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A B S T R A C T

We study the asymptotic behaviour of the solutions to Navier–Stokes unforced equations under
Navier boundary conditions in a wide class of merely Lipschitz domains of physical interest.
The paper draws its main motivation from celebrated results by Foias and Saut (1984) under
Dirichlet conditions; here the choice of the boundary conditions requires carefully considering
the geometry of the domain 𝛺, due to the possible lack of the Poincaré inequality in presence
of symmetries. In non-axially symmetric domains we show the validity of the Foias–Saut result
about the limit at infinity of the Dirichlet quotient, in axially symmetric domains we provide
two invariants of the flow which completely characterize the motion and we prove that the
Foias–Saut result holds for initial data belonging to one of the invariants.

. Introduction

Let 𝛺 ⊂ R3 be a bounded domain, where by this we mean that 𝛺 is open, nonempty and connected. For 𝑇 > 0, we put
𝑇 ∶= 𝛺×(0, 𝑇 ) and we consider the evolution 3D Navier–Stokes problem in 𝑄𝑇 with zero-source and homogeneous Navier boundary

onditions:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 − 𝜇𝛥𝑢 + (𝑢 ⋅ ∇)𝑢 + ∇𝑝 = 0 in 𝑄𝑇

∇ ⋅ 𝑢 = 0 in 𝑄𝑇

𝑢 ⋅ 𝜈 = (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝜕𝛺 × (0, 𝑇 )

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑢0(𝑥, 𝑦, 𝑧) in 𝛺 .

(1.1)

n the above, 𝜇 > 0 denotes the kinematic viscosity, 𝐃𝑢 = (∇𝑢 + ∇𝑇 𝑢)∕2 is the strain tensor, 𝜈 is the outward normal vector to 𝜕𝛺
hile 𝜏 is tangential. The pressure 𝑝 is defined up to an additive constant so that one can fix its mean value as follows

∫𝛺
𝑝(𝑡) = 0 ∀ 𝑡 ∈ (0, 𝑇 ) . (1.2)

Navier boundary conditions were introduced by Navier [1] in 1827 in the following formulation:

𝑢 ⋅ 𝜈 = 𝛽𝑢 ⋅ 𝜏 + (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 , on 𝜕𝛺 × (0, 𝑇 ) , (1.3)

here 𝛽 ≥ 0 is a parameter describing friction. In contrast to Dirichlet boundary conditions (also known as no-slip boundary
onditions), the hypothesis underlying (1.3) is the presence of a stagnant layer of fluid close to the wall allowing the fluid to
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slip. This type of boundary conditions turn out to be relevant in many physical applications, see e.g., [2, Section 3]; we mention
for instance their aptness when taking care of a turbulent boundary layer in the context of LES (Large Eddy Simulations), see [3].

Although the literature is not as extended as in the case of Dirichlet boundary conditions, after the seminal paper of V.A.
olonnikov and V.E. Scadilov [4] in 1973, many papers have been devoted to the study of the Navier–Stokes equations under Navier
oundary conditions. A rich overview of results can be found in the Introduction of [5]. Concerning the full initial-value problem,
e mention the work [6], where the author proves that when 𝛽 > 0 the Stokes operator associated to problem (1.1)1–(1.1)2–(1.3)

generates an analytical and compact semigroup of contractions in 𝐿2-space/energy space, which implies the existence of a unique
strong solution for small time. Existence, uniqueness and regularity of solutions in a general 𝐿𝑝-setting were instead given in [7] for
𝛽 = 0 and brought to a high level of complexity in [5,8] by assuming 𝛽 non constant and satisfying minimal regularity assumptions.
We also recall the paper [9] where the regularity up to the boundary of weak solutions to (1.1) with the so-called ‘‘stress-free’’
boundary conditions (that coincide with (1.1)3 in the portions of the domain with flat boundaries) was investigated.

In general, due to the presence of the derivatives in (1.3), most of known results require that 𝛺 is at least of class 2,1. However,
in [10], by means of a suitable reflection principle, the authors managed to prove the well-posedness of (1.1) (namely, when 𝛽 = 0)
in a special class of merely Lipschitz domains, called sectors, see Definition 2.3 below. This class is sufficiently wide to contain most
of the domains needed in physics and engineering, see [10] for more details and applications. The main purpose of this paper is to
study the long-time behaviour of the solution 𝑢(𝑡) to (1.1) when 𝛺 is precisely a sector. In contrast to the Dirichlet case, the boundary
conditions in (1.1) require carefully considering the geometry of the domain 𝛺, due to the possible lack of the Poincaré inequality
in presence of symmetries. This behaviour, which is peculiar of the case 𝛽 = 0, occurs in the case called ‘‘special’’ in [11], namely
when 𝛺 is generated by revolution around a given axis, i.e. it is axially symmetric, see also [2,7]. We remark that, while the Poincaré
inequality creates no obstruction when 𝛽 > 0, the reflection principle, on which our analysis on sectors relies, fails, see Remark 4.1
for more details. For this reason, since our interest is to study the long time behaviour of solutions on sectors, possibly relating it
to the symmetries of the domain, we focus the analysis of the present paper on the case 𝛽 = 0.

More precisely, when the domain is non-axially symmetric, we extend to problem (1.1) a celebrated result by Foias and Saut [12]
about the limit of the Dirichlet quotient of solutions at infinity, showing that it tends to an eigenvalue 𝛬 of the Stokes operator
as 𝑡 → ∞, see Theorem 3.1 in Section 3.1. By this result it follows that the energy of the solution 𝑢(𝑡) of (1.1) concentrates on the
modes corresponding to 𝛬 which, in some sense, catch the energy of the system. Furthermore, the decay in time of 𝑢(𝑡) is exactly
of exponential type, namely there holds

lim
𝑡→∞

𝑒𝜇𝛬𝑡𝑢(𝑡) = 𝑒𝛬 in 𝐻1(𝛺),

where 𝑒𝛬 is an eigenfunction corresponding to the eigenvalue 𝛬, see Proposition 3.5 in Section 3.1.
When 𝛺 is axially symmetric, according to the choice of the initial data, the solution may not decay at 0 converging to a steady

state of the flow, see also [13]. In this case we show the existence of a decomposition of the set of initial data into two invariants
of the flow, which completely characterizes the motion, see Theorem 3.2 and Remark 3.3 below. In particular, we prove that a
Foias–Saut type result holds when the initial datum belongs to one of the invariants.

A natural issue is to establish a priori which modes catch the energy of 𝑢(𝑡) and, in turn, to predict its asymptotic behaviour. As
one could expect, this depends on the initial datum 𝑢0 but, in general, this dependence is far from being explicit, see Remark 3.6.
We complement our analysis by providing two examples in the 2D case where more explicit information can be given. Even if in the
lower dimensional case, the examples work as prototypes of the long-time behaviour of solutions under Navier boundary conditions
since they exhibit the same dichotomy registered in 3D domains between the asymptotic behaviour in non-axially symmetric and
axially symmetric domains.

The paper is organized as follows. In Section 2 we present the notations and some preliminary results needed to prove and
state our main results given in Section 3. In particular, in Section 2.1 we recall the functional framework needed to approach the
problem, in Section 2.2 we illustrate the notion of sectors-type domain, while in Section 2.3 we give the definition of Stokes operator
and the characterization of its kernel. Here we also illustrate a decomposition of the functional space based on the geometry of the
domain that will be crucial to distinguish the behaviour at infinity of the solution to (1.1) according to the symmetries of 𝛺. Finally,
in Section 2.4 we recall the main properties of the solution to (1.1) needed in the proof of the asymptotic behaviour, such as the
analyticity in time proved in Theorem 2.7.

Section 3 contains the main results of the paper, namely Theorems 3.1 and 3.2 stated in Section 3.1, which provide the
asymptotic behaviour of the solution, respectively, in the non-axially symmetric and axially symmetric case. Section 3.2 contains a
complementary discussion of our results in the framework of our 2D prototypes problems.

Section 4 is devoted to the proofs of the results. In particular, the reflection principle, which is essential to prove the results in
the framework of sectors, is illustrated in Section 4.1. Finally, in the Appendix we provide a system of eigenfunctions of the Stokes
operator when 𝛺 is the 2D ball.

2. Notations and preliminary results

2.1. Notations

Let 𝛺 be a Lipschitz and bounded domain in R3. We first recall the definition of the usual spaces in the treatment of the Navier–
Stokes equations, which we will denote by 𝐻 and 𝑉 . The set 𝐻 is obtained by taking the closure of  ∶= {𝑢 ∈ ∞

𝑐 (𝛺) ∶ ∇⋅𝑢 = 0 in 𝛺}
in 𝐿2(𝛺); by [14, Theorem III.2.3] we have

𝐻 ∶= {𝑢 ∈ 𝐿2(𝛺) ∶ ∇ ⋅ 𝑢 = 0 in 𝛺, 𝑢 ⋅ 𝜈 = 0 on 𝜕𝛺} ,
2
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Fig. 1. On the left a sector of type (A) on the right a sector of type (B), 𝛺 denotes the cell of periodicity, see Definition 4.2.

in which the solenoidality condition is intended in the sense of weak derivatives and, with an abuse of notation, we denote by 𝑢 ⋅ 𝜈
the generalized normal trace of 𝑢 (see for instance [14, Theorem III.2.2]). The set 𝑉 is defined as

𝑉 ∶= 𝐻 ∩𝐻1(𝛺),

being 𝐻1(𝛺) the usual Sobolev space. By construction, 𝐻 is a closed subspace of 𝐿2(𝛺); therefore, 𝑉 is a closed subspace of 𝐻1(𝛺).
When the domain is a generic 𝐷, different from 𝛺, we specify 𝐻(𝐷), 𝑉 (𝐷). In 𝐻(𝐷) and 𝑉 (𝐷), respectively, we consider the bilinear
forms

(𝑢,𝑤)𝐷 ∶= ∫𝐷
𝑢 ⋅ 𝑣 and (𝐃𝑢,𝐃𝑣)𝐷 ∶= ∫𝐷

𝐃𝑢 ∶ 𝐃𝑣.

Here ‘‘∶’’ indicates the scalar product between matrices, namely 𝐴 ∶ 𝐵 =
∑3

𝑖,𝑗=1 𝑎𝑖𝑗𝑏𝑖𝑗 if 𝐴 and 𝐵 are 3 × 3 matrices of components
𝑎𝑖𝑗 , 𝑏𝑖𝑗 .

For 1 ≤ 𝑝 < ∞, we denote by ‖𝑢‖𝑝,𝐷 ∶=
(
∑3

𝑖=1 ∫𝐷 |𝑢𝑖|
𝑝)1∕𝑝 the standard 𝐿𝑝(𝐷)-norm. In the following, by standard norms on 𝐻

and 𝑉 we mean, respectively, ‖𝑢‖2,𝛺 and ‖𝑢‖𝐻1(𝛺) ∶= ‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺 where ‖𝐃𝑢‖2,𝛺 ∶=
[

(𝐃𝑢,𝐃𝑢)𝛺
]1∕2. We notice that the fact

that ‖𝐃𝑢‖2,𝛺 is an equivalent norm on 𝑉 depends on the geometry of 𝛺 through the spectral properties of the Stokes operator under
Navier boundary conditions, see Remark 2.5.

2.2. Sectors definition

Our analysis is performed on special Lipschitz domains called sectors. In this section, we recall the definition of sectors originally
given in [10] to which we refer for further details and examples.

Definition 2.1. We call face any bounded open planar domain 𝜔 ⊂ R2, and we denote by 𝑃𝜔 the plane containing 𝜔. Let 𝑃 be a
plane and let 𝛺 ⊂ R3 be a bounded domain such that

𝛺 ∩ 𝑃 = ∅ and 𝛺̄ ∩ 𝑃 is the union of a finite number ℎ ≥ 1 of (closed) faces; (2.1)

we denote by 𝛺𝑃 the interior of the closure of the union between 𝛺 and its reflection about 𝑃 .

Let 𝑃1, ..𝑃𝑚 be 𝑚 planes (𝑚 ≥ 1). If 𝛺 ⊂ R3 is such that (2.1) holds for the 𝑚 couples

𝛺 and 𝑃1 , 𝛺𝑃1 and 𝑃2 ,… ,
(

(

𝛺𝑃1

)

𝑃2
...
)

𝑃𝑚−1
and 𝑃𝑚,

then we can define the domain given by iterative reflections 𝛺𝑃1 ,…,𝑃𝑚 ∶=

(

(

(

𝛺𝑃1

)

𝑃2
...
)

𝑃𝑚−1

)

𝑃𝑚

.

Definition 2.2. A bounded Lipschitz domain 𝛺 ⊂ R3 is said smoothly periodically extendable if it admits a periodic extension with
2,1 boundary and if 𝜕𝛺 has a finite number of faces 𝜔𝑖, 𝑖 = 1,… , 𝑘 with 𝑘 ≥ 2, all lying on at most six planes 𝑝1,… , 𝑝6 such that:

𝑝𝑠 ∩𝛺 = ∅ ∀ 𝑠 = 1,… , 6 and 𝑝1 ∥ 𝑝4 , 𝑝2 ∥ 𝑝5 , 𝑝3 ∥ 𝑝6 , 𝑝1 ⊥𝑝2 , 𝑝1 ⊥𝑝3 , 𝑝2 ⊥𝑝3 . (2.2)

Definition 2.3. A bounded Lipschitz domain 𝛺 ⊂ R3 is said a sector if one of the two following facts occurs:

(A) there exists a bounded 2,1-domain 𝛺𝑚 having at least 𝑚 ≥ 0 planes of symmetry 𝑃1,… , 𝑃𝑚, and such that 𝛺𝑚 = 𝛺𝑃1 ,…,𝑃𝑚 when
𝑚 ≥ 1; if 𝑚 = 0, then 𝛺 has 2,1-boundary (see Fig. 1 left);

(B) there exists a smoothly periodically extendable domain 𝛺𝑚 having at least 𝑚 ≥ 0 planes of symmetry 𝑃1,… , 𝑃𝑚, and such that
𝛺𝑚 = 𝛺 when 𝑚 ≥ 1; if 𝑚 = 0, then 𝛺 is smoothly periodically extendable domain (see Fig. 1 right).
3
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2.3. The Stokes operator and its kernel

The Stokes operator under the boundary conditions in (1.1) is the linear unbounded self-adjoint operator 𝐴 ∶ 𝑉 → 𝑉 ′ defined by

⟨𝐴𝑢, 𝑣⟩𝑉 ′ ,𝑉 = 2(𝐃𝑢,𝐃𝑣)𝛺 ∀ 𝑢, 𝑣 ∈ 𝑉 .

Notice that 𝐴 can be considered restricted (as an unbounded operator) to 𝐻 with domain 𝐷(𝐴) ∶= {𝑢 ∈ 𝑉 ∶ 𝐴𝑢 ∈ 𝐻}. In particular,
if 𝛺 ∈ 2,1 it is well-known that 𝐷(𝐴) coincides with the set

𝑊 (𝛺) ∶= {𝑢 ∈ 𝑉 ∩𝐻2(𝛺) ∶ (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝜕𝛺} , (2.3)

see Lemma 4.4 for a proof and Remark 4.6 in Section 4.2 for a deeper discussion in the case of sectors. We refer instead to [5,
Section 1.3] for a complete analysis including the case of Navier boundary conditions (1.3) with possibly non constant parameter
𝛽, in a general 𝐿𝑝 setting. By recalling the Green formula (see e.g., [7, formula (2.8)]):

− ∫𝛺
𝛥𝑢 ⋅ 𝑣 + 2∫𝜕𝛺

[(𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏](𝑣 ⋅ 𝜏) = 2∫𝛺
𝐃𝑢 ∶ 𝐃𝑣 ∀ 𝑢 ∈ 𝑉 ∩𝐻2(𝛺) and ∀ 𝑣 ∈ 𝑉 , (2.4)

it follows that 𝐴𝑢 = 𝑃 (𝛥𝑢) for all 𝑢 ∈ 𝐷(𝐴) where 𝑃 is the projection operator 𝐿2(𝛺) → 𝐻 , see [2, Section 5]. Finally, to 𝐴 we
associate the eigenvalue problem

(𝑢, 𝜆) ∈ 𝑉 × R ∶ 2(𝐃𝑢,𝐃𝑤)𝛺 = 𝜆(𝑢, 𝑣)𝛺 ∀ 𝑣 ∈ 𝑉 ,

which in strong form reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛥𝑢 + ∇𝑝 = 𝜆𝑢 in 𝛺

∇ ⋅ 𝑢 = 0 in 𝛺

𝑢 ⋅ 𝜈 = (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝜕𝛺 .

