
11 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

OffloaDNN: Shaping DNNs for Scalable Offloading of Computer Vision Tasks at the Edge / Puligheddu, Corrado;
Varshney, Nancy; Hassan, Tanzil; Ashdown, Jonathan; Restuccia, Francesco; Chiasserini, Carla Fabiana. -
ELETTRONICO. - (2024). (Intervento presentato al convegno IEEE ICDCS 2024 tenutosi a Jersey City (USA) nel July
2024).

Original

OffloaDNN: Shaping DNNs for Scalable Offloading of Computer Vision Tasks at the Edge

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987790 since: 2024-04-13T07:30:47Z

IEEE

OffloaDNN: Shaping DNNs for Scalable
Offloading of Computer Vision Tasks at the Edge

Corrado Puligheddu‡, Nancy Varshney‡, Tanzil Hassan†, Jonathan Ashdown∗,
Francesco Restuccia† and Carla Fabiana Chiasserini‡

† Institute for the Wireless Internet of Things, Northeastern University, United States
∗ Air Force Research Laboratory, United States

‡ Politecnico di Torino, Italy

Abstract—Emerging mobile applications often require the
execution of computer vision (CV) tasks based on compute-
and memory-intensive deep neural networks (DNNs). Although
offloading CV tasks to edge servers can decrease resource
consumption at the mobile devices, it poses the challenge of
handling multiple concurrent tasks with limited computing and
memory capacity. In stark opposition with the existing state of
the art, we tackle this challenge by jointly optimizing (i) the
utilization of resources at the edge, among which memory – so-
far widely overlooked – and the radio resources used for task
offloading; (ii) which and how many offloaded tasks should be
executed; and (iii) the structure of the DNNs. First, we formulate
the DNN for scalable Offloading of Tasks (DOT) problem, prove
that it is NP-hard, and envision a weighted-tree-based heuristic
solution, named OffloaDNN, that efficiently solves the DOT
problem. We evaluate OffloaDNN through extensive numerical
analysis using state-of-the-art image classification ResNet-18, as
well as real-world experiments on the Colosseum emulator. The
numerical results show that, in small-scale scenarios, OffloaDNN
matches the optimum very closely, and, in larger-scale scenarios,
increases the number of admitted offloaded tasks by 26.9% with
respect to the state of the art, while saving 82.5% memory and
77.4% per-inference computing time. The numerical results are
confirmed by the real-world validation on Colosseum.

I. INTRODUCTION

Computer vision (CV) has become essential for a wide
range of applications, including autonomous driving, medical
imaging, optical character recognition, and event detection.
CV tasks are notoriously computationally demanding as they
leverage complex deep neural networks (DNNs) to achieve
high accuracy. For example, with respect to MobileNetv2 [1],
a DNNs such as ResNet-152 [2] that is 8.7x larger in terms of
number of parameters (60M vs 6.9M) can improve inference
Top-1 accuracy in ImageNet by 5.2%. However, due to their
excessively cheap, small, or light design, mobile devices may
be unsuitable for hosting hardware and energy storage that
meet the DNNs requirements for supporting CV tasks in a
timely manner. To address this issue, prior art resorts to task
offloading, where mobile devices, connected to an edge server
through a radio link, delegate the processing of a CV task to
the relatively more powerful edge computing platform. Then
the task result is seamlessly returned to the mobile device.
This is indeed often the only way to support CV tasks in a
mobile scenario without depleting the resources of the devices
collecting the data to be processed.

Existing issues. Resource availability at the edge, even if
larger than at the mobile devices, is still limited. In particular,
memory consumption of DNNs is rarely considered as a
limiting factor to the execution of tasks at the edge. Further, the
structure of the DNNs required for the execution of different
CV inference tasks, and the correlation among such structures,
has often been overlooked [3]–[7], thus failing to exploit the
benefits that instead accounting for such factors can bring.
In Sec. V, we show that carefully shaping and sharing the
DNNs, i.e., acting on which blocks of DNNs layers are used
for different CV tasks, increases the number of tasks admitted
for execution at the edge by 26.9%, while reducing resource
consumption by 54.7% compared to the state of the art, thus
scaling very well with the diversity and number of tasks.

