to produce a reference response which is eventually 
compared with the reconstructed PD. In addition, the 
amplitudes of pulses 4 and 5 are reduced by several tens of 
times, giving them a similar amplitude to the first three pulses. 

According to [4,5], discrete spectral interference and white 
noise always influence on-site PD measurement. Therefore, 
they are added to the synthetic PD signal. The frequencies of 
the two harmonics in the discrete spectral interference are set to 
10 and 28 MHz, and their corresponding amplitudes are set to 
1.5 and 1 mV, respectively, while the standard deviation of the 
white noise is set to 1 mV. It is essential to note that the 
synthetic noise includes very high-level noise with a similar 
amplitude to the PD pulses. Thus, it can be used to validate and 
assess the de-noising performance of the proposed algorithm 
for a PD signal with an extremely low signal-to-noise ratio. 

TABLE III 
Models and parameters of the PD pulses in Fig. 3 

Series 
number 

Models Parameter values 

Pulse 1 𝐴ଵ(𝑒
ି

௧
ఛభ − 𝑒

ି
௧

ఛమ) 
𝐴ଵ=5 mV, τ1=100 ns, and 

τ2=10 ns. 

Pulse 2 𝐴ଶ𝑒
ି

௧
ఛయsin (2𝜋𝑓ୡଵ𝑡) 

𝐴ଶ=4 mV, τ3=800 ns, and 
𝑓ୡଵ=2 MHz 

Pulse 3 𝐴ଷ(𝑒
ି

௧
ఛర − 𝑒

ି
௧

ఛఱ)sin (2𝜋𝑓ୡଶ𝑡) 

𝐴ଷ=9 mV, τ4=300 ns, 
τ5=700 ns, and 𝑓ୡଶ=20 

MHz 
Pulse 4 (measured) 
Pulse 5 (measured) 

 
The typical evaluation metric, i.e., signal-to-noise ratio 

(SNR), is defined below to quantify the quality of the estimated 
noiseless PD signal: 

𝑆𝑁𝑅 = 10logଵ଴

∑ [𝑥ᇱ(𝑡௟)]ଶ௅
௟ୀଵ

∑ [𝑥ᇱ(𝑡௟) − 𝑠(𝑡௟)]ଶ௅
௟ୀଵ

           (9) 

where  𝑥′(𝑡௟)  and 𝑠(𝑡௟)  denote the discrete noise-free and 
de-noised signals, respectively, and 𝑡௞  is equal to (𝑙 − 1)Δ𝑡 , 
where Δ𝑡 is the sampling interval. Higher SNR represents better 
de-noising performance. SNR of the synthetic noisy signal is 
calculated as -5.849 dB. 

B. Validation experiment (in Device 1) 

 In Section II, three improvements in the proposed 
STFT-RSVD algorithm are developed, aiming at reducing its 
computational complexity without influencing its de-noising 
performance. To validate the feasibility of the improvements, 
the de-noising experiment of the proposed STFT-RSVD 
algorithm was carried out in the synthetic PD signal in Device 1, 
which was compared with the STFT-SVD method in [21]. The 
parameters of the STFT-RSVD algorithm were set as 𝑀=320, 
𝐻 =10, and 𝑃  =20, according to the empirical equations in 
Section II and [21]. 

Figure 4 collects the plots of the kurtosis values of the real 
parts of rows of the spectrograms of the noise and the noisy PD 
signal. The index axis denotes the serial number of rows of the 
spectrograms. It can be observed that the kurtosis values of the 
noise spectrogram are less than the threshold, while parts of the 
noisy PD signal are significantly larger than the threshold. 
According to Equation (1), the class of the spectrogram of the 
noise will be identified as “No,” while that of the noisy PD signal 
will be “Yes,” validating the feasibility of the kurtosis criteria. 

