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3
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Many industrial sectors, like the personal care one, make wide use of mixing processes that9

involve complex fluids. However, modelling the rheology of these fluids is still challeng-10

ing due to their non-Newtonian behaviour, which depends also on the local composition.11

Computational tools such as Dissipative Particle Dynamics (DPD) have been already used12

to calculate the equilibrium properties of these systems. Moreover, different works have13

been focused on the calculation of transport properties from these mesoscale DPD simula-14

tions. Multiscale approaches have been proposed to couple rheological information from15

DPD with Computational Fluid Dynamics (CFD) simulations. The CFD technique repro-16

duces the macroscale piece of equipment, implementing a rheology model built using the17

Gaussian Process Regression (GPR), a mathematical tool related to machine learning. In18

this work, such framework is tested on an industrial process, to asses its performance on19

a realistic application. The investigated system is a solution at a high concentration of20

Sodium Lauryl Ether Sulfate (SLES) in water under laminar fluid dynamics regime. The21

results show that the mixture correctly exhibits a shear-thinning behaviour and presents22

viscosity values in good agreement with rheology experiments. While the feasibility of the23

coupling approach is shown, further studies on DPD are needed to improve the accuracy24

and the predictability of the methodology.25
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I. INTRODUCTION26

The personal care industry makes extensive use of ionic and non-ionic surfactants mixed with27

water for the production of everyday items, such as shampoos and soaps. Usually, the final prod-28

ucts for the consumer market have low to moderate concentrations of surfactants (∼ 12−25%)1,2.29

On the other hand, the semi-finished products present considerably higher concentrations of sur-30

factants. Consequently, during the production step, a great variety of composition conditions are31

explored. In these blends, the concentration of surfactants plays a crucial role, due to their capabil-32

ity of undergoing self-assembly at the microscopic scale3. This process leads to the formation of33

different microstructures depending on composition, ranging from the micellar one to the hexag-34

onal, cubic, and lamellar ones4,5. For this reason, these fluids are often referred to as structured35

fluids or complex fluids. The self-assembly occurs also in solutions of water and Sodium Lauryl36

Ether Sulfate (SLES)3–5, one of the most commonly used surfactants for personal care products.37

The presence of microstructures influences greatly the rheology of complex fluids, whose appar-38

ent viscosity depends on the composition and on the shear rate3,4. As a result, building a model39

for this rheological behaviour is considerably challenging and requires a significant amount of40

experimental data.41

The continuous advances in the field of computational methods can be a great aid to the mod-42

elling process. Various simulation techniques allow the reproduction of the features of the fluids,43

from the microstructures at the mesoscale to the macroscopic fluid dynamics in the industrial44

equipment. In particular, Dissipative Particle Dynamics (DPD) is a computational technique that45

employs coarse-graining (CG) to describe the molecules in a fluid. The CG description leads to a46

reduction of the required computational resources when compared to other atomistic techniques,47

such as Molecular Dynamics (MD). This is due to the reduction of the degrees of freedom, which48

allows to explore higher spatial and temporal scales while retaining a certain degree of chemical49

specificity. The DPD technique has already been proven to be able to reproduce a variety of mi-50

crostructures for complex fluids6,7. The parameterization of a DPD fluid is a vibrant field of study51

and various approaches were proposed over the years. Since the initial developments of the tech-52

nique, Groot and Warren 8 built the parameter set for a simple fluid to match the compressibility53

of water. Moreover, they proposed a method based on Flory-Huggins theory of polymer solutions54

to derive the interaction parameters for systems with large molecules8. This approach found wide55

usage in the literature in numerous different applications, like surfactants in oil/water systems9,56
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phase diagrams for ternary mixtures6 or polymer solutions10. An automated approach to build the57

coarse-grained model and identify the parameters was developed by Fraaije et al. 11 and recently58

tested on interfacial systems12,13. A parameterization method for small molecules based on fitting59

the partition coefficients in water-octanol was proposed by Anderson et al. 14 . The method pro-60

duces a set of parameters that can be used for different molecules and has been already used to61

simulate alkyl surfactants. Among these, there was an interest in investigating the phase diagram62

for solutions of surfactants in water15, in calculating equilibrium properties16,17 and the effect of63

cosurfactants18. These studies, though, analyzed low concentrations of alkyl surfactants in water,64

exploring only the typical final formulations for the consumer market. Moreover, they focused on65

equilibrium properties, leaving aside the calculation of transport properties, such as diffusion coef-66

ficients and viscosity. Nonetheless, since its development, DPD has been considered a promising67

tool for the evaluation of transport properties for colloidal systems19,20 and polymer solutions21.68

Various methods have been employed to calculate the viscosity of a DPD fluid22. Simple fluids69

exhibit Newtonian behaviour, and their viscosity can be evaluated both with equilibrium23,24 and70

non-equilibrium22 techniques. On the other hand, non-equilibrium simulations are necessary to in-71

vestigate shear-dependent rheology, typical of complex fluids7,25–27. These methods exhibit high72

uncertainty in viscosity values for low shear rate values25,28 and bring to a rise in temperature and73

viscosity for high shear22, which is unphysical in many cases7. To have a better description of74

transport properties Junghans, Praprotnik, and Kremer 29 proposed a modification to the standard75

DPD thermostat, to include the effect of velocity components other than the radial one. For the76

same reason, increment of the dissipative coefficient γ was investigated22 and ad hoc thermostats77

have been developed30,31.78

While atomistic methods are helpful in calculating the properties of fluids, other techniques are79

instead suited to obtain useful information for design and optimization at the process scale. Among80

these, Computational Fluid Dynamics (CFD) has been used to simulate a great variety of applica-81

tions, including mixing ones32,33. Hence, studies were already conducted on static mixers34–36, a82

piece of equipment often used to produce non-Newtonian solutions of surfactants in water.83

Using the just described techniques, Zhao et al. 37 proposed a multiscale approach to simulate84

the behaviour of non-Newtonian fluids. The method uses DPD simulations to compute the vis-85

cosity of the fluid at different shear rates, generating a dataset used to build the rheology model.86

This latter step is performed using the Gaussian Process Regression (GPR), a mathematical and87

statistical tool that belongs to the family of machine learning techniques. The GPR is then directly88
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coupled with the CFD simulation, with the model that takes the shear rate values from the latter89

as input and gives the corresponding apparent viscosity in output. This multiscale approach was90

tested on a polymer melt37 and on a diluted polymer solution38 with promising results, but it was91

never applied directly to a realistic industrial process.92

In this work, the rheological behavior of an industrial blend, made of a highly concentrated93

solution of SLES in water, is reproduced using an automated multiscale approach. The rheological94

information is extracted by means of a mesoscale DPD simulation and is used to build a rheology95

model. This is implemented through the GPR in a CFD simulation of the mixing equipment used96

for the blend production, i.e. an SMX static mixer. The DPD model of the fluid is successfully97

tested by a qualitative reproduction of the SLES/water phase diagram. The CFD is used to evaluate98

useful fluid dynamics details of the flow inside the static mixer together with the pressure drop99

across the device. The final values are plausible when compared with results obtained for similar100

blends in the same piece of equipment.101

The next three sections are structured as follows: Section II illustrates thoroughly the methods102

and techniques used in this work, adding also information about the computational details. Sec-103

tion III reports and comments on the results, focusing on every step of the multiscale approach in104

different subsections. At last, the conclusions will be presented in Section IV.105