Scientific challenges. Joint task admission and layer con-
figuration and sharing among different DNNs are highly
challenging. This is because (i) the required DNNs depend
on the offloaded tasks that can be admitted at the edge and,
more specifically, on the required CV methods and object
classes; (ii) the available configurations must consider the
requirements of admitted tasks and the available resources;
(iii) sharing is feasible only when two or more DNNs have
a sequence of common layers, which requires freezing such
layers during DNN training and fine-tuning the remaining task-
specific layers. Additionally, the relationship between admitted
task latency and accuracy and the DNN structures is highly
nonlinear and cannot be expressed in closed form, which
further complicates the issue of DNN shaping and sharing.

Our approach. To optimize the consumption of radio
and compute resources, while respecting the requirements of
the offloaded tasks, we propose a new framework, named
OffloaDNN (scalable Offloading of DNN tasks), whose key
innovations are detailed below.
• Hidden layers of a DNN specialize in different feature levels.
The initial layers detect low-level features such as corners,
edges, colors, etc., and, as we move towards the final layers,
they become specialized in detecting high-level features like
items, scenes, patterns, etc. [8]. While high-level features are
task-specific and can be hardly used for tasks other than the
one they have been originally trained on, lower-level features
can instead be common among different tasks [9]. Our first
intuition, depicted in Fig. 1(left), is to leverage DNN layers
that can be shared at the edge among DNNs serving

8
6 4 6 6 4.4

Fig. 1. Exemplified application of the proposed innovations to DNN structures for tasks aiming at classifying different objects (e.g., car and train): (left)
DNN block sharing for memory savings; (center) fine-tuning of task-specific blocks to improve accuracy (e.g., for train classification); (right) DNN block
pruning (pruned blocks are denoted in white and reduced by an 80% factor), to decrease resource footprint at the cost of possible reduced accuracy.

different offloaded tasks, to save memory while still offering
acceptable DNN accuracy;
• While DNN layers trained for the most common CV tasks
can be used for a variety of applications (i.e., they can be
easily shared), they may be inadequate for other tasks for
which they have not been specifically trained. In these cases,
fine-tuning task-specific layers, although costly, can improve
the level of accuracy attained for such tasks, and, at the
same time, freezing the initial, general-purpose layers still
allows them to be shared and help mitigate the well-known
issue of catastrophic forgetting [10]. Our second intuition
(Fig. 1(center)) is thus to tailor which layers to share among
different tasks and which layers to fine-tune, depending on
the tasks requirements. In so doing, we can effectively trade
off training cost with tasks accuracy;
• Moreover, when an already-available DNN is accurate
enough, we allow for structured pruning of (all or some of)
the DNN layers to decrease the compute and memory footprint
needed for inference execution while still offering acceptable
accuracy. As depicted in Fig. 1(right), blocks of DNNs layers
can be pruned to decrease resource consumption and in-
ference latency, while still meeting accuracy requirements.

A. Summary of Novel Contributions

• We mathematically formulate the problem of DNN for
scalable Offloading of Tasks (DOT) to find (i) the optimal
composition of (possibly pruned and fine-tuned) blocks of
DNNs layers, (ii) the set of offloaded tasks that can be admitted
at the edge, and (iii) the allocation of (radio and computing)
resources for tasks remote execution. DOT minimizes the task
rejection rate and resource consumption, while meeting the
accuracy and latency requirements of admitted tasks (Sec. III).
The DOT problem is fundamentally different from the existing
formulations as, for all admitted tasks, it considers different
configurations of the DNNs that can serve for the execution of
the inference tasks, with each configuration offering different
opportunities for sharing layers with other DNNs and leading
to different performance-resource consumption tradeoffs.
• We propose OffloaDNN, the first framework supporting
scalable offloading of CV tasks to the edge, to allow for the
solution of realistic instances of the DOT problem (which
we prove to be NP-hard). OffloaDNN is an efficient heuristic
based on weighted tree-based graph modeling of the feasible
solutions, which accounts for DNN layers sharing, hence the

possible correlation in memory utilization among the DNNs
deployed to handle the admitted inference tasks (Sec. IV).

• We evaluate OffloaDNN (Sec. V) through a comprehen-
sive numerical analysis and leveraging a proof-of-concept
prototype implemented on the Colosseum network emulator
[11], by considering real-world CV tasks and state-of-the-
art DNNs. Our results show that, in small-scale scenarios,
OffloaDNN performs very closely to the optimum. In large-
scale scenarios, it allows for 26.9% more offloaded tasks and
substantial resource savings (54.7%) compared to the state-of-
the-art approach in [5], while always meeting task constraints.
The real-world experiments on Colosseum confirm the validity
of our approach. To allow for the reproducibility of our
results and foster further development, we pledge to release
our solution as open-source upon paper acceptance.