Figure 5 collects the plots of the kurtosis values of the 
reconstructed sub-signals obtained via applying ISTFT to each 
component in [21] and the real parts of the right orthonormal 
eigenvectors obtained via the RSVD. The index axel denotes the 
serial number of the components obtained via the RSVD. It can be 
observed that the kurtosis values of the real parts of the right 
orthonormal eigenvectors are generally similar to that of the 
reconstructed sub-signals, verifying the feasibility of selecting the 
pulse-type components by applying kurtosis criteria to the right 
orthonormal eigenvectors. Although the difference between the 
kurtosis values of the two curves tends to be more prominent as the 
index increases, the result of the component selection via the 
threshold criteria is hardly influenced. Moreover, since the 
components’ energy significantly reduces as the index rises, 
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Fig. 4. Kurtosis values of real parts of rows of the spectrograms 
of the noise (triangle labels) and noisy PD signal (round labels) 
(𝑀=320, 𝐻=10, and 𝑃 =20). 
 

 
Fig. 5. Kurtosis values of the reconstructed sub-signals 
obtained via applying ISTFT to each component [21] (round 
labels) and the real parts of the right eigenvectors obtained via 
the RSVD (triangle labels) (𝑀=320, 𝐻=10, and 𝑃 =20). 
 
discriminant error on the element with a larger index hardly affects 
the final de-noising result. 

Figures 6 and 7 collect the de-noised signals and 
computation time of the STFT-SVD method in [21] and the 
proposed STFT-RSVD algorithm, respectively. In Fig. 6, it can  
be observed that their de-noising results are almost coincident 
as their differences are negligible. SNRs of the de-noising 
signals obtained via the STFT-SVD and STFT-RSVD 
algorithms are calculated as 18.34 dB and 18.11 dB, 
respectively, which are significantly higher than that of the 
original synthetic noisy signal, i.e., -5.849 dB. In contrast, the 
computation time of the proposed STFT-RSVD algorithm is 
significantly less than that of the STFT-SVD algorithm, 
especially in terms of the SVD or RSVD, component selection, 
and ISTFT steps, as shown in Fig. 7. The results demonstrate 
the essential benefits of the RSVD and exchanging the order 
between component selection and ISTFT in reducing 
computational complexity. 

C. Parameter effect simulation (in Device 1) 

The computational complexity of the proposed STFT-RSVD 
algorithm is associated with its three parameters, i.e., window 
length 𝑀 of STFT, window hops 𝐻 of STFT, and the estimated 
rank 𝑃 of the spectrogram of the noiseless PD signal. Therefore, 
this section will investigate their effect on the computing cost 
of the proposed algorithm via de-noising the synthetic PD 
signal in Device 1. Moreover, since down-sampling the PD 
signal is commonly applied to reduce the computational burden 
of the used embedded systems, its effect on the proposed 
algorithm is also evaluated. 

 
Fig. 6. De-noising results of the STFT-SVD and the improved 
STFT-RSVD algorithms (𝑀=320, 𝐻=10, and 𝑃=20) and their 
differences (i.e., the subtraction between the two de-noised 
signals). 
 

 
Fig. 7. Computation times of all steps in the STFT-SVD (a) and 
STFT-RSVD (b) algorithms (𝑀=320, 𝐻=10, and 𝑃 =20). 
 

Figure 8 collects the curves of SNRs and the overall 
computational time of the proposed algorithm against the 
window length M. 𝐻 and 𝑃 are set as 10 and 20, respectively. It 
can be observed that the de-noising performance improves as M 
increases in the initial part of the curves. It becomes nearly flat 
once the number of sampling points exceeds the critical value 
of 100, and finally, it declines slowly as M continues to increase. 
The computation time of the proposed algorithm gradually 
increases as M increases since the size of the spectrogram (i.e., 
the number of rows) increases, too. Moreover, the increased 
size can lead to a significantly increased memory requirement. 
Therefore, considering both the de-noise performance and 
efficiency, selecting the smallest value of M may lead to 
sufficiently good performance indexes. 

 

 
Fig. 8. Effect of window length M on SNR and the overall 
computational time required by the proposed STFT-RSVD 
algorithm (𝐻=10, 𝑃 = 20). 
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Figure 9 collects the curves of SNRs and the overall 
computational time of the proposed algorithm against the 
window hops H. 𝑀 and 𝑃 are set as 320 and 20, respectively. It 
can be observed that the de-noising performance stays nearly 
flat as H increases in the initial part of the curve. It decreases 
slowly, and finally, it oscillates and decreases faster once H 
exceeds the critical value of 20. The computation time of the 
proposed algorithm significantly decreases as H increases since 
the size of the spectrogram (i.e., the number of columns) 
decreases. Considering the de-noise performance and 
efficiency, selecting the critical value of H may lead to 
sufficiently good performance indexes. 
 

