) '?(”9 R}
’ k\emﬁ "
\‘.iiﬁl i b

#

A\

\‘\ 1859 J’

Doctoral Program in Pure and Applied Mathematics (35 cycle)

Cryptographic Innovations in

Blockchain
Algorithms for blockchain technology

By

Andrea Gangemi

skoskoskokskok

Supervisor:
Prof. Danilo Bazzanella

PhD chairman:

Prof. Anna Maria Fino

DISMA "G.L. Lagrange" - Politecnico di Torino
Dip. di Mat. "G. Peano" - Universita di Torino

MAT/02 - ALGEBRA

2019-2023

Abstract

Blockchain is a disruptive technology that has gained prominence in recent years,
after Satoshi Nakamoto published the well-known paper that gave birth to Bitcoin.
One of the reasons blockchains are attractive is the use of cryptography, which
is utilised in particular to ensure scalability, privacy and security. Despite their
success, blockchains are still relatively young, which is why new protocols are
constantly being born with the goal of improving the points listed above. In addition,
since blockchains use elliptic curves cryptography for key generation, another open
problem is the introduction of post-quantum algorithms that do not compromise the
scalability of the blockchain itself. This work focuses on four different proposals
aimed at improving or analyzing some of the currently used algorithms. First,
TRIFORS, a ring signature based on a modern cryptographic assumption that is
considered post-quantum, namely the equivalence between alternating trilinear forms,
is described. This signature is heavier than that produced by algorithms based on
pre-quantum assumptions, but it is still competitive with the state-of-the-art of other
post-quantum proposals. Second, a protocol that can be seen as a generalization of
Bitcoin’s Proof-of-Work is described. To insert a block, the network does not have to
find a single nonce, but must find a few. This simple modification allows for a more
equitable distribution of rewards and at the same time has the effect of regularizing
the time of block insertion. Next, an idea for a new dispute resolution protocol
that can be built on the Ethereum blockchain is presented. In this case, privacy
is ensured by design through the use of the zero-knowledge protocols Semaphore
and MACI (Minimal Anti-Collusion Infrastructure), which provide, among other
things, resistance to Sybil-type and collusion attacks. These two protocols are based
on zk-SNARKSs, a family of succinct zero-knowledge cryptographic algorithms
that has gained much prominence recently for ensuring scalability and privacy in
decentralised contexts. The idea is also among the first in the literature to introduce

social governance rather than one based on economic incentives, through the use of

iii

soulbound tokens. Finally, the security of some addresses generated on the secp256k1
elliptic curve, used in particular by Bitcoin and Ethereum, is analyzed. In particular,
this paper shows that the weak keys found in a previous work are most likely due
to a faulty implementation of the wallet and not to an inherent weakness in the

cryptographic protocols used.

Contents

List of Figures vii
List of Tables viii
PartI What do we already know? 1
1 Introduction 2
2 Cryptography 5
2.1 Elliptic Curve Cryptography 5

2.2 HashFunctions 7
2.2.1 The Random Oracle Model 8

2.3 Digital Signatures Lo 9
23.1 Anexample: ECDSA 10

24 Ringsignatures 10
24.1 Anexample: LSAG., 16

2.5 Commitments e e e e e e 17
2.5.1 Pedersen commitment 18

252 Merkletrees e 19

2.6 SigmaProtocols 20

2.7 The Fiat-Shamir transform 22

2.8 Zero-knowledge Proofs 23
2.8.1 zk-SNARKs 24

3 Blockchain Basics 26
3.1 Whatisablockchain? 26
3.1.1 Blocks 28

3.1.2 Consensus Protocols 28

313 Forks 31

32 Bitcoin. e 32

3.3 Ethereum 34

Contents v
3.3.1 Smartcontracts. 35

332 Tokens 35

3.3.3 Decentralised Autonomous Organisations 36

34 Monero e e 36

3.5 Address generation 38
3.5.1 Private and public Key encoding 38

3.5.2 Bitcoinaddresseso 38

3.5.3 Ethereumaddresses. 39

3.54 Dogecoinaddresses 40

3.5.5 Litecoinaddresses 40

35.6 Dashaddresses 40

357 Zcashaddresses. 40

3.5.8 Bitcoin Cashaddresses 41

4 Additional tools 42
4.1 Tensors and Alternating Trilinear Forms 42
4.1.1 Known attacks to the sSATFE problem 45

4.2 Applications of zk-SNARKSs to the blockchain environment 46
42.1 Semaphore 46

422 MACI e 47

43 Quadraticvoting 49
44 Soulboundtokens L Lo 51
PartII What more do we know now? 52
5 TRIFORS: LINKable Trilinear Forms Ring Signature 53
5.1 Index-hiding Merkle trees and seed trees 57
5.2 The Base OR Sigma Protocol 58
5.2.1 Theprotocol, . 60

5.3 Optimisations and the Main OR Sigma Protocol 64
5.3.1 Using fixed weight challenges 64

532 Seedtree 64

533 Salting 69

5.3.4 The main OR sigma protocol 69

5.3.5 Tagsandlinkability 72

5.4 The (Linkable) Ring Signature Scheme 74
5.5 Solving sATFE to Attack the Schemes 76
5.5.1 Attacks to the ring signature TRIFORS 77

vi Contents
5.5.2 Attacks to the linkable ring signature Link-TRIFORS 79

5.6 Parameters. 80

6 Bitcoin: a new Proof-of-Work system with reduced variance 82
6.1 New Proof-of-Work systems 84

6.2 Analysis of the new systems 87

6.3 Blockchainforks 90

6.4 Numerical simulations 93

7 Towards a Privacy-preserving Dispute Resolution Protocol on Ethereum 97
7.1 The new Dispute Resolution Protocol 100
7.1.1 Setup Phase: judges’ registration 101

7.1.2 Phase 1: voting and proposals by the judges 101

7.1.3 Phase 2: users vote on the judges’ proposals 103

7.2 InCentives i i e e e e e e e 104
7.2.1 Incentivesforusers 104

7.2.2 Incentives forjudges 105

8 Special Subsets of Addresses for Blockchains using the secp256k1 Curvel07
8.1 Thesmallsubsets 108

8.2 Experimental environment and development 109
8.2.1 Blockchain addresses extraction 109

8.2.2 Development 110

8.3 Cosetsexaminationo 111
8.3.1 Othercurvestoexamine 112

9 Conclusions 115

References 118

List of Figures

2.1
2.2

2.3
24

3.1

5.1
5.2
53

54
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Hiding game for commitment schemes. 18
a): A merkle tree. The commitment c is the root of the tree. b): To
check that the transaction 1 is in the tree, the prover must reveal the

red values, which represent the opening stringo. 20
Generic Sigma Protocol oL oo 21
The Fiat-Shamir transform 23

Top: an example of a regular fork. Bottom: the fork is resolved in

favor of the upper branch. The orphan block is shown in pink. . . . 31
Algorithms for the base OR Sigma protocol 61
Unranking algorithm, 65
Red sub-trees contain only leaves to hide. Black circles are the sent

NOdes. e 68
Algorithms for the main OR Sigma protocol 70
Algorithms for the base OR Sigma protocol withtag 74
Commitment Reproducibility algorithms 75
TRIFORS algorithms. 76
Link-TRIFORS algorithms. 77
Mining pools active during the year 2021 94
Expected annual profit for different valuesof j 94
Decrease in variance for different valuesof j 95

Number of forks involving two or more miners for different values of j 96

List of Tables

5.1

5.2

5.3
54

8.1
8.2

Size in KB of the signatures, where the security parameter A is 128

and Risthesizeofthering. 55
Size in KB of the public keys, where the security parameter A is 128

and Risthesizeofthering. 56
Attacks to SATFE from [17]. 78

Parameters and signature sizes in KB of the non-linkable ring signature. 81

Total number of blockchain addresses, up to May 2022. 110
Number of addresses used in the analysed blockchains found by this
attack. 111

Part 1
What do we already know?

Cryptography is a constantly evolving field. In recent years, major steps forward
have been made in terms of both theory and practical applications. One example is
the increasingly widespread use of blockchain technology. This first part summarises

the theoretical foundations on which the innovative part of this thesis is based.

Chapter 1
Introduction

Cryptography is the study of techniques for secure communication in the presence
of adversarial behaviour. It can be divided into two macroareas: symmetric cryptog-
raphy [24] and asymmetric cryptography [48].

The first category was the only one known and used up to the 1970s, and it uses
the same secret key to encrypt and decrypt a message. Asymmetric (or public key)
cryptography instead uses two different keys: a public key to encrypt a message, and
a secret key to decrypt it. It was born in 1976, when Diffie and Hellman wrote about
the possibility to use mathematics to link these two keys. In particular, it must be
computationally intractable to derive the secret key knowing only the public key,
while the generation of the latter starting from the former is straightforward.

There are many different assumptions that can be used to build secure schemes: one
well-known example is the Discrete Logarithm Problem assumption [96]. Given a
finite cyclic group G, generated by an element g, and any other element of the group
a, we know that for sure the relation g* = a for some x € Z holds. However, knowing
the elements g and a, the computation of x is not computationally efficient if the
cardinality of G is big enough. In this context, x represents the secret key, while
a = g* is instead the public key.

More recently, Elliptic Curve Cryptography (ECC) [82, 84, 127] became predom-
inant since it provides the same level of security of classic DLP systems, using
much smaller keys. ECC security is based on a generalization of the DLP, known as
Elliptic Curve Discrete Logarithm Problem [128]. Given an elliptic curve E defined
on a finite field IF,, and given two points of the curve G and P, it is unfeasible to find
the value d such that P = dG, where the notation dG denotes the sum of the point G

with itself d — 1 times.

One of the most important cryptographic primitives is the digital signature [48],
which provide non-repudiation, meaning that the signer of a document that effec-
tively used his private key cannot claim that he did not sign that document. Digital
signatures are a crucial cryptographic primitive for various applications; one example
is given by blockchains [103], which are decentralized, distributed and public digital
ledgers that are used to record transactions. Blockchain keys are generated exploiting
elliptic curve cryptography and they are saved into a wallet. Every user is represented
by an address, which is simply the hash of the respective public key. In this context,
a digital signature certifies that a transaction has occurred correctly.

In recent years, more advanced signature protocols such as multisignatures or ring
signatures are among the most popular research topics, and blockchain is precisely
one of their main applications. Another essential aspect is that these signatures
should be based on assumptions that are assumed to be resistant to quantum com-
puting. In fact, over the past few years, NIST [37] has been trying to standardise
digital signature algorithms based on post-quantum assumptions. During 2022, some
protocols were indeed standardised, but the search for algorithms that are even more
competitive but still secure continues.