II. METHODS AND COMPUTATIONAL DETAILS106

A. The DPD technique107

The first part of the multiscale approach consists in simulating the fluid at the mesoscale, to ob-108

tain information about its rheological behaviour. The technique used to perform these mesoscale109

simulations is the Dissipative Particle Dynamics (DPD), initially developed by Hoogerbrugge110

and Koelman 39 and later improved and formalized in detail by Español, Groot and Warren8,40.111

The DPD technique employs a coarse-grained description of the molecules, for which atoms are112

grouped together in particles called beads. These represent the fundamental elements in DPD113

simulations and can contain a number of atoms, or a number of molecules, depending on the de-114

sired level of coarse-graining (CG). As a consequence, DPD has the possibility to explore bigger115

scales in comparison to the full-atom Molecular Dynamics (MD) while keeping low the required116

computational resources.117
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The dynamics of the DPD particles can be described through Newton’s equations of motion:118

drrri

dt
= vvvi , (1a)

119

dvvvi

dt
=

fff i

mi
, (1b)

where rrri is the position of the bead i with mass mi, and vvvi is its velocity. In the standard DPD120

model of a simple fluid, the beads interact with each other through three pairwise forces, that are121

summed in the term fff i of Eq. (1b):122

fff i = ∑
i ̸= j

(FFFC
i j +FFFD

i j +FFFR
i j) . (2)

These three forces regulate the interactions of two DPD beads up to a distance equal to the cut-off123

radius rc. More in detail, FFFC is the conservative force:124

FFFC
i j =


ai j

1−
ri j

rc

 r̂rri j ri j ≤ rc

0 ri j > rc

, (3)

which defines a soft repulsive potential, that allows beads to interpenetrate each other and even125

overlap. In this latter case, the conservative force reaches its maximum, which is equal to the126

repulsive parameter ai j, whose value depends on the type of beads i and j. The distance between127

a pair of particles is identified with ri j = |rrri j|= |rrri − rrr j| and r̂rri j = rrri j/ri j is the unit vector repre-128

senting the direction that connects the centers of the two beads. The dissipative force FFFD
i j and the129

random force FFFR
i j have the following structure:130

FFFD
i j =−γwD(ri j)(rrri j · vvvi j)r̂rri j , (4)

131

FFFR
i j = σwR(ri j)

ξi j√
∆t

r̂rri j , (5)

where wD(ri j) and wR(ri j) are the weight functions, vvvi j = vvviii − vvv jjj is the relative velocity between132

two beads i and j and ξi j is a Gaussian white-noise variable with zero mean value and unit variance.133

These two forces act like a thermostat, in which FFFD is used to model viscous phenomena and FFFR is134

used to model the thermal agitation of the molecules. Español and Warren 40 showed that to respect135

the fluctuation-dissipation theorem the dissipative and random forces must be related, through the136

values of the parameters γ and σ and through their weight functions:137

σ
2 = 2γkBT , (6)

5



138

wD(ri j) = [wR(ri j)]
2 =



1−
ri j

rc

2

ri j ≤ rc

0 ri j > rc

. (7)

These equations ensure the conservation of the energy in the system, in which the two forces act139

properly as a thermostat. Moreover, the relation between FFFD and FFFR results in momentum con-140

servation and correct hydrodynamic behavior of the DPD fluids for sufficiently large scales37,41.141

Due to its coarse-grained nature, the DPD model is based on reduced units. It is possible to142

retrieve the values in physical units from the DPD reduced units through the use of conversion143

factors. The values of these factors depend on the coarse-graining level of the model, but their144

identification for a given system is not trivial27. While some procedures were developed for equi-145

librium simulations and simple fluids, in the case of non-equilibrium simulations it does not exist146

a well-established methodology. The approach chosen for the work here presented is based on147

matching the properties of interest for the systems studied. Hence, the conversion factors are148

identified in order to match the viscosity of the system at a given shear rate:149

µcf =
µ

µDPD
, (8a)

150

γ̇cf =
γ̇

γ̇DPD
, (8b)

151

Ecf =
E

EDPD
=

kB T

kB,DPD TDPD
. (8c)

In Eq. (8) the subscript “cf” indicates the conversion factor, while the values in DPD units are152

marked with the subscript DPD, and the remaining quantities are expressed in physical units.153

Defining also the conversion factor for a third quantity, in this case the energy in Eq. (8c), it is154

possible to derive the conversion factor for any physical quantity. Considering that the standard155

model of the DPD is isothermal, it was possible to establish the energy of the system starting from156

a reference temperature.157

B. Non-equilibrium simulations158

To simulate a fluid under shear it is possible to apply the Lees-Edwards boundary conditions159

(LEBC)42, which is used to obtain the velocity profile corresponding to the desired shear rate160
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inside a periodic box. The LEBC method was originally developed and widely used in the context161

of MD simulation, but its implementation has been already studied and used in conjunction with162

DPD in the past7,22,27. From such kind of simulation it is possible to obtain the pressure tensor PPP,163

computed according to the following equation, in which i and j identify different beads:164

PPP =
1
V

N

∑
i=1

mivvvivvvi +
1
V

N

∑
j>i

N−1

∑
i=1

rrri jFFFT
i j . (9)

The apparent viscosity of the DPD fluid can be calculated from the elements of the pressure tensor:165

µ =−
Pxy

γ̇
, (10)

where Pxy is the non-diagonal component of the pressure tensor relative to the plane in which the166

shear γ̇ is applied.167

The DPD simulations were performed using the open-source software LAMMPS43 (Large-168

scale Atomic/Molecular Massively Parallel Simulator). For non-equilibrium simulations, Lagrangian-169

Rhomboid boundary conditions (LRBC) are implemented in LAMMPS. The LRBC are equivalent170

to the LEBC as representation for a simple shear flow44,45 and the main difference consists in how171

the shear is imposed. For γ̇ = ∂vx/∂y ̸= 0 using the LEBC, the shear is imposed using a “sliding172

brick” approach: the periodic images below and above the simulation box are displaced at ±Lγ̇∆t173

in respect to the box itself. The position and velocity of the particles that cross the y boundaries174

are set in order to take into account the different values of vx in the periodic images. Moreover, the175

interaction between two particles separated by a boundary is corrected to consider the displace-176

ment of the periodic boxes. To obtain the desired velocity profile using the LRBC instead, the177

box itself is deformed, as illustrated in Fig. 1, with a rate corresponding to the desired shear. The178

deformation induces a perturbation in the velocity of the DPD beads and under the condition of179

linear profile for the velocity within the simulation box, the Eq. (10) can be used to calculate the180

apparent viscosity.181

In the approach here described an initial equilibrium simulation is conducted, in order to save182

the state of the DPD fluid that reached a dynamic equilibrium condition. This state can be used183

as a starting point since it allows to skip the repetition of the equilibration step for every non-184

equilibrium simulation. Consequently, the LRBC are directly applied to the equilibrated fluid in185

the box, imposing the desired shear rate. Due to the rise in temperature resulting from the imposi-186

tion of the shear rate on the box, the SLLOD equations of motion were used, which in LAMMPS187
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FIG. 1. Illustration of the deformation resulting from the imposition of the LRBC on a DPD box.

implement a Nose-Hoover thermostat. This approach is widely used in Molecular Dynamics44,45,188

and has been lately adopted in some works to perform non-equilibrium DPD simulation with189

shear46.190

This paragraph reports the parameters that are common to all the DPD simulations of the191

present work. In particular, the value of numerical density for the beads is ρDPD = 3 and all192

the bead types have unitary mass in DPD units. The simulation domain is a cubic box, with a side193

of length L = 40 (DPD units) used to test the parameters (as described in Section III A) and one of194

length L = 20 (DPD units) used to carry out the non-equilibrium simulations. The velocity-Verlet195

algorithm was used to integrate the equations of motion in all the DPD simulations with a timestep196

∆t = 0.01 (DPD units).197

C. Miraspec UB75 model198

The modeled fluid is the Miraspec UB75, a three-component mixture with composition re-199

ported in Table I.200

Besides water, the table reports the use of other two main components:201

• The Inter ESA-70 is a mixture of SLES (Sodium Lauryl Ether Sulfate) at 70% in water,202

whose main function is cleansing.203

• CME/A2 is cocamide monoethanolamine (CMEA), used to control foaming, viscosity, and204
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TABLE I. Composition of the blend Miraspec UB75 used for the DPD simulations.