II. MOTIVATIONS

Task offloading requires to optimize both radio resources
as well as edge computational resources. Indeed, task input
data acquisition for inference execution (and transmitting back
the results to mobile devices) requires optimal usage of radio
resources. Also, besides the memory taken by the deployed
DNNs, fine-tuning the DNN architectures for specific CV tasks
and compressing them before deployment and performing in-
ference on the offloaded data require significant computational
effort from CPUs and GPUs of edge servers. In this section, we
present two experiment-driven motivating factors to propose
OffloaDNN. The first one is related to optimizing the training
expense of DNN models for specific tasks while converging
to target performance. The second is related to optimizing
inference compute time while deploying a DNN in a resource-
constrained edge server.

First experiment. Before deploying a DNN for a specific
task, the first step is to train the model parameters efficiently.
Training a DNN from random initialization of the parameters
results in slow convergence up to a target accuracy [12]. Thus,
training a new DNN from scratch for each task is not always
the best solution. Alternatively, fine-tuning a pre-trained DNN
with a new task-related dataset may be a better approach [13].
If the new dataset is similar to the pre-training dataset (i.e.,
for tasks related to natural images, ImageNet [14] is widely
used as a pre-training dataset), we can freeze the early layers
of the DNN while preserving the learned features from the
larger dataset.

1 50 150 250
Training Epochs

20
30
40
50
60
70
80
90

Te
st
in
g
ac
cu
ra
cy
 [%

]

CONFIG A (baseline)
CONFIG B
CONFIG C
CONFIG D
CONFIG E

A B C D E
CONFIG

2000

3000

4000

5000

GP
U
M
em

or
y
oc
cu
pa
nc
y
[M
iB
]

1.8x less than
baseline CONFIG A

Fig. 2. Comparison between different DNN block training configurations
(listed in Table I) applied on ResNet-18 as a feature extractor: (left) Progres-
sion of average testing accuracy of the DNN model after each epoch training;
(right) Peak GPU Memory Occupancy in mebibyte (MiB) during training.

Fig. 2(left) compares the training costs of various DNN con-
figurations as listed in Table I, and refers to the training of the
ResNet-18 [2] feature extractor. The DNN was initially trained
on a subset of the ImageNet dataset (Table II), featuring 60 ob-
ject categories. These are the pre-trained parameters that form
the backbone for the configurations in Table I. Subsequently,
we train these DNN configurations using a new dataset that
contains an additional object class. For fair comparison be-
tween all the configuration training, we use batch size of 256,
‘Adam’ optimizer, ‘CosineAnnealing’ learning rate scheduler,
starting learning rate of 0.2, decay rate of 0.001, Cross-Entropy
as loss function. In this experiment, we emulate the fact that a
new task is to detect grocery items (e.g., mushrooms). To reach
near 80% testing accuracy, CONFIG A takes more than 200
training epochs, while CONFIG B and CONFIG C converge
to 80% accuracy faster. Further, CONFIG C outperforms
CONFIG D and CONFIG E, which share and freeze fewer
layers than CONFIG C. In Fig. 2(right), it is important to
notice the reduced GPU memory occupancy by CONFIG B
and CONFIG C compared to the other configurations, which
indicates that the shared layer-blocks are not using processing
resources to train the model parameters. Eventually, after more
than 250 epochs, the fully fine-tuned CONFIG A configuration
achieves better accuracy than the shared configurations. On the
contrary, CONFIG B and CONFIG C models get overfit to
the training data after long training epochs and achieve lower
accuracy than CONFIG A baseline. Similarly, CONFIG D
and CONFIG E converge more slowly to 80% accuracy than
CONFIG C. The reason is that both of the DNN structures
have more parameters to train during the training process
compared to CONFIG C. The key takeaway is thus that
we can opt for respectable accuracy according to task
demand with shared configurations with less training cost,
or we can fully fine-tune DNN parameters for better
performance.
Second experiment. Using DNNs containing millions of
parameters tends to be costly in terms of computational
resources. This motivates reducing the number of parameters
to make the DNN more compact to deploy in a resource-
constrained edge computing scenario. To this end, DNN

pruning is a very popular method to alleviate the over-
parameterization while maintaining the accuracy of the orig-
inal DNN [15]. General pruning steps start with training the
larger network, then applying the pruning criterion on the
model, and then fine-tuning the smaller network again. This
iterative process goes on until a satisfactory sparsity level and
model performance is reached. In the recent literature [16]
[17], authors argue against iterative pruning considering fine-
tuning budget limitations in a resource-constrained scenario.
To save time and effort for this iterative pruning, single-shot
pruning methods [18]–[20] are getting popular.