Another family of algorithms with a fundamental role in the functioning of a
blockchain are consensus protocols [119]: the most famous example is surely Proof-
of-Work [103]. In this case, millions of nonce are generated in such a way as to find
one that, when entered as input to a hash function along with other fixed information,
returns a digest that is less than a certain predetermined target. Those who can
find this value receive a reward in cryptocurrency, which is thus an incentive for
participation in this protocol. A downside of this type of algorithm is that only
those who find the nonce get the reward, while the rest of the network gets nothing.
This dynamic penalises small users, as they might invest thousands of dollars in
equipment, without actually ever being able to win the game.

Even though the security of a blockchain lies in cryptography, and thus in mathemat-
ics, conflicting situations can occur: an example can be a cryptocurrency that can be
purchased on an exchange but turns out to be a scam. Some decentralised applica-
tions that deal with these issues exist [75], but at the moment the techniques used are
not optimal for the ecosystem they refer to: for instance, they do not guarantee the
privacy of the users involved, and they force parties to accept a decision made by

other users.

4 Introduction

Finally, for a blockchain to be considered secure, it is essential that the wallets
generate the keys, and hence the addresses, in a truly pseudo-random manner. In
fact, if one is not careful enough, it is possible to trace the aforementioned key from
the very address, exploiting the structure of the group of points of an elliptic curve
defined over a finite field. Tracing the secret key means being able to spend the
cryptocurrency contained in its address on behalf of someone else.

The first part of the thesis is devoted to a summary of the mathematical and
cryptographic tools used in the second part of the work. In more detail, Chapter
2 describes some cryptographic algorithms such as commitment schemes, digital
signatures and sigma protocols, while Chapter 3 recaps how a blockchain works and
how cryptography comes into play within this technology. Finally, in Chapter 4 some
additional tools that will be crucial in the second part of this work are described,
such as tensors or quadratic voting.

The remaining chapters are devoted to the original results and are therefore the
real focus of this thesis. They are presented from the most theoretical to the most
applied results. In particular, Chapter 5 [43] describes a ring signature based on the
alternating trilinear form equivalence [131], a modern cryptographic assumption
believed to be post-quantum. Ring signatures are to date used by blockchains such
as Monero [2] and could therefore be a cryptographic primitive used within other
blockchains in the future. Chapter 6 [10] describes an easily implemented alternative
to the Proof-of-Work protocol used by Bitcoin. Among its advantages, this protocol
would allow mining rewards to be distributed more equitably between all parties
involved. Chapter 7 [59] describes an idea for a dispute resolution protocol for the
Ethereum ecosystem [33] that also provides some level of privacy to the parties
involved. Finally, Chapter 8 [47] is a two-way generalization of an attack already
studied in 2020 by Sala, Sogiorno, and Taufer [118]. Their techniques allowed them
to recover the secret key of some Bitcoin addresses. The first generalization concerns
the format used to encode the addresses, while the second one extends the attack to

other blockchains that use the same elliptic curve.

Chapter 2
Cryptography

This chapter introduces all the cryptographic primitives that will be used in the
remainder of this work. Some of the definitions given are not standard, but have been
adapted according to the properties and theorems that will be proved in the innovative
part of this thesis. More in detail, Section 2.1 describes elliptic curve cryptography,
which is the standard in all blockchain implementations, while sections 2.2, 2.3
and 2.4 introduce hash functions, digital and ring signatures, respectively. Some
classic protocols typically used in a blockchain context, like ECDSA and LSAG,
are also presented. Section 2.5 introduces cryptographic commitments and reports
two well-known examples, namely Pedersen commitments and Merkle trees, while
Section 2.6 describes sigma protocols, a family of three steps interactive protocols.
Finally, Section 2.7 briefly talks about the Fiat-Shamir transform, a tool that is used
to convert an interactive protocol into a non-interactive one, and Section 2.8 focuses
on zero-knowledge proof algorithms, in particular on zk-SNARKSs, that also have

interesting properties that make them suitable for blockchain applications.

2.1 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) was independently suggested in 1985 by Neal
Koblitz and Victor S. Miller [84, 102]. Its adoption started some years later: the
biggest advantage it has over the classic cryptography on finite fields is the possibility
to use shorter keys, while maintaining the same security level.

6 Cryptography

The most used curves are the ones written in the short Weierstrass form, over a finite
field.

Definition 1 (Short Weierstrass Form Curve). An elliptic curve in short Weierstrass
form E, defined over a finite field F, with char(IF,) # {2,3}, is the set of points (x,y)

in the Cartesian plane that satisfies the equation
y: =x+ax+b, (2.1)
where a,b € F, must fulfill the condition 4a3 +27b* # 0.
Denote with E(IF,;) the set of points of the curve E on the finite field Fy, that is
E(Fy) ={(x,y) €E[x,y € Fs} U{O},

where O is the so-called point at infinity of the curve.

It is well known that the elements of E(IF,) satisfy a group law with respect to a
certain operation +. Given the points P = (xp,yp) and Q = (xp,yp), the possible
cases are the following:

» If P # Q, then the point R = P + Q has coordinates

xg = A% —xp —xg, (2.2)
YR = A(xp —Xr) — P, (23)
where A =)ycg—:)y; is the angular coefficient of the line passing through P and

0.

e If P = Q, then the point R = P+ Q = 2P has coordinates

XR = ;Lz — 2Xp,

YR = A(xp —xR) — yp,

. . 3x12D+a
with A = TR

* If there is not a third intersection with the curve, that is the line passing between
P and Q is parallel to the y-axis, then P+ Q = €, the point at infinity, which
also represents the identity element of the group.

2.2 Hash Functions 7

The sum of two points can be computed efficiently with the Double-and-Add algo-
rithm [67].

Another category of curves used for cryptography applications are known as Twisted
Edward Curves [15].

Definition 2 (Twisted Edwards Curve). A twisted Edwards curve E, defined over a
finite field I, with char(IF,) # 2, is the set of points (x,y) in the Cartesian plane that

satisfies the equation
ax® +y> = 1 +dx*y?, (2.4)

where a, d € F,.

The elements of E(IF,) satisfy a group law with respect to a certain operation
+. Given the points P = (xp,yp) and Q = (xg,yp), then the point R = P+ Q has
coordinates

= Xpyg +Xxgyp
1 +dxpxgypyo’
__ YPYg —axpxg
R — .
1— denypr

The advantages of this form consist in not having to distinguish between 3 different
cases depending on the points P and Q and in a more efficient point sum operation,
thus enabling faster cryptographic algorithms.

For more details, the interested reader can look at [102, 127, 82].

2.2 Hash Functions

Definition 3 (Hash function). Let X be an alphabet and let ¥* be the set of all words
(of arbitrary length) obtained from ¥. A hash function is a function h : £* — X", for
some fixed n. A couple of elements a,b € ¥ such that h(a) = h(b) is called collision.

Most applications use £ = {0, 1} and n = 160,256 or 512. The value h(x) is

called hash or digest of x; it follows from its definition that /4(x) cannot be injective.

Hash functions must satisfy the following properties to be suitable for cryptogra-
phy:

8 Cryptography

* Avalanche effect: changing a single bit in the input must change most of the
bits of the output;

* One-way: given the value of the digest A(x), it must be computationally

unfeasible to compute the input x;

* Collision resistant: the research of any collision (a,b) is computationally
unfeasible;

* second preimage resistant: Fix a € ¥*. Then, the computation of a element
b € X*, b # a, such that h(a) = h(b) is computationally unfeasible.

Clearly, collision resistance implies second preimage resistance. Finding any
two inputs which hash to the same value should require work equivalent to about 23
hash computations. In fact, a well-known attack exploits the birthday paradox [135]

to generate collisions.

Definition 4 (Cryptographic hash function). A cryptographic hash function is a hash

function that enjoys the avalanche effect, one-way and collision resistant properties.

There are many hash functions that are used in cryptographic applications. Some
examples are RIPEMD 160 [49], SHA256 [111] and Keccak256 [16]. .

2.2.1 The Random Oracle Model

The random oracle model (ROM) assumes the existence of a publicly-accessible
oracle that everyone can access, which works basically as a black box. This oracle is
assumed to implement a completely random function. Their instantiation in practical
applications is given by a cryptographic hash function, since truly random oracles
cannot exist.

The ROM is useful to do security proofs. The idea is the following: if an adversary
</ is able to break a scheme that was assumed secure under the ROM, that is a
scheme whose security has been analysed in a framework where hash functions are
treated as random oracles, then any cryptographic hash function used in practice
for this application would not be enough. Hence, a proof done under this model
gives some trust, since it is assumed that cryptographic hash functions are secure if
implemented correctly.

2.3 Digital Signatures 9

Clearly, in the reality there is no way to achieve a truly random function, and there
are examples of algorithms that are secure under the ROM, but are then insecure
when cryptographic hash functions are used; however, this proof is most of the times

enough to obtain some confidence on the security of the scheme.

2.3 Digital Signatures

Definition 5 (Digital Signature). A digital signature scheme is a quadruple of proba-
bilistic polynomial time (PPT) algorithms Setup, KGen, Sign and Verify such that:

 Setup: it takes as input the security parameter A and it returns the public

parameters pp used by the scheme;

* KGen: it takes as inputs the public parameters pp and some random coins rr.

It returns the secret/public key pair (sk, pk);

 Sign: it is a probabilistic algorithm. It takes as inputs the secret key of the
signer sk and the message msg. The output of the algorithm is the signature

o,

* Verify: it is a deterministic algorithm. It takes as inputs the public key pk, the
message msg and the signature ©. It returns 1 (accept) if the signature is valid

and 0 (refuse) otherwise.

Definition 6 (Correctness). A digital signature is correct if for every security param-

eter A € N, for every public key pk, and for every message msg,

pp < Setup(14),
P | Verify(pk,msg,0) =1| (sk,pk) < KGen(pp,rr), | =1.
o < Sign(sk, msg).

Informally, this means that the verification algorithm of a signature generated cor-

rectly will always output 1.