Component Mass fraction

Inter ESA-70 0.72

CME/A2 0.08

Water 0.20

mildness of the product.205

As depicted in Fig. 2 and Fig. 3, both SLES and CMEA have an alkyl tail, which can be formed206

by a different number of carbon atoms. In particular in Table II and Table III are reported the per-207

centages of the molecules for every length of the alkyl chain. These characterize the components208

of the blend and they are used to calculate the numerical concentrations of the beads in the DPD209

simulations of the Miraspec UB75.210

TABLE II. Percentage of SLES molecules with a specific length of the alkyl chain, expressed in number of

carbon atoms, in the Inter ESA-70 component.

Number of Carbon atoms Percentage in Inter ESA-70

12 70%

14 30%

TABLE III. Percentage of CMEA molecules with a specific length of the alkyl chain, expressed in number

of carbon atoms, in the CME/A2 component.

Number of Carbon atoms Percentage in CME/A2

8 6%

10 6%

12 50%

14 18%

16 9%

18 11%

Again in Fig. 2, it is shown that the SLES molecule can have a different number of ethoxyl (EO)211
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groups (CH2CH2O)n. While the Miraspec UB75 contains only molecules of SLES with a single212

EO group, the phase diagram reported in the work of Li et al. 3 refers to SLES molecules with213

three EO groups. Consequently, the molecule used for the validation in Section III A contained214

two more [CH2OCH2] beads than the one depicted in Fig. 2.215

The process of developing the final model went through different steps. Initially, a DPD model216

for SLES and water is tested, using the set of parameters to reproduce the phase diagram of the217

mixture. Then a coarse-grained model for CMEA is developed with the same parametrization218

method, and the correct reproduction of the microstructure of the blend is used as a test. In the219

end, the non-equilibrium simulations are performed with the developed DPD model, to obtain the220

information on the rheology of the fluid. It must be remarked that it does not exist a unique stan-221

dardized process to develop the parameters of a DPD model. Hence, depending on the system222

features and the level of coarse-graining, different methods can be used. Anderson et al. 14 devel-223

oped a parametrization scheme based on the water-octanol partition coefficients. The parameters224

obtained with this technique have been used to simulate micellar blends of alkyl sulfate, alkyl225

ethoxylate and alkyl ethoxy sulfate surfactants14–18. In this work we used the latter approach to226

model the SLES molecules, adopting the same CG level depicted in Fig. 2.227

FIG. 2. Coarse graining model adopted for water and SLES molecules15. Changing the length of the alkyl

tail results in the addition or the subtraction of [CH2CH2] beads.

The full list of conservative parameters ai j and cutoff radii rc, i j, reported in Table IV, was228

obtained from previous works14,15, while in Table V are reported the dissipative parameters γ and229

the stochastic one σ , common to all the beads.230
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TABLE IV: List of conservative repulsive parameter ai j and cutoff

radius rc, i j for each pair of beads.

Bead i Bead j conservative coefficient ai j cutoff radius rc, i j

[H2O] [H2O] 25.0 1.000

[CH3] [CH3] 24.0 0.955

[CH2CH2] [CH2CH2] 22.0 1.074

[CH2OCH2] [CH2OCH2] 25.5 1.116

[CH2OSO –
3 ] [CH2OSO –

3 ] 13.30 1.234

[Na] [Na] 25.00 1.000

[CH3CH2] [CH3CH2] 22.00 1.098

[CH2CONHCH2] [CH2CONHCH2] 22.00 1.218

[CH2OH] [CH2OH] 14.00 0.980

[H2O] [CH3] 45.00 0.977

[H2O] [CH2CH2] 45.00 1.037

[H2O] [CH3] 24.00 1.058

[H2O] [CH2OCH2] 17.90 1.117

[H2O] [CH2OSO –
3 ] 25.00 1.000

[H2O] [Na] 45.00 1.049

[H2O] [CH3CH2] 19.00 1.109

[H2O] [CH2OH] 14.50 0.990

[CH3] [CH2CH2] 23.00 1.014

[CH3] [CH2OCH2] 28.50 1.020

[CH3] [CH2OSO –
3 ] 28.50 1.071

[CH3] [Na] 45.00 0.962

[CH3] [CH3CH2] 23.00 1.026

[CH3] [CH2CONHCH2] 32.00 1.086

[CH3] [CH2OH] 26.00 0.967

[CH2CH2] [CH2OCH2] 28.50 1.095

[CH2CH2] [CH2OSO –
3 ] 28.50 1.154

[CH2CH2] [Na] 45.50 1.037
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Table IV (continued): List of conservative repulsive parameter ai j and cutoff radius rc, i j for each pair of beads.

Bead i Bead j conservative coefficient ai j cut-off radius rc, i j

[CH2CH2] [CH3CH2] 22.00 1.086

[CH2CH2] [CH2CONHCH2] 32.00 1.146

[CH2CH2] [CH2OH] 26.00 1.027

[CH2OCH2] [CH2OSO –
3 ] 15.50 1.175

[CH2OCH2] [Na] 24.00 1.058

[CH2OCH2] [CH3CH2] 28.50 1.107

[CH2OCH2] [CH2CONHCH2] 15.73 1.167

[CH2OCH2] [CH2OH] 25.00 1.059

[CH2OSO –
3 ] [Na] 17.90 1.117

[CH2OSO –
3 ] [CH3CH2] 28.50 1.166

[CH2OSO –
3 ] [CH2CONHCH2] 13.57 1.226

[CH2OSO –
3 ] [CH2OH] 21.70 1.048

[Na] [CH3CH2] 45.00 1.049

[Na] [CH2CONHCH2] 18.33 1.109

[Na] [CH2OH] 25.80 0.990

[CH3CH2] [CH2CONHCH2] 32.00 1.158

[CH3CH2] [CH2OH] 26.00 1.038

[CH2CONHCH2] [CH2OH] 26.00 1.099

TABLE V. DPD parameter in common to every bead of the Miraspec UB75 blend.