(2.5)

Since the Stokes operator 𝐴 is linear, compact, self-adjoint and positive, it admits a non-decreasing sequence of eigenvalues {𝜆𝑘}𝑘∈N+
,

where the eigenvalues are repeated according to their multiplicity. The set of eigenfunctions {𝑒𝑘}𝑘∈N+
, up to normalization, is a

omplete orthonormal system in 𝐻 orthogonal with respect the product (𝐃⋅,𝐃⋅)𝛺, see [7, Theorem 6.2]. According to the geometry
f 𝛺, problem (2.5) may admit a trivial least eigenvalue, therefore we introduce the kernel of the linear map 𝑣 ↦ 𝐃𝑣:

𝛺 ∶= {𝑢 ∈ 𝑉 ∶ 𝐃𝑢 ≡ 0 in 𝛺} , (2.6)

o that, when 𝛺 is non-trivial, the following decomposition holds:

∀ 𝑢 ∈ 𝑉 , 𝑢 = 𝑢 + 𝑢 with 𝑢 ∈ 𝛺 and 𝑢 ∈ ⟂
𝛺 , (2.7)

here ⟂
𝛺 is the orthogonal complement of 𝛺 in 𝐿2(𝛺). In Section 4.2 we prove the following characterization of 𝛺 in the context

of sectors:

Proposition 2.4. Let 𝛺 ⊂ R3 be a sector, then 𝛺 ≠ ∅ if and only if 𝛺 is axially symmetric. In particular, if 𝛺 is axially symmetric two
ases may occur:

(i) 𝛺 is a ball and 𝛺 = {𝑎 + 𝓁 ∧ (𝑥, 𝑦, 𝑧) ∶ 𝑎,𝓁, (𝑥, 𝑦, 𝑧) ∈ R3};
(ii) 𝛺 is monoaxially symmetric with axis parallel to some unit vector 𝓁 and

𝛺 = {𝑎 + 𝑐0 𝓁 ∧ (𝑥, 𝑦, 𝑧) ∶ 𝑐0 ∈ R and 𝑎, (𝑥, 𝑦, 𝑧) ∈ R3}.

emark 2.5. By Proposition 2.4, the first eigenvalue of (2.5) is positive and, in turn, the Poincaré inequality holds, if and only
f 𝛺 is non-axially symmetric. When 𝛺 is axially symmetric, by the same reasoning, a Poincaré type inequality holds only in ⟂

𝛺.
herefore, recalling (2.7), we conclude that there exists 𝐶𝛺 > 0 such that:

‖𝑢‖2,𝛺 ≤ 𝐶𝛺

⎧

⎪

⎨

⎪

⎩

‖𝐃𝑢‖2,𝛺 if 𝛺 is non-axially symmetric

‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺 if 𝛺 is axially symmetric
∀ 𝑢 ∈ 𝑉 . (2.8)

ince, by Korn’s inequality, ‖𝑢‖𝐻1(𝛺) ≤ 𝑐(‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺) for all 𝑢 ∈ 𝑉 and for some 𝑐 = 𝑐(𝛺) > 0, in view of (2.8), in the sequel
e will often take as norms on 𝑉 (equivalent to the 𝐻1-norm): ‖𝐃𝑢‖2,𝛺 if 𝛺 is non-axially symmetric and ‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺 if 𝛺

is axially symmetric.

2.4. Existence and regularity properties of solutions

In this section we state some useful properties of solutions that we will exploit in the proof of our main results. First we make
precise our definition of solution.
4
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We say that 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝑉 ) is a weak solution to (1.1) if

∫

𝑇

0
(𝑢(𝑡), 𝑣)𝛺 𝜙′(𝑡) 𝑑𝑡 + 𝜙(0)(𝑢0, 𝑣)𝛺 = ∫

𝑇

0
{2𝜇(𝐃𝑢(𝑡),𝐃𝑣)𝛺 + ∫𝛺

(𝑢(𝑡) ⋅ ∇)𝑢(𝑡) ⋅ 𝑣}𝜙(𝑡) 𝑑𝑡 (2.9)

for all 𝑣 ∈ 𝑉 and for all 𝜙 ∈ ∞
𝑐 [0, 𝑇 ). For sufficiently small initial data, it was proved in [10] that a weak solution to (1.1) is strong

and, in turn, unique. More precisely, the following statement holds:

Proposition 2.6 ([10, Theorem 2]). Let 𝛺 ⊂ R3 be a sector and let 𝑢0 ∈ 𝑉 . There exists 𝐶 = 𝐶(𝛺, 𝜇) > 0 such that if

‖𝑢0‖
2
2,𝛺(‖𝐃𝑢0‖

2
2,𝛺 + 1) < 𝐶 , (2.10)

then problem (1.1)–(1.2) admits a weak solution 𝑢 which satisfies

𝑢 ∈ 𝐿∞(R+;𝑉 ) and 𝑢𝑡, 𝐴𝑢,∇𝑝 ∈ 𝐿2(R+;𝐿2(𝛺)) , (2.11)

so that it is strong, unique and global in time.

Let 𝑊 be the set defined in (2.3). If 𝑢0 ∈ 𝑉 and (2.10) holds, condition (2.11) yields 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑊 ) and 𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝑊 ′) for
every 𝑇 > 0, whence 𝑢 ∈ 0([0,∞);𝑉 ), see Remark 4.6 in Section 4.3. In Section 4.4 we prove that 𝑢(𝑡) is also analytic as stated in
the following:

Theorem 2.7. If 𝑢0 ∈ 𝑉 satisfies (2.10), the solution 𝑢(𝑡) given by Proposition 2.6 is analytic on (0,∞) as a 𝑊 -valued function.

An immediate consequence of the uniqueness given in Proposition 2.6 and the analyticity given in Theorem 2.7 is the fundamental
property of backward uniqueness for strong solutions:

Corollary 2.8. Let 𝑢0,1, 𝑢0,2 ∈ 𝑉 satisfy (2.10) for some constant 𝐶 = 𝐶(𝛺, 𝜇), and let 𝑢1, 𝑢2 be the corresponding strong solutions fulfilling
(2.11). If for some 𝑡 ∈ (0,∞), 𝑢1(𝑡) = 𝑢2(𝑡), then 𝑢1(𝑡) = 𝑢2(𝑡) for all 𝑡 ∈ [0,∞). In particular, if 𝑢0,1 ≠ 𝑢0,2 then 𝑢1 and 𝑢2 do not intersect.

From Corollary 2.8 it follows that the solution given by Proposition 2.6 with 𝑢0 ≢ 0 satisfies 𝑢(𝑡) ≠ 0 for 𝑡 ≥ 0; hence, the Dirichlet
quotient:

𝜆(𝑡) ∶=
2‖𝐃𝑢(𝑡)‖22,𝛺
‖𝑢(𝑡)‖22,𝛺

(2.12)

is well-defined. The study of the asymptotic behaviour of 𝜆(𝑡) will be one of the main object of the next section.

. Main results

.1. Asymptotic behaviour

In this section we will always denote by 𝑢(𝑡) the unique strong solution of (1.1)–(1.2) with 𝑢0 ≢ 0, given by Proposition 2.6 under
the assumption (2.10) and we study its asymptotic behaviour from several points of view. The geometry of the domain requires
considering two cases. When 𝛺 is non-axially symmetric, we extend [12, Theorem 1] to Navier boundary conditions, namely we
prove that the quotient (2.12) tends to an eigenvalue of the Stokes operator as 𝑡 → ∞, and in turn, we obtain that both ‖𝑢(𝑡)‖2,𝛺
and ‖𝐃𝑢(𝑡)‖2,𝛺 decay at infinity with the same exponential rate, see Theorem 3.1 and Proposition 3.5 below.

Theorem 3.1. Let 𝛺 ⊂ R3 be a non-axially symmetric sector. Then, there exists an eigenvalue 𝛬 of problem (2.5) such that

lim
𝑡→+∞

𝜆(𝑡) = 𝛬 (3.1)

and

lim
𝑡→+∞

log ‖𝐃𝑢(𝑡)‖2,𝛺
𝑡

= lim
𝑡→+∞

log ‖𝑢(𝑡)‖2,𝛺
𝑡

= −𝜇𝛬. (3.2)

Instead, when 𝛺 is characterized by some axial symmetry, three different kind of decay may be observed and the energy of the
olution may not vanish at infinity.

heorem 3.2. Let 𝛺 ⊂ R3 be an axially symmetric sector and let 𝛺 be as defined in (2.6). Furthermore, in view of (2.7), write
0 = 𝑢̄0 + 𝑢0, with 𝑢̄0 ∈ ⟂

𝛺 and 𝑢0, ∈ 𝛺. Then one of the following holds:

(i) if 𝑢̄0 = 0, then

𝑢(𝑡) = 𝑢0, ∈ 𝛺 for all 𝑡 > 0
5

namely 𝑢0, is a stationary solution of (1.1);
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(ii) if 𝑢0, = 0, then

𝑢(𝑡) ∈ ⟂
𝛺 for all 𝑡 > 0

and satisfies (3.1) and (3.2), being 𝛬 a nontrivial eigenvalue of problem (2.5);
(iii) if 𝑢0, ≠ 0 and 𝑢̄0 ≠ 0, then

𝑢(𝑡) − 𝑢0, ∈ ⟂
𝛺 for all 𝑡 > 0 (3.3)

and ‖𝑢(𝑡) − 𝑢0,‖22,𝛺 = 𝑂(𝑒−2𝜇𝜆1𝑡) as 𝑡 → +∞, with 𝜆1 being the first non trivial eigenvalue of (2.5). Hence,

lim
𝑡→+∞

‖𝑢(𝑡)‖22,𝛺 = ‖𝑢0,‖
2
2,𝛺 .

Remark 3.3. The existence of steady flows in axially symmetric domains was already known, as well as the fact that a nonstationary
flow converges to a steady flow, see e.g., [11] and [13, Section 6]. However, these results were not settled on sectors and, at our
best knowledge, the fact that 𝛺 and ⟂

𝛺 are invariants of the flow was not previously highlighted. In particular, Theorem 3.2
points out that, whenever 𝛺 admits an axial symmetry, if the initial datum has non trivial components in the kernel 𝛺 (case (𝑖) or
(𝑖𝑖𝑖)), then the fluid velocity will never extinguish, although being characterized by a zero-acceleration. In other words, if the initial
datum driving the motion of the fluid complies with the symmetry of the domain and the fluid is allowed to slip on the boundary
with no friction, then the fluid will fall into a perpetual motion. On the other hand, if the initial datum is chosen in the complement
of the kernel ⟂

𝛺 (case (𝑖𝑖)), it remains in ⟂
𝛺 and all results given in Theorem 3.1 in the non-axially symmetric case hold.

In order to further characterize the asymptotic behaviour of 𝑢(𝑡), we give:

Definition 3.4. We say that an (𝐿2-normalized) eigenfunction 𝑒𝑘 of (2.5) is an active mode for 𝑢(𝑡) if

𝑐𝑘(𝑡) ∶= ∫𝛺
𝑢(𝑡) ⋅ 𝑒𝑘 ≢ 0 in (0,∞) .

According to Theorem 3.2, the eigenfunctions corresponding to the null eigenvalue are the only active modes in case (𝑖), while
they are not active in case (𝑖𝑖). By [7, Theorem 6.2] we know that the sequence of eigenfunctions {𝑒𝑘}𝑘∈N+

of problem (2.5) is an
Hilbert basis for 𝐻 , thus we can expand the solution in a Fourier series, that is,

𝑢(𝑡) =
∞
∑

𝑘=1
𝑐𝑘(𝑡)𝑒𝑘, (3.4)

where the sum is extended only to active modes and the indices 𝑘 are ordered in such a way that the sequence of eigenvalues
{𝜆𝑘}𝑘∈N+

of 𝐴 is non-decreasing.
Under the assumptions of Theorem 3.1 or Theorem 3.2-(𝑖𝑖), (3.1) holds and we derive from it further information on the

asymptotics. To this aim, we introduce the set of indices:

𝐽𝛬 = {𝑘 ∈ N+ s.t. 𝜆𝑘 = 𝛬}.

The next statement shows that, as 𝑡 → ∞, the energy concentrates on the modes corresponding to 𝛬, thus identified by the indices
belonging to 𝐽𝛬.

Proposition 3.5. Let the hypotheses of Theorem 3.1 or Theorem 3.2-(𝑖𝑖) hold, and let 𝛬 be as given there. Furthermore, let 𝑢(𝑡) be expanded
as in (3.4). Then, one has

∑

𝑘∈𝐽𝛬

𝑐2𝑘(𝑡) ∼ ‖𝑢(𝑡)‖22,𝛺 and
∑

𝑘∉𝐽𝛬

𝑐2𝑘(𝑡) = 𝑜(‖𝑢(𝑡)‖22,𝛺) as 𝑡 → ∞ . (3.5)

Moreover, there holds

lim
𝑡→∞

𝑒𝜇𝛬𝑡𝑢(𝑡) = 𝑒𝜆𝑘0 in 𝐻 and in 𝑉 , (3.6)

where 𝑒𝜆𝑘0 is an eigenfunction of 𝐴 (not necessarily 𝐿2 normalized) corresponding to the eigenvalue 𝜆𝑘0 for some 𝑘0 ∈ 𝐽𝛬. Hence,

𝑐𝑘0 (𝑡) = 𝑂(𝑒−𝜇𝛬𝑡) and 𝑐𝑘(𝑡) = 𝑜(𝑒−𝜇𝛬𝑡) ∀ 𝑘 ≠ 𝑘0 as 𝑡 → ∞.

The proof of Proposition 3.5 relies on the validity of the limit (3.1) and it is along the lines of the conclusions drawn in [12]
for the Dirichlet problem, therefore we omit it. For more details, we refer to [12, Proposition 1] for the proof of (3.5) and to [12,
Proposition 3] for the proof of (3.6).

Remark 3.6. A natural issue is to establish a priori which index/indices belong to the set 𝐽𝛬 and, in turn, to predict the asymptotic
ehaviour of the solution. If the hypotheses of Theorem 3.1 or those of Theorem 3.2-(𝑖𝑖) hold, one can reproduce in our context
he proof of [12, Theorem 3] showing that which indices belong to 𝐽𝛬 depend on the initial data. In particular, it can be proved
hat there exists in the set  of initial data given by (2.10) a flag of smooth analytic manifolds  = 𝑀0 ⊃ 𝑀1 ⊃ 𝑀2 ⊃ ... such that
= 𝜆𝑗 if and only if 𝑢0 ∈ 𝑀𝑗−1 ⧵𝑀𝑗 for some 𝑗 ∈ N+ (see also [15]). Each 𝑀𝑗 is constructed as the kernel of a nonlinear analytic
ap 𝛷𝑗 ∶  → 𝑅𝜆𝑗𝑉 , where 𝑅𝜆𝑗 denotes the projection of 𝑉 on the eigenspace of 𝜆𝑗 . Moreover, 𝑆(𝑡)𝑀𝑗 ⊂ 𝑀𝑗 for all 𝑗 ∈ N+. Hence,

are invariants of the flow and, recalling Theorems 3.1 and 3.2, we conclude that:
6

𝑗
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(i) if 𝛺 is non-axially symmetric, the flow (1.1) admits the invariants 𝑀𝑗 ;
(ii) if 𝛺 is axially symmetric, 𝛺 and ⟂

𝛺 are invariants of the flow (1.1). Moreover, the set ⟂
𝛺 can be further decomposed in

the spectral manifolds 𝑀𝑗 which are also invariants.

It is worth noticing that, due to their nonlinear nature, the definition of the manifolds 𝑀𝑗 in terms of the initial data is possible
from a theoretical point of view, but it remains quite implicit. In Section 3.2 we provide two examples of 2D domains, one of them
axially symmetric (the disk), for which more explicit information can be found.

Remark 3.7. The existence of one mode catching the energy of the system, highlighted in Proposition 3.5, is very similar to that
observed in some mathematical models for bridges, when studying the Tacoma Narrows Bridge oscillations, and for which the
definition of prevailing mode was formally given in [16]. This behaviour depends on the amount of energy inserted into the system
by means of the initial data and it is related to the nonlinear nature of the models. See also [17–20].

3.2. Complementary results: prototype problems in the 2D case

As already explained in Remark 3.6, which indices belong to the set 𝐽𝛬, namely which mode catches the energy of the system
definitively, depends on the initial data through the manifolds 𝑀𝑗 , however their geometry far from the origin is unknown, see [21,
Remark 2.1]. In this section we focus on two prototype problems in the 2D case where more explicit information can be obtained.
More precisely, we consider (1.1) when 𝛺 is the square 𝑄 = (0, 𝜋)2 or the disk 𝐵 = {(𝑥, 𝑦) ∈ R2 ∶ 𝑥2 + 𝑦2 < 1}, respectively, our
prototypes of 2D non-axially symmetric and 2D axially symmetric domains. The starting point of our analysis is the validity, in both
cases, of the following identity:

− ∫𝛺

(

𝑢 ⋅ ∇
)

𝑢 ⋅ 𝐴𝑢 = 0 for all 𝑢 ∈ 𝑊 , (3.7)

see Lemma 4.7 in Section 4.7 for a proof. Taking advantage of the 2D context and (3.7), it is easy to show that, without smallness
assumptions on the initial datum, there holds

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢0 ∈ 𝑉 , 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (1.1)−(1.2) 𝑤𝑖𝑡ℎ 𝛺 = 𝑄 𝑜𝑟 𝛺 = 𝐵 𝑎𝑑𝑚𝑖𝑡𝑠 𝑎 𝑤𝑒𝑎𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢(𝑡)
𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 (2.11) 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑖𝑡 𝑖𝑠 𝑠𝑡𝑟𝑜𝑛𝑔, 𝑢𝑛𝑖𝑞𝑢𝑒 𝑎𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙 𝑖𝑛 𝑡𝑖𝑚𝑒,

see Remark 4.8 in Section 4.7. For what concerns the asymptotic behaviour of 𝑢(𝑡), Theorems 3.1 and 3.2 hold with no changes
in the proofs except some simplifications coming from the validity of (3.7), see the proof of Theorem 3.8 below. In this respect we
notice that 𝐵 is the only axially symmetric set in the plane and the kernel 𝛺 of the linear map 𝑣 ↦ 𝐃𝑣 satisfies 𝛺 ≠ ∅ if and only
if 𝛺 = 𝐵. According to the proof of Proposition 2.4 it is possible to characterize 𝐵 as follows

𝐵 = {𝑎 + 𝑐0(𝑦,−𝑥) ∶ 𝑐0 ∈ R and 𝑎, (𝑥, 𝑦) ∈ R2}.