10 Cryptography

2.3.1 An example: ECDSA

One digital signature that is highly prevalent in the blockchain landscape is the Ellip-
tic Curve Digital Signature Algorithm (ECDSA). Its algorithms are the following:

* Setup: given a security parameter A, this algorithm returns the public parame-
ters pp < (E,F,, G,n,h), where E is the elliptic curve defined over the finite
field Fy, G is a base point of the elliptic curve of prime order n, and 4 is a hash

function;

* KGen: given the public parameters pp, this algorithm returns the secret/public
key pair of the user (sk,pk) < (d,P), where d < I, and P = dG is a elliptic
curve point;

* Sign: the sender computes the digest of the message & <— h(msg), then chooses
k «<- F; and computes the point R = kG. Afterwards, the sender takes the
x-coordinate of the point 7 and computes the value s <— (A4 r-sk)k~! mod n.
The output of the Sign algorithm is ¢ < (r,s);

* Verify: the verifier, knowing the message msg, the signature ¢, and the public

key of the sender pk, computes the digest & < h(msg) and the value w < s~ !
mod 7, and then calculates the point Q <— whG + wr - pk. Finally, the verifier
checks if the x-coordinate of the point Q is equal to r. If this happens, the

signature is valid.

2.4 Ring signatures

Ring signatures were introduced in 2001 by Rivest, Shamir and Tauman [117]. They
are a simplified variant of group signature schemes [35] and are useful when the
involved members do not want to cooperate. A key element in these schemes is the
ring: a set of R public keys which belong to different users. The signature is then
produced by a single user, exploiting all the R public keys of the ring.

In a ring signature, after the key generation phase, where each user will receive a
secret/public key pair (sk, pk), the signer I will produce the signature o starting from
a message msg, the ring containing the R public keys, and his secret key sk;. The
verifier will then be able to check the correctness, knowing only the message msg,

2.4 Ring signatures 11

the ring and the signature . Moreover, a ring signature can also be linkable. In this
case, an additional value T will be produced during the sign phase. This value will
not change if it is computed starting from the same secret key, so, if the same user

produces two different signatures, they will be linked.

This section defines more formally what a ring signature is and some additional
properties that they usually satisfy.

Definition 7 (Ring Signature). A ring signature consists of four probabilistic polynomial-
time (PPT) algorithms Setup, KGen, Sign and Verify such that:

e Setup: it takes as input the security parameter of length A and it returns the

public parameters pp used by the scheme;

e KGen: it takes as inputs the public parameters pp and some random coins rr.

It returns the secret/public key pair (sk, pk);

* Sign: it takes as inputs a secret key sk;, where I € {1,... R} is the index of
the signer in the ring, the message msg and the ring Q = {pk,...,pkg}. The
public key obtained starting from sk; must belong to the ring, that is pk; € Q.
The output of the algorithm is the signature G,

o Verify: it takes as inputs the ring Q = {pky,...,pkg}, the message msg and
the signature ©. It returns I (accept) if the signature is valid and 0O (refuse)

otherwise.

Ring signatures must satisfy three core properties: correctness, anonymity and

unforgeability.

Definition 8 (Correctness). A ring signature is correct if, for every security parameter
A €N, for every ring Q composed of R = poly(A) public keys, for every index
I €{1,...,R}, and for every message msg, then

pp Setup(ll),

sk;, pk;) <— KGen(pp,rri) Vi € {1,...,R},
P | Verify(Q,msg,0) =1 (ski Pk (pp.rri) {) =1.
Q:={pky,...,pkg},

o < Sign(sk;, msg, Q).

12 Cryptography

Informally, this means that the verification algorithm of a ring signature generated

correctly will always output 1.

Definition 9 (Anonymity). A ring signature is anonymous if, for every security
parameter A € N, and for every ring composed of R public keys, any PPT adversary
o/ has at most a negligible advantage when playing the following game against a

challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the
algorithm KGen, together with random coins rr;, to obtain R secret/public key
pairs (sk;,pk;), i € {1,...,R}. He samples a bit b +s{0,1}.

(B) The challenger gives pp and the list of random coins (rry,...,rrg) to <.

(C) <f sends to the challenger a challenge (Q,msg,ig,i1). The ring Q must
contain the public keys pk;, and pk; . The challenger computes the signature
0" < Sign(sk;,,msg,Q) and sends it to <.

(D) < outputs a bit b* and wins if b = b*.

This property means that it should not be possible to guess the secret key that
was used to produce a signature, even if the adversary knows all the secret keys that
were used to generate the public keys in the ring.

Definition 10 (Unforgeability). A ring signature is unforgeable if, for every security
parameter A € N, and for every ring composed of R public keys, any PPT adversary
</ has at most a negligible advantage when playing the following game against a

challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the
algorithm KGen, together with random coins rr;, to obtain R secret/public key
pairs (sk;,pk;), i € {1,...,R}. He calls V = {pky,...,pkg} the set with the
public keys. He finally initialises two empty sets S and C.

(B) The challenger gives pp and the set'V to < .
(C) <f can create signing and corruption queries a polynomial number of times:

— (AdvSign,i,msg,Q): the challenger checks if pk; € Q CV. If that is true,
he computes & < Sign(pk;, msg, Q). The challenger gives & to </ and
adds (i,msg,Q) to S.

2.4 Ring signatures 13

— (AdvCorrupt,i): the challenger adds pk; to C and returns rr; to < .

(D) <f outputs (QQ*, msg*,0*). If Q* CV\C, (-,msg*, Q") & S and
Verify(Q*,msg*, 6*) = 1, then the adversary wins.

Finally, this property means that it should be impossible to forge a valid signature

without knowing one secret key corresponding to one of the public keys in the ring.

Moreover, a ring signature can have the additional property of being linkable,
that is everyone can check if two signatures were produced by the same signer (i.e.,
by the same secret key).

Definition 11 (Linkable Ring Signature). A linkable ring signature is a scheme that
consists of the four PPT algorithms previously described for a classic ring signature

scheme, plus the following PPT algorithm:

* Link: the inputs are two different signatures oy and 1. The algorithm outputs
1 if the two signatures were produced starting from the same secret key and 0
otherwise.

A linkable ring signature must satisfy the following additional properties: linka-
bility, linkable anonymity and non-frameability. Notice that the correctness property
must be slightly modified: if the same user generates two signatures correctly, both
the Verify and the Link algorithms will always output 1.

Definition 12 (Linkability). A linkable ring signature is linkable if, for every security
parameter A € N, and for every ring composed of R public keys, any PPT adversary
o/ has at most a negligible advantage when playing the following game against a

challenger:

(A) The challenger runs the algorithm Setup that outputs pp and gives it to <7 .

(B) < runs the algorithm KGen and outputs the set V = {pky,...,pkg} and the

set of tuples {(o1,msg,Q1),...,(Or+1,Msgry1, Qr+1) -

(C) o/ wins if these three conditions hold:

-Vie{l,...,R+1}, thenQ; CV.

14 Cryptography

- Vie{l,...,R+ 1}, then the algorithm Verify(;, msg;, 0;) outputs 1.
- Vi,je{l,...,R+1} such that i # j, then Link(o;,0;) = 0.

The linkability property guarantees that, if an adversary produces more than k
signatures with a set of k public keys, then the Link algorithm will output 1 for at
least one pair of signatures.

Definition 13 (Linkable Anonymity). A linkable ring signature is linkable anony-
mous if, for every security parameter A € N, and for every ring composed of R public
keys, any PPT adversary <f has at most a negligible advantage when playing the

following game against a challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the
algorithm KGen, together with random coins rr;, to obtain R secret/public key
pairs (sk;,pk;), i € {1,...,R}. He calls V = {pky,...,pkg} the set with the
public keys. He also samples a bit b < {0, 1}.

(B) The challenger gives to the adversary pp and the setV.

(C) The adversary chooses and outputs two public keys (pky,pk}) € V. Denote
0 1

with (skg,sk}) the respective secret keys.

(D) The challenger gives to <f all the random coins rr; related to the public keys
pk; € V\{pko, pki}.

(E) of queries for signatures, giving as inputs to the challenger a public key
pk € {pky,pki}, a message msg and a ring Q that contains pky and pk]:
— If pk = pkg, the challenger outputs o < Sign(skj,, msg, Q).
— If pk = pk], the challenger outputs ¢ < Sign(skj_,, msg, Q).

(F) < outputs a bit b*, and he wins the game if b = b*.

This property says that an adversary cannot guess which secret key was used
to produce signatures. Differently from the anonymity property, in this case the
adversary does not have access to all the secret keys, otherwise he could use the

linkability to understand who was the signer.

2.4 Ring signatures 15

Definition 14 (Non-Frameability). A linkable ring signature is non-frameable if, for
every security parameter A € N, and for every ring composed of R public keys, any
PPT adversary </ has at most a negligible advantage when playing the following

game against a challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the
algorithm KGen, together with random coins rr;, to obtain R secret/public key
pairs (sk;,pk;), i € {1,...,R}. He calls V = {pky,...,pkg} the set with the
public keys. He finally initialises two empty sets S and C.

(B) The challenger gives pp and the set 'V to the adversary < .
(C) <f can create signing and corruption queries a polynomial number of times:

— (AdvSign,i,msg,Q): the challenger checks if pk; € Q C V. If that is true,
he computes ¢ < Sign(sk;, msg, Q). The challenger gives © to </ and
adds (i,msg,Q) to S.

— (AdvCorrupt,i): the challenger adds pk; to C and returns rr; to < .
(D) <f outputs (Q*, msg*,c*); he wins if these two conditions hold:

— Verify(Q*, msg*,0*) = 1 and (-, msg*,Q*) ¢ S;

- Link(c*,0) = 1 for some signature G given by the challenger starting
from a query of the form (i,msg,Q) € S with pk; € V\ C.

Finally, this property guarantees that it should not be possible for an adversary to

create a valid signature that is linked to a signature produced by an honest party.

Several ring signatures were proposed in these years. [117] described two
different protocols based on the RSA and Rabin assumption, while Liu, Wei and
Wong [91] introduced in 2004 a new group signature algorithm known as Linkable
Spontaneous Anonymous Group (LSAG), based on the Discrete Logarithm Problem.
More digital signatures based on this assumption have been introduced in recent
years and have found application for example within the Monero blockchain (See
Chapter 3 and [106, 61]). Nowadays, ring signatures schemes have an application in

cryptocurrencies and e-voting [112].

16 Cryptography

24.1 Anexample: LSAG

As an example, the LSAG ring signature is illustrated in the following:

* Setup: given a security parameter A, this algorithm returns the public parame-
ters pp < (E,FF,, G,n,h,H,R), where E is the elliptic curve defined over the
finite field F;, G is a generator of the points of the elliptic curve of prime order
n, h is a hash function that returns integers, while H is a hash function that

returns elliptic curve points. R is instead the cardinality of the ring;

* KGen: given the public parameters pp, this algorithm returns the secret/public
key pair of each user i involved in the ring: (sk;, pk;) < (k;, K;), where k; <},

and K; = k;G is an elliptic curve point;

* Sign: let msg be the message to be signed, Q = {pk;,...,pkg} the ring, and
sk, the private key corresponding to the public key actually used (denote
them pk, € Q). The sender computes the key image (which is used for the
linkability) K = skH (sk,) and then generates o < F ¢ and r; <sFy, with
ie{l,...,R}, i #m.

