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A B S T R A C T

This work introduces a novel region-based algorithm to determine carotid–femoral Pulse Wave Velocity
(cfPWV), decoupling the assessment of this biomarker from point-to-point feature extraction. A dataset of
75 healthy participants, previously recruited to compare the performances of a new instrument, Athos, with
the gold standard for non-invasive PWV (SphygmoCor), was used to set up a new algorithm for determining
the clinical cfPWV. The proposed approach locates and processes a specific window on the carotid and femoral
signals. Cross-correlation is employed to compute the pulse transit time within the pulses. Finally, the cfPWV
is assessed. A set of indicators has been defined to quantify the stability and reliability of the window used
by the algorithm. The results obtained through the proposed algorithm, the Intersecting Tangent method, and
the direct application of the cross-correlation technique on signal epochs have been systematically compared
with outcomes derived from the SphygmoCor device. The retrieved results show a Pearson coefficient r = 0.96,
P < 0.001, with a mean difference of 0.16m∕s for the first case, r = 0.965, P < 0.001, with a mean difference
of −0.07m∕s for the second, and r = 0.82, P < 0.001, with a mean difference of −1.04m∕s for the third.
Despite the intersecting tangent method showing slightly better agreement when comparing cfPWV values with
those derived from the SphygmoCor, the proposed approach yields significantly lower errors (P < 0.05) in the
presence of different levels of added noise, demonstrating greater robustness in this context. This outcome,
combined with the excellent accuracy, sustains the suitability of the proposed method for clinical applications.
1. Introduction

Vascular aging has been demonstrated to be linked with an in-
crement in the chance of developing chronic illnesses such as car-
diovascular disease (CVD), type 2 diabetes and renal disorder [1–3].
Among the non-invasively possibilities, the Pulse Wave Velocity (PWV)
measurement is the most reliable. PWV is the transit velocity of blood
pulse waves through the arterial system [4]. It depends on the vascular
biomechanics and hemodynamics of the circulatory system [5,6]. It
provides information about compliance [7], mean arterial pressure [8],
vasomotor tone [7] and therapeutic efficacy in vascular and hyper-
tensive heart diseases [9–12]. In 2007, it was officially introduced in
the European Society of Cardiology and Hypertension guidelines as a
valuable predictor of cardiovascular risk stratification and an effective
tool for detecting asymptomatic organ damage [13,14].

Abbreviations: PWV, pulse wave velocity; PTT, pulse transit time; RBCC, region-based cross-correlation; CV, coefficient of variation; intraSV, intra subject
variability; interSV, inter subject variability
∗ Corresponding author.
E-mail address: andrea.valerio@polito.it (A. Valerio).

According to Eq. (1), PWV is computed as the ratio of the distance
between two sites d and the time required by the blood pulse to
circulate from one site to the other 𝛥𝑡.

𝑃𝑊 𝑉 = 𝑑
𝛥𝑡

(1)

PWV can be measured between any two sites in the circulatory
system. However, the two acquisition points determine whether the
parameter obtained is local or global [4]. Due to the proximity of
the two acquisition sites to the central aorta, carotid–femoral pulse
wave velocity (cfPWV) is recognized as the most widely measured
surrogate of the aortic-pulse wave velocity (aPWV) [15–17]. With
the introduction of PWV as a standard biomarker of arterial stiffness,
several methodologies and algorithms have been developed to provide
increasingly accurate estimates of PTT. As a result of the analysis of the
vailable online 28 February 2024
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Fig. 1. Pulse waveforms alignment performed using cross-correlation. Given the carotid pulse (blue) and the femoral pulse (green), the cross-correlation function is computed for
each value of 𝜏. The timeshift’s equivalent which leads to the maximum of the cross-correlation function is taken as pulse transit time, then the alignment is performed.
characteristic morphology of the pulse wave [18], numerous studies
over the years have proposed the identification of a specific point or
window on the signal that would allow reliable PWV estimation [17].
Different algorithms relying on the extraction of a single feature located
on the signal were used for PTT assessment. Among these, the most
employed technique is the foot of the upstroke of the blood pulse as a
reference point in the waveform [19]. However, as reported in [20–
22], these approaches, when applied to identical waveforms, might
result in differing PWV values. Nowadays, many clinical indicators,
including heart rate and blood pressure, may now be monitored by
wearable devices with findings that meet the standards for use in
a clinical setting. Many studies have been conducted to assess PWV
using standalone wearable devices, following this trend. The extraction
of pulse waves from acquisition locations that deviate from clinically
defined places may alter the shape of the signals, hence diminishing the
estimated precision of the techniques described above. A novel set of
algorithms has been developed to address the limitations of relying on
a single localized feature for PWV evaluation. These algorithms analyze
specific sections of pulse waveforms, avoiding the PWV evaluation
based on a single feature extracted from the signal. Although additional
validation studies must be undertaken, region-based approaches such as
‘diastole patching’ [19] and ‘region-matching’ [17,23] provided excel-
lent accuracy in the PWV assessment according to the accuracy criteria
reported in 2010 ARTERY Society guidelines [24]. In this manuscript,
we present a novel region-based algorithm for the estimation of cf-
PWV. Specifically, our method applies several processing steps to the
waveform recorded on both sites, then, it uses the cross-correlation
technique to assess the PTT. Given two generic time series 𝑋𝑐 (𝑡) and
𝑋𝑓 (𝑡), both defined in the time interval T, the cross-correlation is a
statistical technique used to quantify their delay along the abscissa
according to the continuous time shift 𝜏. It is defined as expressed in
Eq. (2).

R𝑋𝑐 ,𝑋𝑓
(𝜏) = 1

𝑇 ∫

𝑇
2

− 𝑇
2

𝑋𝑐 (𝑡)𝑋𝑓 (𝑡 + 𝜏)𝑑𝑡 (2)

In this case, the two time series to be compared are the pulse wave-
forms detected on the carotid and femoral sites, respectively defined as
𝑋𝑐 and 𝑋𝑓 . 𝑇 represents a fraction of the full cardiac cycle and 𝜏 con-
stitutes the time shift along the abscissa by which the cross-correlation
coefficient is computed. The cross-correlation function, R𝑋𝑐 ,𝑋𝑓

(𝜏), is
estimated for each value of 𝜏. When the maximum of R𝑋𝑐 ,𝑋𝑓

(𝜏) occurs,
the best achievable similarity condition is reached and 𝜏 is considered
as the PTT. Fig. 1 shows an example of the realignment of two pulse
waveforms using cross-correlation. As mentioned in [4,25,26], cross-
correlation was previously used to calculate the PTT. However, its
application was employed only in a local assessment of the PWV. This
limitation was mainly due to morphological differences presented by
the pulse waves at the two distant acquisition sites. The proposed
approach aims to overcome this issue by giving as input for the cross-
correlation a set of signals characterized by a known shape in which the
portion of signal used for the PTT calculation remains unchanged along
2

the sites. Results equivalent to those obtained from the reference device
were achieved, representing a significant improvement over the direct
application of cross-correlation to the original signals. This article is
structured as follows. Section 2 introduces the available data, the pro-
posed algorithm, the methodology employed to identify the processing
window and the carried out statistical analysis. Section 3 summarizes
the results obtained by the Region-Based Cross-Correlation (RBCC)
approach compared to the direct application of cross-correlation tech-
nique and the output of the two presented devices. The reported
results are discussed in Section 4. Finally, in Section 5, conclusions are
presented.

2. Material and methods

2.1. Experimental data

Two devices for PWV analysis were used to collect the pulse wave-
forms obtained in this study: the Athos system, whose hardware and
firmware conceptualization and development are detailed in [13], and
the SphygmoCor (AtCor Medical). The former was used to retrieve
the blood pulse raw data, while the latter was used as the reference
method to compare the achieved outcomes. The SphygmoCor is widely
regarded as the clinical gold-standard device used for the non-invasive
cfPWV assessment [14,24]. Both devices determine the PWV value by
locating the intersecting tangent (IT) method recognized as the most
reliable among the single-feature algorithms introduced in the previous
section. The data used for developing the algorithm were acquired
at the ‘‘Città Della Salute e Della Scienza’’ hospital in Turin (Italy)
according to the experimental protocol approved by the "University of
Turin Bioethical Committee’’. A cohort of 75 healthy subjects was re-
cruited to validate the precision and accuracy of the Athos device [27].
In this particular context, the device was analyzed from a clinical
perspective, emphasizing its application, intraoperator variability, and
estimation accuracy. As a result of the mentioned study, we employed
Athos for three main reasons: an excellent level of agreement with the
Sphygmocor, high quality of pulse waveforms, and finally, differently
from the reference device, it provides access to the raw data. The
pulse waveforms collected in the mentioned study were recorded with
a sampling frequency of 680Hz and subsequently stored for offline
processing in the Matlab environment.