Parameter Value (DPD units)

γ 10.125

σ 4.5

The bonded interactions between two consecutive beads are modeled using the harmonic po-231

tential in Eq. (11),232

Ebond =
1

2
kbond(r− r0)

2, (11)
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with kbond = 150 (DPD units) for all the bonds and an equilibrium distance calculated according233

to the following equation16:234

r0 = 0.1(ni +n j)−0.01 , (12)

where ni and n j are the number of heavy atoms linearly bonded in the i and j bead respectively.235

According to this rule, ni = 4 for the sulfate bead, with two oxygen atoms that are considered236

“branched” from the linear chain. The model also includes an angle harmonic potential, that237

involves three beads interacting according to the formula:238

Eangle =
1

2
kangle(θ −θ0)

2 , (13)

where θ is the angle between two adjacent bonds, kangle = 5 (DPD units) and θ0 = 180° for all the239

the interactions.240

Within the model, it is particularly interesting the treatment of the charged beads, i.e. sodium241

ion and sulfate group. The standard DPD model allows overlapping of the beads, but in the case of242

ri j = 0 the Coulombic potential diverges, leading to the creation of artificial ionic pairs47,48. Previ-243

ous works on analogous systems adopted a smeared charge approach to overcome this issue15–18.244

The same approach was kept in this work, using a Slater-type charge smearing formulated by245

González-Melchor et al. 48:246

Eel =
Cqiq j

εr

1−

1+
ri j

λ
exp(−2ri j/λ )

 ri j ≤ rc,el , (14)

where, following the implementation of Anderson et al. 16 , the decay length is λ =247

1/0.929 (DPD units) and rc,el = 3 (DPD units). The latter parameter, rc,el, acts like a cutoff for248

the treatment of the electrostatic forces. When ri j ≤ rc,el the interaction between two beads is eval-249

uated through Eq. (14), while for ri j > rc,el the PPPM (particle-particle particle-mesh) solver, in its250

LAMMPS implementation, is used to evaluate the electric field. The previous literature focused251

on the study of solutions of SLES in water in micellar phases, a microstructure formed for low252

concentrations of the surfactant. Consequently, in these previous studies, the value of the dielec-253

tric permittivity constant was set equal to the one of water, εr = 78.3. In the case of the Miraspec254

UB75, the concentration of the SLES is substantially higher, hence the value εr = 25 was used.255

This latter value was chosen because it allowed to reproduce qualitatively the microstructures for256

different compositions of the mixture of water and SLES, as reported in Section III A.257
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To simulate the CMEA molecules, a new CG representation was developed, as illustrated in258

Fig. 3.259

FIG. 3. Coarse graining model developed for CMEA molecules. Changing the length of the alkyl tail results

in the addition or the subtraction of [CH2CH2] beads.

The DPD interaction parameters for the beads constituting the CMEA are only in part already260

present in the literature, in the work of Wand et al. 18; the rest were obtained using the same261

approach, the water/octanol partition method14, and they were kindly provided by Dr. Richard262

Anderson. These parameters are relative to the interactions of the [CH2OH] bead present in the263

CMEA molecule and are also listed in Table IV.264

The set of conversion factors in Table VI was used for the UB75 blend and it comes from265

matching one experimental value of viscosity. This approach was chosen due to the current im-266

possibility of matching all the properties of a fluid with a single set of conversion factors in DPD.267

This becomes particularly true for transport properties and when performing non-equilibrium sim-268

ulations. In this case, a linear velocity profile must be obtained in a small box, so the stream269

velocity must overcome the thermal velocity of the beads. Together with the nature of the DPD270

forces, this leads to very high shear rates at the macroscale and may result in a shift of the rheol-271

ogy model. Hence, the identification of conversion factors focused on matching the properties of272

interest, i.e. viscosity and shear rate, also intending to compensate for the described shift to higher273

shear rates. From the available experiments, the viscosity at the lowest shear rate was matched274

with the lowest meaningful value of the DPD shear rate. This corresponds to the lowest γ̇DPD that275

still results in a linear velocity profile from the imposition of the LRBC. For what concerns the en-276277

ergy conversion factor, it was obtained considering the temperature T = 298.15 K, the Boltzmann278

constant kB = 1.38×10−23 J ·K−1, TDPD = 1, kB = 1 with the application of Eq. (8).279

The equilibration stage lasted 1.2×106 timesteps, while the deformation of the non-equilibrium280
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TABLE VI. Set of conversion factors used for the Miraspec UB75 DPD model.

µcf (Pa · s) γ̇cf (s−1) Ecf (J)

2.59 10 4.11×10−21

stage was set to 106 timesteps. The cumulative average of the DPD viscosity is computed, and its281

value at the end of the simulation is extracted.282

D. Gaussian Process Regression283

Although the information derived from Dissipative Particle Dynamic simulations is needed to284

reproduce the behavior of the fluid at the macroscale, a tight coupling between DPD and CFD is285

unfeasible. In such a coupling, the main hindrance would be the computational effort required to286

run microscale simulations. For this reason, the development of a kriging strategy to provide an287

unbiased rheological relationship is devised. A similar approach was proposed by Zhao et al. 37 ,288

who used Gaussian Process Regression (GPR)49 to link the viscosity values extracted from DPD289

with the imposed local shear rate. GPR is a mathematical and statistical tool akin to machine290

learning and to grasp the concept behind it, it is possible to think of a distribution over functions.291

When there are no training data points, the prior distribution is usually a distribution of functions292

whose mean is equal to zero and whose standard deviation is unitary. Indeed, for every value of the293

independent variable x, the value of y is normally distributed around a mean, with an associated294

standard deviation. Hence, it is important to stress that the GPR does not output a functional form295

of the target function, and it is instead a statistical model that outputs the predicted y values for296

any tested x in input. The shape of the functions sampled from this distribution derives from the297

Kernel, which defines the properties, such as derivability, of the mentioned functions. In this work298

a Radial Basis Function (RBF), or squared exponential, Kernel was used:299

K(xi,x j) = σ
2
f exp

−
d(xi, x j)

2

2l2

 , (15)

where σ f is the signal variance, a pre-factor related to how much the functions vary vertically,300

d(·, ·) is the Euclidian distance between the two points xi and x j, and l is the characteristic length-301

scale49. The latter parameter expresses how the functions can vary: a high value of l will output302

smoother functions, that do not show rapid variations. Often σ f and l are referred to as hyper-303
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parameters since they are free parameters, whose value can be varied and it is usually optimized304

through different techniques.305

FIG. 4. Result of the GPR on an example function y = sin(x) with RBF kernel. Different steps are illus-

trated: a) prior distribution, b) posterior distribution obtained with six training data points. The functions in

blue are samples from the distributions of functions.

The addition of training points (xtrain, ytrain) to the training data set changes the distribution of306

functions, which results in the posterior distribution. The effect of adding training data points can307

be noticed by comparing Fig. 4.a and Fig. 4.b, whose plots illustrate the use of the GPR on a test308

function y = sin(x). Considering the distribution of functions of a GPR model, it is possible to309

take samples from this distribution, analogously to what can be done by sampling a distribution of310

numbers. However, in this case, the samples correspond to functions that respect the constraints311

imposed by the used kernel and the training data set. Starting from the prior distribution in Fig. 4.a,312
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in which sample functions from the distribution are plotted in blue, the addition of training points313

forces said functions to pass through them, as in Fig. 4.b. The prediction values, plotted in black,314

are the result of the regression and they are generated by calculating the mean of the normally315

distributed functions.316

Due to the width of the shear rate intervals, the GPR for the simulated systems was performed317

on the log-space, i.e. using the values of log(γ̇) vs log(µ), with an approach comparable to the318

one of Zhao et al. 37 .319

In this work, the Python module scikit-learn50 was used to perform the GPR step, and in par-320

ticular to optimize the values of the hyperparameters σ f and l. After the evaluation of the quality321

of the regression, the training data set and the values of the hyperparameter are passed to a GPR322

viscosity model implemented in the CFD code OpenFOAM. This viscosity model works as a func-323

tion: after reading the GPR hyperparameters, it requires the local value of the strain rate, which324

is evaluated through the solution of the momentum balance equation, and it provides the viscosity325

value as output for each cell of the computational domain. The implementation of the GPR in326

OpenFOAM is written in C++ and it is inspired by freely available implementations on Github51.327