Then, the signer computes ¢+ = h(msg || &G || oH (pk,)); at this point, for
eachi=mn+1,...,m— 1, he computes

civ1 = h(msg || G+ cipk; || riH (pk;) + ciK).

He sets ry <— o — czsk, mod n, and finally obtains the signature

o<« (c1,r1,...,r,K).

* Verify: the verifier, knowing the message msg, the signature o, and the ring
Q = {pky,...,pkg}, checks if nK = 0. Afterwards, for each i =1,...,R, he
computes

ciy1 = h(msg || riG+ cipk; || riH (pk;) +ciK).

The signature is accepted if ¢} = ¢;.

Security proofs for this signature can be found in [91].

2.5 Commitments 17

2.5 Commitments

A commitment scheme is a cryptographic primitive that allows one to commit to
a chosen value while keeping it hidden to others, with the ability to reveal the

committed value later.

Definition 15 (Commitment scheme). A commitment scheme I1c,,,, on a message
space M is a triple of PPT algorithms (PGen, Commit, Open) such that:

. PGen(ll) takes as input a security parameter A and returns the public param-

eters pp;

o Commit(pp,m) takes as input the public parameters pp together with a mes-
sage m in M, and returns the commitment com and the opening material

ry

* Open(pp,m,com,r) takes as input the public parameters pp, the message m,
the commitment com, and the opening material r; it returns accept if com is

the commitment of m or reject otherwise.

A commitment scheme is secure if it satisfies the properties of hiding and binding.

Definition 16 (Hiding). Let I1com = (PGen, Commit, Open) be a commitment scheme
and let Hiding(Ilcom) be the hiding game represented in Figure 2.1. A commitment
scheme Tlcom is computationally hiding if, for all PPT adversaries <f, there is a

negligible function negl(A), with A being the security parameter, such that
1
P« wins Hiding(Ilcom)| < 5 +negl(A).

If, for every pair my,my, the commitments comy and com; have the same distribu-
tion, where (com;,r;) = Commit(m;) for i = 0, 1, then the commitment is said to be
perfectly hiding.

Definition 17 (Binding). A commitment scheme ¢y = (PGen, Commit, Open) is
computationally binding if, for all PPT adversaries <7, there is a negligible function
negl(A), with A being the security parameter, such that

18 Cryptography

Hiding(IIcom)
Adversary A Challenger C

PP pp PGen(lA)
Choose mg, m1 € {0,1}" Mo, M1 b«s{0,1}

com com < Commit(pp, ms)

/
Guess b’ b A wins if b’ = b
B —

Fig. 2.1 Hiding game for commitment schemes.

pp(—PGen(l)“),

mo # my,

P | (com,mg,ro,my,ry) < <7 (pp)
Open(myg, com, ry) = accept,

Open(m,com,r) = accept

is negligible in the security parameter A. If negl(A) = 0, then the commitment
scheme is said to be perfectly binding.

Commitment schemes are used in many cryptographic applications. The follow-
ing two subsections report two classical commitment schemes that are also used in
the blockchain environment. The interested reader can check [24] to obtain more

information about how commitments work.

2.5.1 Pedersen commitment

The Pedersen commitment [110] is based on the difficulty of the Discrete Logarithm
Problem. It has an application on the Monero blockchain [2], to hide the amount of

cryptocurrency exchanged in a transaction. Its algorithms are the following:

* PGen: it takes as input the security parameter of length A and it returns the
public parameters pp used by scheme, that is the elliptic curve E defined over
a finite field I, the base point G, and another point H;

2.5 Commitments 19

* Commit: to commit a message m (which is encoded as a value a < IF,;), the
sender generates b <—$ I, and then computes the curve point C = aG + bH.
The pair (C,b) is the output of the algorithm.

* Open: on input m, C and b, the algorithm outputs accept if the commitment

was computed correctly, reject otherwise.

To check that the properties of hiding and binding hold, observe that the relation

H = yG is true, but no one knows 7.

* Perfect hiding: the verifier cannot guess a since there exist infinite pairs (a’,5)
such that aG+bH = d'G + b'H.

» Computational binding: the sender cannot know two different values a,a’ that
commit to the same value C. In fact, he does not know the value v, so it is
computationally hard for him to have two valid values (this is equivalent to

resolving the discrete logarithm problem on elliptic curves).

2.5.2 Merkle trees

A Merkle tree [98] is a well known data structure used for cryptography applications.
It is a binary tree, where each leaf contains the hashes {aj,...,ay} of some data that
must be hidden, and every other node which is not a leaf is given by the hash of the
concatenation of the values of its two children.

In this case, the root of the tree represents the commitment C. Suppose the tree has
depth d: to efficiently check that a; is a leaf of the tree, the prover must send to
the verifier, as the opening string o, one information for each level of the tree. The
verifier will then compute d different hashes, and check if the final value he obtains
equals the committed root C.

A complete balanced Merkle tree is a tree where each node has exactly two children,
excluding the leaves, whose number is equal to M = 2¢ for some positive integer
d. Chapter 5 will consider a slight modification of the construction just described,
so that the prover, in addition to proving that an element g; is in the list, does not

reveal its position within the tree. This structure is known as index-hiding Merkle tree.

It can be easily proved that, if the used hash function is collision resistant, then
the obtained commitment is both perfectly hiding and computationally binding.

20 Cryptography

Merkle trees are used by blockchains to store in the header of a block the root of the

hash of all transactions: see Chapter 3, Section 3.1.1, for further details.

Fig. 2.2 a): A merkle tree. The commitment c is the root of the tree. b): To check that the
transaction 1 is in the tree, the prover must reveal the red values, which represent the opening
string o.

2.6 Sigma Protocols

Let NP be the set of all the decision problems L which can be efficiently verified.

Definition 18 (NP relation). For each L € NP, define the relation
H(L) ={(x,w) | x € L and w is a witness for x}.

A relation # is a NP-relation if there exists a problem L in NP such that # = % (L).

Definition 19 (Sigma protocol). Given an NP-relation %, a sigma protocol is a three-
move interactive protocol between two PPT machines, a prover & = (P com, Presp)

and a verifier V.

It is assumed that the prover uses some fixed randomness for its algorithms
(Pcom, Presp), and that they share their internal states. The output of # is assumed
to be in {0, 1}. More formally, given a pair (x,w) € % where x is the instance and w
is the witness for x, the protocol follows the flow in Figure 2.3. The transcript of the
protocol is defined as the triple (com,ch,resp). The challenge ch is sampled from

the space Sch,.

A sigma protocol must satisfy two well-known properties, correctness and sound-
ness. Here, it is reported a more specific definition of soundness, known an special

2-soundness, that will be used later in Chapter 5.

2.6 Sigma Protocols 21

Prover (x,w) Verifier (x)

com < Peom (x,w) com

ch ch <s$ S

resp

resp <= Presp (x,w,com, ch) return ¥ (x,com,ch, resp)

Fig. 2.3 Generic Sigma Protocol

Definition 20 (Completeness). A sigma protocol is correct if, for all (x,w) € Z, then

com < Peom (%),
P | 7 (x,com,ch,resp) =1 ch < S, =1.
resp <— Presp (X, w,com, ch)
Definition 21 (Special 2-soundness). A sigma protocol has special 2-soundness if
there exists a polynomial-time algorithm & called extractor such that, given two

accepting transcripts

(com,chy,resp;) and (com,chy, resp,) with chy # chy, then the probability
Pl(x,w) € Z :w < & (x,(com,chy,resp;),(com,chy,resp,))]
is overwhelming.

A sigma protocol can also satisfy different properties. In particular, the protocol
described in Chapter 5 must satisfy high min-entropy and commitment reproducibility.

Their definitions are reported below.

Definition 22 (High min-entropy). A sigma protocol has high min-entropy if, for
any (x,w) € #Z, and any adversary <7, the probability

com| < Peom (seed,x,w),
P |com; = com;

comy o7 (x,w)

is negligible in the security parameter A.

22 Cryptography

Definition 23 (Commitment reproducibility). A sigma protocol is commitment

reproducible if there exists a PPT algorithm RecCom such that, for any pair (x,w)
in %,

com <— Pcom (seed, x),

ch < S,
P | RecCom(x,ch,resp) = com
resp <— Presp (seed, x, w,com, ch),

¥ (com,ch,resp) =1

is overwhelming in the security parameter A.

This property allows to send only the challenge ch and the response resp, reducing
the size of the transcript. The verifier can reconstruct the commitment com using the

algorithm RecCom.

2.7 The Fiat-Shamir transform

The Fiat-Shamir transform is a technique used to convert a sigma protocol into a
digital signature scheme. It was introduced by Amos Fiat and Adi Shamir in 1986
[58]. The basic idea behind the Fiat-Shamir transform is to substitute the verifier
challenge generation with a hash function. This allows the prover to generate a
signature that can be verified by anyone who knows the public parameters of the
protocol. In particular, the signer acts as a prover running the identification protocol
by itself, therefore an interactive protocol is converted in a non interactive one using
Fiat—Shamir. Keep in mind that the transform can be used only if the protocol is
public coin, that is when the random generated by the verifier is also known by the
prover in the interactive version of the protocol.

The signer firstly generates a random commitment com, using Zcom (x, w). Then, he
generates by himself the challenge by applying a hash function H to the message
M and com. This is the main difference with an identification protocol, where the
challenge is generated by the verifier instead. Finally, he computes a response
Presp(x,w,com, ch). The transcript (com, ch, resp) is sent to the verifier.

In the verify phase, the verifier applies a hash function to (M, com), obtaining 4, and
accepts if & = ch and ¥ (x,com, ch, resp) returns accept.

2.8 Zero-knowledge Proofs 23

Prover (M, x,w) Verifier (M, x)
com < Peom (x,w) com
ch < H(M,com) ch
resp <— Presp (X, w,com, ch) resp h <+ H(M,com)
return ¥ (x,com,ch, resp)

Fig. 2.4 The Fiat-Shamir transform

2.8 Zero-knowledge Proofs

The definition of a zero-knowledge proof captures the notion that the verifier should
learn nothing from the prover other than the validity of the statement being proven.
In other words, any information the verifier learns by interacting with the honest
prover could be learned by the verifier on its own. This is formalised in the definition
using a PPT algorithm, called simulator, which, given only as input the statement
x to be proved, produces a transcript that is indistinguishable from the transcript
produced when the verifier interacts with an honest prover.