2.2. Proposed algorithm

The main steps of the herein-reported RBCC algorithm are sum-
marized in Fig. 2. In particular, this can be divided into three main
phases: pre-processing, processing and evaluation of the outcome. The
pre-processing phase is characterized by a series of filter steps used
to remove the DC-bias and high-frequency noise and to retrieve the
cardiac activity of the subject under investigation. The delay and the
phase distortion introduced by the application of each filter were
removed by applying this latter forward and backward onto the signal.
Fig. 3 reports the steps used for extrapolating the cfPWV of the acquired
signals.
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Fig. 2. Illustration of the presented Region-Based Cross-Correlation (RBCC) algorithm divided into its macro stages: pre-processing, processing and evaluation of the outcome.
(i) To get a high time resolution for the assessed PTT, the tonometer
signal is resampled to 2040Hz through a cubic spline. As a result
of this resampling, the signal temporal resolution is increased
to 0.49ms. Interpolation is accomplished using a third-degree
polynomial with forced continuity in the second derivate.

(ii) As reported in [13,26], high pass filter with a cut-off frequency
equal to 0.5Hz is applied to remove the DC offset.

(iii) Subsequently, a low pass filter with a cut-off frequency equal to
10Hz is used to remove the high-frequency noise [26].

(iv) Once done with the filter steps, pulse waveforms are standard-
ized [26] according to Eq. (3):

𝑥 =
𝑥 − 𝜇𝑠
𝜎𝑠

(3)

where 𝜇𝑠 and 𝜎𝑠 are respectively the mean value and the stan-
dard deviation of the signal. The result of the filtering steps is
shown in Fig. 3(a).

(v) This step uses the carotid signal to evaluate the subject cardiac
periodicity (T), which in turn is employed to split the signals
into single epochs. To do so, a low pass filter with a cut-off
frequency of 1.5Hz is applied. The beginning of each cardiac
period is detected as the minimum points of the filtered carotid
signal, as represented by green asterisks in Fig. 3(b).

(vi) The projection of the points, found in the previous step, on
the abscissa, is used as the common reference to divide both
carotid and femoral signals, Fig. 3(c). In this way, it is possible to
process each couple of blood pulses preserving the information
concerning the time delay related to the propagation of the pulse
wave between the two sites.

(vii) The initial step in the processing phase is to find the closest
minimum point preceding the upslope of the pulse. This position
corresponds to the diastolic minimum, point A in Fig. 3(d). Point
O identifies the beginning of each pulse wave.

(viii) Point B, depicted in Fig. 3(d), represents the second point used
to define the window on the original signal. This characteristic
point is located at the maximum point of the first derivative of
the signal. Finally, point C identifies the end of the pulse wave.

(ix) Once the window is recognized on both pulses, these are nor-
malized [26]. This is to ensure that both waves are on the same
baseline and to avoid the different amplitudes of the rising fronts
that could affect the cross-correlation result, Fig. 3(e, f).
3

(x) To preserve the time delay between the two waves, the portion
of the pulse between points O and A is replaced by a number of
samples equal to the number of samples on the original signal.
Concerning the portion of the signal between points B and C, this
section is linearly interpolated on the same number of samples
which separates B and C on the abscissa.

(xi) The time delay at which the maximum of cross-correlation co-
efficient occurs indicates the time shift that gives the best align-
ment, Fig. 3(g,h).

(xii) Once the PTT value for the current epoch is found, the process
starts again from step (vii). The procedure continues until the
PTT values for all 𝑁 epochs, segmented at (vii), are obtained.

(xiii) The standard deviation (𝜎) is calculated for the retrieved data.
To enhance comparison with the Sphygmocor device, we adopted
the same outlier rejection criteria. Hence, PWV values outside
the range of ±0.9𝜎 are rejected.

(xiv) Finally, the remaining PWV values, E, are computed and aver-
aged as reported in Eq. (4).

̄𝑃𝑊 𝑉 = 1
𝐸

𝐸
∑

𝑗=1

𝑑
𝑃𝑇𝑇𝑐𝑎𝑟−𝑓𝑒𝑚(𝑗)

(4)

Where d represents the distance measured between the femoral
and the carotid acquisition sites multiplied by a correction factor
equal to 0.8 [4,28]. This correction factor accounts for the
overestimation of the aortic length calculated on the subject’s
skin.

2.3. Robustness of the algorithm

The term algorithm robustness refers to the algorithm’s capacity to
perform the cfPWV assessment despite interference conditions caused
by the presence of noise or artifacts superimposed on the signal. Within
the context of this application, a white Gaussian noise was introduced
onto the pulse wave signals in order to obtain signal-to-noise ratios
(SNRs) of 10, 15, 20, and 25 dB across the bandwidth of the signal
(i.e., 0.5–10 Hz) [25]. Each measured pulse wave signal was denoised
through the application of filtering stages reported in the processing
steps (ii) and (iii) of the proposed algorithm. Subsequently, the resul-
tant signal served as the starting point for the addition of noise needed
to achieve the specified SNRs. Then, both algorithms, RBCC and ITP,
were applied to the noisy pulse wave signals. Finally, we compared
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Fig. 3. Region Based Cross-Correlation (RBCC) algorithm processing steps. (a) Result of the bandpass filtering procedure: original signal (blue), filtered signal (red). (b) Individuation
of the cardiac activity (green points) on the low pass filtered carotid signal (red). (c) Carotid signal (blue) and femoral signal (green) are split into single epochs. (d) Detection
of the processed windows on both signals in the current epoch. (e) Processed carotid window. (f) Processed femoral window. (g) Evaluation of the delay through the application
of the cross-correlation technique on the mentioned windows. (h) Alignment of the processed signals in the current epoch.
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Fig. 4. Selected points used for the definition of the processing window. End of the
diastole (A), the maximum of the first derivative (B1) and the 95% of the systolic peak
amplitude (B2). The slope coefficient 𝛾 has been computed as the angle between the
horizontal line and the tangent line passing through successive samples on the signal.
The value assumed by 𝛾 in B1 and B2 was defined as 𝛾𝐵1 and 𝛾𝐵2.

the resulting differences between noisy-cfPWV values and those derived
from the application of each method on noise-free signals.

2.4. Identification of processing window

Since the proposed algorithm relies on the application of the cross-
correlation on a specific portion of the signal, it is necessary to point
out how the processing window was defined. As stated in [29], pulse
waveforms acquired from different places on the human body have
distinct morphologies. Particularly, the shape of blood pulses may be
altered by several factors, including the positioning of sensors on the
skin, the experience of the operator collecting the data and the subject’s
anatomy. The decision to define a specific section of the signal derives
from the necessity of minimizing the morphological disparities between
individual pulse waves while preserving the temporal information. As
reported in [19,30–32], the early systolic and end-diastolic portions
of the blood pulse are identified as the least likely to be impacted
by reflected waves and motion artifacts compared to the diastolic
component. Therefore, the search for processing window was made by
analyzing the amplitude and the slope of the rising front of all the
waveforms available in the dataset. The inclination of the curve was
derived by computing the point-by-point slope 𝛾 of the tangent line
with respect to the horizontal. The tangent to the curve was determined
using the known equation of the line passing between two points
for each pair of successive samples. The slope 𝛾 has been computed
according to Eq. (5).