E. The CFD model328

The last step of the multiscale approach is the Computational Fluid Dynamics (CFD) simula-329

tion, which makes use of the GPR viscosity model derived from the DPD non-equilibrium sim-330

ulations. As previously mentioned, the CFD simulation can provide information about the fluid331

dynamics of mixing devices36,52. In this work, this simulation is carried out in isothermal condi-332

tions, under laminar regimen, and the fluid is considered incompressible. In this attempt to apply333

the multiscale approach to a complex fluid to test the feasibility, the concentration of the species334

in the system was considered uniform. As a consequence, the viscosity of the fluid depends only335

on the strain rate γ̇ , and the system is investigated at the steady state.336

The CFD simulations were carried out using the software OpenFOAM (version 8)53 and in337

particular the steady-state solver simpleFoam. The pressure-velocity coupling algorithm adopted338

is the SIMPLEC (consistent SIMPLE).339
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F. Multiscale coupling340

A linking step between the techniques described in the previous sections was developed, to341

build a functional and automated multiscale approach. The coupling is based on an iterative flow342

scheme, implemented in Python, reported in Fig. 5, with an approach similar to the one described343

in Zhao et al. 37 .344

The starting point, as in Fig. 5, is a CFD simulation that implements a Newtonian model. The345

viscosity value for this Newtonian model can be obtained from an initial DPD simulation, per-346

formed with a low value of the shear rate γ̇DPD. With the completion of this first CFD simulation,347

the loop indicated with the blue arrows in Fig. 5 is initiated. This will be called outer loop, and348

it starts with the extraction of the interval of the strain rate values from the CFD simulation. The349

strain rate interval is then passed to the GPR, which builds the model from the training data set,350

i.e. the couples of points (γ̇, µ(γ̇)) obtained from the DPD simulations. Once the model is built,351

it takes the strain rate values in input and outputs the corresponding viscosity values (predictions)352

together with an associated standard deviation σ . This latter variable is then used to test the quality353

of the model in the whole interval. If the σ associated with any viscosity prediction is higher than354

a user-set limit σlim, the quality of the model is deemed not sufficient. In this case, the inner loop,355

indicated with the orange arrows in Fig. 5, starts and a new DPD simulation is issued. The value of356

γ̇DPD to impose for this simulation is the one corresponding to the maximum value of σ obtained357

in the tested interval. This iterative process is repeated until the regression is satisfactory, and a358

new training data point is added for every cycle of the loop. This makes the algorithm automated,359

since a certain number of DPD simulations are launched until the desired accuracy on the shape360

of the constitutive relationship is met. When the exit condition for the inner loop is respected, the361

GPR is implemented in OpenFOAM as a viscosity model, and a new CFD simulation is launched.362

The updated strain rate interval, extracted from the last simulation, is compared with the one pre-363

viously fed to the GPR. If the new interval is wider than a tolerance set by the user, the GPR model364

is tested on the updated interval and the inner loop may start again, depending on the values of σ .365

The difference between the extremes of the shear rate intervals is calculated as a relative difference366

according to the following equations:367

εmin, rel =
γ̇
(n−1)
min − γ̇

(n)
min

γ̇
(n−1)
min

, (16a)

18



FIG. 5. Flowscheme used in the multiscale coupled approach. The following symbols are used: γ̇DPD is the

shear rate used for a DPD simulation, µ0 is the viscosity obtained from the first DPD simulation, and used

to perform the Newtonian CFD simulation, γ̇(i) identifies the i-th rate interval from CFD simulations, σ is

the standard deviation associated with the regression, σlim is the user-set limit for said standard deviation,

ε., rel is the relative difference between the extremes of two shear rate intervals as in Eq. (16), and εlim is the

user-set limit for said relative differences.
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368

εmax, rel =
γ̇
(n)
max − γ̇

(n−1)
max

γ̇
(n−1)
max

, (16b)

where εmax, rel and εmin, rel must be smaller than a set limit value εlim to exit the loop. It must be369

stressed that the absolute value is not used in Eq. (16) because the convergence criterion should370

discriminate between a wider and a narrower interval. The use of the absolute value will not lead371

to convergence in case of a much narrower γ̇(n) interval, since it would not take into account the372

sign of εmax, rel and εmin, rel. For this reason, the order of the terms at the numerator of Eq. (16) is373

of paramount importance. Conversely, if the interval is not significantly wider or the quality of the374

regression is sufficient, the process exits from the outer loop. At this point, the CFD simulation375

that was performed last is considered to be the one that reproduces the studied system.376

G. Sulzer SMX static mixer model377

The application example selected in this work to test the multiscale coupling procedure is one378

step of the production process of the Miraspec UB75, namely the post-mixing section of a blend379

reported in Table I. This phase is carried in a static mixer, like the Sulzer SMX, that consists of a380

tube filled with mixing elements. Depending on the kind of application, these internal elements381

can have different shapes. In the studied equipment there are six identical mixing elements, each382

one rotated by 90° axis with respect to the previous, having the z axis as the axis of rotation. Every383

element is constituted by inclined bars, as it is possible to notice from Fig. 6. The inclination384

of each bar, with respect to both the main flux direction and the adjacent bars, is responsible385

for the mixing itself. The main flow gets broken down following smaller flow paths which are386

subsequently recombined due to the peculiar geometry of the mixer internals. Still in Fig. 6 is also387

displayed an initial empty region of the tube, used to obtain a developed flow at the beginning of388

the mixing section. The details of the static mixer geometry are reported in Table VII.389

The boundary conditions applied to the system are summarised in Table VIII, where the pres-390

sure outlet value was kept at zero. The mesh is completely tetrahedral and contains 5118292 cells,391

and it has been selected after a grid convergence study. Based on the typical densities of these392

blends, ρ = 1160 kg m−3 was imposed for the CFD simulations.393
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FIG. 6. Geometry of the SMX Sulzer static mixer used in the simulations. The color scheme identifies

different regions of the geometry: green for the inlet, red for the outlet, blue for the wall of the tube, and

orange for the mixing elements. This color coding is adopted for clarity, but in the actual computational

domain used for the simulations the tube (blue) and the internals (orange) are part of the same wall patch,

as in Table VIII.

TABLE VII. Geometrical details of the computational domain.

Symbol Value

Diameter (mm) D 16

Tube length (mm) Lt 160

Internals length (mm) Li 122

Number of elements Ne 6

Number of bars per element Nb 4

Initial free zone length (mm) Lfz 30

III. RESULTS AND DISCUSSION394

A. Solvay’s UB75 blend: testing the DPD model395

Before showing the results obtained by the multiscale approach, it is worth to discuss specif-396

ically the DPD model and in particular the CG approach reliability. As previously mentioned,397

among many available approaches to build a DPD model for a large molecule, in this work we398

used the approach of Anderson et al. 14 to build the DPD model of the molecules in the Miraspec399

UB75 blend14,16. The starting point is the Inter ESA-70, a mixture of Sodium Lauryl Ether Sulfate400

(SLES) molecules with different lengths of the alkyl tail. The coarse-grained model of a SLES401
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TABLE VIII. Boundary conditions used for the CFD simulations with the SMX Sulzer.