A sigma protocol can also satisfy the zero-knowledge property. The following
reports the definition of Special zero-knowledge, because this is the property that the

signature in chapter 5 must satisfy.

Definition 24 (Special zero-knowledge). A sigma protocol has special zero-knowledge
if there exists a PPT algorithm ., the simulator, such that, for any (x,w) € %,

ch € Sch, and any adversary </ making at most a polynomial number of queries, if

& denotes the pair of algorithms (Pcom, Presp), then

P/ (2 (x,w,ch)) = 1] — P[7 (- (x,ch)) = 1]|

is negligible in the security parameter A.

24 Cryptography

2.8.1 zk-SNARKSs

Zk-SNARK stands for zero knowledge Succinct Non Interactive ARguments of
Knowledge and it is a class of zero-knowledge algorithms that is particularly suitable
for blockchain applications. In fact, succinctness means that the produced proof is
small, and the algorithm is also fast to verify. In real applications, these proofs are
produced off-chain, since they take quite some time, then they are sent to a on-chain
smart contract (see Chapter 3 for more details) and, if they are correct, they are saved
into a block. SNARKS are calculated on an arithmetic circuit because these circuits

can be optimised to generate the proof faster. The formal definition is the following:

Definition 25. A Succinct Non-interactive ARgument of Knowledge (SNARK) on a
circuit C is a triple of algorithms (Setup, Prove, Verify) such that:

* Setup(C) : the setup algorithm takes as input the circuit and outputs some

public parameter pp for the prover and vp for the verifier;

* Prove(pp,x,w):, the prove algorithm takes as input the public parameters of

the prover pp, the public statement x, and the private witness w, and outputs

),

where |C| denotes the number of gates of the circuit, while A is the security

a proof T that has to be “short". Usually, short means len(mw) = O, (log|C

parameter;

* Verify(vp,x,) the verify algorithm takes as input the public parameters of
the verifier vp, the public statement x, and the proof ©, and outputs 1 if the
proof'is correct, 0 otherwise. This algorithm has to be “fast", which means
time(Verify) = 0, (|x|,log|C
circuit and |x| denotes the length of the public statement, while A is the security

), where |C| indicates the number of gates of the

parameter.

This family of algorithms must satisfy, as usual, the properties of completeness,
soundness and zero-knowledge. While the completeness property is the usual one,
some slight modifications of the last two are reported, because they are usually the

required properties.
» Completeness: for each x,w such that C(x,w) = 0,

P[Verify(vp, x, Prove(pp,x,w)) = accept] = 1;

2.8 Zero-knowledge Proofs 25

* Adaptively Knowledge Soundness: for every PPT adversary <7 such that

(pp,vp) < Setup(C), T < </ (pp,X),

1
106’
(so, it is non-negligible), there is a PPT extractor & that uses .2/ such that

P[Verify(vp,x,) = accept] >

w < &(C,x), P[Verify(vp,x, m) = accept] > 106~ g,

where € is a negligible value.

* Statistical Zero-knowledge: there exists a PPT algorithm ., called simulator,

such that the following two distributions are statistically close:
Dy = {m < Prove(pp,x,w) | (pp,vp) ¢ Setup(C)},
Dy = {m < Z(pp,vp,x) | (PP, vp) ¢ Setup(C)}.

Most blockchain applications use the Groth16 protocol [66], because the ver-
ification time is constant and the proof size is the smallest between the family of
SNARKSs. However, it requires a trusted setup per circuit, meaning that the setup
phase must be repeated every time a new circuit has to be compiled. There are also
other possibilities, for example an algorithm that is showing promise and that it is
already being used by blockchains such as ZCash [100] is Halo [25], which does not

need a trusted setup and also allows for recursive proofs.

Chapter 3
Blockchain Basics

This chapter is devoted to the cryptographic aspects involved in blockchain tech-
nology. In particular, Section 3.1 explains in general the elements that constitute a
blockchain, namely the structure of a block, some consensus protocols like Proof of
Work, and what forks are. Then, sections 3.2, 3.3 and 3.4 describe more in detail
three of the most important blockchains, namely Bitcoin, Ethereum and Monero.
Regarding Ethereum, smart contracts and tokens are analysed in more detail because
they will be relevant later. Finally, Section 3.5 shows how blockchain addresses are
generated and encoded.

3.1 Whatis a blockchain?

To better understand what a blockchain is, this section introduces what the Distributed

Ledger Technology, or DLT for short, is.

Definition 26 (Distributed Ledger). A distributed ledger is the consensus of repli-
cated, shared and synchronized digital data that is distributed across many sites,

countries, or institutions.

Since a central authority is not required, DLT does not have a single point of
failure. This is a key point: the register is public and shared between multiple users,
called nodes, that have the opportunity to hold and update the data. Since data are
also public, every user can verify the transactions that are saved into the register.
DLT has some benefits compared to a traditional database server:

3.1 What is a blockchain? 27

* it is more resistant to cyber attacks, since an attacker has to violate multiple
nodes instead of just the central server. Moreover, data cannot be lost due to a

malfunctioning of a node, since all other nodes would still be up and running;

* transparency of shared data means that they are immutable. In fact, if a user
tries to modify them maliciously, he would be immediately noticed by the rest
of the network that still holds the original data.

Definition 27 (Blockchain). A blockchain is a particular type of DLT, where data

are organised in a growing list of ordering blocks.

Blockchains were theorised long time ago, but they became reality at the end of
2008, when a mysterious figure (or group of people), known with the pseudonym
of Satoshi Nakamoto, published the Bitcoin white paper [103]. His idea was the
creation of an electronic payment system based on cryptographic protocols instead
of trust, that allows two parties to transact with each other without the need of a third
party. Transactions are digitally signed and then they are included into a block. Each
transaction will cost a fee to the users that sent it, in order to have that transaction
recorded on the blockchain. The higher the fee, the faster that transaction will be
inserted into a block. Blocks can only be added in the chain and once they are
inserted they cannot be removed or modified. The first block of the chain is known
as genesis block, and to add every other block the network uses both cryptography
and consensus protocols. Users who cooperate to support the blockchain are usually
referred as nodes.

Blockchains can be permissionless, hybrid or permissioned. In a permissionless
or public blockchain, everyone can become a user without the need to be authorized
by a central authority, and can validate a block using the specific consensus protocol
of that blockchain. Examples of permissionless blockchains are Bitcoin [103] and
Ethereum [33]. Permissioned or private blockchains, instead, can only be accessed
by specific users that have a permission. These users can only do specific actions that
are granted to them by the central administration that runs the blockchain. Finally,
hybrid blockchains try to use the best features of both permissioned and permis-
sionless blockchains: they are private, but they still guarantee integrity, security and

transparency.

28 Blockchain Basics

3.1.1 Blocks

A block is the fundamental component of a blockchain. Its structure depends on
the specific protocol implemented, but there are some properties that are valid in
general. Each block is identified by a digest, called hash block. A block is split into
two parts: the header and the body. The digest of the block 7 is saved into the header
of the block n+ 1. This chain of hash is the one that gives the name to the entire
data structure. The header also contains additional basic information about the block.

The most important ones are:

* the timestamp, a parameter that indicates the data and the time in which a
block is generated;

* the block height, that indicates the position of a block with respect to the
genesis one, which has height 0 by default;

* the Merkle root, which is the root of the Merkle tree [98] obtained by using
transaction hashes as leaves.

Instead, the body contains the list of transactions.

3.1.2 Consensus Protocols

Since there is no central authority to manage data entry, it is necessary to build a
mechanism able to create a general agreement between the nodes of the network
about the current and the future state of the chain. A consensus protocol prevents
incorrect data entry, maintains the integrity of the transaction history and manages
the block addition. Each node verifies the validity of the proposed transactions,
which will be recorded on the blockchain if they are approved.

Consensus protocols must be resistant against Sybil attacks, that is the creation of
several pseudo-identities to achieve majority. There are many different protocols of
this kind, but the two most used are Proof-of-Work (PoW), based on computational
power used to resolve difficult mathematical problems, and Proof-of-Stake (PoS),
based on the amount of cryptocurrency that a user is disposed to place at stake. The
nodes involved in the PoW protocol are called miners, while the ones involved in

PoS are referred as validators.

3.1 What is a blockchain? 29

Proof of Work.

Proof of Work (PoW) is a form of cryptographic proof in which one user demonstrates
to the rest of the network that a large amount of computational work has been done.
An essential condition is that the verification must be done with little computational
effort.

The basic idea was proposed by Cynthia Dwork and Moni Naor in 1992 [52] to deter
denial-of-service attacks and email spam, and consists of requiring the user of a
service to perform a certain amount of computation, which is time-consuming to
perform but quick to verify, before being able to access the service.

The term Proof of Work was formalised a few years later, in a 1999 paper written by
Markus Jakobsson and Ari Juels [72], but the most successful version of proof of
work is due to Adam Back, who proposed in 2002 the protocol called Hashcash in a
technical report entitled A Denial of Service Counter-Measure [5].

Hashcash is very simple, powerful and flexible. The idea is to take any text, add a
small piece of random text, the so-called nonce, and require the hash of the composed
text to be below a certain target. If it is not below the target, one must try again
with a new nonce, until a hash below the target is obtained. Since it is impossible to
predict the output of the hash function as the input text changes, the protocol works
like randomly extracting a number in a certain range and requiring it to fall below
a certain value, which makes it easy to check the probability of success. Verifying
that a large amount of calculation has actually been done is straightforward: just
compute a single hash, using the nonce that is shown by the person who performed

the PoW and verify that it is below the set target.

The main advantages of PoW are its security and the fact that it has been used
since the beginning. However, this protocol presents two great flaws: a huge waste of
energy and the danger of centralisation. In fact, miners who do not have a sufficient
computational power gather into a single mining pool to combine all their assets to
increase their probability of gaining the reward for mining a block. Proof of Work
is becoming increasingly difficult to solve, so that fewer and fewer users have the
necessary resources to participate.

Another potential issue is the 51% attack: if an attacker holds at least 51% of the
total mining power of the network, it would be able to generate a fork (see Section

3.1.3) with a chain longer than the one created by the honest nodes, which hold less

30 Blockchain Basics

than the 50% of the total power. Thus, the malicious chain would be longer than the

honest one and would therefore be seen as the main chain.

Many blockchains like Bitcoin currently use PoW as their consensus mechanism.

For a complete overview of PoW-based consensus protocols, see [97] or [115].

Proof of Stake.

Proof of Stake (PoS) is the second most utilised consensus protocol. While in
PoW miners exploit energy to mine blocks, in PoS validators commit to a stake of
cryptocurrency to insert a new block. Validators have two tasks: to propose and to
attest blocks on a blockchain. In this context, staking cryptocurrency means freezing
it, hoping to earn more by proposing a winning block.