By exploiting identity (3.7) we have also established that the quotient 𝜆(𝑡) in (2.12) is non-increasing in time; this provides an
upper bound for 𝛬 in terms of 𝑢0 and, in turn, allows to establish a priori a majorant for the set 𝐽𝛬. More precisely, in Section 4.7
we prove:

Theorem 3.8. Let 𝛺 = 𝑄 or 𝛺 = 𝐵. Furthermore, in the latter case assume that 𝑢0 ∈ ⟂
𝐵 . Then, 𝑢(𝑡) satisfies (3.1) and (3.2), being 𝛬 a

nontrivial eigenvalue of problem (2.5). Moreover the map [0,+∞) ∋ 𝑡 ↦ 𝜆(𝑡) is nonincreasing and satisfies

𝛬 ≤ 𝜆(𝑡) ≤
2‖𝐃𝑢0‖22,𝛺
‖𝑢0‖22,𝛺

for all 𝑡 > 0 . (3.8)

n particular, by denoting {𝜆𝑘}𝑘∈N+
the nontrivial eigenvalues of (2.5) with (𝐿2-normalized) eigenfunctions 𝑒𝑘, we have

(i) if 0 ≢ 𝑢0 = 𝑐0,1𝑒1 for some 𝑐0,1 ∈ R, then 𝛬 = 𝜆1 and 𝑢(𝑡) = 𝑐0,1𝑒−𝜇𝜆1𝑡𝑒1;
(ii) if 0 ≢ 𝑢0 = 𝑐0,𝑁𝑒𝑁 and 𝛬 = 𝜆𝑁 for some 𝑐0,𝑁 ∈ R, 𝑁 ∈ N+, then 𝑢(𝑡) = 𝑐0,𝑁𝑒−𝜇𝜆𝑁 𝑡𝑒𝑁 ;
(iii) if 0 ≢ 𝑢0 =

∑𝑁
𝑘=1 𝑐0,𝑘𝑒𝑘 for some 𝑐0,𝑘 ∈ R and 𝑁 ∈ N+, then 𝛬 ≤ 𝜆𝑁 and at least one among the first 𝑁 modes of 𝑢 is active, namely

if 𝑢(𝑡) is expanded as in (3.4) then there exists 1 ≤ 𝑘0 ≤ 𝑁 such that 𝑐𝑘0 (𝑡) ≢ 0.

emark 3.9. According to Theorem 3.8-(𝑖), 𝑠𝑝𝑎𝑛(𝑒1) is an invariant of the flow. When 𝛺 = 𝑄 a direct inspection reveals that the sets
𝑠𝑝𝑎𝑛(𝑒𝑘) are all invariants of the flow, see Proposition 4.10 in Section 4.7. The proof relies on the explicit form of the eigenfunctions
and on their simple analytical expression. We conjecture a similar behaviour when 𝛺 = 𝐵, but, unfortunately, the same computations
seem difficult to be reproduced since the eigenfunctions have more involved expressions, see Appendix.

4. Proofs

Notation. Since in the following we will deal with several multiplying (positive) constants whose exact value is irrelevant to our
purposes, we will frequently use the general symbol 𝐶. The actual value may therefore change from line to line, without explicit
eference. However, when it is significant to specify the dependence of 𝐶 on suitable parameters, we will write it explicitly; we will
7

use different symbols only when needed to avoid ambiguity.
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4.1. Reflection principle

The general strategy to deal with sectors is to handle the irregularity of the domain by introducing suitable auxiliary problems,
btained by applying a reflection principle. This strategy was introduced in [10] and adopted to prove Proposition 2.6, however
or the sake of completeness we recall the main ideas in this section. When 𝛺 is a sector of type (A) the auxiliary problem is set on
𝑚, see Definition 2.3, while in the case of a sector (B) we use the cell of periodicity 𝛺 , see Definition 4.2 below. More in details,

we distinguish between the following cases:

• Sectors of type (𝐴) with 𝑚 = 1. We introduce the domain 𝛺1 = 𝛺𝑃𝜔1
, where 𝜔1 is the one face satisfying 𝜕𝛺 = 𝜔1 ∪ 𝛤 , for

some 𝛤 having 2,1-regularity, see e.g., Fig. 1 on the left. Then, we make two key observations. The first is that 𝛺1 is of class
2,1. The second is that if a vector field 𝑣 ∈ 𝐻2(𝛺1) is symmetric with respect to 𝑃𝜔1

(in a suitable sense, see (4.1) below)
and satisfies the boundary conditions (1.1) in 𝛺1, then it satisfies the boundary conditions (1.1) in 𝛺 as well, see Remark 4.1.
Thus, the auxiliary problem is obtained by setting (1.1) on 𝛺1, with the further constraint that the solution is symmetric with
respect to 𝑃𝜔1

. This requires working in 𝐻 and 𝑉  , which are closed subspaces of 𝐻 and 𝑉 containing -symmetric vector
fields with respect to 𝑃𝜔1

. In order to clarify what we mean by -symmetric functions, let us assume, up to translations and
rotations, that 𝜔1 lies on the plane 𝑧 = 0. Then, a vector field 𝛹 = (𝛹1, 𝛹2, 𝛹3) ∶ 𝛺1 × (0, 𝑇 ) → R3, and a scalar function
𝑞 ∶ 𝛺1 × (0, 𝑇 ) → R are said to be -symmetric if, for all (𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝛺1 × (0, 𝑇 ),

𝛹𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝛹𝑖(𝑥, 𝑦,−𝑧, 𝑡) (𝑖 = 1, 2) ,

𝛹3(𝑥, 𝑦, 𝑧, 𝑡) = −𝛹3(𝑥, 𝑦,−𝑧, 𝑡) ,

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑥, 𝑦,−𝑧, 𝑡) .

(4.1)

The space 𝐻 (𝛺1) (respectively, 𝑉  (𝛺1)) contain vector fields belonging to 𝐻(𝛺1) (respectively, 𝑉 (𝛺1)) satisfying (4.1)1–
(4.1)2. Let (𝑢, 𝑝) be the unique strong solution to (1.1) given by Proposition 2.6, under assumption (2.10). Define 𝑢̂ = (𝑢̂1, 𝑢̂2, 𝑢̂3) ∶
𝛺1 ×R+ → R3 and 𝑝 ∶ 𝛺1 ×R+ → R to be the symmetrized versions of 𝑢 and 𝑝 according to (4.1). The auxiliary problem then
reads as follows:

⎧

⎪

⎨

⎪

⎩

𝑢̂𝑡 − 𝜇𝛥𝑢̂ + (𝑢̂ ⋅ ∇)𝑢̂ + ∇𝑝 = 0 in 𝛺1 × (0, 𝑇 ) ,

∇ ⋅ 𝑢̂ = 0 in 𝛺1 × (0, 𝑇 ) ,

𝑢̂ ⋅ 𝜈 = (𝐃𝑢̂ ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝜕𝛺1 × (0, 𝑇 ) ,

(4.2)

with the initial condition

𝑢̂(𝑥, 𝑦, 𝑧, 0) = 𝑢̂0(𝑥, 𝑦, 𝑧) in 𝛺1 . (4.3)

In the following, results will be proven for problem (4.2)–(4.3) in the spaces 𝐻 (𝛺1) and 𝑉  (𝛺1), and then coming back to
the original problem by restricting 𝑢̂ to 𝛺.

Remark 4.1. The key idea of the above symmetrization argument is the following. Let 𝑢̂ ∈ 1(𝛺1) and −symmetric with respect
to the plane containing 𝜔1 ∶ 𝑧 = 0, characterized by the unit normal 𝜈 = (0, 0, 1) and tangential vector 𝜏 = (𝜏1, 𝜏2, 0); then 𝑢̂ satisfies
Navier boundary conditions on 𝜔1. Indeed, in view of (4.1), we have

𝑢̂ ⋅ 𝜈|𝜔1
= 𝑢̂3(𝑥, 𝑦, 0, 𝑡) = 0 ⇒ ∇(𝑢̂ ⋅ 𝜈) ⋅ 𝜏|𝜔1

= 0.

On the other hand, again from (4.1), it follows that (𝑢̂𝑖)𝑧(𝑥, 𝑦, 0, 𝑡) = 0 for 𝑖 = 1, 2, by which

∇(𝑢̂ ⋅ 𝜏) ⋅ 𝜈|𝜔1
= (𝑢̂1)𝑧(𝑥, 𝑦, 0, 𝑡)𝜏1 + (𝑢̂2)𝑧(𝑥, 𝑦, 0, 𝑡)𝜏2 = 0

implying

(𝐃𝑢̂ ⋅ 𝜈) ⋅ 𝜏|𝜔1
= 1

2
∇(𝑢̂ ⋅ 𝜈) ⋅ 𝜏|𝜔1

+ 1
2
∇(𝑢̂ ⋅ 𝜏) ⋅ 𝜈|𝜔1

= 0.

he above identities can be extended in terms of weak derivatives.
We notice that, this argument fails if we consider the boundary conditions (1.3) with 𝛽 ≠ 0, due to the presence of the tangential

velocity in the boundary conditions.

• Sectors of type(𝐴) with 𝑚 ≥ 2. In this case, we have that 𝜕𝛺 =
⋃𝑚

𝑖=1 𝛤 ∪ 𝜔𝑖 for some 𝛤 having 2,1-regularity, and 𝜔𝑖,
𝑖 = 1,… , 𝑚 faces as in Definition 2.1. The procedure used to handle this type of sectors is inductive: for 𝑚 ≥ 2, we exploit the
result obtained in the case 𝑚− 1. For instance, in the case 𝑚 = 2, we define 𝛺2 =

(

𝛺𝑃𝜔1

)

𝑃𝜔2
; then we consider the problem in

𝛺𝑃𝜔1
, where we have only the face 𝜔2, thus we can apply the results for 𝑚 = 1. Observe that in this case the spaces 𝐻 (𝛺𝑚)

and 𝑉  (𝛺𝑚) contain vector fields with 𝑚 ≥ 2 symmetries, which are obtained iteratively as -symmetric extensions of the
corresponding vector fields at step 𝑚 − 1.

• Sectors of type (𝐵), smoothly periodically extendable in one direction. We first introduce the notion of cell of periodicity
8

𝛺 (which should not be confused with the reflected domains 𝛺𝑃 ).
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Fig. 2. The cylinder 𝛺 is a sector of type (B) its cell of periodicity is the double cylinder.

Definition 4.2. Let 𝛺𝑚 be as given in Definition 2.3. The cell of periodicity 𝛺 is the set obtained by reflecting 𝛺𝑚 in each of the
directions of periodicity, except for those that have already been used to obtain 𝛺𝑚.

In Figs. 1 (left) and 2 we provide two examples where the cell of periodicity 𝛺 is obtained from reflections due to different
reasons. Indeed, the bottle 𝛺 is reflected one time for topological reasons, in order to get the smoothly periodically extendable
domain 𝛺1 which coincides with 𝛺 . On the other hand, the cylinder 𝛺 in Fig. 2 is already smoothly periodically extendable but,
in order to get 𝛺 , it is reflected one time (since it has one direction of periodicity) for analytical reasons that we explain in a while.
Notice that 𝛺 is only Lipschitzian, while its periodic extension is 2,1. In order to overcome this difficulty, the strategy developed
in [10] is to introduce an auxiliary problem obtained by setting (1.1) on 𝛺 with two constraints: the solution must be symmetric
with respect the planes of reflections used to obtain 𝛺 and it must be periodic with respect to the directions of periodicity of 𝛺 .
Both conditions are included in the functional setting.

As an explicit example, let 𝑝1 ∥ 𝑝4 be the unique couple of planes in (2.2). Let us assume that 𝑝1 ∶ 𝑧 = 0 and 𝑝4 ∶ 𝑧 = 𝑧0 for some
𝑧0 ∈ R+, while 𝑝4 ∶ 𝑧 = −𝑧0 is the symmetric of 𝑝4 with respect to 𝑝1, see e.g., Fig. 2. Instead of working with 𝐻 and 𝑉 , one works
with 𝐻 (𝛺 ) ∩ 𝐿2

 and 𝑉  (𝛺 ) ∩𝐻1
 , where 𝐻 (𝛺 ) (respectively, 𝑉  (𝛺 )) are the subsets of 𝐻 (respectively, 𝑉 ) of vector fields

symmetric with respect to the planes of reflection used to obtain 𝛺 while

𝐻𝑠
 ∶=

{

𝑢 ∈ 𝐻𝑠(𝛺 ) ∶ 𝑢 =
∑

𝑘∈Z
𝑐𝑘𝑒

𝑖𝜋𝑘
𝑧0

𝑧 and
∑

𝑘∈Z
𝑘2𝑠|𝑐𝑘|

2 < ∞

}

(𝑠 = 0, 1, 2) ,

with the convention that 𝐻0
 = 𝐿2(𝛺 ). In general, 𝑢|𝑝1 ≠ 𝑢|𝑝4 , that is why, for instance, in the case of the cylinder 𝛺 one has to

perform one reflection with respect to 𝑝1 so as to obtain functions which are periodic in the 𝑧 direction.
Still referring to the above explicit example, let (𝑢, 𝑝) be the unique strong solution to (1.1) given by Proposition 2.6 under

assumption (2.10), we define 𝑢𝑚, 𝑝𝑚, 𝑢𝑚0 to be the symmetrized corresponding vector fields, coherent with the symmetries of 𝛺𝑚 and
defined iteratively as in the case of type (A) sectors. If 𝛺𝑚 ≡ 𝛺 , we put 𝑢 = 𝑢𝑚, 𝑝 = 𝑝𝑚, 𝑢0 = 𝑢𝑚0 . Otherwise, we define 𝑢 , 𝑝 , 𝑢0
to be the -symmetric extensions of 𝑢𝑚, 𝑝𝑚, 𝑢𝑚0 on 𝛺 . The proof of Proposition 2.6 in [10] is achieved by dealing with the auxiliary
problem obtained by setting (1.1) on 𝛺 and replacing (1.1)3 with

𝑢 (𝑥, 𝑦,−𝑧0, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑧0, 𝑡) on 𝛤1 × (0, 𝑇 ) ,

𝑢 ⋅ 𝜈 = (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝛤𝑁 × (0, 𝑇 ) ,
(4.4)

where 𝛤1 ∶= 𝜕𝛺 ∩ (𝑝4 ∪ 𝑝4) and 𝛤𝑁 ∶= 𝜕𝛺 ⧵ 𝛤1. We notice that the first in (4.4), combined with the second in (4.1), yields
𝑢 ⋅ 𝜈|𝑝4 = 0, hence, under the -symmetry assumption, one finally recovers the boundary conditions in (1.1) for 𝛺 . In particular,
in [10] it was first proved that 𝑢 ∈ 𝐿∞(R+;𝑉  (𝛺 ) ∩𝐻1

 (𝛺 )) and 𝑢𝑡 , 𝐴𝑢
 ,∇𝑝 ∈ 𝐿2(R+;𝐿2(𝛺 )) and then the statement for (𝑢, 𝑝)

was gained by taking the restriction of 𝑢 to 𝛺.

• Sectors of type (𝐵), smoothly periodically extendable in two or three directions. The previous case is extended by properly
modifying the auxiliary problem. This requires introducing the cell of periodicity 𝛺 , changing the functional spaces so as
to include periodicity and symmetries in two or three directions, and defining the suitable -symmetric extension of (𝑢, 𝑝),
see [10, Appendix 1] for more details and figures.
9
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4.2. Proof of Proposition 2.4

Parts of the proof were already known but not yet stated in the case of sectors, see e.g., [7, Lemma 3.3], [11, Appendix 1], [22,
heorem 1] and [13]. We start by noticing that

𝐃𝑧 = 0 ⟺ 𝑧𝓁 = 𝑎 + 𝓁 ∧ (𝑥, 𝑦, 𝑧) ∀ (𝑥, 𝑦, 𝑧) ∈ 𝛺 for some 𝑎,𝓁 ∈ R3.

f 𝛺 is a sector of type (A) with 𝑚 = 0, it is readily seen that 𝑧𝓁 ⋅ 𝜈 = 0 on 𝜕𝛺 if and only if 𝛺 is axially symmetric with respect to an
xis parallel to 𝓁. In particular, if two functions 𝑧𝓁1 , 𝑧𝓁2 satisfy 𝑧𝓁1 ⋅ 𝜈 = 𝑧𝓁2 ⋅ 𝜈 = 0 on 𝜕𝛺 for 𝓁1 ≠ 𝓁2, then, in view of [22, Lemma
], 𝛺 is a ball.

In all other cases, we observe that the boundary 𝜕𝛺 of a sector 𝛺 may be written as

𝜕𝛺 =
𝑘
⋃

𝑖=1
𝜔𝑖 ∪ 𝛤 ,

for some 𝛤 having 2,1 regularity, and 𝜔𝑖, 𝑖 = 1,… , 𝑘 faces according to Definition 2.1. In particular each of the faces of a sector
‘‘sticks orthogonally’’ to the smooth part 𝛤 . If 𝑘 = 1, then, 𝑧𝓁 ⋅ 𝜈 = 0 on 𝜔1 if and only if 𝓁 = 𝑐0𝜈 for some 𝑐0 ∈ R, hence 𝛺 is axially
symmetric with respect to 𝜈. If 𝑘 = 2, by the same argument we find that 𝛺 ≠ ∅ if and only if 𝜔1 and 𝜔2 are parallel, and 𝛺 is
axially symmetric with respect to 𝜈, being 𝜈 the unit vector normal to 𝜔1 and 𝜔2. The case 𝑘 ≥ 3 gives a contradiction.

Remark 4.3. By the reflection principle outlined in Section 4.1 we can properly relate the eigenvalue problem (2.5) posed on a
sector 𝛺 with those posed on the auxiliary domains 𝛺𝑚 or 𝛺 . In particular, with reference to the notations of Section 4.1, if 𝛺 is a
sector of type (A), the system of eigenfunctions {𝑒𝑘}𝑘∈N+

of 𝐴 in 𝐻(𝛺) can be obtained by restricting to 𝛺 the set of eigenfunctions
{𝑒𝑘}𝑘∈N+

of 𝐴 in 𝐻 (𝛺𝑚). Moreover, as for 𝑉 , in 𝑉  (𝛺𝑚), the usual decomposition holds:

∀ 𝑣 ∈ 𝑉  (𝛺𝑚) , 𝑣 = 𝑣̄ + 𝑣 with 𝑣 ∈ 𝛺𝑚
∩ 𝑉  (𝛺𝑚) and 𝑣̄ ∈ ⟂

𝛺𝑚
∩ 𝑉  (𝛺𝑚).