𝛾 = arctan
(

𝑑𝑓 (𝑡)
𝑑𝑡

)

(5)

Where f(t) represents the pulse waveform as a function of time t. Fig. 4
illustrates the points considered for defining the processing window.
The minimum preceding the ascending portion of the systolic phase, in-
dicated as A, represents the window’s lower boundary. Concerning the
definition of the upper limit, two specific points have been considered.
The first one corresponds with the maximum of 𝛾(𝑡), (B1), and the one
located at 95% of the systolic peak’s amplitude (B2). This latter option
was preferred to the systolic peak since the calculated slope at the
signal’s maximum would always be zero, as the tangent line becomes
horizontal whenever a local, or global, minimum, or maxima occurs.

2.5. Statistical analysis

The following subsection describes the statistical analysis used to
determine the upper bound of the window as well as the parameters
employed to evaluate the algorithm’s performance for estimating from
the PWV. Three different indicators have been defined to quantify the
stability of the mentioned upper boundary across the entire dataset: the
5

intra-subject variability (intraSV), the inter-subject variability (interSV)
and the coefficient of variation (CV). The (intraSV) evaluates the overall
point-to-point difference of the considered features in B1 and B2 on the
carotid and femoral sites. This information enabled us to determine
which of the two points leads to the section of the signal presenting
the highest similarity, hence improving the algorithm’s precision. As
reported in Eq. (6), the first step in the calculation of this parameter is
to determine the absolute difference, 𝐷𝑖, of the considered feature for
each couple of carotid and femoral waves.

𝐷𝑖 = |

|

𝑓𝑒𝑎𝑡𝐶𝐴𝑅,𝑖 − 𝑓𝑒𝑎𝑡𝐹𝐸𝑀,𝑖
|

|

𝑓𝑒𝑎𝑡 = 𝐴, 𝛾. (6)

Where A, refers to the amplitude value and 𝛾 to the slope coefficient
assumed in B1 or B2. Subsequently, the average difference 𝐷𝑘 was
computed for each subject 𝑘, Eq. (7).

𝐷𝑘 = 1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝐷𝑖 (7)

Where 𝑛𝑘 is the number of pulses available for the k-th subject. Once
obtained a representative value for each subject, they have been further
averaged according to Eq. (8)

𝜇𝐷 = 1
𝑀

𝑀
∑

𝑖=1
𝐷𝑘 (8)

M represents the number of subjects in the dataset. Then the standard
deviation 𝜎𝐷 has been computed according to Eq. (9)

𝜎𝐷 =

√

√

√

√
1
𝑀

𝑀
∑

𝑖=1
(𝐷𝑖 − 𝜇𝐷)2 (9)

Combining Eqs. (8) and (9) the intra subject variability (intraSV) is
finally retrieved, Eq. (10)

𝑖𝑛𝑡𝑟𝑎𝑆𝑉 = 𝜇𝐷 ± 𝜎𝐷 (10)

The second parameter defined for this purpose is inter-subject vari-
ability (interSV). This indicator assesses the variability of the values
assumed by the amplitude and the slope in B1 and B2. It provides
information on the variation of the features, in the mentioned points,
on the carotid and femoral signals. The first executed step in the
calculation of this parameter is the mean value 𝑓𝑒𝑎𝑡𝑘 defined in Eq. (11)

𝑓𝑒𝑎𝑡𝑘 = 1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝑓𝑒𝑎𝑡𝑖 𝑓𝑒𝑎𝑡 = 𝐴, 𝛾. (11)

Where 𝑛𝑘 is the number of pulses available for the k-th subject. The
standard deviation 𝜎𝑘 for the k-th subject is computed according to
Eq. (12)

𝜎𝑘 =

√

√

√

√

1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
(𝑓𝑒𝑎𝑡𝑖 − 𝑓𝑒𝑎𝑡𝑘)2 (12)

Similar to what was conducted with intraSV, the results obtained
for each subject using Eqs. (11) and (12) were combined to calculate
representative values for the entire dataset using Eqs. (13) and (14).

𝜇 = 1
𝑀

𝑀
∑

𝑖=1
𝛼𝑘 (13)

𝜎 =

√

√

√

√

∑𝑀
𝑘=1(𝑛𝑘 − 1)𝜎2𝑘

∑𝑀
𝑘=1(𝑛𝑘) −𝑀

(14)

Where M is the number of participants. Inter-subject variability (in-
terSV), defined as Eq. (15), is reported below

𝑖𝑛𝑡𝑒𝑟𝑆𝑉 = 𝜇 ± 𝜎 (15)

The coefficient of variation (CV) defined in Eq. (16), as the ratio
between the average standard deviation 𝜎 and the mean value 𝜇, has
been used to compare the variability of the measurement respect to its
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Table 1
Indicators employed in the processing window’s upper boundary assessment.

Feature Indicator B1 B2

CAR FEM CAR FEM

Slope
CV (%) 4.3 5.4 22.9 18.8
interSV (DEG) 73.10 ± 3.14 71.80 ± 3.88 43.04 ± 9.84 40.2 ± 7.5
intraSV (DEG) 6.22 ± 3.14 14.87 ± 7.15

Amplitude
CV (%) 19.9 19.8 20.5 24.8
interSV (μV) 51.5 ± 10.2 51.8 ± 10.2 110.1 ± 22.5 110.6 ± 27.7
intraSV (μV) 19.6 ± 12 41.9 ± 25.5

Abbreviations: CV; coefficient of variation, interSV; inter-subject variability, intraSV; intra subject variability.
w
t
r
a
t
c
r
o
t
a
t
0
l
d
S
f
c

mean value, in the mentioned points, using the extracted angles and
the amplitude.

𝐶𝑉 (%) = 𝜎
𝜇
.100 (16)

Concerning the PWV estimation, each participant was evaluated
through 3 acquisitions using the two available devices. The results
obtained have been expressed in terms of mean value and standard
deviation. The performance of the proposed algorithm has been evalu-
ated by comparing the average PWV values with those obtained with
the Athos system, the SphygmoCor, and the simple cross-correlation
technique (i.e. applied without carrying out the steps to select the
processing window previously described). The Pearson correlation co-
efficient and the paired t -test analysis have been used to assess the
relationship between the available PWV values. Furthermore, a linear
regressive model has been used to quantify the concordance of the
measurements and its goodness evaluated through the determination
coefficient 𝑅2. Measurement accuracy was assessed by calculating the
mean value, standard deviation, and root mean square error (RMSE)
of the difference between the reference method and the method to be
tested. The concordance of the measurements with the reference device
was examined employing the Bland–Altman plot, and the significance
of the data was evaluated by setting P < 0.05. Regarding the application
of the proposed algorithm w.r.t the IT, both approaches were applied to
the noisy pulse wave signals; the resulting PWV values were compared
to those obtained with those derived from the application of IT and
RBCC on noise-free signals. Particularly, the absolute error for the i-
th subject, w.r.t the noise-free cfPWV, was computed as reported in
Eq. (17).

𝑒𝑟𝑟𝑜𝑟 [𝑖] 𝛼, 𝛽 = |

|

|

𝑐𝑓𝑃𝑊 𝑉 [𝑖] 𝛼, 𝛽 − 𝑐𝑓𝑃𝑊 𝑉 [𝑖] 𝛼, 𝑛𝑜𝑖𝑠𝑒 𝑓𝑟𝑒𝑒
|

|

|

(17)

Where 𝑐𝑓𝑃𝑊 𝑉 [𝑖] 𝛼, 𝛽 refers to the cfPWV value for the i-th subject
according to tested method (𝛼 ∈ {RBCC, IT}) and 𝛽 to the related SNR
value (𝛽 ∈ {10 dB, 15 dB, 20 dB, 25 dB}). Then, the mean absolute error
was computed for each SNR for the two algorithms. The multi-sample
non-parametric Friedman test [25,33] was employed to assess the
statistical significance of the observed errors for IT and RBCC, coupled
according to the tested SNRs (e.g. 𝑒𝑟𝑟𝑜𝑟 𝐼𝑇 , 10 dB with 𝑒𝑟𝑟𝑜𝑟 𝑅𝐵𝐶𝐶, 10 dB
etc.) for a total of four tests. The significance of the identified variations
was determined by establishing a threshold at P < 0.05.

3. Results

3.1. Processing window assessment

In the prior section, three different indicators have been employed
to define the correct feature to identify the best location on signals.
The CV indicator was used to determine whether to select the slope
or the amplitude as the parameter to define the processing window’s
upper boundary. The intraSV was used to quantify the consistency of
the tested points within each subject. Finally, interSV was employed to
assess the stability of those across the entire dataset.