 
Fig. 9. Effect of window hops H on SNR and the overall 
computational time required by the proposed STFT-RSVD 
algorithm (𝑀 = 320, 𝑃 = 20). 
 

Figure 10 collects the curves of SNRs and the overall 
computational time of the proposed algorithm against the 
estimated rank P. 𝐻 and 𝑀 are set as 10 and 320, respectively. 
It can be observed that the de-noising performance improves as 
P increases in the initial part of the curves, and then it becomes  
nearly flat once P exceeds the critical value of 12. Therefore, as 
suggested in equation (3), P should be set to be somewhat more 
significant than the estimated rank of the PD components in the 
proposed STFT-RSVD algorithm, as such a value of P can lead 
to the same de-noising performance as the STFT-SVD 
algorithm but significantly reduced computational cost, which 
verifies the critical benefit of the RSVD. 
 

 
Fig. 10. Effect of P on SNR and the overall computational time 
required by the proposed STFT-RSVD algorithm (𝑀 = 320, 
𝐻 = 10). (SNR0 is the SNR of the de-noised signal obtained via 
the STFT-SVD algorithm [21]). 
 

Figure 11 collects the curves of SNRs and the overall 
computational time of the proposed algorithm against the 
down-sampling intervals. 𝑀, 𝐻, and 𝑃 are set as 160, 10, and 
20, respectively. It can be observed that as the down-sampling 
intervals increase, the de-noising performance decreases 

linearly while its computation time decreases exponentially. 
This means that down-sampling the input noisy PD signal can 
be a feasible trade-off solution if the computing resources of the 
used embedded system are severely insufficient. 

 

 

Fig. 11. Effect of down-sampling intervals on SNR and the 
overall computational time required by the proposed 
STFT-RSVD algorithm (𝑀 = 160, 𝐻 = 10, and 𝑃 = 20). 
 

D. Comparison result (in Devices 1, 2, and 3) 

De-noising the synthetic noisy PD signal via the proposed 
algorithm and its alternatives (i.e., WT [9], EMD [10], 
H-FSVD [14], AST-SVD [15], S-SVD [20], SVD-EWT[17], 
and SVD-VMD [19]) was carried out in Devices 1, 2, and 3. 
We selected three group parameters for the proposed 
STFT-RSVD algorithm in this experiment: (i) 𝑀=80, 𝐻=1, and 
𝑃=20; (ii) 𝑀=40, 𝐻=5, 𝑃=12; (iii) 𝑀=20, 𝐻=10, 𝑃=8, which 
all satisfy the empirical equations in Section II and in [21]. The 
first group of parameters was used in the proposed algorithm 
executed in Device 1, while the second and last were in Device 
2 and 3, respectively. Moreover, since the RAMs of Devices 2 
and 3 are minimal, the synthetic signal is down-sampled at 
intervals of eight sampling points before de-noising, i.e., the 
length of the synthetic signal is compressed from 16,000 to 
2,000 by sampling at equal intervals. This operation simulates 
real-world applications where high sampling rates have to be 
abandoned due to the limited hardware resources of the 
monitoring devices. SNR of the synthetic signal is re-calculated 
as -5.796 dB according to Equation (5). 