We observe that, if the sector 𝛺 is non-axially symmetric, then 𝛺𝑚
∩ 𝑉  (𝛺𝑚) = ∅ even if 𝛺𝑚 is axially symmetric, otherwise,

restricting to 𝛺, we obtain 𝛺 ≠ ∅ contradicting Proposition 2.4. The case of sectors (B) works similarly.

4.3. Technical lemmas

In this section we prove two technical lemmas needed in the proofs of Theorems 2.7, 3.1 and 3.2. The statements are given for
smooth domains while at the end of the section we explain how they can be exploited in the framework of sectors by means of the
reflection principle in Section 4.1. With reference to the notations of Section 2.3, we prove

Lemma 4.4. Let 𝛺 ⊂ R3 be a bounded domain of class 2,1. Then 𝐷(𝐴) = 𝑊 (𝛺) and

(i) if 𝛺 is non-axially symmetric, ‖𝐴𝑢‖2,𝛺 is a norm on 𝐷(𝐴), equivalent to the norm induced by 𝐻2(𝛺);
(ii) if 𝛺 is axially symmetric, ‖𝐴𝑢‖2,𝛺 + ‖𝑢‖2,𝛺 is a norm on 𝐷(𝐴) equivalent to the norm induced by 𝐻2(𝛺).

Proof. Parts of the proof were already known, see e.g., [11, Theorem 1.2] or [5, Theorem 1.3.1], however, for the sake of
completeness, we provide a short but full proof here. We start by considering the case where 𝛺 is non-axially symmetric. Let 𝑢 ∈ 𝐷(𝐴),
by definition 𝐴𝑢 ∈ 𝐿2(𝛺), namely there exists 𝑓 ∈ 𝐿2(𝛺) such that

2∫𝛺
𝐃𝑢 ∶ 𝐃𝑣 = ∫𝛺

𝑓 ⋅ 𝑣 , ∀𝑣 ∈ 𝑉 . (4.5)

By interpreting (4.5) as the weak formulation of a stationary Stokes problem, we apply [7, Theorem 4.1] and we deduce that
𝑢 ∈ 𝐻2(𝛺) and

‖𝑢‖𝐻2(𝛺) ≤ 𝐶‖𝑓‖2,𝛺 = 𝐶‖𝐴𝑢‖2,𝛺 ,

for some 𝐶 = 𝐶(𝛺) > 0. Since the inverse inequality is trivial, it follows that ‖𝐴𝑢‖2,𝛺 is a norm on 𝑉 ∩𝐻2(𝛺). Then, by exploiting
formula (2.4), we also deduce that (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on 𝜕𝛺, hence 𝑢 ∈ 𝑊 (𝛺). Viceversa, if 𝑢 ∈ 𝑊 (𝛺), by exploiting again (2.4), it is
readily seen that (4.5) holds with 𝑓 = −𝑃 (𝛥𝑢) ∈ 𝐿2(𝛺), therefore 𝑢 ∈ 𝐷(𝐴).

If 𝛺 is axially symmetric, by Proposition 2.4, 𝛺 is non-trivial. Thus, for 𝑢 ∈ 𝐷(𝐴) we have 𝑢 = 𝑢 + 𝑢, where 𝑢 ∈ 𝐾𝛺, and
𝑢 ∈ ⟂

𝛺 and, as above, 𝐴𝑢 ∈ 𝐿2(𝛺) is equivalent to

2∫𝛺
𝐃𝑢 ∶ 𝐃𝑣 = ∫𝛺

𝑓 ⋅ 𝑣 , ∀𝑣 ∈ 𝑉 ,

or some 𝑓 ∈ 𝐿2(𝛺). Then, by [7, Theorem 4.1] (which holds in ⟂
𝛺), ‖𝑢‖𝐻2(𝛺) ≤ 𝐶‖𝐴𝑢‖2,𝛺 for some 𝐶 = 𝐶(𝛺) > 0. Therefore, since

‖𝑢‖2
𝐻2(𝛺)

= ‖𝑢‖2
𝐻2(𝛺)

+ ‖𝑢‖22,𝛺, (𝑖𝑖) follows by recalling Remark 2.5. Once this established, the fact that 𝐷(𝐴) = 𝑊 (𝛺) follows by
xploiting (2.4) as explained in the non-axially symmetric case. □
10
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We are now ready to provide some estimates for the convection term. To this aim, we first recall the identities below which
ollows by integrating by parts and that will be exploited throughout the paper:

∫𝛺
(𝑢 ⋅ ∇)𝑣 ⋅𝑤 = −∫𝛺

(𝑢 ⋅ ∇)𝑤 ⋅ 𝑣 and ∫𝛺
(𝑢 ⋅ ∇)𝑣 ⋅ 𝑣 = 0 ∀ 𝑢 ∈ 𝑉 ,∀ 𝑣,𝑤 ∈ 𝐻1(𝛺) . (4.6)

emma 4.5. Let 𝛺 ⊂ R3 be a bounded domain of class 2,1. For all 𝑢,𝑤 ∈ 𝐷(𝐴) the following inequalities hold:

(i) if 𝛺 is non-axially symmetric:

|((𝑢 ⋅ ∇)𝑢, 𝐴𝑤)𝛺| ≤
⎧

⎪

⎨

⎪

⎩

𝐶1‖𝐃𝑢‖
3∕2
2,𝛺‖𝐴𝑢‖

1∕2
2,𝛺‖𝐴𝑤‖2,𝛺

𝐶2‖𝑢‖
1∕2
2,𝛺‖𝐃𝑢‖

1∕2
2,𝛺‖𝐴𝑢‖2,𝛺‖𝐴𝑤‖2,𝛺;

(4.7)

(ii) if 𝛺 is axially symmetric:

|((𝑢 ⋅ ∇)𝑢, 𝐴𝑤)𝛺| ≤
⎧

⎪

⎨

⎪

⎩

𝐶3
(

‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺
)3∕2 (

‖𝑢‖2,𝛺 + ‖𝐴𝑢‖2,𝛺
)1∕2

‖𝐴𝑤‖2,𝛺

𝐶4‖𝑢‖
1∕2
2,𝛺

(

‖𝑢‖2,𝛺 + ‖𝐃𝑢‖2,𝛺
)1∕2 (

‖𝑢‖2,𝛺 + ‖𝐴𝑢‖2,𝛺
)

‖𝐴𝑤‖2,𝛺 ,

for some 𝐶𝑖 = 𝐶𝑖(𝛺) > 0 with 𝑖 = 1,… , 4.

Proof. Let 𝛺 be non-axially symmetric. Then, by Proposition 2.4 we know that the norms ‖∇ ⋅ ‖2,𝛺 and ‖𝐃 ⋅ ‖2,𝛺 are equivalent.
Thus, by suitable Sobolev embeddings and Lemma 4.4, for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝐷(𝐴) we have

‖𝑣‖6,𝛺 ≤ 𝐶‖𝐃𝑣‖2,𝛺 (4.8a)

‖∇𝑤‖6,𝛺 ≤ 𝐶‖𝐴𝑤‖2,𝛺 (4.8b)

‖∇𝑤‖3,𝛺 ≤ ‖∇𝑤‖

1∕2
2,𝛺‖∇𝑤‖

1∕2
6,𝛺 ≤ 𝐶‖𝐃𝑤‖

1∕2
2,𝛺‖𝐴𝑤‖

1∕2
2,𝛺 . (4.8c)

Then, inequalities (4.7) can then be obtained as an immediate consequence, by using ‖(𝑣 ⋅ ∇)𝑢‖2,𝛺 ≤ ‖𝑣‖6,𝛺‖∇𝑢‖3,𝛺 in (4.7)1 and
‖(𝑣 ⋅ ∇)𝑢‖2,𝛺 ≤ ‖𝑣‖3,𝛺‖∇𝑢‖6,𝛺 in (4.7)2 for all 𝑣, 𝑢 ∈ 𝐻2(𝛺) ∩ 𝑉 .

If 𝛺 is non-axially symmetric, let 𝑣 = 𝑣 + 𝑣 ∈ 𝑉 and 𝑤 = 𝑤 + 𝑤 ∈ 𝐷(𝐴), where 𝑣, 𝑤 ∈ 𝐾𝛺 and 𝑣,𝑤 ∈ ⟂
𝛺. Inequalities

4.8a)–(4.8b)–(4.8c) change as

‖𝑣‖6,𝛺 ≤ 𝐶
(

‖𝑣‖2,𝛺 + ‖𝐃𝑣‖2,𝛺
)

‖∇𝑤‖6,𝛺 ≤ 𝐶
(

‖𝑤‖2,𝛺 + ‖𝐴𝑤‖2,𝛺
)

‖∇𝑤‖3,𝛺 ≤ ‖∇𝑤‖

1∕2
2,𝛺‖∇𝑤‖

1∕2
6,𝛺 ≤ 𝐶

(

‖𝑤‖2,𝛺 + ‖𝐃𝑤‖2,𝛺
)1∕2 (

‖𝑤‖2,𝛺 + ‖𝐴𝑤‖2,𝛺
)1∕2 ,

for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝐷(𝐴). □

Remark 4.6. In the framework of sectors, recalling the notations in Section 4.1, the conclusions of Lemmas 4.4 and 4.5 are needed
only for the auxiliary problems which are set on 𝛺𝑚 or 𝛺 , respectively for type (A) or type (B) sectors. The sets 𝛺𝑚 are 2,1 therefore
Lemmas 4.4 and 4.5 apply. Concerning with 𝛺 , the statement hold by modifying the domain of 𝐴 as follows

𝐷 (𝐴) ∶= {𝑢 ∈ 𝑉  (𝛺 ) ∩𝐻1
 ∶ 𝐴𝑢 ∈ 𝐿2

}.

With this position, we may repeat the proof of Section 4.1 with problem (4.5) set on 𝛺 = 𝛺 with 𝑓 ∈ 𝐿2
 . Here, the lack of

smoothness of 𝛺 in the directions of periodicity can be overcome by viewing this problem as the restriction to 𝛺 of (4.5) settled
on a suitable periodic (smooth) extension of 𝛺 . Making reference to Fig. 2, one can define the extended domain by adding a
cylinder (namely a copy of 𝛺 ) on both sides of 𝛺 . Finally, we recover the regularity on 𝛺 by local regularity results for (4.5)
settled on the extended domain. In particular, we establish that

𝐷 (𝐴) = 𝑊 (𝛺 ) ∶= {𝑢 ∈ 𝑉  (𝛺 ) ∩𝐻2
 ∶ (𝐃𝑢 ⋅ 𝜈) ⋅ 𝜏 = 0 on𝛤𝑁},

Similarly, from local a priori estimates we recover the desired equivalence of the norms ‖𝐴𝑢‖2,𝛺
or ‖𝐴𝑢‖2,𝛺

+‖𝑢‖2,𝛺
on 𝑊 (𝛺 ),

respectively in the non-axially symmetric or axially symmetric case.
We conclude the discussion by noticing that, if 𝑢 is the solution of (1.1) given by Proposition 2.6, by construction (as explained

in Section 4.1), there holds:

(i) if 𝛺 is a type (A) sector then the -symmetric extension 𝑢̂ of 𝑢 to 𝛺𝑚 satisfies 𝐴𝑢̂ ∈ 𝐿2(𝛺𝑚);
(ii) 𝛺 is a type (B) sector then the -symmetric and periodic extension 𝑢 of 𝑢 to 𝛺 satisfies 𝐴𝑢 ∈ 𝐿2(𝛺 ).

In particular, for what remarked above, for type (A) sectors we deduce that 𝑢̂ ∈ 𝑊 (𝛺𝑚) and, in turn, arguing as in Remark 4.1, that
𝑢 ∈ 𝑊 (𝛺). The same conclusion holds for type (B) sectors.
11
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t
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4.4. Proof of Theorem 2.7

The proof goes along the lines of that of [23, Lemma 3.1] in the Dirichlet case but with nontrivial changes in the estimates
needed to conclude (see also [24, Chapter 12] and [25, Chapter 2, Section 8]). We give the proof when 𝛺 has a 2,1-boundary; the
result can be extended to sectors of type (A) (resp., (B)) using the auxiliary domain 𝛺𝑚 (resp., the cell of periodicity 𝛺 ) by applying
the reflection principle outlined in Section 4.1. We recall that if 𝛺 is a non-axially symmetric sector, then for the corresponding 𝛺𝑚
(resp., 𝛺 ) one has 𝛺𝑚

∩ 𝑉  (𝛺𝑚) = ∅ (resp., 𝛺
∩ 𝑉  (𝛺 ) = ∅).

The procedure relies on the complexification of 𝐻,𝑉 and 𝑉 ′, which we denote by 𝐻𝐶 , 𝑉𝐶 and 𝑉 ′
𝐶 . The complexified space 𝐻𝐶

of 𝐻 (respectively 𝑉𝐶 , 𝑉 ′
𝐶 of 𝑉 , 𝑉 ′) is given by

𝐻𝐶 = {𝑢1 + 𝑖𝑢2 ∶ 𝑢1, 𝑢2 ∈ 𝐻}

and it can be endowed with the scalar product:

(𝑢, 𝑣)𝐻𝐶
= (𝑢1 + 𝑖𝑢2, 𝑣1 + 𝑖𝑣2)𝐻𝐶

∶= (𝑢1, 𝑣1)𝛺 + (𝑢2, 𝑣2)𝛺 + 𝑖
[

(𝑢2, 𝑣1)𝛺 − (𝑢1, 𝑣2)𝛺
]

.

By linearity, the Stokes operator 𝐴 extends to a self-adjoint operator in 𝐻𝐶 . Let {𝑒𝑘}∞𝑘=1 ⊂ 𝑉𝐶 be the set of eigenfunctions giving an
orthogonal basis in 𝑉𝐶 , and an orthonormal basis in 𝐻𝐶 . Fix 𝜃 ∈

[

− 𝜋
4 ,

𝜋
4

]

and take 𝑡 = 𝑠𝑒𝑖𝜃 for 𝑠 > 0. Then we consider the extension
o complex 𝑡 of the 𝑛th-order approximation of (1.1), that is

⎧

⎪

⎨

⎪

⎩

(𝑢𝑛𝑡 (𝑡), 𝑒𝑘)𝐻𝐶
+ 𝜇⟨𝐴𝑢𝑛(𝑡), 𝑒𝑘⟩𝑉 ′

𝐶 ,𝑉𝐶
= −((𝑢𝑛(𝑡) ⋅ ∇)𝑢𝑛(𝑡), 𝑒𝑘)𝐻𝐶

, 𝑘 = 1,… , 𝑛

𝑢𝑛(0) =
∑𝑛

𝑘=1(𝑢0, 𝑒𝑘)𝐻𝐶
𝑒𝑘 .

(4.10)

The system has a unique analytic solution 𝑢𝑛(𝑡) for |𝑡| small, of the form 𝑢𝑛(𝑥, 𝑡) ∶=
∑𝑛

𝑘=1 𝑐
𝑛
𝑘(𝑡)𝑒𝑘(𝑥). In particular,

𝑑
𝑑𝑠

‖𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
= 2Re

[

𝑒𝑖𝜃
( 𝑑
𝑑𝑡

𝑢𝑛(𝑠𝑒𝑖𝜃), 𝑢𝑛(𝑠𝑒𝑖𝜃)
)

𝐻𝐶

]

and
𝑑
𝑑𝑠

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
= 1

2
𝑑
𝑑𝑠

⟨𝐴𝑢𝑛(𝑠𝑒𝑖𝜃), 𝑢𝑛(𝑠𝑒𝑖𝜃)⟩𝑉 ′
𝐶 ,𝑉𝐶

= Re
[

𝑒𝑖𝜃⟨ 𝑑
𝑑𝑡

𝑢𝑛(𝑠𝑒𝑖𝜃), 𝐴𝑢𝑛(𝑠𝑒𝑖𝜃)⟩𝑉 ′
𝐶 ,𝑉𝐶

]

.

We multiply (4.10)1 by 𝑒𝑖𝜃 , then by 𝑐𝑛𝑘(𝑡), we sum over 𝑘 and we take the real part to obtain

1
2

𝑑
𝑑𝑠

‖𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
+ 2𝜇 cos 𝜃‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

= 0 . (4.11)

On the other hand, by multiplying (4.10)1 for 𝑒𝑖𝜃 , then by 𝜆𝑘𝑐𝑛𝑘(𝑡) = 𝜆𝑘𝑐𝑛𝑘(𝑡), where {𝜆𝑘}∞𝑘=1 is the set of eigenvalues of (2.5), summing
ver 𝑘 and taking the real part, we have

𝑑
𝑑𝑠

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
+ 𝜇 cos 𝜃‖𝐴𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

= −Re
[

𝑒𝑖𝜃((𝑢𝑛(𝑠𝑒𝑖𝜃) ⋅ ∇)𝑢𝑛(𝑠𝑒𝑖𝜃), 𝐴𝑢𝑛(𝑠𝑒𝑖𝜃))𝐻𝐶

]

. (4.12)

ext, we need to manipulate (4.11)–(4.12). This leads to distinguish between two cases. Before proceeding, we emphasize that all
stimates obtained in the real case still hold in the complex framework, with the bounding constants being larger.