There are several mechanisms that can be used to choose a validator for the next
block:

* randomness: the probability of being chosen increases with the amount of
currency staked;

* seniority: the relation between the coins owned and the time for which they

were owned. Seniority is annulled once the validator adds a block;

* velocity: the rate of use of the currency.

Once chosen, the validator proposes a block that must be attested by a set of
randomly chosen validators. If a sufficient number of members of this set of users
attests to that block, it is added to the chain. Only after the block is attested and
appended, the validator and the attesters earn their reward. Validators are punished if
they do not complete the task they are assigned. For example, if a validator is offline
when selected, it is penalized, since in order to grant an adequate level of scalability
of the blockchain the majority of nodes must always be active.

For this reason, in a PoS based system the penalties for misbehaving are higher than
with the PoW protocol: users that act maliciously are slashed, meaning that they are

deprived of a part of what they staked.

In PoS based blockchains, every user that owns a computer and internet connec-
tion can be a validator. However, they have to stake a certain amount of currency,
and for some people the amount could be too high. There are other ways one can

3.1 What is a blockchain? 31

get rewards from adding a block even without staking the whole sum: staking pools,
that are essentially the same as mining pools. In this case, if one node of the pool is
chosen to be a validator and its block is attested and added to the chain, all the users
that staked a certain amount of currency in it get a reward proportional to how much
they have staked.

One of the main problems of PoS is the nothing-at-stake problem: when a fork is
generated (see Section 3.1.3) , a validator could try to work on both branches because
he has stakes on both. In this way, this validator could try to trick the network and,

for example, spend the same currency simultaneously in two different transactions.

3.1.3 Forks

Depending on the context, the term fork indicates different situations that can happen
on a blockchain. In fact, regular forks, soft forks and hard forks can usually be
distinguished .

A regular fork happens when two valid blocks are generated almost simultaneously:
this phenomenon can happen because the network is peer-to-peer. In this case, each
miner or validator will try to continue the chain that has as its last block the first
received between the two involved in the fork. After a certain period of time, a new
block will be attached to one of the two chains, thus becoming part of the main
chain. The block on the other chain will be discarded, just as the transactions within
it that will no longer be part of the blockchain’s history. Discarded blocks are called
orphans. For this reason, it is advisable to wait for some blocks to be inserted before

considering a transaction as accepted.

Fig. 3.1 Top: an example of a regular fork. Bottom: the fork is resolved in favor of the upper
branch. The orphan block is shown in pink.

32 Blockchain Basics

A soft fork indicates an update to the software that runs the blockchain and it is

typically an optimization of the current protocol. A node may decide to not download
the update and to continue to interact with the blockchain, without any issues.
In contrast, a hard fork is an update of the protocol that all the nodes are forced to
install in order to keep interacting with the blockchain. In this case, two different
scenarios can develop. In the first, all nodes adhere to the new protocol and the
blockchain continues its growth undisturbed. In the second, the community splits
in two over the proposal, as some of the nodes decide to break away from the main
blockchain, creating a new one. The two chains share the same blockchain history
until the hard fork occurs, and from then on they grow independently.

The next three sections describe more in detail three blockchains: Bitcoin [103],
Ethereum [33] and Monero [2].

3.2 Bitcoin

Bitcoin has been the first active blockchain: its first block was inserted on January 3,
2009. It uses cryptography to secure and verify transactions as well as to control the

creation of new units of a particular cryptocurrency, the bitcoin (BTC).

Bitcoin’s cryptography is based on elliptic curves. The secret/public key pairs
are generated on the short Weierstrass form curve

E:y'=x+7,

on the finite field F, with ¢ =220 —232 29 28 _27_26_2%_ 1 This curve is
known as secp256kl.

The number of points of the curve secp256k1 over I, is the prime number

n =1157920892373161954235709850086879078528375642790749043
82605163141518161494337,

3.2 Bitcoin 33

so that the additive group & = E(F,) is isomorphic to (F,,+). A generator of this
group is the point P = (P, P,), where

P, =55066263022277343669578718895168534326250603453777594
175500187360389116729240,

P, =32670510020758816978083085130507043184471273380659243
275938904335757337482424.

Bitcoin addresses are generated starting from a public key, thanks to the use of
the hash functions SHA256 [111] and RIPEMD160 [49]. More details about the
generation of a blockchain address are given in Section 3.5. Bitcoin supports the
ECDSA signature, introduced in Section 2.3.1, since its inception. Since November
2021, after the Taproot [132] soft fork update, Bitcoin also supports the Schnorr
signature [122] and its multisignature variants MuSig [95] and MuSig2 [105].

The consensus protocol used by Bitcoin is the Proof of Work. In fact, to add a
new block to the blockchain, miners must solve a complex mathematical problem.
They have to find a special value, called nonce, such that the hash of the block header
is smaller than a fixed value, called target. On average, a new block is inserted
every 10 minutes. The miner who first solves the problem is rewarded with a certain
number of bitcoin. This incentivizes miners to participate in the network and to
secure the blockchain. Bitcoin has a finite coin supply, equal to around 21 million of
coins. Every four years, through a process called halving, the reward for entering a
new block is halved. The first block had a reward of 50 BTC and now, in 2023, the
reward is 6.25 BTC. It is cointained in a special transaction, called coinbase.

Every 2016 blocks, about two weeks, the protocol checks how long it took to enter
these blocks. If the time required was longer than the average time, which is set to
10 minutes, a parameter called difficulty grows and the target value becomes smaller.
The opposite happens if the time required was less than the average. Nonce, target
and difficulty are saved in the header of the block they refer to.

Miners also have a secondary way of getting profit, through the fees of the transac-
tions that were inserted into the block.

The scripting language used by Bitcoin is very simple, in fact it is not Turing
complete: in short, for loops cannot be used when writing a transaction or a script.

The fact that only deterministic loops can be written is crucial, because the time of

RY Blockchain Basics

each individual transaction step can be estimated and, most importantly, the network
knows in advance how much time it needs to check whether a transaction is correct
or not. In this way, the network cannot be clogged by a malicious script that never

finishes executing.

3.3 Ethereum

Ethereum is a decentralised, open-source blockchain platform that enables the cre-
ation of smart contracts (self-executing contracts with the terms of the agreement
written directly into lines of code) and decentralised applications (DApps, applica-
tions that run on a decentralised peer-to-peer network, built on top of blockchain
technology which make use of smart contracts to perform their functions). It was
proposed in 2013 by Vitalik Buterin [33].

Like Bitcoin, Ethereum uses blocks to record transactions on its blockchain. The
data in a block, in this case, includes also the current state of the Ethereum Virtual
Machine (EVM). The EVM state refers to the current state of all the smart contracts
and addresses on the Ethereum network at a specific point in time. It is updated
every time a new block is added to the blockchain. This allows all nodes to have
a consistent view of the network’s current state, and ensures that all nodes can
execute the same code and reach the same outcome. The cryptocurrency used on the

Ethereum network is called ether.

Differently from Bitcoin, Ethereum adopts a Turing-complete scripting language
to facilitate the writing of smart contracts. A consequence of this choice is the risk of
suffering attacks due to the creation of endless loops that can congestion the entire
blockchain. The elegant solution proposed by Buterin is the use of gas, that acts as
a defence mechanism that prevents the execution of smart contracts that never halt.
Every transaction has a fee, that must be paid in gas. Gas is obtained by converting
ether. Every single step that this transaction must execute has its cost: for this reason,
the attacker would have to possess an unlimited amount of ether to sustain the attack.

Ethereum generates the secret/public key pairs for its users using the same curve
adopted by Bitcoin, secp256k1. However, the address generation is different, as in
this case the hash function Keccak256 [16] is utilized (more details can be found in
Section 3.5). Ethereum uses two distinct methods to generate addresses, depending
on whether it is a user’s address or a smart contract address. They are usually called

3.3 Ethereum 35

externally owned accounts and contract accounts. The digital signature used is
ECDSA (see Section 2.3.1), but thanks to smart contracts other signatures with

different properties can be used, if necessary.

The consensus protocol used by Ethereum is the Proof of Stake, namely the
Gasper protocol [32]. The validator who inserts the next block is rewarded with a
certain amount of ether.

3.3.1 Smart contracts.

A smart contract is a computer code that runs automatically on the top of a blockchain
when certain conditions are met. This concept was introduced in the early 1990s by
Nick Szabo [130]. Smart contracts allow to make agreements between two untrust-
worthy parties without the presence of a trusted third part. In fact, a smart contract
eliminates the counterparty risk that occurs when a party tries to not comply with
the conditions. The code is stored on multiple nodes of the blockchain ensuring
immutability and transparency. Ethereum is the most important platform for develop-
ing smart contracts and the most used programming language is Solidity [129]. The
activation of one of these takes place through the receipt of a transaction. The cost
of a smart contract’s activation depends on the number of computational steps.

Some of the most common uses are:

* automatic payment due to the achievement of specific results or due to trigger-

ing events;
* impose penalties, like in Proof of Stake protocols;
* creation of fungible tokens, handled by the ERC-20 standard;

» foundation and management of Decentralised Autonomous Organisations or
DAPPs.

3.3.2 Tokens

A token is a digital representation of a value or a right. A high level classification
divides them into three different classes: utility tokens, security tokens and payment
tokens. Cryptocurrencies, such as BTC, are also tokens, precisely payment tokens.

36 Blockchain Basics

Utilities and security tokens are instead generated by smart contracts, so they can be
designed with even more complex features.

An utility token guarantees the right to access a service offered by the platform
that generated it, or to confer a voting right to its holder. Another, very popular,
application is the creation and trading of Non Fungible Tokens or NFTs. Ethereum
enables the creation of them through the ERC-721 standard. Each NFT is unique
and its value is defined exclusively by the request.

Security tokens guarantee the participation in the profit of the platform that issued

them, through dividends.

3.3.3 Decentralised Autonomous Organisations

A Decentralised Autonomous Organisation or DAO is an organisation where activi-
ties and executive power are managed entirely by smart contracts. It is decentralised
in terms of both the infrastructure and the governance.

A DAO relies on a blockchain that records transactions and the digital properties of
its assets. This technology is chosen for its high difficulty of modifying data and its
decentralisation features.

Decisions within the DAO are made collectively through a voting system. Each
member has the opportunity to propose actions aimed at the management or devel-
opment of the organisation. The right to vote on proposals is conferred to holders
of DAO tokens: the greater the amount of token a user possesses, the higher is its
voting influence.