The de-noising results are shown in Fig. 12. In Fig. 12(a), the 
WT algorithm behaves well for the first pulse but fails to 
reconstruct the third pulse. The difference in the noise 
reduction effect on the PD pulses is attributed to the selected 
mother wavelet (i.e., dB8). In Fig. 12(b), the EMD technique 
can only discriminate the PD signal vaguely; discrete spectral 
interferences and waveform distortions remain; it fails to 
reconstruct the third and last pulses. In Fig. 12(c), the H-FSVD 
fails to reduce the discrete spectral interference since its 
principal component analysis cannot distinguish PD and 
discrete spectral interference. In Fig. 12(d), the AST-SVD fails 
to reduce the discrete spectral interference, similar to the 
H-FSVD. In Fig. 12 (e), the S-SVD fails to de-noise the first 
pulses, and waveform distortions remain. In Fig. 12 (f), the 
SVD-EWT can de-noise all pulses, but visible distortions 
remain. In Fig. 12 (g), the SVD-VMD behaves well for the first, 
second, and fourth pulses, but obvious distortions of the third 
and last pulses remain. In Fig. 12(h), (i), and (j), compared with 
the results of the other algorithms, the proposed STFT-RSVD 
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algorithm can effectively reduce both the white noise and the 
discrete spectral interference in all five types of PD pulses, 
demonstrating its more robust adaptability to de-noise various 
PD signal with an extremely low signal-to-noise ratio. 

All the algorithms’ evaluation metrics (SNR and computing 
times) are listed in Tab. IV. For de-noising performance, it can 
be observed that the proposed STFT-RSVD algorithm with 
parameter settings of M=80, H=1, and P=20 has the highest 
SNR. For computing time, in Device 1, it can be observed that 
as 𝑀  decreases and 𝐻  increases (i.e., the size of the 
time-frequency matrix decreases), the computational time of 
the proposed STFT-RSVD algorithm decreases exponentially; 
the STFT-RSVD algorithm requires significantly less 
computing time than H-FSVD; although the STFT-RSVD 
algorithm requires slightly more computational time than the 
WT technique, it provides considerably better de-noising 
performance, as discussed in the last paragraph. Moreover, it is 
essential to note that the H-FSVD algorithm cannot be 
implemented in Devices 2 and 3 due to the limited memories, 
which cannot execute the expensive SVD operation in these 
algorithms. In contrast, the proposed STFT-RSVD algorithm 
can be implemented in Devices 2 and 3 as long as the proper 
parameters are selected. This demonstrates the most crucial 
benefit: the proposed algorithm can be implemented in 
different embedded systems with varying hardware resources. 

In addition, the parameters of the synthetic signal in Tab. III 
were changed to test the algorithms in Device 1 further. SNRs 
of the de-noised signal obtained via the algorithms are listed in 
Tab. V. It can be observed that the SNRs of the proposed 
algorithm are still the highest, despite slight fluctuations as the 
parameters of the synthetic signal change, verifying the 
robustness of the proposed algorithm. 

V.VALIDATION OF THE PROPOSED ALGORITHM IN IOT-BASED PD 

MONITORS FOR MV SWITCHGEARS 

In this section, the feasibility of the proposed algorithm is 
validated via de-noising real PD data collected by the 
IoT-based PD monitors on the surface of a row of 35-kV 
switchgears, as shown in Fig. 13. The monitor consists of a 
transient earth voltage coupler [36, 37] as the PD sensor, a data 
acquisition and processing module, a communication module, 
and a battery. Since the number of 35-kV switchgears is 
enormous, which leads to the limited budget of the monitor for 
one switchgear, the data acquisition and processing module use 
the low-cost and low-power STM32L476 as their processor and 
the built-in analog-to-digital device with a sampling ratio of 5 
Ms/s to collect data. The analog-to-digital device captures the 
PD signal component from tens of kHz to 2.5 MHz, sufficient 
to achieve the primary and fast PD diagnosis [37, 38] despite 
losing some signal waveform details. Compared with Device 3, 

 

 
Fig. 12. De-noising results of (a) WT (the mother wavelet: dB8; decomposition level: 5) in Device 1, (b) EMD in Device 1, (c) 
H-FSVD (the size of Hankel matrix: 500×2000) in Device 1, (d) AST-SVD (the size of the sliding window: 200; the size of Hankel 
matrix: 100×200) in Device 1, (e) S-SVD (the adjustable factor of S-transform: 1) in Device 1, (f) SVD-EWT in Device 1, (g) 
SVD-VMD in Device 1, (h) the proposed STFT-RSVD (𝑀 = 80, 𝐻 = 1, and 𝑃 = 20) in Device 1, (i) the proposed STFT-SVD 
(𝑀 = 40, 𝐻 = 5, and 𝑃 = 12) in Device 2, (j) the proposed STFT-SVD (𝑀 = 20, 𝐻 = 10, and 𝑃 = 6) in Device 3. The green, 
blue, and red lines denote the noisy, original, and de-noised signals. 
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TABLE IV 
Evaluation metrics comparison of the algorithms 