(ii) Case 𝛺 non-axially symmetric.
Inequality (2.8)1 applied to (4.11) gives 𝑑

𝑑𝑠‖𝑢
𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

+ 4𝜇
𝐶 cos 𝜃‖𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

≤ 0 which, for 𝑠 > 0, yields

‖𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
≤ ‖𝑢0‖

2
2,𝛺𝑒

− 4𝜇
𝐶 (cos 𝜃)𝑠 . (4.13)

If we integrate (4.11) over (0, 𝜏), we get

‖𝑢𝑛(𝜏𝑒𝑖𝜃)‖2𝐻𝐶
+ 4𝜇 cos 𝜃 ∫

𝜏

0
‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

𝑑𝑠 = ‖𝑢0‖
2
2,𝛺 ,

which, recalling (4.13), gives ∫ ∞
0 ‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

𝑑𝑠 = 1
4𝜇 cos 𝜃 ‖𝑢0‖

2
2,𝛺. To estimate the right-hand side of (4.12), we use (4.7)1.

By Young’s inequality, we deduce

|((𝑢𝑛 ⋅ ∇)𝑢𝑛, 𝐴𝑢𝑛)𝐻𝐶
| ≤ 𝐶‖𝐃𝑢𝑛‖3∕2𝐻𝐶

‖𝐴𝑢𝑛‖3∕2𝐻𝐶
≤ 𝜇

2
cos 𝜃‖𝐴𝑢𝑛‖2𝐻𝐶

+ 𝐶
𝜇3 cos3 𝜃

‖𝐃𝑢𝑛‖6𝐻𝐶
.

Plugging this into (4.12), we obtain
𝑑
𝑑𝑠

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
+

𝜇
2
cos 𝜃‖𝐴𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

≤ 𝐶
𝜇3 cos3 𝜃

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖6𝐻𝐶
. (4.14)

We apply [10, Lemma 2-(i)] to (4.14) and we obtain that, if ‖𝑢0‖22,𝛺‖𝐃𝑢0‖
2
2,𝛺 < 𝐶 𝜇4, then

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
≤ 𝐾 ∶=

4𝜇4

4 2 2
∀ 𝑠 > 0 , ∀ 𝜃 ∈

[

−𝜋
4
, 𝜋
4

]

. (4.15)
12
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Since the right-hand side of (4.15) is uniformly bounded with respect to 𝑛, we found that 𝑢𝑛(𝑡) can be actually extended to
be analytic in the interior 𝑇̊ of the set

𝑇 =
{

𝑡 = 𝑠𝑒𝑖𝜃 s.t 𝑠 ≥ 0, 𝜃 ∈
[

−𝜋
4
, 𝜋
4

]}

.

From (4.15) and by the compact embedding of 𝑉𝐶 into 𝐻𝐶 , we deduce that, for all 𝑡 ∈ 𝑇 , we can extract a subsequence, which
we still denote by {𝑢𝑛(𝑡)}∞𝑛=1, converging in 𝐻𝐶 . Hence, the Vitali’s Theorem (see, e.g., [26, Theorem 3]) applies, so that we can
extract a subsequence {𝑢𝑛(𝑡)}∞𝑛=1 uniformly converging in 𝐻𝐶 , on every compact set in 𝑇̊ , to an analytic 𝐻𝐶 -valued function
𝑢̃(𝑡). However, by [10], we know that, under assumption (2.10), for real times 𝑡 > 0, the sequence {𝑢𝑛(𝑡)}∞𝑛=1 converges in 𝐻 ,
uniformly on every compact set included in [0,∞), to the solution 𝑢(𝑡) of (1.1). Thus 𝑢̃(𝑡) is the analytic 𝐻𝐶 -valued extension
of 𝑢(𝑡) to 𝑇̊ .
As next step we prove that 𝐴𝑢̃(𝑡) is also an analytic 𝐻𝐶 -valued function. Let 𝑃𝑘 denote the orthogonal projection in 𝐻𝐶 onto
the space spanned by the first 𝑘 eigenfunctions {𝑒1, 𝑒2,… , 𝑒𝑘}. Then, for every 𝑘 fixed and every compact set 𝑀 included in
𝑇̊ , we infer that

‖𝐴𝑃𝑘𝑢
𝑛(𝑡) − 𝐴𝑃𝑘𝑢̃(𝑡)‖𝐻𝐶

≤ 𝐶𝑘‖𝑢𝑛(𝑡) − 𝑢̃(𝑡)‖𝐻𝐶
→ 0 as 𝑛 → ∞ ,∀ 𝑡 ∈ 𝑀 ⊂ 𝑇̊ .

Thus, by Lebesgue’s theorem, integrating (4.14) and using (4.15), we have

∫𝑀
‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶

𝑑𝑡 = lim
𝑛→∞∫𝑀

‖𝐴𝑃𝑘𝑢
𝑛(𝑡)‖2𝐻𝐶

𝑑𝑡 ≤ lim inf
𝑛→∞ ∫

𝜋∕4

−𝜋∕4 ∫

𝑠̄

0
‖𝐴𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

𝑠 𝑑𝑠 𝑑𝜃

≤ 𝐶‖𝐃𝑢0‖22,𝛺 + 𝐶𝐾3

𝜇3
4𝜋

(
√

2)3
𝑠̄ =∶ 𝐾𝑀 ,

where 𝑠̄ is chosen sufficiently large so that 𝑀 ⊂ {𝑠𝑒𝑖𝜃 ∶ 0 ≤ 𝑠 ≤ 𝑠̄, 𝜃 ∈
[

− 𝜋
4 ,

𝜋
4

]

}, by which we deduce that

sup
𝑘=1,2,..∫𝑀

‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶
𝑑𝑡 < 𝐾𝑀 < ∞ .

Since {‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶
}∞𝑘=1 is increasing, it must be: lim𝑘→∞ ‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶

< ∞ a.e. on 𝑀 .
Hence,

0 = lim
𝑘→∞

‖𝐴𝑢̃(𝑡) − 𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶
= lim

𝑘→∞
(‖𝐴𝑢̃(𝑡)‖2𝐻𝐶

− ‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶
) a.e. on 𝑀 ,

by which we infer that 𝑢(𝑡) ∈ 𝐷(𝐴) for a.e. 𝑡 ∈ 𝑀 . Next, by the Monotone Convergence Theorem, we immediately infer that

lim
𝑘→∞

‖𝐴𝑢̃(𝑡) − 𝐴𝑃𝑘𝑢̃(𝑡)‖𝐿2(𝑀 ;𝐻𝐶 ) = lim
𝑘→∞∫𝑀

‖𝐴𝑢̃(𝑡) − 𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶
𝑑𝑡

= lim
𝑘→∞∫𝑀

(‖𝐴𝑢̃(𝑡)‖2𝐻𝐶
− ‖𝐴𝑃𝑘𝑢̃(𝑡)‖2𝐻𝐶

) 𝑑𝑡 = 0 ,
(4.16)

for any compact set 𝑀 ⊂ 𝑇̊ . The convergence in (4.16) implies that {𝐴𝑃𝑘𝑢̃(𝑡)}∞𝑡=1 converges to 𝐴𝑢̃(𝑡) in 𝐻𝐶 uniformly on any
compact set included in 𝑇̊ . Thus, 𝐴𝑢̃(𝑡) is a 𝐻𝐶 -valued analytic function on the whole 𝑇̊ , which implies that 𝑢̃(𝑡) is an analytic
𝐷(𝐴)-valued function, in 𝑇̊ , which in turn yields the thesis.

(𝑖𝑖) Case 𝛺 axially symmetric.
We rewrite (4.11) as

𝑑
𝑑𝑠

(

‖𝑢̄𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
+ ‖𝑢𝑛(𝑠𝑒

𝑖𝜃)‖2𝐻𝐶

)

+ 4𝜇 cos 𝜃‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
= 0 (4.17)

which yields that ‖𝑢𝑛(𝑠𝑒
𝑖𝜃)‖2𝐻𝐶

≤ ‖𝑢0‖22,𝛺 and that ‖𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
is non-increasing with respect to 𝑠, thus it admits a (finite)

limit as 𝑠 → ∞. By integrating (4.17) on 𝑠 ∈ (0,∞) we get

4𝜇 cos 𝜃 ∫

∞

0
‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

𝑑𝑠 ≤ ‖𝑢0‖
2
2,𝛺 − lim

𝜏→∞
‖𝑢𝑛(𝜏𝑒𝑖𝜃)‖2𝐻𝐶

.

Next, we estimate the right-hand side of (4.12). Proceeding as in [10, (35)], we arrive at

|((𝑢𝑛 ⋅ ∇)𝑢𝑛, 𝐴𝑢𝑛)𝐻𝐶
| ≤ 𝜇

2
cos 𝜃‖𝐴𝑢𝑛‖2𝐻𝐶

+ 𝐶(1 + ‖𝐃𝑢̄𝑛‖6𝐻𝐶
) (4.18)

with 𝐶 = 𝐶(𝛺, 𝜇, ‖𝑢0‖2,𝛺). Plugging (4.18) into (4.12), we infer that
𝑑
𝑑𝑠

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
+

𝜇
2
cos 𝜃‖𝐴𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

≤ 𝐶(1 + ‖𝐃𝑢̄𝑛‖6𝐻𝐶
),

and
𝑑
𝑑𝑠

‖𝐃𝑢𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
= 𝑑

𝑑𝑠
‖𝐃𝑢̄𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶

≤ 𝐶(1 + ‖𝐃𝑢̄𝑛‖6𝐻𝐶
) . (4.19)

Finally, we apply [10, Lemma 2-(ii)] to (4.19) and we deduce that, if 1
4𝜇 ‖𝑢0‖

2
2,𝛺(‖𝐃𝑢̄0‖

2
2,𝛺 + 1) < 1

𝐶 , then there exists
𝐾 ∶= 𝐾(𝛺, 𝜇, ‖𝑢̄0‖2,𝛺 , ‖𝐃𝑢̄0‖2,𝛺) > 0, independent of 𝑛, 𝑠, 𝜃, such that

‖𝐃𝑢̄𝑛(𝑠𝑒𝑖𝜃)‖2𝐻𝐶
≤ 𝐾 ∀𝑠 > 0 , ∀𝜃 ∈

[

−𝜋
4
, 𝜋
4

]

. (4.20)

Once proved (4.20), all subsequent steps follows as in case (𝑖).
13
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D

T

I
t

4.5. Proof of Theorem 3.1

The proof is achieved expanding on the proof of [12, Theorem 1] for the Dirichlet problem and relies on the validity of the
Poincaré inequality which holds if 𝛺 is non-axially symmetric, see e.g., Lemma 4.5-(𝑖). For the sake of completeness, we recall
the main steps. We assume that 𝛺 has a 2,1-boundary, then, as already explained, the result can be extended to sectors of type
(A) (resp., (B)) using the auxiliary domains 𝛺𝑚 (resp., the cell of periodicity 𝛺 ) by applying the reflection principle outlined in
Section 4.1.

Proof of (3.1). Since 𝛺 is non-axially symmetric the set 𝛺, defined in (2.6), is empty, thus 𝑢0 ∈ ⟂
𝛺. Let 𝜆(𝑡) be as given in (3.1),

we compute
1
2
𝑑
𝑑𝑡

𝜆(𝑡) = 1
‖𝑢(𝑡)‖22,𝛺

[

2(𝐃𝑢,𝐃𝑢𝑡)𝛺 − 𝜆(𝑢, 𝑢𝑡)𝛺
]

= 1
‖𝑢(𝑡)‖22,𝛺

(

𝐴𝑢 − 𝜆𝑢, 𝑢𝑡
)

𝛺 . (4.21)

enoting by 𝐵(𝑢, 𝑢) the projection onto 𝐻 of (𝑢 ⋅ ∇)𝑢 we write (1.1) projected onto 𝐻 as

𝑢𝑡 + 𝜇𝐴𝑢 + 𝐵(𝑢, 𝑢) = 0 in 𝑄𝑇 . (4.22)

herefore, (4.21) becomes
1
2
𝑑
𝑑𝑡

𝜆(𝑡) = −
𝜇

‖𝑢(𝑡)‖22,𝛺
‖𝐴𝑢 − 𝜆𝑢‖22,𝛺 − 1

‖𝑢(𝑡)‖22,𝛺

(

𝐵(𝑢, 𝑢) , 𝐴𝑢 − 𝜆𝑢
)

𝛺 . (4.23)

n the following, two useful identities will be needed several times. The first is obtained by taking the scalar product of (4.22) with
he solution 𝑢 and exploiting the Green formula (2.4):

𝑑
𝑑𝑡

‖𝑢(𝑡)‖22,𝛺 + 4𝜇‖𝐃𝑢(𝑡)‖22,𝛺 = 0 . (4.24)

By taking the scalar product of (4.22) with 𝐴𝑢(𝑡), which is possible due to (2.11), we have the second identity:
𝑑
𝑑𝑡

‖𝐃𝑢(𝑡)‖22,𝛺 + 𝜇‖𝐴𝑢(𝑡)‖22,𝛺 = ((𝑢(𝑡) ⋅ ∇)𝑢(𝑡), 𝐴𝑢(𝑡))𝛺 . (4.25)

In order to estimate the right-hand side of (4.23) we proceed by steps.

– Step 1. We estimate ‖𝑢(𝑡)‖2,𝛺, ‖𝐃𝑢(𝑡)‖2,𝛺 and ‖𝐴𝑢(𝑡)‖2,𝛺. By using (2.8)1 in (4.24) and observing that 𝐶2
𝛺 = 2∕𝜆1 (where 𝜆1 is

the first eigenvalue for (2.5)), we get

𝑑
𝑑𝑡

‖𝑢(𝑡)‖22,𝛺 +
4𝜇
𝐶2
𝛺

‖𝑢(𝑡)‖22,𝛺 ≤ 0 ⇒ ‖𝑢(𝑡)‖22,𝛺 ≤ ‖𝑢0‖
2
2,𝛺𝑒

−2𝜇𝜆1𝑡; (4.26)

while integrating (4.24) over [𝑡, 𝑇 ] we obtain

‖𝑢(𝑇 )‖22,𝛺 + 4𝜇 ∫

𝑇

𝑡
‖𝐃𝑢(𝜏)‖22,𝛺𝑑𝜏 = ‖𝑢(𝑡)‖22,𝛺 ∀ 𝑇 ≥ 𝑡 ≥ 0.

In turn, letting 𝑇 → ∞ we get

∫

∞

𝑡
‖𝐃𝑢(𝜏)‖22,𝛺𝑑𝜏 =

‖𝑢(𝑡)‖22,𝛺
4𝜇

≤ 1
4𝜇

‖𝑢0‖
2
2,𝛺𝑒

− 4𝜇
𝐶2
𝛺
𝑡
< ∞ (4.27)

which, for 𝑡 = 0, gives ∫ ∞
0 ‖𝐃𝑢(𝑡)‖22,𝛺𝑑𝑡 =

‖𝑢0‖22,𝛺
4𝜇 . Thanks to (4.27), there exists  > 0, depending on 𝛽, sufficiently large, such

that

‖𝐃𝑢(𝑡)‖2,𝛺 ≤ 𝛽 ∀ 𝑡 ≥  . (4.28)

Inequalities (4.26) and (4.28) prove that

‖𝑢(𝑡)‖2,𝛺‖𝐃𝑢(𝑡)‖2,𝛺 ≤ 𝛽‖𝑢0‖2,𝛺𝑒
−𝜇𝜆1𝑡 ∀ 𝑡 ≥  . (4.29)

By (4.7)2 and (4.29), we infer that

|((𝑢(𝑡) ⋅ ∇)𝑢(𝑡), 𝐴𝑢(𝑡))𝛺| ≤ 𝐶
√

𝛽 ‖𝑢0‖
1∕2
2,𝛺 𝑒−(𝜇𝜆1∕2)𝑡‖𝐴𝑢(𝑡)‖22,𝛺 .