In this experiment, we validate the intuition that pruning
DNN blocks after fine-tuning for the target task will greatly
reduce the inference compute time on the edge server, with
a potential risk of degrading performance. We use the same
configurations as listed in Table I with ResNet-18 feature
extractor and apply pruning after 100 epochs of fine-tuning
for a new task to detect ‘Musical Instruments’. To make a
fair comparison between different configurations, we choose
100 epochs of fine-tuning and a constant pruning ratio of 80%
for the training phase. After fine-tuning, we apply magnitude
pruning from DepGraph [21] to the fine-tuned layer-blocks
only, as shared layer-blocks are to be used for other tasks
in hand. In Fig. 3(left), we report the experimental results of
inference compute time for a dummy input tensor of each
configuration compared to the non-pruned version of it. It is
evident that CONFIG B-pruned has a smaller inference com-
pute time difference compared to other configurations. Due
to 4 shared layers-blocks from the base model, CONFIG B-
pruned DNN has the least number of pruned blocks, hence,
larger amount of parameters, and it takes longer to infer an
input. For the same reason, CONFIG C-pruned, CONFIG D-
pruned and CONFIG E-pruned take less and less time than
CONFIG B-pruned. Smallest inference compute time is found
with CONFIG A-pruned, compared to its baseline CONFIG A,
mostly because the entire DNN was fine-tuned and pruned for
task-specific purposes.

Fig. 3(right) depicts the Average Class Accuracy of a spe-
cific object we want to detect (in this case it is “Electric
guitar”) for all the configurations and their pruned versions.
After pruning, each of the configurations performs a bit worse
compared to its original version. In this case, CONFIG B,
shows better performance after pruning because most of its
layer-blocks are inherited from the base DNN model. Further
fine-tuning from this stage of the pruned model may increase
the accuracy of all the configurations, but it will also increase
the training expense. The key takeaway from this second
experiment is thus that to minimize the inference compute
time of CV tasks at the edge, we can choose among
different pruned configurations depending on the trade-off
they offer between accuracy and inference compute time.
Or, we can choose a DNN configuration without pruning
if task requirements are very accuracy-intensive.

Overall, from these two experiments, it is evident that
selecting the best DNN model for task requirements is not

A B C D E
CONFIG

0

2

4

6

8

10
In
fe
re
nc

e
co

m
pu

te
 ti
m
e[
m
s]

w/o Pruning Pruned

A B C D E
CONFIG

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Av
er

ag
e

Cl
as

s A
cc

ur
ac

y
[%

]

w/o Pruning Pruned

Fig. 3. Effects of applying pruning on different DNN layer-blocks with
ResNet-18 feature extractor architecture and configurations listed in Table I:
(left) Comparison of inference compute time in milliseconds when input is a
dummy tensor (standard procedure to estimate DNN model inference compute
time in a system). (right) Average Class Accuracy measured for class “Electric
guitar” images. DNN Models were fine-tuned for 100 epochs before applying
pruning with ratio of 80%.

a straightforward problem that can be solved with simple
heuristics. Rather, it is a complex problem that involves
multiple intertwined factors.

TABLE I
DNN BLOCK CONFIGURATIONS (RESNET)

Name Description
CONFIG A Entire DNN structure trained from scratch
CONFIG B First 4 layer-blocks shared from the base DNN
CONFIG C First 3 layer-blocks shared. Last layer-block +

classifier layers fine-tuned
CONFIG D First 2 layer-blocks shared. Last 2 layer-blocks

+ classifier layers fine-tuned
CONFIG E First 1 layer-blocks shared. Last 3 layer-blocks

+ classifier layers fine-tuned
CONFIG A-pruned CONFIG A DNN architecture with pruning ratio