Method 
SNR 
(dB) 

Computation time (s) 

Device 1 Device 2 Device 3 

STFT-RSVD 
(M=80, H=1, 

P=20) 
11.819 0.133 / / 

STFT-RSVD 
(M=40, H=5, 

P=12) 
9.128 0.021 0.049 / 

STFT-RSVD 
(M=20, H=10, 

P=6) 
7.633 0.010 0.016 0.847 

WT[9] 2.348 0.005 0.011 0.483 
EMD[10] 2.857 0.007 0.014 0.726 

H-FSVD[14] -0.547 0.112 / / 
AST-SVD[15] 4.157 0.437 / / 

S-SVD[20] 0.669 0.842 / / 
SVD-EWT[17] 7.106 0.375 / / 
SVD-VMD[19] 6.357 1.024 / / 

*Remark: “/” means that the memory is insufficient to run the algorithm. Moreover, 
since the minimal memory of Device 1, the signal is divided into five segments of 
equal length (i.e., 400 sampling points), which are de-noised one by one in Device 1; 
on the contrary, the whole signal is directly de-noised in Device 2 and 3 without 
segmentation. 

 
TABLE V 

De-noising performance comparison of the algorithms under 
difference parameter settings of the synthetic signal in Tab. III 

Method 

SNR (dB)  
τ1=200 ns 
τ2=20 ns. 
τ3=800 ns 
τ4=150 ns 
τ5=300 ns 

𝑓ୡଵ=8 MHz 
𝑓ୡଶ=25 MHz 
(-6.8218 dB) 

τ1=400 ns 
τ2=40 ns 

τ3=1000 ns  
τ4=100 ns 
τ5=200ns 

𝑓ୡଵ=4 MHz 
𝑓ୡଶ=20 MHz 
(-6.0280 dB) 

τ1=800 ns 
τ2=80 ns 

τ3=1200 ns 
τ4=200ns 
τ5=400 ns 

𝑓ୡଵ=2 MHz 
𝑓ୡଶ=15 MHz 
(-4.6559 dB) 

STFT-RSVD 
(M=80, H=1, 

P=20) 
10.923 11.618 12.168 

STFT-RSVD 
(M=40, H=5, 

P=12) 
8.175 8.515 9.211 

STFT-RSVD 
(M=20, H=10, 

P=6) 
6.697 7.214 7.417 

WT[9] 2.654 3.248 5.348 
EMD[10] 2.059 3.924 4.857 

H-FSVD[14] -0.575 -0.125 -0.547 
AST-SVD[15] 1.157 2.114 2.235 

S-SVD[20] 0.813 0.257 1.547 
SVD-EWT[17] 6.447 6.663 7.024 
SVD-VMD[19] 6.456 7.157 7.154 

 

an external memory card of 2 Mbytes is added in the module to 
store the collected data with at least a power-frequency cycle 
(i.e., 20 ms or 100000 sampling points). The PD monitors are 
enabled to complete PD detection in a time interval of half an 
hour for two main reasons. On the one hand, the limited 
computation hardware resources and communication 
bandwidth of the monitors lead to difficulty in real-time PD 
monitoring. On the other hand, most PD activities are often 
dynamically stable within a short interval, e.g., tens of minutes 
[31,39]. The devices’ minor deficiencies that may miss some  

 

Fig. 13. Online PD monitoring of MV switchgears via 
IoT-based PD monitors. 
 
special PD events (e.g., PDs caused by the overvoltage 
transients) can be tolerated in practical industrial application 
due to the devices’ outstanding advantages of small volume, 
low cost, and independent of external power supply. 