Wall Inlet Outlet

Velocity No slip

Fixed value

Zero gradientUx, Uy = 0

Uz = 1.38×10−2 m s−1

Pressure Zero gradient Zero gradient
Fixed value

p = 0 Pa

molecule and the DPD parameters reported in Ref. 15 were tested. The DPD model assessment402

is carried out through a qualitative comparison between simulation results and the experimental403

phase diagram of a SLES/water mixture3. It is important to notice that the mixture reproduced404

to test the parameters does not exactly represent the Inter ESA-70. More precisely, the SLES405

molecules simulated in this step present a higher number of ethoxyl groups and a different length406

of the alkyl chain3. Nonetheless, the ability to reproduce a water/SLES phase diagram can provide407

a measure of the quality of the DPD model for these kinds of molecules. The lower side of the408

ternary phase diagram in Ref. 3 represents a binary mixture of SLES and water, from which three409

regions are identified to conduct the assessment. While for low SLES concentrations (0.00236 –410

28% w/w) a micellar phase is found, intermediate SLES concentrations (31.5 – 56% w/w) lead411

to the formation of the hexagonal phase and for high SLES concentrations (63 – 70% w/w) a412

transition to lamellar phase occurs4.413

One equilibrium DPD simulation in each of these regions is performed, and the resulting mi-414

crostructure is qualitatively analyzed. The three DPD simulations performed are summed up in415

Table IX, and they resulted in agreement with the phase diagram, as it is possible to see in Fig. 7.416

TABLE IX. Values of SLES mass fraction used in the DPD simulation and corresponding expected mi-

crostructure according to Refs. 3 and 4.

Expected structure Simulated SLES mass fraction

Micellar 0.03

Hexagonal 0.45

Lamellar 0.67
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In particular, to obtain a qualitative confirmation of the hexagonal structure, it was necessary417

to conduct a non-equilibrium simulation with an imposed shear rate γ̇ = 0.1 (DPD units) on the418

velocity component vx along the y axis. This kind of behavior was already reported in the literature419

for a DPD model that simulates a mixture of water and a tri-block co-polymer7. When there is420

no shear applied the fluids form a network of worm-like micelles, as in Fig. 7.c. From Fig. 7.d421

it is clear how the application of a shear brings to the formation of rodlike micelles, typical of422

hexagonal structures.423

a) b)

c) d)

FIG. 7. Resulting microstructures of the DPD simulation performed. SLES mass fraction equal to a) 0.03,

b) 0.67, c) and d) 0.45. In c) there is no shear applied, the water and the sulfate groups beads are not

shown to highlight the network formed by the wormlike micelles, while in d) the system is shown after the

application of a shear of γ̇ = 0.1 (DPD units) along the y axis to the velocity component vx. To allow the

micelles visualization, the water beads are not shown in a). To facilitate the visualization of the rodlike

micelles in d) the box is sliced at 3/4 of its length in the x direction. The color coding of the beads is shown

in Fig. 2.

Having assessed the qualitative capability of the model to predict the microstructure self-424

assembly for the binary system made of SLES and water, the addition of the third component425

was tested. The CME/A2 component is Cocamide Monoethanolamine (CMEA), whose coarse-426

grained model was developed and as described in Section II C with parameters for the DPD forces427

retrieved from the literature14–16. In Fig. 8 it is shown that, for the composition in Table I, it is428
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obtained a lamellar microstructure, which is indeed expected for the Miraspec UB75.429

FIG. 8. Lamellar microstructure obtained from a simulation of the blend Miraspec UB75 with composition

reported in Table I. The color coding of the beads is shown in Fig. 2 and Fig. 3.

B. Miraspec UB75 blend: pressure drops in Sulzer SMX430

1. Multiscale approach and GPR431

Once the performance of the DPD model for Miraspec UB75, described in detail in Section II C,432

was assessed, it was then used to simulate a more realistic macroscopic application. The produc-433

tion of this blend requires the usage of a static mixer, in which the components are mixed in434

multiple steps at various temperatures. The multiscale approach is here applied to a simplified435

version of the production process, isothermal and with uniform composition. The latter is a strong436

assumption, equal to having the blend already mixed at the entrance of the equipment. Besides437

the general performances of the multiscale approach, the macroscopic variable of interest is the438

pressure drop across the mixer.439

Table X summarize the CFD simulations performed, using an incremental Roman number ev-440

ery time that an updated GPR model is used. As it is possible to see from this table, three CFD441

simulations were issued before the whole approach could reach convergence. The criterion here442

described refers to what, in the multiscale approach, is called outer loop, as expressed in Sec-443

tion II F. To evaluate the convergence of the iterative process, the strain rate interval extracted444

from a CFD simulation was compared with the one extracted from the previous simulation. The445
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TABLE X. Maximum and minimum value of the strain rate γ̇ inside the CFD domain with the different

viscosity models. The variable ε is the difference, calculated as relative difference, between the values of

one CFD run and the previous.

CFD run γ̇min ×10−2 (s−1) εmin, rel γ̇max (s−1) εmax, rel

Newtonian 3.606 324.98

GPR I 2.513 0.303 432.30 0.330

GPR II 2.488 0.010 361.05 −0.165

convergence criterion is set on the maximum (γ̇max) and on the minimum (γ̇min) values of the strain446

rate intervals, as follows:447

εmin, rel =
γ̇
(n−1)
min − γ̇

(n)
min

γ̇
(n−1)
min

≤ 0.01 , (17a)

448

εmax, rel =
γ̇
(n)
max − γ̇

(n−1)
max

γ̇
(n−1)
max

≤ 0.01 , (17b)

where the superscript (n) refers to the latest CFD simulation and the superscript (n−1) refers to449

the previous CFD simulation. If the strain rate interval of the last CFD simulation is wider than450

1% with respect to the one from the previous simulation, the GPR should test the training data on451

the newly extracted interval. One should notice that the condition is tested separately for the upper452

limit and the lower limit, and both need to be satisfied for convergence.453

Fig. 9 shows the regression process applied to the first shear rate interval, which is extracted454

from the CFD simulation with the Newtonian viscosity model. Besides the rheograms, Fig. 9455

depicts also information about the quality of the regression for the GPR loop, called inner loop456

in the multiscale approach (Section II F). As it is possible to see from Fig. 9.a2 and Fig. 9.b2, to457

reach the convergence of the GPR, the following equation must be satisfied in the whole strain rate458

interval:459

σ ≤ σlim = 10−2 (18)

with σlim corresponding to the dotted orange line in the plots. Fig. 9.a1 and Fig. 9.a2 report the460

results of an incomplete GPR viscosity model, obtained with a partial training data set of two461

(γ̇,µ(γ̇)) couple of points. Fig. 9.b1 and Fig. 9.b2, instead, illustrate the viscosity model GPR I462

(Table X), obtained after the convergence of the GPR on the interval extracted from the Newtonian463

CFD simulation. Comparing Fig. 9.a1 and Fig. 9.b1 it is possible to illustrate how the addition of464
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FIG. 9. Illustration of the regression process to build the viscosity model GPR I, using the shear rate interval

extracted from the Newtonian CFD simulation. The different plots show: a1) rheogram of the incomplete

GPR I model before convergence, a2) standard deviation associated to the regression of the incomplete GPR

I model before convergence, b1) rheogram of the converged GPR I model, b2) standard deviation associated

to regression of the converged GPR I model. The inset in b1) contains the magnification of a portion of the

regression, to allow the visualization of the narrow 95% confidence interval.

the third data point to the data set substantially improves the regression. This is confirmed by the465

low values of σ shown in Fig. 9.b2, which correspond to a very narrow 95% confidence interval466

in Fig. 9.a2, as visible only in the magnified inset.467
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FIG. 10. Comparison between GPR I and GPR II viscosity model. The plots show: a1) rheogram of the

converged GPR I model, a2) standard deviation associated to the regression of the converged GPR I model,

b1) converged GPR II model, b2) standard deviation associated to the regression of the converged GPR II

model. The 95% confidence intervals in a1) and b1) are slightly visible only close the the extremes of the

curves, due to their narrowness. The dotted grey vertical lines highlight the different width between the

intervals used for the regression in the two models.