Table 1 reports the CV indicator computed in B1 and B2 for each
feature on each acquisition site. For the slope 𝛾, CV is equal to 4.3%
6

m

Table 2
Clinical characteristics of the study population.

Characteristics Mean ± sd Range

Number of subjects 75 –
Number of acquisitions 3 –
Number of pulses per acquisition – 5–14
Total number of pulses 2128 –
Male 43 (57.3%) –
Age (years) 46 ± 17 19–82
Height (cm) 170.5 ± 10.57 153–195
Weight (Kg) 68.84 ± 14.07 45–106
BMI (Kg m−2) 23.56 ± 3.72 17.8–37.11
SBP (mmHg) 117.88 ± 11.53 93–147
DBP (mmHg) 72.89 ± 8 59–94
HR (bpm) 64.44 ± 10.24 41–90

Abbreviations: BMI; body mass index, SBP; systolic blood pressure,
DBP; diastolic blood pressure, HR; heart rate, bpm; beats per minute,
sd; standard deviation.

and 5.4% in B1 and 22.9% and 18.8% in B2. Concerning the amplitude
value, CV results are equivalent to 19.9% and 19.8% in B1 and 20.5%
and 24.8% in B2.

Table 1 also shows the outcomes of the intraSV and intraSV used
to define the extreme point of the window. For the carotid site, interSV
results to be equal to 73.10 ± 3.14◦ in the first point and 43.04 ± 9.84◦

for the second. For the femoral site, however, interSV takes a value
of 71.80 ± 3.88◦ in B1 and 40.2 ± 7.5◦ in B2. The analysis of the
intraSV reports an average difference value of 6.22 ± 3.14◦ for the first
case and 14.87 ± 7.15◦ for the second. Both indicators were utilized to
evaluate the stability of the tested points. IntraSV specifically examined
the variability within data from the same subject, while inerSV was
computed to observe variations across different subjects.

3.2. Pulse wave velocity assessment

Table 2 displays the clinical features of the participants who were
enrolled in the study. Of the 75 healthy subjects recruited, 43 (57.3%)

ere men. The average age of the population was 46 ± 17 years, dis-
ributed heterogeneously between 19 and 82 years old. The comparison
esults between the IT method used by the Athos device, the proposed
lgorithm RBCC, and the direct application of the cross-correlation
echnique to the signal epochs (DCC) are presented in Table 3. The
omparison is performed in relation to the SphygmoCor device. The
esults obtained show a high correlation between the PWV values
btained in two out of three cases. The Pearson’s coefficient retrieved in
he three cases is equal to 0.965, 0.96 and 0.82, respectively for IT, RBCC
nd DCC. The determination coefficient 𝑅2, used to assess how well
he regression predictions approximate the real data points, is 0.926,
.918 and 0.638, revealing the poorer performance of the cross corre-
ation approach when compared to the other methods. The average
ifference ± 2𝜎 calculated concerning the PWV values estimated by the
phygmoCor and shown in the Bland–Altman plot is −0.07 ± 0.52m∕s
or IT, 0.16 ± 0.54m∕s for the RBCC and −1.04 ± 2.21m∕s for the cross-
orrelation (DCC). The Athos device shows the lowest bias (absolute

ean difference) and standard deviation values of the tested methods
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Table 3
Accuracy of cfPWV estimated values compared to those extracted by the reference method (SphygmoCor).

Method Mean differencea (m s−1) sd of mean difference RMSE (m s−1) r 𝑅2

Intersecting Tangent −0.07 ±0.522 0.519 0.965 0.926
Region Based Cross-Correlation 0.16 ±0.544 0.573 0.960 0.918
Direct Cross-Correlation −1.04 ±2.211 2.435 0.820 0.638

Abbreviations: RMSE; root mean square error, r ; Pearson’s correlation coefficient, 𝑅2; determination coefficient.
a Difference of cfPWV estimated values compared to those extracted by the reference device, SphygmoCor.
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Fig. 5. Mean absolute error and related standard deviation associated to cfPWV values
omputed at different SNRs with respect to those obtained using Intersecting Tangent
IT) and Region Based Cross Correlation (RBCC) on noise-free signals.

hile the cross-correlation technique represents the worst case for all
ndicators seen so far. A similar condition occurs for the RMSE it is 0.52
or the first method, 0.57 for the second and 2.43 for the third.
ig. 5 shows the performance of RBCC and IT algorithms when applied
n carotid and femoral pulse waveforms corrupted by different levels of
oise. The mean absolute error computed w.r.t the PWV values derived
rom noise-free signals reveals the poor noise tolerance of the IT method
espite the tested SNR. Across all four cases, the RBCC algorithm exhib-
ted greater robustness to the introduced noise, demonstrating a lower
ean difference along with the associated standard deviation. The

tatistical analysis, conducted through the Friedman test, consistently
ielded P < 0.05 in all tested cases when comparing cfPWV absolute
ifferences for each noise level. Three out of four SNRs (15 dB, 20 dB,

and 25 dB) reported values largely below 0.01. The only exception lies
for the test with an SNR of 10 dB, where the resulting P value remained
elow 0.05. Nevertheless, despite the increased error and associated
tandard deviation observed in this instance, all these findings testify
he existence of significant differences between cfPWV values derived
rom the application of IT and RBCC across different noise levels.

. Discussion

.1. Processing window assessment

Within this study, a particular focus is given to the methodology
sed to identify a signal window that enhances the algorithm’s perfor-
ance. The literature suggests that the ascending part of the systolic
eak is least affected by motion artifacts and reflection phenomena
ear vessel branches [19,30–32]. As a result, the minimum point before
he systolic peak was chosen as the lower boundary of the processing
indow. Furthermore, it limited the study of the upper boundary to the
forementioned points B1 and B2. The amplitude and the slope are the
eatures used to characterize points B1 and B2 on every pulse for each
f the 75 subjects.

Fig. 6 shows the CV indicator computed in B1 and B2 for each
eature on the carotid site (blue) and femoral site (red). Fig. 6(a) shows
hat the CV takes on values that are equivalent to 4.3% and 5.4%
7

n B1 and 22.9% and 18.8% in B2 when applied to 𝛾. In the second
case, Fig. 6(b), CV is equal to 19.9% and 19.8% in B1 and 20.5% and
4.8% in B2 for amplitude values. B1 displays lower CV values than
2, indicating it as the location with less variability. A small value
f CV is indicative of greater stability of the identified pulse section
ver the entire dataset. This is important because although there are
ntra and inter-subject differences, the chosen portion of the signal
aximizes the efficiency of the realignment performed through the
roposed approach while preserving the information of interest. In
ddition, the values of point B1 and point B2 differ more in the bar plot,
onsidering the slope with respect to the one considering the amplitude,
here the values are comparable. This mismatch may be due to the
ressure produced by the operators during acquisitions, resulting in
iffering signal amplitude values. Consequently, it can be concluded
hat 𝛾 allows a more precise distinction between B1 and B2 when
etermining the processing window’s upper limit.
igs. 7(a) and 7(b) depict the computed intraSV and interSV for the
lope 𝛾. Both indicators confirm B1 as the most stable point. In partic-
lar, the intraSV shows an average difference between the carotid and
emoral angles of 6.22 ± 3.14◦ in B1 compared with 14.87 ± 7.15◦ in B2,
ndicating a smaller difference between the two waves at the two sites
n the former case. Respectively for B1 and B2, Fig. 7(b) indicates for
he carotid site (blue) a interSV of 73.10 ± 3.14◦ and 43.04 ± 9.84◦. At
he femoral site (red), it is equal to 71.80 ± 3.88◦ in the first point and
0.2 ± 7.5◦ in the second. The average value is higher in B1 because,
y definition, it represents the point of the maximal signal slope. In
omparison, the standard deviation for the same location at the carotid
nd femoral sites is lower, indicating less variability in terms of slope
mong the 75 patients in the dataset. In view of the carried-out analysis,
1 proved to be the most stable point to be used for the application of
he algorithm.