The proposed STFT-SVD algorithm and its alternative (i.e., 
the WT and EMD algorithms) are implemented in another PD 
monitor with the same hardware as that in Fig. 13. Since the 
memory of the processor is minimal, causing it impossible to 
directly de-noise the whole data at one time, we divided the 
data into 250 segmentations with the same length of 200 via a 
sliding window. These segmentations are long enough to cover 
a PD pulse and are de-noised one by one. Although this division 
may be done in the middle of a few pulses, the final PD 
diagnosis is hardly influenced by this problem since it is always 
based on the statistical results of all de-noised PD pulses, e.g., 
the phase-resolved PD spectrum [40]. Since the duration of a 
PD pulse in 35-kV switchgear is always more than 1 μs [37], 
which means that the signal always contains a frequency 
component less than 1 MHz, the window length 𝑀 should be 
set as at least 15 (i.e., more than α ×5 MHz/1 MHz according to 
the empirical equation in [21], where α is set as 3) to guarantee 
a sufficient frequency resolution of the spectrogram. On the 
other hand, 𝑀 cannot be set too large due to the limit of its 
random access memory (i.e., 125 Kbytes) in STM32L476. 
Therefore, we selected three group parameters for the proposed 
STFT-RSVD algorithm in this experiment: (i) 𝑀=25, 𝐻=2, and 
𝑃=10; (ii) 𝑀=20, 𝐻=4, 𝑃=8; (iii) 𝑀=15, 𝐻=6, 𝑃=5, where the 
possible values are set according to the empirical equation (4) 
provided in Section II. 

The de-noising results of the proposed algorithm and its 
alternatives are collected in Fig. 14. It is important to point out 
that all SVD-based algorithms were not implemented in the PD 
monitor since the SVD requires a huge RAM that the used 
monitor cannot provide. It can be observed that the WT 
algorithm can only discriminate the PD signal vaguely, which 
leads to significant distortion and energy loss. The EMD 
algorithm almost fails to de-noising most PD pulses. In contrast, 
the proposed algorithm yields good reconstructed PD pulses, 
causing most PD pulses (some even completely drowned in the 
noise) to be detected and their energy loss significantly less 
than the WT algorithm. It makes applying to various industrial 
applications accessible without intensively tuning the 
parameters. The total computing times of using the proposed 

algorithm and its alternatives to the whole data in Fig. 14 are 
listed as Tab. VI. It can be observed that the proposed 



11 
 

algorithms with the second and third parameter settings require 
significantly less computation time than that of the WT and 
EMD algorithms, primarily due to the unnecessary calculations 
of the data segment without any PD pulses (i.e., no PD pulse in 
the sliding time window) being avoided in the proposed 
algorithm. Moreover, it is essential to point out that the total 
computation time of the proposed algorithm (i.e., tens of 
seconds) is significantly less than the test interval (i.e., half an 
hour) of the PD monitors, allowing it to be used in these 
monitors.  

Out of caution, the relevant maintenance department carried 
out the opening inspection of the two switchgears on the far 
right several days later. They found the bush between the two, 
as shown in Fig. 13. Immediately, they cleared up the fouling 
on the surface of the bush, and the PD pulses disappeared, as 
shown in Fig. 15, which verified that the fouling is the cause of 
the PD and the proposed algorithm can effectively extract the 
PD pulses drown in the noises. 

 

 

 

 
Fig. 14. De-noising results of (a) WT (the mother wavelet: dB8; 
decomposition level: 5) in Device 3, (b) EMD in Device 3, and 
(c) the proposed STFT-RSVD in Device 3 (black line: 𝑀 = 25, 
𝐻 = 2, and 𝑃 = 10; blue line: 𝑀 = 20, 𝐻 = 4, and 𝑃 = 8; red 
line: 𝑀 = 15, 𝐻 = 6, and 𝑃 = 5;). The green and red lines 
denote the noisy and de-noised signal. 
 

 
Fig. 15. De-noising results of WT (black line), EMD (blue line), 
and the proposed STFT-RSVD (red line) in Device 3 after 
removing the PD defect (𝑀 = 25, 𝐻 = 2, and 𝑃 = 10). The 
green denotes the noisy and de-noised signal. 