A DAQO is defined as autonomous since the executive power is entirely entrusted to
smart contracts. The combination of these organisations can lead to the definition
of a structure completely independent of the human factor. When a DAO generates

profit, it is divided among its members in the form of cryptocurrency.

3.4 Monero

Monero is an open-source, privacy-focused cryptocurrency that was launched in
April 2014. Unlike many other cryptocurrencies, Monero uses a public ledger to
record transactions, but it is designed to provide a high level of anonymity for its

users. Monero’s blocks are structured differently than Bitcoin’s, with a larger maxi-

3.4 Monero 37

mum block size and a dynamic block size that adjusts based on network conditions.
Monero uses a proof-of-work consensus protocol, designed to be resistant to Ap-
plication Specific Integrated Circuit mining, which is a type of hardware that is
specifically designed to mine a particular cryptocurrency. This ensures that Monero
remains decentralised, as individuals can mine the cryptocurrency using regular

computer hardware.

One of the key features of Monero is its use of cryptography to protect the privacy
of its users. It employs a different curve with respect to Bitcoin and Ethereum: in fact,
the key pairs are generated on the twisted Edwards curve known as edwards25519 ,

whose equation is
121665 , ,

121666~

The curve lies over the finite field F, with g = 225 19,
The secret key is given by the couple (k", k%), with k° <— h(k") (h is a hash function);

E:—x2+y2:1—

instead, the public key is the couple of points (K", K*).

Monero uses several different cryptographic techniques to hide the identities of
its users, including stealth addresses and ring signatures. A stealth address is a
one-time, public address that is generated for each transaction starting from a public
key of a user, while ring signatures are used to provide even greater privacy for its
users. In the context of Monero, a ring signature is used to mix a user’s transaction
with a group of other transactions, making it difficult to determine which transaction

belongs to the user.

Ring Confidential Transactions (RingCT) [106] and Bulletproofs [27] are further
enhancements to Monero’s privacy features. RingCT, which was introduced in
January 2017, allows for the hiding of transaction amounts. This is achieved by
using a combination of ring signatures and stealth addresses. The sender generates a
one-time stealth address for the transaction, and the transaction amount is encoded
using Pedersen commitments [110]. Bulletproofs is a non-interactive zero-knowledge
proof protocol, which uses a specific type of zero-knowledge proof called a range
proof; it can be used to prove that a value is within a certain range without revealing

the exact value. Monero uses them since 2018.

38 Blockchain Basics

3.5 Address generation

This section shows how addresses are generated, for some of the most important
blockchains, starting from the choice of the private key. All these blockchains
use elliptic curve cryptography, and, at least for the ones described, the security

parameter level is 256 bits.

3.5.1 Private and public Key encoding

The private key is an arbitrary 256-bit integer k. Using %, it is possible to compute
the point
K =kG = (K, Ky)

over the elliptic curve, from which the public key is derived. There are two different

ways to represent the public keys:
i) PK; =0x04|| K, || Ky,

0x02|| K, if Ky is even,
0x03|| K, if Ky is odd,

1) PKp =

where || denotes the string concatenation. In the first case, the public key, also known
as uncompressed public key, consists of 65 bytes (32 bytes for K, and K, plus the
byte 0x04), while in the second case the public key is called compressed public key
and consists of 33 bytes. The two encoding are equivalent: the second one uses
less memory space, but the second coordinated must be computed every time it is
necessary to do so. The ways of obtaining the addresses for each cryptocurrency are

discussed in the following paragraphs.

3.5.2 Bitcoin addresses

There are three manners to generate Bitcoin addresses starting from the point K =
(Ky,Ky).
Two hash functions appear in Bitcoin address generation, which are SHA-256 [111]

3.5 Address generation 39

and RIPEMD-160 [49]. The first step is the computation, for i € {1,2}, of

W; = 0x00 || RIPEMD-160(SHA-256(PK;)).
checksum; = (SHA-256(SHA-256(W;)))[1..4],

where [1..4] denotes the first 4 bytes of that string. The first byte 0x00 is a prefix
called version byte. Then, the first two ways to generate Bitcoin addresses are, for
ie{l,2},

Base58(W; || checksum;),

where Base58 [9] is an encoding scheme.
The addresses of the third kind have been introduced in 2017 and they are called
segwit addresses [123]. These addresses are computed only starting from compressed

public keys. First of all, it is computed

W = RIPEMD-160(SHA-256(PK>)),

then it is encoded using Bech32 [12] and it is concatenated to the prefix bc! in
order to obtain the final address format

bcl||Bech32(W).

3.5.3 Ethereum addresses

Ethereum addresses for externally owned accounts are generated starting from the

uncompressed public key, that is
PK = 0x04||K||K,.

However, a different hash function is used: KECCAK-256 [16]. The address is
computed as
KECCAK-256(PK)|1..20],

where [1..20] denotes the first 20 bytes of that string.
After this computation, the addresses are encoded following the rules described in the

EIP-55 document [53]. In short, the capitalisation of certain alphabetic characters in

40 Blockchain Basics

the address is changed to obtain a checksum that can be used to protect the integrity

of the address from typing or reading errors.

3.5.4 Dogecoin addresses

Dogecoin address generation is similar to the first two methods described for Bitcoin,
thus it uses both uncompressed and compressed public keys. It only changes the
version byte 0x00 of Bitcoin into Ox1E. In this way, the final Base58 encoding
gives a D as the first letter for each address. Dogecoin does not generate addresses

following the segwit standard.

3.5.5 Litecoin addresses

Litecoin can generate addresses using all the three methods described for Bitcoin. In
the first two cases, the prefix is the version byte 0x30 instead of 0x00. In this way,
all the addresses start with the letter L. In the segwit case, the Bech32 encoding of

the address is concatenated with the prefix lzc1, that is

Itc1||Bech32(RIPEMD-160(SHA-256(PK))).

3.5.6 Dash addresses

The address generation is similar to Bitcoin, but in this case the version byte is
changed into Ox4c, so that all the addresses start with the letter X. Dash does not
generate addresses following the segwit standard.

3.5.7 Zcash addresses

The address generation is similar to Bitcoin, but in this case the version byte is
changed into [Ox1c, 0xb8]. Zcash addresses can either start with the letter ¢z, if
they are transparent, or z, if they are shielded. Zcash does not generate addresses
following the segwit standard.

3.5 Address generation 41

3.5.8 Bitcoin Cash addresses

Bitcoin Cash (BCH) is the result of a Bitcoin hard fork that happened in 2017, when
some of Bitcoin nodes did not share the segwit soft fork. BCH addresses are encoded

two times:

* first, an address with the same encoding of Bitcoin is obtained,

* finally, the address is encoded again, with an encoding scheme called CashAddr
[11], which is used by Bitcoin Cash only. This encoding is similar to Bech32.

BCH addresses that are encoded twice start with the string bifcoincash:q, or just with
the letter g. It comes natural that Bitcoin Cash does not generate addresses following

the segwit standard.

Chapter 4

Additional tools

This chapter introduces some additional mathematical concepts, along with some
specific protocols and applications of the blockchain that will be used in later chapters
of this work. In more detail, Section 4.1 describes tensors, alternate trilinear forms,
and cryptographic assumptions, that will be used in Chapter 5. This section also
contains some information about the most efficient attacks known against these
cryptographic problems. Next, Section 4.2.1 introduces Semaphore and MACI
(Minimal Anti-Collusion Infrastructure), two protocols designed to be generic privacy
layers for Ethereum DApps, while Section 4.3 briefly explains quadratic voting.
Finally, Section 4.4 summarises the properties of soulbound tokens, which will
be used, along with the two protocols mentioned above and the quadratic voting

mechanism, in Chapter 7.

4.1 Tensors and Alternating Trilinear Forms

Notation. For a prime power g, I, is the finite field with g elements, and FZ is the
n-dimensional vector space over [F,. Fg*™ denotes the linear space of n x m matrices
with coefficients in F,. Let GL,(g) be the group of invertible 7 x n matrices with
coefficients in .

This section follows Section 2.1 of D’ Alconzo [42].
Given a positive integer d, a d-tensor over [F, is an element of the tensor space
T =@ Fy. If abase {egl), e ,egl?} for every linear space IFy' is fixed, a d-tensor

4.1 Tensors and Alternating Trilinear Forms 43

T can be represented with respect to its coefficients 7'(iy,...,iy), that is

ZT”, LidVe. @e?.

T has size ny X ... X ng.
Then, a group action x between the Cartesian group of invertible matrices G =
GL,,(g) x ... x GL,,(q) and the tensor space .7 can be defined in the following

way:
*:GxX T =T
(A17 Z Tll; ()® ®€()>
l17 7d
Z T(iy,...,i Ale()®...®Adel(j).

The tensor isomorphism problem has recently been of interest, given its properties
and links with computational complexity theory. The following definition recaps the

problem.

Definition 28. The d-Tensor Isomorphism (d-T1) problem takes as input two d-
tensors T\, T, € .7, and it outputs YES if there exists an element g € G such that
T, = g*T1, NO otherwise.

The search version is the problem of finding such an element g.

It has been proved by Grochow and Qiao [63] that the d-TI problem can be
polynomially reduced to 3-TI. For this reason, cryptographic applications focus on
3-tensors. TI is the class that contains decision problems that can be polynomially
reduced to d-TI for a certain d. Furthermore, a problem is TI-complete if it is in TI
and if the d-Tensor Isomorphism problem, for any d, reduces to this problem [64].

Now, alternating trilinear forms are defined.

Definition 29 (Alternating trilinear forms). Given positive integers k,n,m and a

prime power q, a map

9 (Fg)" <o x (Fy)" — (Fg)"

N J/
-~

k times

can be

44 Additional tools

1. alternating: if ¢ is equal to the zero vector whenever two of its arguments are

equal;

2. k-linear: if ¢ is linear in each of its k arguments.

If m=1, i.e. the codomain of ¢ is the field F,, ¢ is said to be a form.

An alternating trilinear form is a map
01 (Fy)" x (Fyg)" x (Fy)" — Ty

that is alternating and trilinear. The set of alternating trilinear forms over (Fq)n is
denoted with ATF(g,n).

Observe that an alternating trilinear form ¢ corresponds to a 3-way array (a; j)i jx €
FZ X IFZ X FZ, where aijk = (l)(ei,ej, ek) [65].
It is known that ATF(g,n) is a linear space over F,; of dimension (}). This implies
that any alternating trilinear form can be represented and stored with (gl) [log, q]
bits.

Starting from GL,(g), a group action over ATF(q,n) can be defined, similar to
the one described before over .7 .