The GPR I and GPR II viscosity models (Table X) are depicted in figure Fig. 10.a and Fig. 10.b468

respectively. As previously stated, the GPR I model is built on the shear rate interval extracted469

from the first CFD simulation, which employed a Newtonian viscosity model. The GPR II model470
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is instead built on the shear rate interval extracted from the second CFD simulation, which imple-471

mented the GPR I model. Moreover, the training data set used is the same for the two viscosity472

models, indicating that no additional DPD simulations were necessary to reach the convergence473

of the regression step. Consequently, the two viscosity models are very similar and the only474

difference resides in the shear rate interval. Indeed, the GPR II is built on a wider interval, as475

emphasized by the dotted vertical grey lines in Fig. 10. The 95% confidence intervals in Fig. 10.a1476

and Fig. 10.b1 are very narrow and slightly visible only close to the extremes of the intervals.477

Hence, σ reaches its maxima in correspondence to the interval extremes in both Fig. 10.a2 and478

Fig. 10.b2, since the GPR technique performs worse in extrapolating than in interpolating. A third479

GPR viscosity model was not built since, as reported in Table X, the difference between the last480

γ̇ interval and the previous one respected the convergence criteria in Eq. (17). The difference481

between the limits of the strain rate intervals is also noticeable in Fig. 11, where the cumulative482

distribution functions of γ̇ are plotted. The same figure also shows that the γ̇ distributions for the483

two GPR models are basically superimposed, and the differences with the Newtonian one are not484

so relevant. The reason for such small differences is probably due to the viscosity value ν used for485

the Newtonian simulation. The initial guess for the value of ν resulted to be intermediate when486

compared with the extreme values of the final viscosity interval (Fig. 14.a). This could explain487

both the slight shift to higher γ̇ values of the Newtonian distribution and the different shape for488

intermediate values of strain rate.489

A total of three DPD simulations were necessary during the whole process, to have the Eq. (18)490

respected, as illustrated by the series labeled as “Training data” in Fig. 9 and Fig. 10. The final491

viscosity model obtained with the multiscale approach is of a shear-thinning fluid. This is consis-492

tent with the experimental measures available, that usually lead to a power-law viscosity model493

for simulation purposes.494

2. CFD simulations495

The results of the CFD simulations are analyzed qualitatively through contour plots on the slice496

shown in Fig. 12. In this figure, it is reported the Slice A , that cuts the domain with the plane497

x = 0 m from the inlet section to the outlet one. In Fig. 13 the just described slice is used to498

compare the strain rate γ̇ inside the domain from different simulations. In these contour plots, it499

is shown that the strain rate trend in the domain is similar regardless of the viscosity model used.500
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FIG. 11. Volume cumulative distribution function for the shear rate values in the different CFD simulations.

The “[” and “]” markers correspond to the γ̇min and γ̇max respectively, for every interval.

FIG. 12. Visual representation of the slice A used for contour plots. This cuts the CFD domain with the

plane x = 0 m. All the lengths in the figure are expressed in meters.

The strain rate values are higher close to the walls of the tube and close to the mixing elements,501

while regions of low strain rates are found mostly at the inlet and outlet. Hence, the contour for the502
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γ̇ is in a qualitative agreement with the theory since a steeper variation of the velocity of the fluid503

is expected in correspondence with the walls. The only visible differences in the contour plots504

are confined to the inlet region in the simulation with the Newtonian model. This is due to the505

viscosity value of the fluid in that region, lower than the one in the non-Newtonian simulations,506

which consequently influences the distribution of γ̇507
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FIG. 13. Contour plot for the strain rate γ̇ in correspondence of the slice A . The values are plotted using a

logarithmic scale for the colorbar. Different CFD runs are shown: a) Newtonian model, b) GPR I viscosity

model, c) GPR II viscosity model.

In general, contour plots with similar trends were already obtained as a result of simulations of508

different blends with this computational domain. Fig. 14 illustrates the contour plot for viscosity509

in the same plane. Since the Newtonian model was employed, Fig. 14.a reports a constant value,510

and the viscosity corresponds to an intermediate value when compared to the whole interval of µ511
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FIG. 14. Contour plot for the viscosity µ in correspondence of the slice A . The values are plotted using a

logarithmic scale for the colorbar. Different CFD runs are shown: a) Newtonian model, b) GPR I viscosity

model, c) GPR II viscosity model.

explored by the GPR models. As already noticeable from the rheogram in Fig. 10, the model of a512

shear-thinning fluid resulted from the DPD simulations. This shear-thinning behavior is visible in513

Fig. 14.b, where the viscosity is lower in correspondence with the high strain rate regions of the514

mixing elements (Fig. 13.b).515

When compared with the viscosity of the GPR model, the value of µ for the Newtonian sim-516

ulation resulted lower in the inlet and outlet regions, but higher in the mixing section. Since the517

latter brings a substantially higher contribution to the pressure drop, the Newtonian model pre-518

sented a value of ∆p higher by one order of magnitude than the GPR models, as in Table XI.519

The difference between GPR I and GPR II can be ascribed to the different γ̇ explored: the GPR520
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TABLE XI. Pressure drop across the static mixer system for the different CFD simulations.

CFD run ∆p (Pa)

Newtonian 2.90×105

GPR I 2.41×104

GPR II 2.50×104

I simulation reached higher values of strain rate (Table X), resulting in a lower viscosity in the521

mixing section and slightly lower ∆p. As the final result, the pressure drop obtained from the522

last CFD simulation was ∆p = 2.50× 104 Pa. Though it is not possible to carry a validation of523

this result, its order of magnitude can be considered reasonable given the investigations done by524

Solvay in static mixers. In particular, a comparison can be done with a mixture at 65% of SLES in525

water, flowing in an SMX static mixer with a smaller diameter of 4.95×10−3 m. This system has526

been studied through CFD simulations and with the correlations proposed by Liu, Hrymak, and527

Wood 34 , using a power law to model its rheology. For a generalized Metzner – Reed Reynolds528

number34,54 of ReMR = 6.54× 10−2 it was obtained ∆p = 1.66× 104 Pa · s from the CFD simu-529

lations, and ∆p = 1.70×104 Pa · s using the correlation of Liu, Hrymak, and Wood 34 . By fitting530

the experimental measures available on Miraspec UB75 (see Section III B 3 with a power law,531

it was possible to calculate ReMR = 6.38× 10−2 for the simulation of this work. The compar-532

isons between these results show an agreement on the order of magnitude, though they cannot be533

considered as a validation process.534

3. Viscosity model from DPD simulations535

The application of a shear to a DPD fluid still presents some unsolved issues. In particular,536

an unphysical shear-thickening behaviour was found even for Newtonian fluids in high shear rate537

conditions22. Moreover, for very low shear rate values the thermal noise prevails on the streaming538

velocity imposed by the box deformation. As a consequence, it becomes impossible to obtain a539

linear velocity profile, i. e. a constant imposed shear rate, and apply Eq. (10). The use of DPD540

simulations in large shear rate intervals should be tested, to avoid the occurrence of the described541

computational artifacts. In this work, partial mitigation of these effects was obtained through542

the use of a higher dissipative DPD constant γ combined with the SLLOD equation of motion.543
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Therefore, the results used to build the rheology model were obtained from simulations performed544

in a safe DPD shear rate interval.545

The viscosity results obtained from the DPD simulations were compared with the results of546

two sets of experiments, previously performed at Solvay with the blend Miraspec UB75. The547

measurements were carried out with the Brookfield DV-II+ viscometer, using the LV3 spindle at548

25 °C. The results are shown in Fig. 15, where it is important to remember that the first DPD point549

corresponds perfectly because this point was used to identify the conversion factor in Table VI. The550

agreement between the simulations and the experiments is remarkably good, but more simulations551

and experiments are needed to increase the robustness of the model. In particular, the effect of the552

temperature and composition should be taken into account since they can have a great impact on553

the value of viscosity of these kinds of mixtures.554

FIG. 15. Comparison between the viscosity model obtained from experimental results and DPD simulations.