TABLE VI 
The computing times of applying the algorithms to de-noising 

the 20-ms data in Fig. 11 

Method Total computation time (s) 
WT[9] 48.052 

EMD[10] 45.381 
STFT-RSVD 

(M=25, H=2, P=10) 
50.089 

STFT-RSVD 
(M=20, H=4, P=8) 

36.592 

STFT-RSVD 
(M=15, H=6, P=5) 

22.693 

 
Before removing the PD defect, 33 original PD data (each 

data contains the 20-ms noisy PD signal like that in Fig. 14) 
were stored, and they will be used further to validate the 
de-noising performance of the proposed algorithm (with 
parameters of 𝑀 =15, 𝐻 =6, 𝑃 =5). Figure 16 contains the 
statistical phase-resolved spectrum of the original data and the 
de-noised results, the acknowledged data form widely used to 
diagnose PD magnitude and types [40]. It can be observed that 
it is indeed difficult to identify any PD activities in the spectrum 
of the original signal due to the severe noise; visible PD 
activities can be observed in the spectrum obtained via the WT 
algorithm, but it causes a significant energy loss and misses to 
detect most of PD pulses; the spectrum of the EMD algorithm 
reveals a small number of PD events; in contrast, the proposed 
algorithm yields a significantly more precise and more accurate 
phase-resolved spectrum, which can be undoubtedly identified 
as one with significant PD activities. It reveals that the 
proposed algorithm can substantially improve the sensitivity 
and accuracy of PD detection via the monitors and has a better 
de-noising performance than the state-of-the-art alternatives.  

 

      

     
Fig. 16. Statistical phase-resolved spectrum of PD events 
detected in (a) the measured noisy signals; (b) the de-noised 
signals obtained via WT; (c) the de-noised signals obtained via 
EMD; (d) the de-noised signals obtained via the proposed 
STFT-RSVD. 

VI. CONCLUSION 

This paper proposes an adaptive and efficient PD de-noising 
algorithm based on the joint application of STFT and RSVD. 

(a) 

(b) 

(a) (b) 

(c) 

(c) (d) 
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The proposed algorithm can be integrated into computing 
resource-limited embedded systems (e.g., Cortex-M4) used for 
PD monitoring to reduce both the white noise and the discrete 
spectral interferences in PD pulses with uncertain waveform 
parameters. The feasibility and effectiveness of the proposed 
algorithm are validated via comprehensive simulation and 
measurement experiments. To sum up, 

1) The comparison with the previous STFT-SVD 
algorithm in the simulation experiment shows that the 
computational efficiency of the proposed algorithm is 
significantly improved without sacrificing its 
de-noising performance, validating the effectiveness of 
its three improvements, i.e., adding kurtosis criteria 
before matrix factorization, decomposing the 
spectrogram using the RSVD algorithm, and selecting 
dominate components by applying kurtosis criteria to 
the right eigenvectors. 

2) The parameter effect simulation experiments show that 
the de-noising performance of the proposed algorithm is 
quite robust with respect to an empirical tuning of its 
internal parameters (i.e., window length and hops of the 
STFT and estimated rank of the spectrogram of the 
noiseless PD signal). On the other hand, such 
parameters strongly affect the computation time. 
Therefore, setting these parameters around their critical 
values can yield the highest cost performance. 

3) The comprehensive comparison with other 
state-of-the-art alternatives in simulation experiments 
of de-noising PD pulses with various waveforms in 
three typical embedded systems shows that the 
proposed algorithm yields minimal waveform 
distortions of all considered PD signals and minimal 
computing times, proving its superior de-noising 
performance and computational efficiency. 

4) The application of the algorithm in resource-limited 
devices (i.e., using low-cost and -power STM32L476 as 
their processers) for PD monitoring of 35-kV 
switchgears demonstrates its effectiveness and 
superiority, as it causes significantly less waveform 
distortion and energy loss than other state-of-the-art 
alternatives, i.e., WT and EMD. In this case, the 
proposed algorithm yields a more accurate statistical 
phase-resolved PD spectrum, which is fundamental to 
achieving reliable PD recognition and classification in 
the subsequent diagnosis process. 

Future works will investigate the proposed algorithm's 
possible application or improvement for more PD sensors and 
more severe noise environments, e.g., colored or impulse 
noises. 
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