The above inequality, inserted in (4.25), gives
𝑑
𝑑𝑡

‖𝐃𝑢(𝑡)‖22,𝛺 + (𝜇 − 𝐶
√

𝛽‖𝑢0‖
1∕2
2,𝛺 𝑒−(𝜇𝜆1∕2)𝑡)‖𝐴𝑢(𝑡)‖22,𝛺 ≤ 0. (4.30)

Integrating (4.30) from 𝑡 to 𝑇 (𝑇 ≥ 𝑡 ≥  ), and letting 𝑇 → +∞ we get

(𝜇 − 𝐶
√

𝛽‖𝑢0‖
1∕2 𝑒−(𝜇𝜆1∕2)𝑡)

∞
‖𝐴𝑢(𝑠)‖2 𝑑𝑠 ≤ ‖𝐃𝑢(𝑡)‖2 ∀ 𝑡 ≥  ,
14

2,𝛺 ∫𝑡 2,𝛺 2,𝛺
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P
s

implying the existence of 𝐶 > 0 such that

∫

∞

𝑡
‖𝐴𝑢(𝜏)‖22,𝛺𝑑𝜏 ≤ 𝐶‖𝐃𝑢(𝑡)‖22,𝛺 ∀ 𝑡 ≥  > 2

𝜇𝜆1
log

⎛

⎜

⎜

⎝

𝐶
√

𝛽‖𝑢0‖
1∕2
2,𝛺

𝜇

⎞

⎟

⎟

⎠

. (4.31)

– Step 2. We prove that lim𝑡→∞ 𝜆(𝑡) < ∞. By (4.7)1 and Young’s inequality, there exists 𝐶 > 0 ∶

|

(

𝐵(𝑢, 𝑢) , 𝐴𝑢 − 𝜆𝑢
)

𝛺| ≤
𝐶
2𝜇

‖𝐃𝑢‖32,𝛺‖𝐴𝑢‖2,𝛺 +
𝜇
2
‖𝐴𝑢 − 𝜆𝑢‖22,𝛺

which, plugged into (4.23), yields

𝑑
𝑑𝑡

𝜆(𝑡) + 𝜇
‖𝐴𝑢(𝑡) − 𝜆𝑢(𝑡)‖22,𝛺

‖𝑢(𝑡)‖22,𝛺
≤ 𝐶

𝜇
𝜆(𝑡)
2

‖𝐃𝑢(𝑡)‖2,𝛺‖𝐴𝑢(𝑡)‖2,𝛺 . (4.32)

Thanks to (4.27) and (4.31), by Holder inequality we have

∫

∞

𝑡
‖𝐃𝑢(𝜏)‖2,𝛺‖𝐴𝑢(𝜏)‖2,𝛺𝑑𝜏 ≤ 𝐶‖𝑢(𝑡)‖2,𝛺‖𝐃𝑢(𝑡)‖2,𝛺 ∀ 𝑡 ≥  , (4.33)

for some 𝐶 > 0, which combined with (4.32) implies that

𝜆1 ≤ lim sup
𝑇→∞

𝜆(𝑇 ) ≤ 𝜆(𝑡)𝑒
𝐶
2𝜇 ∫ ∞

𝑡 ‖𝐃𝑢(𝜏)‖2,𝛺‖𝐴𝑢(𝜏)‖2,𝛺𝑑𝜏 ≤ 𝜆(𝑡)𝑒𝐶‖𝑢(𝑡)‖2,𝛺‖𝐃𝑢(𝑡)‖2,𝛺

for some 𝐶 > 0 and for all  ≤ 𝑡 ≤ 𝑇 . In particular, from the above formula we deduce that

sup
𝑡≥

𝜆(𝑡) ≤ 𝜆( )𝑒𝐶‖𝑢( )‖2,𝛺‖𝐃𝑢( )‖2,𝛺 < ∞ . (4.34)

Then, by (4.29), we conclude that 𝜆1 ≤ lim sup𝑇→+∞ 𝜆(𝑇 ) ≤ lim inf 𝑡→+∞ 𝜆(𝑡) < ∞, proving the existence of lim𝑡→+∞ 𝜆(𝑡) = 𝛬 ∈ R+.
– Step 3. We prove that 𝛬 is an eigenvalue of (2.5). Set 𝑣(𝑡) = 𝑢(𝑡)∕‖𝑢(𝑡)‖2,𝛺 so that 𝜆(𝑡) = 2‖𝐃𝑣(𝑡)‖22,𝛺. Thanks to (4.32)–(4.33)

we get

𝜇 ∫

∞

𝜏
‖𝐴𝑣(𝑠) − 𝜆𝑣(𝑠)‖22,𝛺 𝑑𝑠 ≤ 𝐶 sup

𝑡≥𝜏
𝜆(𝑡)‖𝑢(𝜏)‖2,𝛺‖𝐃𝑢(𝜏)‖2,𝛺 + 𝜆(𝜏) ∀ 𝜏 ≥  ,

for some 𝐶 > 0, implying, by (4.29) and (4.34), that ‖𝐴𝑣 − 𝜆𝑣‖2,𝛺 ∈ 𝐿2(𝜏,∞) for 𝜏 ≥  and the existence of 𝑡𝑗 → ∞ such that
[𝐴𝑣(𝑡𝑗 ) − 𝜆(𝑡𝑗 )𝑣(𝑡𝑗 )] → 0 as 𝑡𝑗 → ∞. Since ‖𝐃𝑣(𝑡𝑗 )‖22,𝛺 → 𝛬, up to a subsequence, we have that 𝑣(𝑡𝑗 ) → 𝑣 in 𝐻 as 𝑡𝑗 → ∞; hence,

𝐴𝑣(𝑡𝑗 ) = (𝐴𝑣(𝑡𝑗 ) − 𝜆(𝑡𝑗 )𝑣(𝑡𝑗 )) + (𝜆(𝑡𝑗 ) − 𝛬)𝑣(𝑡𝑗 ) + 𝛬𝑣(𝑡𝑗 ) → 𝛬𝑣 in 𝐻 as 𝑡𝑗 → ∞.

Being 𝐴 a closed operator, 𝑣 belongs to 𝐷(𝐴) and we have 𝐴𝑣 = 𝛬𝑣; since ‖𝑣(𝑡𝑗 )‖2,𝛺 = 1, then 𝑣 ≠ 0, implying that 𝛬 is an
eigenvalue of 𝐴. □

roof of (3.2). We buy the lines of [12, Corollary 1]. Since 𝜆(𝑡) → 𝛬 for 𝑡 → ∞, from (4.24), for all 𝜀 > 0 there exists 𝑡1 > 0
ufficiently large such that

−2𝜇(𝛬 + 𝜀)‖𝑢(𝑡)‖22,𝛺 ≤ 𝑑
𝑑𝑡

‖𝑢(𝑡)‖22,𝛺 ≤ −2𝜇(𝛬 − 𝜀)‖𝑢(𝑡)‖22,𝛺 ∀ 𝑡 ≥ 𝑡1.

This implies

−𝜀 ≤
( log ‖𝑢(𝑡)‖2,𝛺

𝜇𝑡
−

log ‖𝑢(𝑡1)‖2,𝛺
𝜇𝑡

− 𝛬
𝑡1
𝑡
+ 𝛬

)(

1 −
𝑡1
𝑡

)−1
≤ 𝜀 ∀ 𝑡 ≥ 𝑡1

and, in turn, lim𝑡→+∞
log ‖𝑢(𝑡)‖2,𝛺

𝑡 = −𝜇𝛬. On the other hand, by (4.34) there exists 𝐶 > 0:
|

|

|

|

log ‖𝐃𝑢‖2,𝛺
‖𝑢‖2,𝛺

|

|

|

|

≤ 𝐶 for all 𝑡 ≥ 0, implying
(3.2). □

4.6. Proof of Theorem 3.2

From Proposition 2.4, we know that either 𝛺 is a ball or it is monoaxially symmetric. The proof of item (𝑖) follows by verifying
that

2𝜇(𝐃𝑢0,,𝐃𝑣)𝛺 + ∫𝛺
(𝑢0, ⋅ ∇)𝑢0, ⋅ 𝑣 = 0 for all 𝑣 ∈ 𝑉 ,

which yields that 𝑢0, is a weak and, in turn, a strong solution of (1.1) (for a suitable pressure 𝑝). By definition of 𝛺, we already
know that 𝐃𝑢0, = 0. In order to show that the second term of the above formula also vanishes, we consider the case where 𝛺 is
monoaxially symmetric. With no loss of generality, we take 𝑎 = 0 and 𝓁 = (0, 0, 1), then 𝛺 = span{𝑊 𝑧}, with 𝑊 𝑧 = (𝑦,−𝑥, 0), and
𝑢0,(𝑥, 𝑦, 0) = 𝑐0(𝑦,−𝑥, 0) ∈ 𝛺 for some 𝑐0 ∈ R. Finally, we have

(𝑢0, ⋅ ∇)𝑢0, ⋅ 𝑣 = − (𝑥, 𝑦, 0) ⋅ 𝑣 𝑑𝑥 𝑑𝑦 𝑑𝑧 = − (𝑣 ⋅ ∇)𝑢0, ⋅ 𝑢0, 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0.
15

∫𝛺 ∫𝛺 ∫𝛺
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When 𝛺 is a ball the proof follows similarly once noticed that 𝛺 = span{𝑊 𝑥,𝑊 𝑦,𝑊 𝑧}, with 𝑊 𝑥 = (0, 𝑧,−𝑦) and 𝑊 𝑦 = (−𝑧, 0, 𝑥).
Next we turn to the proof of (3.3) which yields the first part of the proof of both (𝑖𝑖) (by taking 𝑢0, = 0) and (𝑖𝑖𝑖). We divide

the proof into two cases.

– Case (𝑎): 𝛺 is monoaxially symmetric. With no loss of generality, we assume that 𝛺 = span{𝑊 𝑧}. Then, for any (𝑥, 𝑦, 𝑧, 𝑡) ∈
𝛺 × R+, the solution 𝑢 of (1.1) can be written as

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢̄(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡) (4.35)

with

𝑢̄(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢̄1, 𝑢̄2, 𝑢̄3) ∈ ⟂
𝛺 and 𝑢(𝑥, 𝑦, 𝑡) = 𝑐(𝑡)𝑊 𝑧 ∈ 𝛺 ,

where 𝑐 ∈ 0([0,∞];R) is such that 𝑐(0) = 𝑐0 = (𝑢0,𝑊 𝑧)𝛺 (namely, 𝑢0,(𝑥, 𝑦) = 𝑐0𝑊 𝑧).
For all 𝑡 > 0, 𝑢 satisfies 𝑢𝑡 + 𝜇𝐴𝑢 + 𝐵(𝑢, 𝑢) = 0 in 𝐻 and taking the scalar product with 𝑊 𝑧 we deduce that

0 =‖𝑊 𝑧
‖

2
2,𝛺𝑐

′(𝑡) + ∫𝛺
(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

‖𝑊 𝑧
‖

2
2,𝛺𝑐

′(𝑡) + ∫𝛺
(𝑢̄ ⋅ ∇)𝑢̄ ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 + ∫𝛺

(𝑢 ⋅ ∇)𝑢̄ ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 ,
(4.36)

where we have used the fact that ∫𝛺(𝑢 ⋅∇)𝑢 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑐(𝑡) ∫𝛺(𝑢 ⋅∇)𝑊
𝑧 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0 , and (4.6)2. By (4.6)2, we also

deduce that

0 = ∫𝛺
(𝑢̄ ⋅ ∇)𝑊 𝑧 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫𝛺

(𝑥𝑢̄1 + 𝑦𝑢̄2) 𝑑𝑥 𝑑𝑦 𝑑𝑧 . (4.37)

Some computations yield

∫𝛺
(𝑢̄ ⋅ ∇)𝑢̄ ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 = −∫𝛺

(𝑢̄ ⋅ ∇)𝑊 𝑧 ⋅ 𝑢̄ 𝑑𝑥 𝑑𝑦 𝑑𝑧

= −∫𝛺
(𝑢̄2,−𝑢̄1, 0) ⋅ (𝑢̄1, 𝑢̄2, 𝑢̄3) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0 ,

(4.38)

and, using (4.37),

∫𝛺
(𝑢 ⋅ ∇)𝑢̄ ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 = −𝑐(𝑡)∫𝛺

(𝑊 𝑧 ⋅ ∇)𝑊 𝑧 ⋅ 𝑢̄ 𝑑𝑥 𝑑𝑦 𝑑𝑧

= 𝑐(𝑡)∫𝛺

(

𝑥𝑢̄1 + 𝑦𝑢̄2
)

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0 .
(4.39)

Plugging (4.38) and (4.39) in (4.36), we infer that 𝑐′(𝑡) = 0 for 𝑡 > 0, thus 𝑐(𝑡) ≡ 𝑐0 for all 𝑡 ≥ 0 and (3.3) follows.
– Case (𝑏): 𝛺 is a ball. Then, 𝛺 = span{𝑊 𝑥,𝑊 𝑦,𝑊 𝑧} and the solution can be written as in (4.35), where, for any (𝑥, 𝑦, 𝑧, 𝑡) ∈

𝛺 × R+, we have

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐1(𝑡)(0, 𝑧,−𝑦) + 𝑐2(𝑡)(−𝑧, 0, 𝑥) + 𝑐3(𝑡)(𝑦,−𝑥, 0)

with 𝑐1, 𝑐2, 𝑐3 ∈ 0([0,∞);R) such that 𝑐1(0) = 𝑐1,0 = (𝑢0,𝑊 𝑥)𝛺, 𝑐2(0) = 𝑐2,0 = (𝑢0,𝑊 𝑦)𝛺 and 𝑐3(0) = 𝑐3,0 = (𝑢0,𝑊 𝑧)𝛺. As in case
(𝑎), by taking the scalar product of the equation with 𝑊 𝑥 (resp., with 𝑊 𝑦 and 𝑊 𝑧), since {𝑊 𝑧,𝑊 𝑦,𝑊 𝑧} are orthogonal in
𝐻 , we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

‖𝑊 𝑥
‖

2
2,𝛺𝑐

′
1(𝑡) = − ∫𝛺(𝑢̄ ⋅ ∇)𝑢̄ ⋅𝑊

𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑧 − ∫𝛺(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑧

− ∫𝛺(𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑧

‖𝑊 𝑦
‖

2
2,𝛺𝑐

′
2(𝑡) = − ∫𝛺(𝑢̄ ⋅ ∇)𝑢̄ ⋅𝑊

𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑧 − ∫𝛺(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑧

− ∫𝛺(𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑧

‖𝑊 𝑧
‖

2
2,𝛺𝑐

′
3(𝑡) = − ∫𝛺(𝑢̄ ⋅ ∇)𝑢̄ ⋅𝑊

𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 − ∫𝛺(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧

− ∫𝛺(𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 .

(4.40)

Arguing as for (4.38), the first terms on the right hand side of each line of system (4.40) vanish. To handle the other terms,
we observe that

− ∫𝛺
(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑧 − ∫𝛺

(𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑧

= ∫𝛺
(𝑢 ⋅ ∇)𝑊 𝑥 ⋅ 𝑢 𝑑𝑥 𝑑𝑦 𝑑𝑧 + ∫𝛺

(𝑢̄ ⋅ ∇)𝑊 𝑥 ⋅ 𝑢 𝑑𝑥 𝑑𝑦 𝑑𝑧

= ∫𝛺
(0, 𝑢,3,−𝑢,2) ⋅ (𝑢1, 𝑢2, 𝑢3) 𝑑𝑥 𝑑𝑦 𝑑𝑧 + ∫𝛺

(0, 𝑢̄3,−𝑢̄2) ⋅ (𝑢,1, 𝑢,2, 𝑢,3) 𝑑𝑥 𝑑𝑦 𝑑𝑧

=
(

𝑢,3(𝑢2 − 𝑢̄2) − 𝑢,2(𝑢3 − 𝑢̄3)
)

𝑑𝑥 𝑑𝑦 𝑑𝑧 =
(

𝑢,3𝑢,2 − 𝑢,2𝑢,3
)

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0
16
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and, with similar computations, that

∫𝛺

(

−(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑦 − (𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫𝛺

(

−𝑢,3𝑢,1 + 𝑢,1𝑢,3
)

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0,

∫𝛺

(

−(𝑢 ⋅ ∇)𝑢 ⋅𝑊 𝑧 − (𝑢̄ ⋅ ∇)𝑢 ⋅𝑊 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫𝛺

(

𝑢,2𝑢,1 − 𝑢,1𝑢,2
)

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0.

Therefore, all terms on the right hand side of each line of system (4.40) vanish and we infer that 𝑐′1(𝑡) = 𝑐′2(𝑡) = 𝑐′3(𝑡) = 0 for
𝑡 > 0, by which 𝑐1(𝑡) ≡ 𝑐1,0, 𝑐2(𝑡) ≡ 𝑐2,0 and 𝑐3(𝑡) ≡ 𝑐3,0 for all 𝑡 ≥ 0 and (3.3) follows also in this case.

t remains to study the behaviour of 𝑢 as 𝑡 → +∞; the same proof works both in the case where 𝛺 is a ball and it is monoaxially
ymmetric. In case (𝑖𝑖), from what proved above, we have that 𝑢(𝑡) = 𝑢̄(𝑡) ∈ ⟂

𝛺 for all 𝑡 ≥ 0. In ⟂
𝛺 the Poincaré inequality holds,

herefore the proof of Theorem 3.1 applies and we conclude that 𝑢̄ satisfies (3.1) and (3.2). In case (𝑖𝑖𝑖), we have instead that

𝑢(𝑡) = 𝑢̄(𝑡) + 𝑢0, for all 𝑡 ≥ 0 . (4.41)

y taking the scalar product of the equation with 𝑢 and using (2.4), we derive (4.24) which, in view of (4.41), yields
𝑑
𝑑𝑡

‖𝑢̄(𝑡)‖22,𝛺 + 4𝜇‖𝐃𝑢̄(𝑡)‖22,𝛺 = 0.

The above equation implies that ‖𝑢̄(𝑡)‖2,𝛺 goes monotonically to 0 as 𝑡 → +∞ with ‖𝑢̄(𝑡)‖22,𝛺 ≤ ‖𝑢̄0‖22,𝛺𝑒
−2𝜇𝜆1𝑡 for all 𝑡 ≥ 0, where 𝜆1

is the first nontrivial eigenvalue. Combined with (4.41) this information completes the proof of (𝑖𝑖𝑖). □

4.7. Proof of the results in the 2D case

The key ingredient in our proofs will be identity (3.7), therefore we start by proving it:

Lemma 4.7. Let 𝛺 = 𝑄 or 𝛺 = 𝐵. There holds

− ∫𝛺

(

𝑢 ⋅ ∇
)

𝑢 ⋅ 𝐴𝑢 = 0 for all 𝑢 ∈ 𝑊 . (4.42)

Proof. Proof of (4.42) when 𝛺 = 𝑄. We write 𝑢 = (𝑢1, 𝑢2) and 𝐴𝑢 =
(

(𝐴𝑢)1, (𝐴𝑢)2
)

. Let 𝐿1 = {0}×(0, 𝜋), 𝐿2 = (0, 𝜋)×{𝜋}, 𝐿3 = {𝜋}×(0, 𝜋)
and 𝐿4 = (0, 𝜋) × {0}. Recalling the definition of 𝑊 in (2.3), since the boundaries are flat, it is well-known (see e.g., [27]) that 𝑢
satisfies the mixed Dirichlet-Neumann type boundary conditions:

𝑢1 = 0 on 𝐿1 ∪ 𝐿3 , 𝜕𝑦𝑢1 = 0 on 𝐿2 ∪ 𝐿4 , 𝑢2 = 0 on 𝐿2 ∪ 𝐿4 , 𝜕𝑥𝑢2 = 0 on 𝐿1 ∪ 𝐿3 . (4.43)

Developing the l.h.s. of (4.42) in components we obtain

−∫𝛺

[

𝑢1𝜕𝑥𝑢1(𝐴𝑢)1 + 𝑢2𝜕𝑦𝑢1(𝐴𝑢)1 + 𝑢1𝜕𝑥𝑢2(𝐴𝑢)2 + 𝑢2𝜕𝑦𝑢2(𝐴𝑢)2
]

𝑑𝑥 𝑑𝑦.