.2. Pulse wave velocity assessment

Given the results reported in Table 3, it is possible to assume that the
roposed algorithm is a viable option to provide a reliable assessment
f cfPWV. The objective of the comparison was to assess our approach
n relation to the technique utilized by the clinical gold standard used
or non-invasive PWV assessment. The statistic indicators reported in
he previous section determine the algorithm adopted by the Athos
evice (i.e., IT) as the best of the tested approaches. This result is
ttributable to the method adopted by the two devices. Both Athos and
phygmoCor use the intersecting tangent point as the algorithm for the
stimation of PWV. In particular, Fig. 8(a) illustrates the outcomes of
he linear regression model applied to the PWV values obtained from
he Athos device in comparison to the Sphygmocor, exhibiting an 𝑅2

alue of 0.926. On the other hand, Fig. 8(b) depicts the concordance
etween the two methods in terms of mean value and average dif-
erence across the measurements. In this case, the Bland–Altman plot
emonstrates an average difference, or bias, of −0.07m∕s for cfPWV
alues, along with narrow limits of agreement (LOA) values of 0.96
nd −1.1. In contrast, the comparison between the direct application
f cross-correlation (DCC) technique and SphygmoCor gave the worst
esults. The application of this approach, without the previously men-
ioned processing phases, was utilized to establish a starting point for
valuating the performance of the suggested method. In this case, the
ean difference, the standard deviation, and the RMSE reached their
ighest values, −1.04 ± 2.21m∕s and 2.43m∕s respectively, while the



Biomedical Signal Processing and Control 93 (2024) 106161A. Valerio et al.
Fig. 6. Percentage coefficient of variation CV computed respectively in B1 and B2, on carotid (blue) and femoral (red) pulses. (a) CV extracted for the slope 𝛾. (b) CV extracted
for amplitude values.
Fig. 7. (a) Intra-Subject Variability computed for 𝛾 respectively in B1 and B2. (b) Inter-Subject Variability computed for 𝛾, respectively in B1 and B2, on carotid (blue) and femoral
(red) pulses.
Fig. 8. Relationship between cfPWV estimated by the Intersecting Tangent algorithm used by the Athos device and the reference method. (a) Best fitted line (in red) retrieved
from the linear regressive model fitted on the experimental data. (b) Bland–Altman plots show the distribution of the averaged measurements differences.
Pearson correlation coefficient and the coefficient of determination 𝑅2

were equal to 0.82 and 0.638, Fig. 9(a). The reason for these results
is the different morphology of the pulse wave when the proximal and
distal sites are far apart confirming why this technique was applied
just for a local evaluation of PWV. The lack of agreement of these two
methods is also reflected in Fig. 9(b). Specifically, the systematic bias
equal to −1.04m∕s along with a wider distribution of points and limits
of agreement values respectively equal to 3.15 and −5.24 due to the
presence of outliers in the PWV values. However, part of them was not
included in Fig. 9(b) to keep the consistent scale on the 𝑦-axis along the
three cases. The restriction of the comparison section combined with
the normalization of the latter has made it possible to obtain a signal
with a known shape while keeping the temporal information intact.
8

In line with the previous cases, Fig. 10 represents the linear regres-
sion model and the corresponding (Bland–Altman) plot. In this latter
case, there is an improvement in all the presented statistical indicators.
In particular, the bias is 0.16 while the 𝑅2 and the 𝑟 are respectively
equal to 0.918 and 0.96. These values demonstrate a strong relationship
between the predicted and observed values, indicating an excellent
level of accuracy and agreement in the model’s performance accord-
ing to the performance criteria stated in the 2010 ARTERY Society
guidelines [24] (mean difference < 0.5m∕s and SD < 0.8m∕s). From the
comparison between the IT method and RBCC, it is possible to notice
that the only substantial difference concerning the best case occurs
for the average difference of the PWV values equal to −0.07m∕s and
0.16m∕s respectively. The RMSE in the two cases presents a difference
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Fig. 9. Relationship between cfPWV estimated by the Direct application of Cross-Correlation (DCC) approach and the reference method. (a) Best fitted line (in red) retrieved from
the linear regressive model fitted on the experimental data. (b) Bland–Altman plots show the distribution of the averaged measurements differences.
Fig. 10. Relationship between cfPWV estimated by the Region Based Cross-Correlation (RBCC) algorithm and the reference method. (a) Best fitted line (in red) retrieved from the
linear regressive model fitted on the experimental data. (b) Bland–Altman plots show the distribution of the averaged measurements differences.
of less than 10%, while the standard deviation of the measurements
mean difference, the Pearson correlation coefficient and the coefficient
of determination 𝑅2 present an average difference of less than 1%.
The analysis conducted to determine the algorithm’s robustness in the
presence of different noise levels highlighted the greater tolerance
of the latter compared to the IT method. Statistical significance was
established using the Friedman test, which assessed the differences in
cfPWV values between IT and RBCC across the four noise levels. In
all tested cases, the P value consistently remained below 0.05, with
three notably showing values largely below 0.01 (10−5, 10−8, and 10−8,
respectively, for 15, 20, and 25 dB). The exception occurred with an
SNR of 10 dB where P resulted equal to 0.04. This outcome aligns
with comparable values of mean absolute error and standard deviation
reported in Fig. 5. In addition, it is necessary to consider that 10 dB
represents a limiting case, which might not be suitable for a clinical
application. Findings in [34] reveal an inverse relationship between
RMSE and SNR at a constant sampling frequency, underscoring the
substantial impact of SNR on estimation error. Furthermore, in [35],
15 dB was identified as the SNR value below which all the compared
algorithms for peak detection showed a performance decline exceeding
20%. Finally, it is crucial to acknowledge that the acquisition process re-
lies on a skilled operator who would reject a signal displaying distorted
morphology. However, in all the remaining comparisons, the proposed
method exhibited significantly reduced mean absolute error in the
9

evaluation of the individual’s PWV compared to the reference values
derived from noise-free signals. This result highlights the impact of
relying on a single feature in the signal for PTT assessment, indicating
that errors in estimating PWV can be significant when detection is
potentially affected by the presence of noise or artifacts. Furthermore,
the assessment of PTT based on the realignment of pulse’s upslope,
and therefore for a higher number of data points, allows for mitigating
a potential misdetection of points A or B in favor of a more robust
and still accurate PWV assessment. Thus, although the RBCC method
performs slightly differently from the intersecting tangent method, it
turned out to be an excellent and more robust method to be used to
estimate PWV. Furthermore, compared to the standard application of
the cross-correlation approach, it was proved that through the reported
processing steps it is possible to overcome the limitations responsible
for the application of this technique to perform a local estimation of
PWV. Our proposed approach’s primary limitation stems from exclud-
ing non-healthy subjects during the validation process. This omission
is noteworthy because non-healthy subjects are more likely to exhibit
alterations in cfPWV associated with irregular vascular compliance
and the potential impact of vasoactive medications. Regrettably, the
ethical approval granted for this study imposes restrictions on testing
the proposed algorithm exclusively on healthy subjects, as the use of
the Athos device is authorized solely within the context of healthy
individuals. In our future endeavors, we plan to extend the developed
device’s validation to include non-healthy subjects to validate the ap-

plicability and robustness of RBCC across a broader spectrum of health
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conditions. A second limitation of our approach could be represented by
the computational cost incurred by the cross-correlation process when
comparing two windows on pulse waveforms to estimate cfPWV using
a single feature. Nevertheless, it is crucial to note that the primary
objective of this study is to explore the feasibility of the proposed
algorithm for an offline assessment of cfPWV. The current focus is on
the algorithm’s performance in a non-real-time setting. Therefore, the
optimization of the RBCC method for a real-time application will be
further investigated in future works.

5. Conclusions

In this study, we presented a novel method for calculating cfPWV.
The PTT is determined by computing the correlation between a specific
portion of the signals, eliminating the requirement to identify charac-
teristic points often utilized for this purpose. Particular attention was
paid to finding an indicator that could be used to define the window
on the signal. Thanks to the slope analysis, it was possible to locate the
target section between the early systolic and end-diastolic portions of
the blood pulses. Hence, by reducing the pulse wave section utilized for
PWV assessment, we have developed an algorithm that yields results
comparable to the gold standard employed in clinical practice. The
proposed approach demonstrated that it is feasible to overcome the
inherent limitation of the direct application of cross-correlation, which
restricted its use in this sector to a local estimation. Moreover, for
various SNRs, the RBCC algorithm was more robust than the IT method
when applied to carotid and femoral pulse waveforms. Thus confirming
the capability of the proposed approach to provide a non-invasive
assessment of cfPWV in different conditions accurately and robustly.
In conclusion, it was possible to prove that the RBCC algorithm is a
suitable solution for assessing the cfPWV and it has the potential to
be used in clinical practice as an alternative method to ’foot-to-foot’
algorithms.