The blue hollow circles represent the experiments performed at Solvay, and the red hollow stars are the

results of the DPD simulations. The black dashed line is the power law resulting from the fitting of the

experimental data, while the green dashed and dotted line is the power law resulting from the fitting of one

thousand GPR predictions logarithmically spaced on the interval from GPR I in Table X.

To further assess the quality of the viscosity model built on the DPD simulations, a power law,555

as in Eq. (19), was used to fit both the experimental data and the prediction from the GPR.556

µ = m · γ̇ n−1 (19)
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The power law is one of the most commonly used functions in rheology to approximate the be-557

haviour of shear-thinning fluids for intermediate shear rates. It must be reminded that the GPR558

does not output a functional form, but a value of apparent viscosity for every value shear rate559

value in input. Hence, to obtain a power law model for comparison, the GPR was performed to560

produce one thousand of (γ̇,µ) couple of points in the final interval (GPR I in Table X). These561

points are fitted with a power law and the comparison with the power law generated from the562

experimental data is illustrated in Fig. 15, while the parameters of the power law are reported in563

Table XII. As it is possible to see from Fig. 15 and Table XII, the two fitted functions are close to564

each other, indicating that the GPR model provides a physically reasonable description.565

TABLE XII. Parameters obtained from the fitting process of the experimental and GPR data using the power

law in Eq. (19).

Data set m, (Pa · sn) n−1

Experimental 8.11±3.0×10−1 −0.432±2.0×10−2

GPR 8.81±3.0×10−3 −0.383±1.4×10−4

4. Multiscale approach computational performance566

The idea behind the approach described in this work is the automatic selection of which DPD567

simulation to perform. This should lead to a reduction of the computational resources needed,568

through the minimization of the number of DPD simulations. The simulations were performed569

on a workstation with a CPU “Intel® Xeon® Gold 6248 CPU @ 3.00GHz” using 24 cores. The570

time requested by each simulation is reported in Table XIII. Here the CFD simulations are identi-571

fied through the viscosity model used to perform them, while the DPD simulations are numbered572

following the order of execution. It is possible to discriminate between these DPD simulations573

through the applied shear rate, as reported in Table XIV. In Table XIII is, instead, evident that the574

DPD simulations are the bottleneck of the automated approach, requesting from six to ten times575

the time of a CFD simulation.576

For what concerns the variability of the time needed to complete a simulation, it looks that a577

simulation with the GPR model can take up to four times more time than a Newtonian one. Actu-578

ally, the Newtonian simulation stopped after 588 iterations, while the GPR model continued until579
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TABLE XIII. List of simulations in the order in which they were performed, with the corresponding com-

putational time. The performed inner loops are also indicated.

Simulation Computational time (h:m)

CFD Newtonian 0:14

1° GPR–DPD loop

DPD 1° 6:08

DPD 2° 11:24

DPD 3° 8:02

CFD GPR I 1:09

CFD GPR II 1:10

2000 iterations. This can be the sign of too strict convergence criteria for the CFD simulation,580

which can be affected not only by the viscosity model but also by the quality of the mesh. Conse-581

quently, a different mesh or a better choice of the convergence parameter could lead to a reduction582

of the computational time.583

TABLE XIV. List of DPD simulations with the corresponding time to completion and the imposed shear

rate γ̇ . The simulations are ordered with increasing γ̇ , to highlight the dependence of the requested time on

the imposed shear rate.

Simulation γ̇ (DPD units) Computational time (h:m)

DPD 1° 0.01 6:08

DPD 3° 0.317 8:02

DPD 2° 10 11:24

Conversely, for the DPD simulation, there is a strong dependence of the computational time584

on the value of γ̇ . Higher values of the shear rate imposed on the simulation box lead to longer585

computational times to complete the simulation, according to Table XIII.586

Using an automated approach for choosing the best shear rate value to add a point to the training587

data set led to satisfactory results in terms of computational time. Nonetheless, it must be noted588

that the rheogram resulted simple enough to obtain a good quality regression with only three589

training points. Consequently, to assess the computational advantages of this approach with more590

accuracy, it should be tested on a more complex rheology model, e.g. including the effect of591
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composition. Instead, for what concerns the CFD and DPD techniques, the computational time592

depends strongly on the models implemented in these kinds of simulations, so it is not possible to593

make a generalization.594

IV. CONCLUSIONS595

The main purpose of the work was to develop a multiscale automated approach that could allow596

the simulation of fluids in a typical mixing piece of equipment. The macroscale Computational597

Fluid Dynamics (CFD) simulations are used to get information on macroscopic variables, such598

as the pressure drops across a static mixer. The mesoscale Dissipative Particle Dynamics (DPD)599

simulations are instead used to build a rheology model for the non-Newtonian fluid of interest.600

In order to reduce the computational resources needed for the simulations, the Gaussian Process601

Regression (GPR) was used to build the rheological model from the DPD non-equilibrium simu-602

lations.603

The fluid of interest, the blend Miraspec UB75, was modelled using a parametrization devel-604

oped for similar surfactants. Using this parametrization, a part of the phase diagram of a mixture605

of SLES and water was successfully reproduced from a qualitative point of view. This confirmed606

the capabilities of the DPD technique to obtain qualitative information about the microstructure607

of the simulated fluids. Non-equilibrium simulations were used to reproduce the rheological be-608

haviour of the fluid under the application of shear stress. The application of the shear condition on609

the simulation box showed some limitations of the DPD method, regarding the explorable shear610

rates. It was noticed that for too high or too low values of γ̇ , the results of the non-equilibrium611

simulations are less reliable. This is common to all atomistic methods, but it would be beneficial612

to study how to mitigate the effects of extreme strain rate conditions on the quality of the pre-613

dictions. Despite this issue, it was possible to reproduce the rheological behaviour of the studied614

fluid. The obtained ∆p were realistic when compared to the behavior of similar blends in the same615

mixing devices. Moreover, the value of viscosity obtained with the DPD simulation resulted in616

remarkably good agreement with two sets of experiments conducted at different shear rates. This617

is noteworthy in light of the approach used for the identification of the conversion factors, which618

is often a weak point in non-equilibrium DPD simulations. Indeed, deriving the conversion factor619

by matching the value of viscosity for the lowest applicable shear rate led to promising results.620

To conclude, this work shows the feasibility of an automated multiscale approach to describe a621
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real system that is relatively simple in terms of chemical composition, but further studies should622

be conducted to explore the limits of the DPD technique. Among these, the more critical are623

the parametrization of the molecules and the description of local charges, the width of the ex-624

plorable shear rate interval in non-equilibrium simulations, and the possibility of simulation for625

non-isothermal systems. Furthermore, an experimental campaign could allow a more robust vali-626

dation of the developed model.627
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