Integrating the first term we get

−∫𝛺
𝑢1𝜕𝑥𝑢1(𝐴𝑢)1 𝑑𝑥𝑑𝑦 = −∫𝛺

∇(𝑢1𝜕𝑥𝑢1) ⋅ ∇𝑢1 𝑑𝑥 𝑑𝑦 + ∫𝐿1∪𝐿2∪𝐿3∪𝐿4

𝑢1𝜕𝑥𝑢1∇𝑢1 ⋅ 𝜈 𝑑𝜎

= −∫𝛺
∇(𝑢1𝜕𝑥𝑢1) ⋅ ∇𝑢1 𝑑𝑥 𝑑𝑦 − ∫𝐿1

𝑢1𝜕𝑥𝑢1𝜕𝑥𝑢1 𝑑𝑦 + ∫𝐿3

𝑢1𝜕𝑥𝑢1𝜕𝑥𝑢1 𝑑𝑦

− ∫𝐿2

𝑢1𝜕𝑥𝑢1𝜕𝑦𝑢1 𝑑𝑥 + ∫𝐿4

𝑢1𝜕𝑥𝑢1𝜕𝑦𝑢1 𝑑𝑥 = −∫𝛺
∇(𝑢1𝜕𝑥𝑢1) ⋅ ∇𝑢1 𝑑𝑥 𝑑𝑦,

where the terms on the boundary vanish because of (4.43). As a consequence, denoting (𝜕1, 𝜕2) = (𝜕𝑥, 𝜕𝑦), we deduce that

𝐼𝑢 = −
2
∑

𝑖,𝑗,𝑘=1
∫𝛺

𝜕𝑘(𝑢𝑖𝜕𝑖𝑢𝑗 )𝜕𝑘𝑢𝑗 𝑑𝑥 𝑑𝑦 = −
2
∑

𝑖,𝑗,𝑘=1
∫𝛺

[

𝜕𝑘𝑢𝑖𝜕𝑖𝑢𝑗𝜕𝑘𝑢𝑗 + 𝑢𝑖𝜕𝑖𝑘𝑢𝑗𝜕𝑘𝑢𝑗
]

𝑑𝑥 𝑑𝑦.

Next, observe that, expanding the first term, we get
2
∑

𝑖,𝑗,𝑘=1
∫𝛺

𝜕𝑘𝑢𝑖𝜕𝑖𝑢𝑗𝜕𝑘𝑢𝑗 𝑑𝑥 𝑑𝑦 = ∫𝛺
𝜕𝑥𝑢1𝜕𝑥𝑢1𝜕𝑥𝑢1 𝑑𝑥 𝑑𝑦 + ∫𝛺

𝜕𝑥𝑢2𝜕𝑦𝑢1𝜕𝑥𝑢1 𝑑𝑥 𝑑𝑦

+ ∫𝛺
𝜕𝑦𝑢1𝜕𝑥𝑢1𝜕𝑦𝑢1 𝑑𝑥 𝑑𝑦 + ∫𝛺

𝜕𝑦𝑢2𝜕𝑦𝑢1𝜕𝑦𝑢1 𝑑𝑥 𝑑𝑦 + ∫𝛺
𝜕𝑥𝑢1𝜕𝑥𝑢2𝜕𝑥𝑢2 𝑑𝑥 𝑑𝑦

+ ∫𝛺
𝜕𝑥𝑢2𝜕𝑦𝑢2𝜕𝑥𝑢2 𝑑𝑥 𝑑𝑦 + ∫𝛺

𝜕𝑦𝑢1𝜕𝑥𝑢2𝜕𝑦𝑢2 𝑑𝑥 𝑑𝑦 + ∫𝛺
𝜕𝑦𝑢2𝜕𝑦𝑢2𝜕𝑦𝑢2 𝑑𝑥 𝑑𝑦

= (𝜕𝑥𝑢1)3 𝑑𝑥 𝑑𝑦 + (𝜕𝑦𝑢2)3 𝑑𝑥 𝑑𝑦 = 0 ,

(4.44)
17
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due to the divergence-free condition, which entails that 𝜕𝑥𝑢1 = −𝜕𝑦𝑢2. The second term also vanishes. Indeed, through integration
by parts, we have

2
∑

𝑖,𝑗,𝑘=1
∫𝛺

𝑢𝑖𝜕𝑖𝑘𝑢𝑗𝜕𝑘𝑢𝑗 𝑑𝑥 𝑑𝑦 = −
2
∑

𝑗,𝑘=1
∫𝛺

div𝑢
(𝜕𝑘𝑢𝑗 )2

2
𝑑𝑥 𝑑𝑦 +

2
∑

𝑖,𝑗,𝑘=1
∫𝜕𝛺

𝑢𝑖
(𝜕𝑘𝑢𝑗 )2

2
𝑒𝑖 ⋅ 𝜈 𝑑𝜎 = 0.

his concludes the proof of (4.42) when 𝛺 = 𝑄.
Proof of (4.42) when 𝛺 = 𝐵. In this framework it is convenient introducing a new reference system with versors (𝐢𝑟, 𝐣𝜑), so that

∈ 𝑉 writes 𝑣 = (𝑣1, 𝑣2) = 𝑣1𝐢 + 𝑣2𝐣 = (𝑣1 cos 𝜃 + 𝑣2 sin 𝜃)𝐢𝑟 + (𝑣2 cos 𝜃 − 𝑣1 sin 𝜃)𝐣𝜑 and

⎧

⎪

⎨

⎪

⎩

𝑣𝑟 ∶= 𝑣𝑟(𝜌, 𝜃) = 𝑣1(𝜌, 𝜃) cos 𝜃 + 𝑣2(𝜌, 𝜃) sin 𝜃

𝑣𝜑 ∶= 𝑣𝜑(𝜌, 𝜃) = 𝑣2(𝜌, 𝜃) cos 𝜃 − 𝑣1(𝜌, 𝜃) sin 𝜃 .
(4.45)

hen, all 𝑢 ∈ 𝑊 satisfy the boundary conditions

𝑢𝑟 = 0 on {1} × [0, 2𝜋) and 𝑢𝜑𝜌 − 𝑢𝜑 = 0 on {1} × [0, 2𝜋) (4.46)

nd the divergence free condition writes 𝑢𝑟𝜌 +
𝑢𝜑𝜃
𝜌

+ 𝑢𝑟

𝜌
= 0 in (0, 1) × [0, 2𝜋), see (4.49) in Appendix.

Finally, we consider the l.h.s. of (4.42). By integrating by parts, we obtain

−∫𝛺
(𝑢 ⋅ ∇)𝑢 ⋅ 𝐴𝑢𝑑𝑥𝑑𝑦 = −∫𝛺

∇
(

(𝑢 ⋅ ∇)𝑢
)

∶ ∇𝑢 𝑑𝑥 𝑑𝑦 + ∫𝜕𝛺
(𝑢 ⋅ ∇)𝑢 ⋅ ∇𝑢 ⋅ 𝜈 𝑑𝜎

where, for 𝑢 = (𝑢1, 𝑢2), the boundary term writes

∫𝜕𝛺
(𝑢 ⋅ ∇)𝑢 ⋅ ∇𝑢 ⋅ 𝜈 𝑑𝜎 = ∫𝜕𝛺

(𝑢1𝜕𝑥𝑢1 + 𝑢2𝜕𝑦𝑢1)∇𝑢1 ⋅ 𝜈 𝑑𝜎 + ∫𝜕𝛺
(𝑢1𝜕𝑥𝑢2 + 𝑢2𝜕𝑦𝑢2)∇𝑢2 ⋅ 𝜈 𝑑𝜎.

Passing to polar coordinates, we observe that

∇𝑢𝑖 ⋅ 𝜈 =
(

𝜕𝜌𝑢𝑖 cos 𝜃 − 𝜕𝜃𝑢𝑖
sin 𝜃
𝜌

, 𝜕𝜌𝑢𝑖 sin 𝜃 + 𝜕𝜃𝑢𝑖
cos 𝜃
𝜌

)

⋅ (cos 𝜃, sin 𝜃) = 𝜕𝜌𝑢𝑖 𝑖 = 1, 2,

iving

∫𝜕𝛺
(𝑢 ⋅ ∇)𝑢 ⋅ ∇𝑢 ⋅ 𝜈 𝑑𝜎 =

∫

2𝜋

0

[

𝑢1𝜕𝜌𝑢1

(

𝜕𝜌𝑢1 cos 𝜃 − 𝜕𝜃𝑢1sin 𝜃
)

+ 𝑢2𝜕𝜌𝑢1

(

𝜕𝜌𝑢1 sin 𝜃 + 𝜕𝜃𝑢1cos 𝜃
)]

𝑑𝜃+

∫

2𝜋

0

[

𝑢1𝜕𝜌𝑢2

(

𝜕𝜌𝑢2 cos 𝜃 − 𝜕𝜃𝑢2 sin 𝜃
)

+ 𝑢2𝜕𝜌𝑢2

(

𝜕𝜌𝑢2 sin 𝜃 + 𝜕𝜃𝑢2cos 𝜃
)]

𝑑𝜃,

where every function is considered in 𝜌 = 1. Recalling (4.45) we may rewrite the equation as

∫𝜕𝛺
(𝑢 ⋅ ∇)𝑢 ⋅ ∇𝑢 ⋅ 𝜈 𝑑𝜎 = ∫

2𝜋

0

{[

(𝜕𝜌𝑢1)2 + (𝜕𝜌𝑢2)2
]

𝑢𝑟 +
[

𝜕𝜌𝑢1𝜕𝜃𝑢1 + 𝜕𝜌𝑢2𝜕𝜃𝑢2
]

𝑢𝜑
}

𝑑𝜃 =

∫

2𝜋

0

[

𝜕𝜌𝑢1𝜕𝜃𝑢1 + 𝜕𝜌𝑢2𝜕𝜃𝑢2
]

𝑢𝜑𝑑𝜃,

where in the last equality we used the boundary condition (4.46). In particular, we obtain

∫

2𝜋

0

[

𝜕𝜌𝑢1𝜕𝜃𝑢1 + 𝜕𝜌𝑢2𝜕𝜃𝑢2
]

𝑢𝜑𝑑𝜃 = ∫

2𝜋

0
𝑢𝜑

[

𝜕𝜌𝑢
𝜑𝜕𝜃𝑢

𝜑 − 𝜕𝜌𝑢
𝑟𝑢𝜑

]

𝑑𝜃 ,

where we also exploit the fact that 𝑢𝑟(1, 𝜃) = 0 for all 𝜃 ∈ [0, 2𝜋), hence 𝑢𝑟𝜃(1, 𝜃) = 0. Thanks to (4.46) and the divergence condition,
we infer

∫

2𝜋

0
𝑢𝜑

[

𝜕𝜌𝑢
𝜑𝜕𝜃𝑢

𝜑 − 𝜕𝜌𝑢
𝑟𝑢𝜑

]

𝑑𝜃 = ∫

2𝜋

0
𝑢𝜑(𝑢𝜑𝜕𝜃𝑢𝜑 + 𝜕𝜃𝑢

𝜑𝑢𝜑)𝑑𝜃 =

2∫

2𝜋

0
(𝑢𝜑)2𝜕𝜃𝑢𝜑 𝑑𝜃 = 2

3
[(𝑢𝜑(1, 2𝜋))3 − (𝑢𝜑(1, 0))3] = 0.

As a consequence, denoting (𝜕1, 𝜕2) = (𝜕𝑥, 𝜕𝑦), we deduce that the l.h.s. of (4.42) equals to:

−
2
∑

𝑖,𝑗,𝑘=1
∫𝛺

𝜕𝑘(𝑢𝑖𝜕𝑖𝑢𝑗 )𝜕𝑘𝑢𝑗 𝑑𝑥 𝑑𝑦 = −
2
∑

𝑖,𝑗,𝑘=1
∫𝛺

[

𝜕𝑘𝑢𝑖𝜕𝑖𝑢𝑗𝜕𝑘𝑢𝑗 + 𝑢𝑖𝜕𝑖𝑘𝑢𝑗𝜕𝑘𝑢𝑗
]

𝑑𝑥 𝑑𝑦.

Next, we observe that (4.44) holds for all 2D domains, hence we apply it to the first term. The second term also vanishes. Indeed,
through integration by parts, we have

2
∑

∫ 𝑢𝑖𝜕𝑖𝑘𝑢𝑗𝜕𝑘𝑢𝑗 𝑑𝑥 𝑑𝑦 = −
2
∑

∫ div𝑢
(𝜕𝑘𝑢𝑗 )2

2
𝑑𝑥 𝑑𝑦 +

2
∑

∫ 𝑢𝑖
(𝜕𝑘𝑢𝑗 )2

2
𝑒𝑖 ⋅ 𝜈 𝑑𝜎 = 0
18

𝑖,𝑗,𝑘=1 𝛺 𝑗,𝑘=1 𝛺 𝑖,𝑗,𝑘=1 𝜕𝛺
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since, passing to polar coordinates, we have ∑2
𝑖=1 𝑢𝑖𝑒𝑖 ⋅ 𝜈 =

∑2
𝑖=1 𝑢𝑖𝜈𝑖 = 𝑢 ⋅ 𝜈 = 0 on 𝜕𝛺. This concludes the proof of (4.42) when

𝛺 = 𝐵. □

Remark 4.8. As already remarked in Section 3.2, to prove the existence of a unique weak solution to (1.1)–(1.2) when 𝛺 = 𝑄
or 𝛺 = 𝐵 and 𝑢0 ∈ 𝑉 , one can repeat the proof of [10, Theorem 2] (our Proposition 2.6) which is based a standard Galerkin
construction (see [28, Chapter 3]) and relies on the proof of suitable a priori bounds for the finite approximate solution. Herein, by
exploiting (4.42), we just formally show how to obtain the key bounds in our framework. We point out that the fact that 𝑄 is merely
Lipschitz can be handled by considering it as a type (B) sector, by means of the reflection principle in Section 4.1. In particular,
𝑄 needs to be replaced by the periodicity cell which is here a larger square that, for the sake of simplicity, we will keep denoting
by 𝑄. As concerns the axially symmetric set 𝐵, the Poincaré inequality does not hold, hence we exploit the decomposition (2.7) as
outlined in [10].

The first (formal) energy estimate is obtained when testing (1.1) by 𝑢. As for (4.24), we get (both for the square and the disk)
the equality

‖𝑢(𝑡)‖22,𝛺 + 4𝜇 ∫

𝑇

0
‖𝐃𝑢(𝜏)‖2,𝛺 𝑑𝜏 = ‖𝑢0‖

2
2,𝛺 for a.e. 𝑡 ∈ (0, 𝑇 ) .

This equality, combined with Poincaré inequality (2.8), is sufficient to infer that 𝑢 is bounded in 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝑉 ) and to
pass to the limit in the approximate finite-dimensional system to obtain the existence of at least one weak solution to (1.1)–(1.2).
Then, we test (1.1) by 𝐴𝑢, getting

1
2
𝑑
𝑑𝑡

‖𝐃𝑢(𝑡)‖22,𝛺 + 𝜇‖𝐴𝑢(𝑡)‖22,𝛺 = −∫𝛺
(𝑢(𝑡) ⋅ ∇)𝑢(𝑡) ⋅ 𝐴𝑢(𝑡) for a.e. 𝑡 ∈ (0, 𝑇 ) .

In view of (4.42), the second (formal) energy estimate associated to (1.1) (both for the square and the disk) is

‖𝐃𝑢(𝑡)‖22,𝛺 ≤ ‖𝐃𝑢0‖22,𝛺 ,

by which we deduce that the weak solution is indeed strong and unique.

Proof of Theorem 3.8. We first prove (3.8). We proceed as in the proof of Theorem 3.1. In particular, given 𝜆(𝑡) as in (3.1), by
exploiting (4.42) in (4.23), we infer that

1
2
𝑑
𝑑𝑡

𝜆(𝑡) = −
𝜇

‖𝑢(𝑡)‖22,𝛺
‖𝐴𝑢 − 𝜆𝑢‖22,𝛺 (4.47)

hich implies that the map [0,+∞) ∋ 𝑡 ↦ 𝜆(𝑡) is non-increasing and admits limit lim𝑡→+∞ 𝜆(𝑡) = 𝛬 ∈ R+. Moreover, integrating
4.47) on 𝑡 ∈ (0,∞), we deduce that

𝜆1 ≤ 𝜆(𝑡) ≤ 𝜆(0) =
2‖𝐃𝑢0‖22,𝛺
‖𝑢0‖22,𝛺

. (4.48)

e finally prove that 𝛬 is an eigenvalue of (2.5). Setting 𝑣(𝑡) = 𝑢(𝑡)∕‖𝑢(𝑡)‖2,𝛺 so that 𝜆(𝑡) = 2‖𝐃𝑣(𝑡)‖22,𝛺, thanks to (4.47) we get

𝜇 ∫

∞

0
‖𝐴𝑣(𝑠) − 𝜆𝑣(𝑠)‖22,𝛺 𝑑𝑠 ≤ 𝜆(0)∕2 ∀ 𝜏 ≥ 0.