CRediT authorship contribution statement

Andrea Valerio: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Irene Buraioli:
Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Alessandro Sanginario:
Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Giulia Mingrone: Writing – review
& editing, Visualization, Validation, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Dario Leone: Writing
– review & editing, Visualization, Validation, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Alberto
Milan: Writing – review & editing, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Conceptualization. Danilo Demarchi: Writing – review & editing,
Supervision, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
10

Raw data is not currently available for sharing.
Acknowledgments

We would like to acknowledge and thank the participants, re-
searchers, and clinicians for their contributions to this work. This
research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

References

[1] A. Laina, K. Stellos, K. Stamatelopoulos, Vascular ageing: Underlying mechanisms
and clinical implications, Exp. Geront. 109 (2018) 16–30, http://dx.doi.org/10.
1016/J.EXGER.2017.06.007, https://pubmed.ncbi.nlm.nih.gov/28624356.

[2] B.J. North, D.A. Sinclair, The intersection between aging and cardiovascular dis-
ease, Circ. Res. 110 (2012) 1097–1108, http://dx.doi.org/10.1161/CIRCRESAHA.
111.246876, https://pubmed.ncbi.nlm.nih.gov/22499900.

[3] J. Blacher, A.P. Guerin, B. Pannier, S.J. Marchais, M.E. Safar, G.M. London,
Impact of aortic stiffness on survival in end-stage renal disease, Circulation
99 (1999) 2434–2439, http://dx.doi.org/10.1161/01.CIR.99.18.2434, https://
pubmed.ncbi.nlm.nih.gov/10318666.

[4] P.M. Nabeel, V.R. Kiran, J. Joseph, V.V. Abhidev, M. Sivaprakasam, Local pulse
wave velocity: Theory, methods, advancements, and clinical applications, IEEE
Rev. Biomed. Eng. 13 (2020) 74–112, http://dx.doi.org/10.1109/RBME.2019.
2931587, https://pubmed.ncbi.nlm.nih.gov/31369386.

[5] W.W. Nichols, M.F. O’Rourke, E.R. Edelman, C. Vlachopoulos, Mcdonald’s
blood flow in arteries: theoretical, experimental and clinical principles: Seventh
edition, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and
Clinical Principles, seventh ed., 2022, pp. 1–821, http://dx.doi.org/10.1201/
9781351253765.

[6] N. Westerhof, N. Stergiopulos, M.I. Noble, B.E. Westerhof, Snapshots of Hemody-
namics: An Aid for Clinical Research and Graduate Education, 2018, pp. 1–314,
http://dx.doi.org/10.1007/978-3-319-91932-4/COVER.

[7] C.K. Sun, Cardio-ankle vascular index (cavi) as an indicator of arterial stiffness,
Integr. Blood Press. Control 6 (2013) 27–38, http://dx.doi.org/10.2147/IBPC.
S34423, https://pubmed.ncbi.nlm.nih.gov/23667317.

[8] R. Mukkamala, J.O. Hahn, O.T. Inan, L.K. Mestha, C.S. Kim, H. Toreyin, S. Kyal,
Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and
practice, IEEE Trans. Bio-Med. Eng. 62 (2015) 1879–1901, http://dx.doi.org/10.
1109/TBME.2015.2441951, https://pubmed.ncbi.nlm.nih.gov/26057530.

[9] P. Boutouyrie, D. Fliser, D. Goldsmith, A. Covic, A. Wiecek, A. Ortiz, A. Martinez-
Castelao, B. Lindholm, Z.A. Massy, G. Suleymanlar, R. Sicari, L. Gargani, G.
Parati, F. Mallamaci, C. Zoccali, G.M. London, Assessment of arterial stiffness
for clinical and epidemiological studies: methodological considerations for vali-
dation and entry into the european renal and cardiovascular medicine registry,
nephrology, dialysis, Transplantation : Off. Publ. Eur. Dialysis Transpl. Assoc.
Eur. Renal Assoc. 29 (2014) 232–239, http://dx.doi.org/10.1093/NDT/GFT309,
https://pubmed.ncbi.nlm.nih.gov/24084326.

[10] P. Meani, A. Maloberti, P. Sormani, G. Colombo, L. Giupponi, M. Stucchi,
M. Varrenti, P. Vallerio, R. Facchetti, G. Grassi, G. Mancia, C. Giannattasio,
Determinants of carotid-femoral pulse wave velocity progression in hypertensive
patients over a 3.7 years follow-up, Blood Pressure 27 (2018) 32–40, http://
dx.doi.org/10.1080/08037051.2017.1378069, https://pubmed.ncbi.nlm.nih.gov/
28922954.

[11] B.M. Pannier, A.P. Avolio, A. Hoeks, G. Mancia, K. Takazawa, Methods and
devices for measuring arterial compliance in humans, Am. J. Hypertens. 15
(2002) 743–753, http://dx.doi.org/10.1016/S0895-7061(02)02962-X, https://
pubmed.ncbi.nlm.nih.gov/12160200.

[12] M.A. Supiano, L. Lovato, W.T. Ambrosius, J. Bates, S. Beddhu, P. Drawz, J.P.
Dwyer, N.M. Hamburg, D. Kitzman, J. Lash, E. Lustigova, C.M. Miracle, S.
Oparil, D.S. Raj, D.E. Weiner, A. Taylor, J.A. Vita, R. Yunis, G.M. Chertow,
M. Chonchol, Pulse wave velocity and central aortic pressure in systolic blood
pressure intervention trial participants, PLoS One 13 (2018) http://dx.doi.org/10.
1371/JOURNAL.PONE.0203305, https://pubmed.ncbi.nlm.nih.gov/30256784.

[13] I. Buraioli, D. Lena, A. Sanginario, D. Leone, G. Mingrone, A. Milan, D. Demarchi,
A new noninvasive system for clinical pulse wave velocity assessment: The athos
device, IEEE Trans. Biomed. Circuits Syst. 15 (2021) 133–142, http://dx.doi.org/
10.1109/TBCAS.2021.3058010, https://pubmed.ncbi.nlm.nih.gov/33560991.

[14] B. Williams, G. Mancia, W. Spiering, E.A. Rosei, M. Azizi, M. Burnier, D.L.
Clement, A. Coca, G.D. Simone, A. Dominiczak, T. Kahan, F. Mahfoud, J. Redon,
L. Ruilope, A. Zanchetti, M. Kerins, S.E. Kjeldsen, R. Kreutz, S. Laurent, G.Y.
Lip, R. McManus, K. Narkiewicz, F. Ruschitzka, R.E. Schmieder, E. Shlyakhto, C.
Tsioufis, V. Aboyans, I. Desormais, G.D. Backer, A.M. Heagerty, S. Agewall, M.
Bochud, C. Borghi, P. Boutouyrie, J. Brguljan, H. Bueno, E.G. Caiani, B. Carlberg,
N. Chapman, R. Cífková, J.G. Cleland, J.P. Collet, I.M. Coman, P.W.D. Leeuw,
V. Delgado, P. Dendale, H.C. Diener, M. Dorobantu, R. Fagard, C. Farsang,
M. Ferrini, I.M. Graham, G. Grassi, H. Haller, F.D. Hobbs, B. Jelakovic, C.
Jennings, H.A. Katus, A.A. Kroon, C. Leclercq, D. Lovic, E. Lurbe, A.J. Manolis,
T.A. McDonagh, F. Messerli, M.L. Muiesan, U. Nixdorff, M.H. Olsen, G. Parati,