Definition 30. The group action (GL,(q),ATF(gq,n),*) is defined by

*:GL,(q) x ATF(¢q,n) — ATF(g,n)

4.1
(A,¢)|—>¢oAt. @

In other words, the alternating trilinear form (A * @) (x,y,z) is the map
¢(A'x, Ay, A'z).

The group action above defines an equivalence, that is ¢ and A x ¢ are said to be
equivalent. Given two alternating trilinear forms, the problem of deciding if there is
an equivalence, and the problem of finding a matrix that sends one into the other can

be defined. This fact is formalised in the following definition.

Definition 31. The Alternating Trilinear Form Equivalence (ATFE) problem is given
by:

4.1 Tensors and Alternating Trilinear Forms 45

* Input: ¢,y in ATF(q,n).

* Output: YES if there exists A in GL, (q) such that ¢ = Axy, and NO otherwise.
The search Alternating Trilinear Form Equivalence (SATFE) problem is given by

* Input: ¢,y in ATF(g,n) such that they are equivalent.

* Output: A in GL,(q) such that ¢ = Ax .

The assumption that the SATFE problem is intractable comes from the fact that
its decisional counterpart ATFE is TI-complete. The ATFE problem is polynomially
equivalent to d-Tensor Isomorphism for d > 3, hence by definition it is TI-complete.
This implies that ATFE is as hard as all TI-complete problems from [64]. At the

moment, no polynomial-time algorithm solving any TI-complete problem is known.

4.1.1 Known attacks to the SATFE problem

There are several algorithms that can be used to analyse SATFE. When designing a
cryptographic protocol, the choice of parameters must keep track of these known
attacks in order to obtain a plausibly secure algorithm. The following list enumerates

the possible attacks:

* Brute force: it consists in trying all the matrices A, in order to verify if there
is one that satisfies the relation ¢ = A x y. The complexity of this attack is
around 0(q”2)s

* Average-case algorithms: these kind of attacks were analysed in [65] and their

complexity is around qo(”), which is still not practical;

* heuristic algorithms: these algorithms are based on multivariate cryptography
and computational group theory (Grobner basis), and they have complexity
O(g**" - n*® -1og,(q)) for some constant . These attacks are more practical

and force the value n to be at least equal to 9 for practical implementations;

» graph-theoretic algorithms: these algorithms are the most dangerous ones,
since they can compute the matrix A in time O(g) when n =9, and in time
O(q*) when n = 11. The attacks perform better when n is odd, while for n

46 Additional tools

even there is a (small) fraction of keys that can be broken in constant time,

while all the others can still be considered secure.

* other algorithms: new algebraic attacks that appear to be promising were
presented during CBCrypto2023 [116].

Keeping in mind these attacks, some values of n that appear safe are n = 10 or
n > 12. The fraction of broken keys should be discarded. This is easily achieved by

choosing as the origin an alternating trilinear form not in this set.

4.2 Applications of zk-SNARKS to the blockchain en-

vironment

zk-SNARKSs are currently used as building blocks in privacy layers built on top of
some blockchains. For example, the Ethererum blockchain alone is developing more
than fifteen protocols that use SNARKSs as the main cryptographic technique [114].
Here, Semaphore and MACI, two of these protocols, are described more in detail.

4.2.1 Semaphore

Semaphore [124] 1s a zero-knowledge protocol which allows Ethereum users to
prove their membership in a group and to send signals, such as votes or endorse-
ments, without revealing their identity. More in detail, Semaphore provides three

functionalities:

* Creation of private identities. Each user receives a secret/public pair (sk, pk).
More precisely, the secret key is a tuple sk = (Id Trapdoor, IdNullifier, IdSecret),
where IdTrapdoor and IdNullifier are generated randomly and
|dSecret = H(ld Trapdoor || IdNullifier), where H is a hash function. The nulli-
fier is needed to avoid users signaling more than once. The public key is instead
the hash of the secret: pk = H(IdSecret). sk is used to create zero-knowledge

proofs;

* Insertion of an identity into a group. A Semaphore group is an anonymity

set which users can join without losing the control over their identity. To

4.2 Applications of zk-SNARKS to the blockchain environment 47

be part of the same group, all the users involved must have some element
in common, and everyone is sure that all the members possess this element
without knowing their real identity. When a user joins a group, his or her

public key pk becomes one leaf of the Merkle tree of that group;

» Sending of anonymous signals. Signals are signed messages which are broad-
cast on-chain. The signal contains some data such as a vote, the proof that the
user is part of a Semaphore group, and the proof that the same user created
both the signal and the first proof. Each signal also contains two additional
public nullifiers: ExtNullifier, which is some input generated when the user

wants to send a signal, and Nullifier = H(IdNullifier || ExtNullifier). To recap,
Signal = (Data, Proof (pk), Proof (Data, Proof (pk)), ExtNullifier, Nullifier).

If two different signals have the same Nullifier, it means that the same user has

signaled more than once.

Semaphore can thus be regarded as a Sybil-resistance mechanism: each sent signal
contains certain zero-knowledge proofs, generated off-chain and validated on-chain,
about the sender’s membership of a certain group, as well as the validity of the signal
itself. More details about the implementation of the Semaphore circuits or their
smart contracts are available on the Semaphore website [124].

Some protocols, like UniRep [134], are already using Semaphore. UniRep is a
private and non-repudiable reputation protocol, where users can receive positive and
negative reputation from attesters, and can voluntarily prove that they have at least a
certain amount of reputation without revealing the exact amount. Moreover, users

cannot refuse to receive reputation from an attester.

4.2.2 MACI

MACI [94] stands for Minimal Anti-Collusion Infrastructure and it is a protocol
that allows users to vote on-chain with a greatly increased collusion resistance. It
was proposed by Buterin in 2019 [28]. All transactions on a blockchain are public,
therefore a voter can easily show to a briber which option they voted for. MACI

counters this by using, again, zk-SNARKSs to hide how each user voted, while still

48 Additional tools

allowing to know the final vote result. In this way, a user cannot show to a briber
which option they voted for anymore.

MACT has two different actors: users, the people that send a vote through a smart
contract, and a single trusted coordinator, which makes the tally of the votes and
releases the final result. The coordinator uses zk-SNARKSs to prove that the tally is
valid without revealing the vote of every user.

Before voting, each user, who must already possess a secret/public key pair (sk, pk),
e.g. generated when joining a Semaphore group, must register their public key pk in
a smart contract SC;. All the public keys, together with a timestamp and the number
of voice credits, are saved into a Merkle tree MerkleTreeg;gnup. Voice credits can
be spent by the registered users to vote. They can do it with any address, but the
transaction must contain an information about the registered public key. Each user
I shares also a key SharedKey, . with the trusted coordinator C, which is used to
encrypt and decrypt transactions. In fact, in order to vote, the user / will send the

following encrypted transaction to a poll smart contract SC,:
Transaction = Encsparedkey, . (Sig, Command),

Command = (pk;, Votegption, Voteamount)-

Sig represents the signature of the user that is sending the transaction, while Votepion
is the list of projects that the user wants to vote for. Finally, Voteymoun: 1s the list
containing the amount of voice credits that the user has allocated to each project they
have decided to support.

A user can override their previous vote if they sign a new transaction with its secret
key sk;. In this case, the coordinator will consider only the last message as valid.

A user can also override their public key if they sign a new transaction that contains
a different public key p~k using its secret key skj, that is

Transaction = Encgparedkey, . (Sig, Command),

Command = (pk;, Votegption, Voteamount)-

From then on, only messages containing the public key];\k/l will be considered valid.
This feature is known as public key switching. When this occurs, only transactions
signed with the secret key sk; will be considered valid. Public key switching can be

used to avoid bribes, since no one except the user and the trusted coordinator knows

4.3 Quadratic voting 49

whether or not the transaction sent will be considered valid after decryption.

After the voting period, the coordinator will use a third smart contract SC; to build
a state tree that keeps track of all the valid votes. Then, she does the tally of the
votes and publishes the results. Hence, the coordinator must create two different
zk-SNARKS proofs:

* the first proof is published to prove that the state tree contains only the valid

messages, without revealing all the messages;

* the second proof is created to show that the tally of the votes was done using
only valid messages, and that their individual contribution leads to the final

result.

Both proofs are verified by another smart contract SCy4, specifically built to read
MACI proofs: if both the verifications are correct, the process was executed correctly.
MACI has been already successfully used by some projects like clr.fund [40] to
protect the fairness of a voting process for cases in which the funding amounts

become very large.

4.3 Quadratic voting

Quadratic voting [85] is a method of collective decision-making in which participants
do not just vote for or against an issue, but they also express their opinion on it.
This is an alternative to two other more classic voting modes: One-Dollar-One-Vote,
where each user can vote as many times as they want and each vote costs one dollar,
and One-Person-One-Vote, where each user can vote exactly once. The first case is
used when a certain threshold must be reached to obtain a specific type of service,
while the second case is used, for example, for electoral votes.

These two methods have their drawbacks: in the first case, only people who really
care will vote, financing the project with a large amount of money that will also cover
all the other users who are interested in it, but not enough to pay for that service. In
the second case, on the other hand, every user has equal voting power, hence there is
no way to express how much they care about what they are voting for.

Quadratic voting is a novel method that solves both these problems in a mathematical
way: in short, each person can vote all the times they want, but the n-th vote will

50 Additional tools

cost n. In this way, if a user votes n times, the total cost of these votes will be around
% (hence, the name quadratic).

The proposed idea can also be expanded in the so-called quadratic funding [31].
Suppose there is a list of public goods {Py,... Py}, and suppose that N users have to
vote (or bid) on these projects to show their appreciation towards them. The aim is to
reward more the projects that were voted by more people, rather than rewarding that
project which was chosen by fewer people, but with more funds available. This can
be achieved by matching donations for these projects proportionally to the square of
the sum of the square roots of the individual donations, that is, if the user n places a
bid Dy, ,, for the project P, then each project will receive

Fund,,, ~ (\/Dm,l +...+ Dm’N)z.

To clarify this concept, a simple example is considered. Suppose there are M = 3
projects, N = 4 users and a total of 1400 dollars that must be distributed between
these projects using the quadratic funding mechanism. The first project is funded
by one user, who gives 100 dollars; the second project is funded by two users, each
of whom gives 50 dollars, while the last project is funded by all four users, each of

whom gives 25 dollars. Mathematically, the following results are obtained:
Fund; ~ (v/100)? = 100,

Fund, ~ (v/50++/50)% = 200,
Funds ~ (V25 4 V25 + v/25 +v/25)* = 400.

In conclusion, the first project will receive 200 dollars, the second 400 dollars and the
third 800 dollars.