Therefore, ‖𝐴𝑣 − 𝜆𝑣‖2,𝛺 ∈ 𝐿2(0,∞) and we can argue precisely as in the proof of Theorem 3.1-Step 3. This concludes the proof of
(3.8). Passing to the proof of item (𝑖), we first note that if 𝑢0 = 𝑐0,1𝑒1 for some 𝑐0,1 ∈ R, then 𝜆(0) = 𝜆1. By (4.48), this implies that
𝜆(𝑡) ≡ 𝜆1 and, in turn, from (4.47) we infer that ‖𝐴𝑢 − 𝜆1𝑢‖22,𝛺 ≡ 0. Hence, 𝑢(𝑡) = 𝑐(𝑡)𝑒1 for some function 𝑐. This inserted into (1.1),
testing with 𝑒1 and recalling (4.42), yields

⎧

⎪

⎨

⎪

⎩

𝑑
𝑑𝑡

[

𝑐(𝑡)
]

+ 𝜇𝜆1𝑐(𝑡) = 0 for a.e. 𝑡 ∈ (0, 𝑇 )

𝑐(0) = 𝑐0,1 .

Hence, 𝑐(𝑡) = 𝑐0,1𝑒−𝜇𝜆1𝑡 and we have proved item (𝑖). The proof of (𝑖𝑖) follows similarly by noticing that under the given assumptions
then 𝜆(𝑡) ≡ 𝜆𝑁 . Concerning with (𝑖𝑖𝑖) the upper bound for 𝛬 follows from (4.48) simply by noticing that if 0 ≠ 𝑢0 =

∑𝑁
𝑘=1 𝑐0,𝑘𝑒𝑘 for

some 𝑐0,𝑘 ∈ R, then

2‖𝐃𝑢0‖22,𝛺
‖𝑢0‖22,𝛺

=

∑𝑁
𝑘=1 𝜆𝑘𝑐

2
0,𝑘

∑𝑁
𝑘=1 𝑐

2
0,𝑘

≤ 𝜆𝑁 .

n the other hand, if 𝑢(𝑡) is expanded as in (3.4) and 𝑐𝑘(𝑡) ≡ 0 for all 1 ≤ 𝑘 ≤ 𝑁 , then 𝜆(𝑡) ≥ 𝜆𝑀 where 𝑀 is the least positive integer
such that 𝑐𝑀 (𝑡) ≢ 0. Since 𝑀 > 𝑁 this yields a contradiction and concludes the proof. □

When 𝛺 = 𝑄 we enrich the statement of Theorem 3.8 by showing that the sets spanned by all eigenfunctions (not only the first)
are invariants of the flow. To this aim we need the explicit form of the eigenfunctions that we recall here below.
19



Nonlinear Analysis: Real World Applications 79 (2024) 104102E. Berchio et al.

s

m

P

A

I
e
2
a
i
o
w
a

A

s

D

Proposition 4.9 ([29, Proposition 1]). Let 𝛺 = 𝑄. For 𝑚, 𝑛 ∈ N+ the eigenvalues of (2.5)–(1.2) are 𝜆𝑚,𝑛 = 𝑚2 + 𝑛2 and they correspond
to the 𝐿2-normalized eigenfunctions:

𝑣𝑚,𝑛(𝑥, 𝑦) = 𝐶𝑚,𝑛

(

𝑛 sin(𝑚𝑥) cos(𝑛𝑦)

−𝑚 cos(𝑚𝑥) sin(𝑛𝑦)

)

𝑝𝑚,𝑛(𝑥, 𝑦) = 0,

for all (𝑥, 𝑦) ∈ 𝑄 with 𝐶𝑚,𝑛 ∶=
2

√

𝜋3(𝑚2+𝑛2)
. The least eigenvalue is 𝜆1,1 = 2 > 0 and is simple. Furthermore, the set {𝑣𝑚,𝑛}∞𝑚,𝑛=1 is a complete

ystem of 𝑉 .

We refer to [30, Section 2.2] for the resolution of the 3D analogous, namely the Stokes eigenvalues problem in the cube. Finally,
aking reference to the notations of Proposition 4.9, we prove:

roposition 4.10. Let 𝑢(𝑡) be the unique strong solution of problem (1.1)–(1.2) with 𝑢0 = 𝑐0,𝑛,𝑚𝑣𝑛,𝑚 and 𝑐0,𝑛,𝑚 ∈ R. Then, 𝑢(𝑡) =
𝑐0,𝑛,𝑚𝑒−𝜇𝜆𝑛,𝑚𝑡𝑣𝑛,𝑚.

Proof. We only need to check that 𝑢(𝑡) = 𝑐0,𝑛,𝑚𝑒−𝜇𝜆𝑛,𝑚𝑡𝑣𝑛,𝑚 solves (2.9). This follows once proved that

∫𝑄
(𝑣𝑛,𝑚 ⋅ ∇)𝑣𝑛,𝑚 ⋅ 𝑣 = 0 for all 𝑣 ∈ 𝑉 .

Integrating by parts, recalling that (𝑣1)𝑥 = −(𝑣2)𝑦 in 𝑄 and exploiting the boundary conditions in (4.43), we get

∫𝑄
(𝑣𝑛,𝑚 ⋅ ∇)𝑣𝑛,𝑚 ⋅ 𝑣 = 𝐶𝑚,𝑛 ∫𝑄

(

𝑛2 𝑚 sin(2𝑚𝑥)𝑣1(𝑥, 𝑦) + 𝑛𝑚2 sin(2𝑛𝑦)𝑣2(𝑥, 𝑦)
)

𝑑𝑥 𝑑𝑦

= 𝑛𝑚
𝐶𝑚,𝑛

2

[

∫

𝜋

0 ∫

𝜋

0

(

cos(2𝑚𝑥)(𝑣1)𝑥(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 + cos(2𝑛𝑥)(𝑣2)𝑦(𝑥, 𝑦)
)

𝑑𝑦 𝑑𝑥
]

= −𝑛𝑚
𝐶𝑚,𝑛

2

[

∫

𝜋

0
cos(2𝑚𝑥)∫

𝜋

0
(𝑣2)𝑦(𝑥, 𝑦)𝑑𝑦 𝑑𝑥 + ∫

𝜋

0
cos(2𝑛𝑦)∫

𝜋

0
(𝑣1)𝑥(𝑥, 𝑦)𝑑𝑥 𝑑𝑦

]

= 0 . □
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ppendix

In this section, by separating variables, we provide a system of eigenfunctions to (2.5) with 𝛺 = 𝐵. Exploiting the reference
ystem (𝐢𝑟, 𝐣𝜑), with 𝑣𝑟 and 𝑣𝜑 as defined in (4.45), (2.5) with 𝛺 = 𝐵 also writes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑣𝑟𝜌𝜌 +
𝑣𝑟𝜌
𝜌

+
𝑣𝑟𝜃𝜃
𝜌2

−
2𝑣𝜑𝜃
𝜌2

− 𝑣𝑟

𝜌2
+ 𝜆𝑣𝑟 = 𝑝𝜌 in (0, 1) × [0, 2𝜋)

𝑣𝜑𝜌𝜌 +
𝑣𝜑𝜌
𝜌

+
𝑣𝜑𝜃𝜃
𝜌2

+
2𝑣𝑟𝜃
𝜌2

− 𝑣𝜑

𝜌2
+ 𝜆𝑣𝜑 =

𝑝𝜃
𝜌

in (0, 1) × [0, 2𝜋)

𝑣𝑟𝜌 +
𝑣𝜑𝜃
𝜌

+ 𝑣𝑟

𝜌
= 0 in (0, 1) × [0, 2𝜋)

𝑝𝜌𝜌 +
𝑝𝜌
𝜌

+
𝑝𝜃𝜃
𝜌2

= 0 in (0, 1) × [0, 2𝜋)

𝑣𝑟 = 0 on {1} × [0, 2𝜋)

𝑣𝜑𝜌 − 𝑣𝜑 = 0 on {1} × [0, 2𝜋) .

(4.49)

enoting by 𝐽 (⋅) the first kind Bessel functions of order 𝑚 ≥ 0, we prove:
20

𝑚
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Proposition 4.11. The least eigenvalue of (4.49) is 𝜆1 = 0, it is simple and the corresponding eigenfunction is (𝑣1, 𝑝1) with 𝑣1 =
(

𝑣𝑟,1, 𝑣𝜑,1
)

,
where

𝑣𝑟,1 = 0, 𝑣𝜑,1(𝜌) = −𝜌, 𝑝1 = 0 ∀𝜌 ∈ (0, 1].

urthermore, for any 𝑚 ≥ 1 there exists a sequence of eigenvalues 𝜆 ∶= 𝜆𝑚,𝑘 > 0 satisfying

2
√

𝜆𝐽𝑚−1(
√

𝜆) + (𝜆 − 4 𝑚)𝐽𝑚(
√

𝜆) = 0, (4.50)

and corresponding to the eigenfunctions (𝑣𝑚,𝑘, 𝑝𝑚,𝑘) with 𝑣𝑚,𝑘 =
(

𝑣𝑟,𝑚,𝑘, 𝑣𝜑,𝑚,𝑘
)

and 𝑘 ≥ 1, where

𝑣𝑟,𝑚,𝑘(𝜌, 𝜃) = 1
𝜌

[

𝐽𝑚(
√

𝜆𝑚,𝑘𝜌) − 𝐽𝑚(
√

𝜆𝑚,𝑘)𝜌𝑚
]

cos(𝑚𝜃)

𝑣𝜑,𝑚,𝑘(𝜌, 𝜃) =
[

√

𝜆𝑚,𝑘
2𝑚

𝐽𝑚+1(
√

𝜆𝑚,𝑘𝜌) −

√

𝜆𝑚,𝑘
2𝑚

𝐽𝑚−1(
√

𝜆𝑚,𝑘𝜌) +
𝐽𝑚(

√

𝜆𝑚,𝑘)
𝜌

𝜌𝑚
]

sin(𝑚𝜃)

𝑝𝑚,𝑘(𝜌, 𝜃) = −𝐽𝑚(
√

𝜆𝑚,𝑘)
𝜆𝑚,𝑘
𝑚

𝜌𝑚 cos(𝑚𝜃)

for all (𝜌, 𝜃) ∈ (0, 1] × [0, 2𝜋). The set {𝑣1, 𝑣𝑚,𝑘}∞𝑚,𝑘=1 is an orthogonal system of 𝑉 .

Proof. The proof follows by adapting to Navier boundary conditions the computations given in [31, Section 5] under Dirichlet
boundary conditions. We highlight the main steps. Looking for solutions in the form: 𝑝(𝜌, 𝜃) = 𝑒𝑖𝑚𝜃𝑝𝑚(𝜌), 𝑣𝑟(𝜌, 𝜃) = 𝑒𝑖𝑚𝜃𝑢𝑟,𝑚(𝜌),
𝑣𝜑(𝜌, 𝜃) = 𝑒𝑖𝑚𝜃𝑢𝜑,𝑚(𝜌), for 𝑚 ≥ 1 one gets that 𝑝𝑚(𝜌) = 𝑐𝜌𝑚 for some 𝑐 ∈ R while 𝑢𝑟,𝑚 and 𝑢𝜑,𝑚 satisfy:

𝑢′′𝑟,𝑚(𝜌) +
3
𝜌
𝑢′𝑟,𝑚(𝜌) +

(

𝜆 − 𝑚2 − 1
𝜌2

)

𝑢𝑟,𝑚(𝜌) = 𝑐𝑚𝜌𝑚−1 𝜌 ∈ (0, 1)

𝑢′′𝜑,𝑚(𝜌) +
1
𝜌
𝑢′𝜑,𝑚(𝜌) +

(

𝜆 − 𝑚2 + 1
𝜌2

)

𝑢𝜑,𝑚(𝜌) = 𝑐𝑖𝑚𝜌𝑚−1 − 2𝑖𝑚
𝜌2

𝑢𝑟,𝑚(𝜌) 𝜌 ∈ (0, 1)

𝑢′𝑟,𝑚(𝜌) +
1
𝜌
𝑢𝑟,𝑚(𝜌) +

𝑖𝑚
𝜌
𝑢𝜑,𝑚(𝜌) = 0 𝜌 ∈ (0, 1)

lim
𝜌→0+

𝑢𝑟,𝑚(𝜌) ∈ R , 𝑢𝑟,𝑚(1) = 0, lim
𝜌→0+

𝑢𝜑,𝑚(𝜌) ∈ C , 𝑢𝜑,𝑚(1) = 𝑢′𝜑,𝑚(1) .

The case 𝑚 = 0 is simpler since the first two equations are already decoupled and the statement about the first eigenvalue 𝜆1
follows at once.

By setting 𝑤𝑟,𝑚(𝜌) = 𝜌𝑢𝑟,𝑚(𝜌) −
𝑐𝑚
𝜆 𝜌𝑚, the above system yields the following family of problems involving Bessel equations:

𝑤′′
𝑟,𝑚(𝜌) +

1
𝜌
𝑤′

𝑟,𝑚(𝜌) +
(

𝜆 − 𝑚2

𝜌2

)

𝑤𝑟,𝑚(𝜌) = 0 𝜌 ∈ (0, 1)

lim
𝜌→0+

𝑤𝑟,𝑚(𝜌) = 0 , 𝑤𝑟,𝑚(1) = − 𝑐𝑚
𝜆

,

admitting nontrivial solutions 𝑤𝑟,𝑚(𝜌) = 𝑎𝐽𝑚(
√

𝜆𝜌) for all 𝜆 > 0 and for 𝑎 ∈ R only if

𝑎𝐽𝑚(
√

𝜆) = − 𝑐𝑚
𝜆

. (4.51)

rom the free divergence condition, we readily get that 𝑢𝜑,𝑚(𝜌) = 𝑐𝑖𝑚
𝜆 𝜌𝑚−1 + 𝑎𝑖

𝑚
𝑑
𝑑𝜌𝐽𝑚(

√

𝜆𝜌) . Then, by setting 𝑤𝜑,𝑚(𝜌) = 𝑢𝜑,𝑚(𝜌) −
𝑐𝑖𝑚
𝜆 𝜌𝑚−1 − 𝑎𝑖

√

𝜆
2𝑚

(

𝐽𝑚−1(
√

𝜆𝜌) − 𝐽𝑚+1(
√

𝜆𝜌)
)

= 𝑢𝜑,𝑚(𝜌) −
𝑐𝑖𝑚
𝜆 𝜌𝑚−1 − 𝑎𝑖

𝑚
𝑑
𝑑𝜌𝐽𝑚(

√

𝜆𝜌), the second equation of the system (with the above
choice of 𝑤𝑟,𝑚, instead of 𝑢𝑟,𝑚) yields the equations:

𝑤′′
𝜑,𝑚(𝜌) +

1
𝜌
𝑤′

𝜑,𝑚(𝜌) +
(

𝜆 − 𝑚2 + 1
𝜌2

)

𝑤𝜑,𝑚(𝜌) = 0 𝜌 ∈ (0, 1),

which are clearly satisfied by 𝑤𝜑,𝑚 ≡ 0. It remains to impose the boundary condition 𝑢𝜑,𝑚(1) = 𝑢′𝜑,𝑚(1) which gives the further
condition

𝑎 𝑑2

𝑑𝜌2
𝐽𝑚(

√

𝜆) − 𝑎 𝑑
𝑑𝜌

𝐽𝑚(
√

𝜆) +
𝑐𝑚2(𝑚 − 2)

𝜆
= 0 . (4.52)

umming up, by combining (4.51) and (4.52), 𝜆 > 0 is an eigenvalue if and only if:

𝜆𝐽 ′′
𝑚 (

√

𝜆) −
√

𝜆𝐽 ′
𝑚(
√

𝜆) − 𝑚(𝑚 − 2)𝐽𝑚(
√

𝜆) = 0,

hich is equivalent to (4.50) by recalling the equation satisfied by 𝐽𝑚 and some of its properties. Finally, the statement of
roposition 4.11 follows by taking 𝑐 = −𝑎𝐽𝑚(

√

𝜆) 𝜆
𝑚

, and showing that, for any 𝑚 ≥ 1, (4.50) admits simple zeros (this easily
mplies that all the eigenfunctions provided are orthogonal in 𝑉 ). To this aim, we introduce the function

𝑓 (𝑥) ∶= 2𝑥𝐽 (𝑥) + (𝑥2 − 4 𝑚)𝐽 (𝑥);
21

𝑚−1 𝑚
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c

t

R

let 𝑥 > 0 be such that 𝑓 (𝑥) = 0, then 𝐽𝑚−1(𝑥) =
4𝑚−𝑥2

2𝑥 𝐽𝑚(𝑥). Being 𝑓 ∈ ∞(R), to prove that 𝑥 is simple we show that 𝑓 ′(𝑥) ≠ 0. We

ompute 𝑓 ′(𝑥) = (𝑥2 − 2 𝑚)𝐽𝑚−1(𝑥) +
𝑚
𝑥 (4𝑚 − 𝑥2)𝐽𝑚(𝑥), getting 𝑓 ′(𝑥) =

𝐽𝑚(𝑥)
2

(4𝑚 − 𝑥2)𝑥. Being 𝑥 > 0, 𝑓 ′(𝑥) is not zero since the first
positive zero of 𝐽𝑚−1(𝑥) is greater than 2

√

𝑚, see e.g. [32], and if 𝐽𝑚(𝑥) = 0 then 𝐽𝑚−1(𝑥) ≠ 0 (𝑚 ≥ 1).
Since also the functions 𝑝(𝜌, 𝜃) = 𝑒−𝑖𝑚𝜃𝑝𝑚(𝜌), 𝑣𝑟(𝜌, 𝜃) = 𝑒−𝑖𝑚𝜃𝑢𝑟,𝑚(𝜌), 𝑣𝜑(𝜌, 𝜃) = −𝑒−𝑖𝑚𝜃𝑢𝜑,𝑚(𝜌), for 𝑚 ≥ 1 are solutions we combine

hem properly to get the real eigenfunctions in the statement. □
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