J. Perk, M.F. Piepoli, J. Polonia, P. Ponikowski, D.J. Richter, S.F. Rimoldi,

http://dx.doi.org/10.1016/J.EXGER.2017.06.007
http://dx.doi.org/10.1016/J.EXGER.2017.06.007
http://dx.doi.org/10.1016/J.EXGER.2017.06.007
https://pubmed.ncbi.nlm.nih.gov/28624356
http://dx.doi.org/10.1161/CIRCRESAHA.111.246876
http://dx.doi.org/10.1161/CIRCRESAHA.111.246876
http://dx.doi.org/10.1161/CIRCRESAHA.111.246876
https://pubmed.ncbi.nlm.nih.gov/22499900
http://dx.doi.org/10.1161/01.CIR.99.18.2434
https://pubmed.ncbi.nlm.nih.gov/10318666
https://pubmed.ncbi.nlm.nih.gov/10318666
https://pubmed.ncbi.nlm.nih.gov/10318666
http://dx.doi.org/10.1109/RBME.2019.2931587
http://dx.doi.org/10.1109/RBME.2019.2931587
http://dx.doi.org/10.1109/RBME.2019.2931587
https://pubmed.ncbi.nlm.nih.gov/31369386
http://dx.doi.org/10.1201/9781351253765
http://dx.doi.org/10.1201/9781351253765
http://dx.doi.org/10.1201/9781351253765
http://dx.doi.org/10.1007/978-3-319-91932-4/COVER
http://dx.doi.org/10.2147/IBPC.S34423
http://dx.doi.org/10.2147/IBPC.S34423
http://dx.doi.org/10.2147/IBPC.S34423
https://pubmed.ncbi.nlm.nih.gov/23667317
http://dx.doi.org/10.1109/TBME.2015.2441951
http://dx.doi.org/10.1109/TBME.2015.2441951
http://dx.doi.org/10.1109/TBME.2015.2441951
https://pubmed.ncbi.nlm.nih.gov/26057530
http://dx.doi.org/10.1093/NDT/GFT309
https://pubmed.ncbi.nlm.nih.gov/24084326
http://dx.doi.org/10.1080/08037051.2017.1378069
http://dx.doi.org/10.1080/08037051.2017.1378069
http://dx.doi.org/10.1080/08037051.2017.1378069
https://pubmed.ncbi.nlm.nih.gov/28922954
https://pubmed.ncbi.nlm.nih.gov/28922954
https://pubmed.ncbi.nlm.nih.gov/28922954
http://dx.doi.org/10.1016/S0895-7061(02)02962-X
https://pubmed.ncbi.nlm.nih.gov/12160200
https://pubmed.ncbi.nlm.nih.gov/12160200
https://pubmed.ncbi.nlm.nih.gov/12160200
http://dx.doi.org/10.1371/JOURNAL.PONE.0203305
http://dx.doi.org/10.1371/JOURNAL.PONE.0203305
http://dx.doi.org/10.1371/JOURNAL.PONE.0203305
https://pubmed.ncbi.nlm.nih.gov/30256784
http://dx.doi.org/10.1109/TBCAS.2021.3058010
http://dx.doi.org/10.1109/TBCAS.2021.3058010
http://dx.doi.org/10.1109/TBCAS.2021.3058010
https://pubmed.ncbi.nlm.nih.gov/33560991


Biomedical Signal Processing and Control 93 (2024) 106161A. Valerio et al.
M. Roffi, N. Sattar, P.M. Seferovic, I.A. Simpson, M. Sousa-Uva, A.V. Stanton,
P.V.D. Borne, P. Vardas, M. Volpe, S. Wassmann, S. Windecker, J.L. Zamorano,
Esc/esh guidelines for the management of arterial hypertension, Eur. Heart J.
39 (2018) (2018) 3021–3104, http://dx.doi.org/10.1093/EURHEARTJ/EHY339,
https://pubmed.ncbi.nlm.nih.gov/30165516.

[15] L.M.V. Bortel, S. Laurent, P. Boutouyrie, P. Chowienczyk, J.K. Cruickshank, T.D.
Backer, J. Filipovsky, S. Huybrechts, F.U. Mattace-Raso, A.D. Protogerou, G.
Schillaci, P. Segers, S. Vermeersch, T. Weber, Expert consensus document on
the measurement of aortic stiffness in daily practice using carotid-femoral pulse
wave velocity, J. Hypertens. 30 (2012) 445–448, http://dx.doi.org/10.1097/
HJH.0B013E32834FA8B0, https://pubmed.ncbi.nlm.nih.gov/22278144.

[16] F. Beutel, C.V. Hoof, X. Rottenberg, K. Reesink, E. Hermeling, Pulse ar-
rival time segmentation into cardiac and vascular intervals - implications for
pulse wave velocity and blood pressure estimation, IEEE Trans. Bio-Med. Eng.
68 (2021) 2810–2820, http://dx.doi.org/10.1109/TBME.2021.3055154, https:
//pubmed.ncbi.nlm.nih.gov/33513094.

[17] F.S. Hu, Y.L. Zhang, Z.C. Ma, Q.Q. Cao, Y.B. Xu, Z.J. He, Y.N. Sun, A region-
matching method for pulse transit time estimation: potential for improving
the accuracy in determining carotid femoral pulse wave velocity, J. Human
Hypertens. 29 (2015) 675–682, http://dx.doi.org/10.1038/JHH.2015.9, https:
//pubmed.ncbi.nlm.nih.gov/25694218.

[18] H. Obeid, G. Soulat, E. Mousseaux, S. Laurent, N. Stergiopulos, P. Boutouyrie,
P. Segers, Numerical assessment and comparison of pulse wave velocity
methods aiming at measuring aortic stiffness, Physiol. Meas. 38 (2017) 1953–
1967, http://dx.doi.org/10.1088/1361-6579/AA905A, https://pubmed.ncbi.nlm.
nih.gov/28968226.

[19] O. Vardoulis, T.G. Papaioannou, N. Stergiopulos, Validation of a novel and
existing algorithms for the estimation of pulse transit time: advancing the
accuracy in pulse wave velocity measurement, Am. J. Physiol. Heart Circ.
Physiol. 304 (2013) http://dx.doi.org/10.1152/AJPHEART.00963.2012, https:
//pubmed.ncbi.nlm.nih.gov/23604712.

[20] Y.C. Chiu, P.W. Arand, S.G. Shroff, T. Feldman, J.D. Carroll, Determination of
pulse wave velocities with computerized algorithms, Am. Heart J. 121 (1991)
1460–1470, http://dx.doi.org/10.1016/0002-8703(91)90153-9, https://pubmed.
ncbi.nlm.nih.gov/2017978.

[21] S.C. Millasseau, A.D. Stewart, S.J. Patel, S.R. Redwood, P.J. Chowienczyk,
Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm
and heart rate, Hypertension (Dallas, Tex. : 1979) 45 (2005) 222–226, http:
//dx.doi.org/10.1161/01.HYP.0000154229.97341.D2, https://pubmed.ncbi.nlm.
nih.gov/15642772.

[22] P. Salvi, E. Magnani, F. Valbusa, D. Agnoletti, C. Alecu, L. Joly, A. Benetos,
Comparative study of methodologies for pulse wave velocity estimation, J.
Human Hypertens. 22 (2008) 669–677, http://dx.doi.org/10.1038/JHH.2008.42,
https://pubmed.ncbi.nlm.nih.gov/18528411.

[23] S. Seoni, S. Beeckman, Y. Li, S. Aasmul, U. Morbiducci, R. Baets, P. Boutouyrie, F.
Molinari, N. Madhu, P. Segers, Template matching and matrix profile for signal
quality assessment of carotid and femoral laser doppler vibrometer signals, Front.
Physiol. 12 (2022) http://dx.doi.org/10.3389/fphys.2021.775052.
11
[24] I.B. Wilkinson, C.M. McEniery, G. Schillaci, P. Boutouyrie, P. Segers, A. Don-
ald, P.J. Chowienczyk, Artery society guidelines for validation of non-invasive
haemodynamic measurement devices: Part 1, arterial pulse wave velocity, Artery
Res. 4 (2010) 34–40, http://dx.doi.org/10.1016/J.ARTRES.2010.03.001.

[25] L. Xu, S. Zhou, L. Wang, Y. Yao, L. Hao, L. Qi, Y. Yao, H. Han, R.
Mukkamala, S.E. Greenwald, Improving the accuracy and robustness of carotid-
femoral pulse wave velocity measurement using a simplified tube-load model,
Sci. Rep. 12 (2022) http://dx.doi.org/10.1038/S41598-022-09256-Z, https://
pubmed.ncbi.nlm.nih.gov/35338246.

[26] H. Shin, A. Choi, Calculation and validation of continuous pulse transit time
based on normalized pulse wave velocity, IEEE Access 8 (2020) 221632–221639,
http://dx.doi.org/10.1109/ACCESS.2020.3041498.

[27] D. Leone, I. Buraioli, G. Mingrone, D. Lena, A. Sanginario, F. Vallelonga, F.
Tosello, E. Avenatti, M. Cesareo, A. Astarita, L. Airale, L. Sabia, F. Veglio,
D. Demarchi, A. Milan, Accuracy of a new instrument for noninvasive eval-
uation of pulse wave velocity: the arterial stiffness faithful tool assessment
project, J. Hypertens. 39 (2021) 2164–2172, http://dx.doi.org/10.1097/HJH.
0000000000002925.

[28] A.L. Wentland, T.M. Grist, O. Wieben, Review of mri-based measurements of
pulse wave velocity: A biomarker of arterial stiffness, Cardiovasc. Diagn. Therapy
4 (2) (2014) 193–206.

[29] P. Charlton, J. Mariscal Harana, S. Vennin, Y. Li, P. Chowienczyk, A. J, Modeling
arterial pulse waves in healthy aging: a database for in silico evaluation of
hemodynamics and pulse wave indexes, Am. J. Physiol. Heart. Circ. Physiol.
82 (1) (2019) 1062–1065.

[30] J.A. Chirinos, N. Sweitzer, Ventricular–arterial coupling in chronic heart failure,
Cardiac Fail. Rev. 03 (2017) 12, http://dx.doi.org/10.15420/cfr.2017:4:2,
https://www.cfrjournal.com/articles/ventricular-arterial-coupling-chronic-heart-
failure.

[31] Y. Chiu, P.W. Arand, S.G. Shroff, T. Feldman, J.D. Carroll, Determina-
tion of pulse wave velocities with computerized algorithms, Am. Heart J.
121 (5) (1991) 1460–1470, https://www.sciencedirect.com/science/article/pii/
0002870391901539.

[32] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz,
B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, Expert consensus
document on arterial stiffness: Methodological issues and clinical applications,
Eur. Heart J. 27 (21) (2006) 2588–2605, http://dx.doi.org/10.1093/eurheartj/
ehl254, cited by: 4759; All Open Access, Bronze Open Access.

[33] C. Argyriou, E. Georgakarakos, G.S. Georgiadis, N. Schoretsanitis, M.K. Lazarides,
The effect of revascularization on the hemodynamic profile of patients with
infrarenal aortic occlusion, Annals Vasc. Surg. 43 (2017) 210–217, http://dx.
doi.org/10.1016/j.avsg.2016.11.025.

[34] S. Zaunseder, A. Vehkaoja, V. Fleischhauer, C.H. Antink, Signal-to-noise ratio
is more important than sampling rate in beat-to-beat interval estimation from
optical sensors, Biomed. Signal Process. Control 74 (2022) 103538, http://dx.
doi.org/10.1016/j.bspc.2022.103538.

[35] K. Kazemi, J. Laitala, I. Azimi, P. Liljeberg, A.M. Rahmani, Robust ppg peak
detection using dilated convolutional neural networks, Sensors 22 (2022) 6054,
http://dx.doi.org/10.3390/s22166054.

http://dx.doi.org/10.1093/EURHEARTJ/EHY339
https://pubmed.ncbi.nlm.nih.gov/30165516
http://dx.doi.org/10.1097/HJH.0B013E32834FA8B0
http://dx.doi.org/10.1097/HJH.0B013E32834FA8B0
http://dx.doi.org/10.1097/HJH.0B013E32834FA8B0
https://pubmed.ncbi.nlm.nih.gov/22278144
http://dx.doi.org/10.1109/TBME.2021.3055154
https://pubmed.ncbi.nlm.nih.gov/33513094
https://pubmed.ncbi.nlm.nih.gov/33513094
https://pubmed.ncbi.nlm.nih.gov/33513094
http://dx.doi.org/10.1038/JHH.2015.9
https://pubmed.ncbi.nlm.nih.gov/25694218
https://pubmed.ncbi.nlm.nih.gov/25694218
https://pubmed.ncbi.nlm.nih.gov/25694218
http://dx.doi.org/10.1088/1361-6579/AA905A
https://pubmed.ncbi.nlm.nih.gov/28968226
https://pubmed.ncbi.nlm.nih.gov/28968226
https://pubmed.ncbi.nlm.nih.gov/28968226
http://dx.doi.org/10.1152/AJPHEART.00963.2012
https://pubmed.ncbi.nlm.nih.gov/23604712
https://pubmed.ncbi.nlm.nih.gov/23604712
https://pubmed.ncbi.nlm.nih.gov/23604712
http://dx.doi.org/10.1016/0002-8703(91)90153-9
https://pubmed.ncbi.nlm.nih.gov/2017978
https://pubmed.ncbi.nlm.nih.gov/2017978
https://pubmed.ncbi.nlm.nih.gov/2017978
http://dx.doi.org/10.1161/01.HYP.0000154229.97341.D2
http://dx.doi.org/10.1161/01.HYP.0000154229.97341.D2
http://dx.doi.org/10.1161/01.HYP.0000154229.97341.D2
https://pubmed.ncbi.nlm.nih.gov/15642772
https://pubmed.ncbi.nlm.nih.gov/15642772
https://pubmed.ncbi.nlm.nih.gov/15642772
http://dx.doi.org/10.1038/JHH.2008.42
https://pubmed.ncbi.nlm.nih.gov/18528411
http://dx.doi.org/10.3389/fphys.2021.775052
http://dx.doi.org/10.1016/J.ARTRES.2010.03.001
http://dx.doi.org/10.1038/S41598-022-09256-Z
https://pubmed.ncbi.nlm.nih.gov/35338246
https://pubmed.ncbi.nlm.nih.gov/35338246
https://pubmed.ncbi.nlm.nih.gov/35338246
http://dx.doi.org/10.1109/ACCESS.2020.3041498
http://dx.doi.org/10.1097/HJH.0000000000002925
http://dx.doi.org/10.1097/HJH.0000000000002925
http://dx.doi.org/10.1097/HJH.0000000000002925
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb28
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb28
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb28
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb28
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb28
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://refhub.elsevier.com/S1746-8094(24)00219-2/sb29
http://dx.doi.org/10.15420/cfr.2017:4:2
https://www.cfrjournal.com/articles/ventricular-arterial-coupling-chronic-heart-failure
https://www.cfrjournal.com/articles/ventricular-arterial-coupling-chronic-heart-failure
https://www.cfrjournal.com/articles/ventricular-arterial-coupling-chronic-heart-failure
https://www.sciencedirect.com/science/article/pii/0002870391901539
https://www.sciencedirect.com/science/article/pii/0002870391901539
https://www.sciencedirect.com/science/article/pii/0002870391901539
http://dx.doi.org/10.1093/eurheartj/ehl254
http://dx.doi.org/10.1093/eurheartj/ehl254
http://dx.doi.org/10.1093/eurheartj/ehl254
http://dx.doi.org/10.1016/j.avsg.2016.11.025
http://dx.doi.org/10.1016/j.avsg.2016.11.025
http://dx.doi.org/10.1016/j.avsg.2016.11.025
http://dx.doi.org/10.1016/j.bspc.2022.103538
http://dx.doi.org/10.1016/j.bspc.2022.103538
http://dx.doi.org/10.1016/j.bspc.2022.103538
http://dx.doi.org/10.3390/s22166054

	A region-based cross-correlation approach for tonometric carotid–femoral Pulse Wave Velocity Assessment
	Introduction
	Material and Methods
	Experimental Data
	Proposed Algorithm
	Robustness of the Algorithm
	Identification of Processing Window
	Statistical Analysis

	Results
	Processing Window Assessment
	Pulse Wave Velocity Assessment

	Discussion
	Processing Window Assessment
	Pulse Wave Velocity Assessment

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