80%
CONFIG B-pruned CONFIG B + Fine-tuned layer-blocks are

pruned with ratio of 80%
CONFIG C-pruned CONFIG C + Fine-tuned layer-blocks are

pruned with ratio of 80%
CONFIG D-pruned CONFIG D + Fine-tuned layer-blocks are

pruned with ratio of 80%
CONFIG E-pruned CONFIG E + Fine-tuned layer-blocks are pruned

with ratio of 80%

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section first introduces the model we developed to
represent the edge computing system that handles CV tasks
offloaded by mobile devices to an edge server (Sec. III-A).
Then we present the DOT (DNNs for scalable Offloading of
Tasks) problem, which identifies (i) the optimal ratio of tasks
to offload to the edge and (ii) the best DNNs configurations

TABLE II
BASE DATASET DESCRIPTION

Objects Description
Vehicle 12 vehicle categories(e.g., Bus)

Wild animals 18 wild animal categories(e.g., koala)
Snakes 10 snake categories(e.g., green snake)

Cats 6 cat categories (e.g., Persian cat)
Household Objects 14 household objects (e.g., toaster)

Total 60 categories of objects

RU

Edge Computing
Platform

DNN repository

Task 1
Method: obj. detection
Rate: 4 Hz
Object class: "cars"
Min accuracy: 0.5 mAP
Max latency: 0.3 s

DNN 1 DNN D

Active
DNNs

Task 2

...

Task 3

Task N
...

......

8%
car

Task result

vR
ANTask

admission
requests

Task
admission

rates
Network

resource pool

RBs 1 - R

VI
M

Computing
resource pool

...

GPUs

...

VRAM

GPU 1

GPU C

1 GB

M GB

Network
status

Slices
config

Computing
status

1
2

2

Per-task
resource
allocation

OffloaDNN
controller
DOT solver

DNN availability

2

4

4

Task input

DNN
blocks

selection

Activation of
selected DNN blocks

6

5

...

4

3

7

Fig. 4. Architecture and workflow of OffloaDNN. To offload tasks, mobile
devices submit task admission requests to the OffloaDNN controller (step 1),
which runs the DOT problem solver. Besides the tasks definition, the DOT
solver requires as input the available DNNs blocks and their resource cost,
and the available computing and radio resources capacity, which are pulled
from the Virtual Infrastructure Manager (VIM) and the vRAN (step 2). After
obtaining the DOT solution (step 3), the controller allocates the radio slice
and the computing resources (step 4), and deploys the selected DNN blocks
for the soon-to-be-admitted tasks (step 5). Then the controller notifies the
mobile devices about the admitted tasks rates (step 6); after that, the mobile
devices can transmit task input data and receive task results (step 7).

to handle such tasks, accounting for both their training and
inference costs (Sec. III-B).

A. Reference Model

We consider a scenario, exemplified in Fig. 4, where mobile
devices can benefit from offloading CV tasks to an edge com-
puting platform connected with the base station covering the
devices. As the edge platform has limited resource capacity, it
has to determine which tasks to admit and how to serve them.

Let T be a set of T inference tasks, with each τ∈T
representing a CV method that can be implemented through
a DNN out of a set, D, of available models, to be applied
to the images generated by the mobile devices. Examples
include image classification performed through ResNet-18,
or MobileNetv2. Each task τ is associated with a minimum
required accuracy, Aτ (e.g., mean Average Precision for an
object detection task), and a maximum end-to-end latency
Lτ , accounting for both networking and processing latency.
A task is also associated with priority pτ , which is a real
value between 0 (lowest priority) and 1 (highest priority)
indicating the importance of a task, and a request rate λτ ,

TABLE III
NOTATION

Symbol Description
τ ∈ T Requested tasks, with |T| = T
d ∈ D Set of possible dynamic DNN structures, each able

to serve multiple tasks
sd ∈ Sd Block belonging to the dynamic DNN structure d

pτ Priority of task τ

πd
τ ∈ Πd

τ Sequence of blocks [sd]d belonging to the dynamic
DNN structure d, suitable for executing task τ

λτ Request rate of task τ
Aτ Minimum accuracy tolerable for task τ
Lτ Maximum latency tolerable for task τ
Qτ Set of auxiliary variables denoting the possible qual-

ity levels for the data that are input to task τ
R Number of available RBs
C Available compute time (CPU/GPU)
M Available memory (RAM/VRAM)
στ SINR of mobile devices requesting task τ

B(στ) No. of bits carried by an RB assigned to a mobile
device generating data for τ

β(qτ) No. of bits associated with transferring data with
quality level qτ as input to task τ

c(sd) Compute time required by block sd

µ(sd) Memory required by block sd

ct(sd, ·) Cost of training sd

xd
τ Binary decision variable taking on 1 when DNN type

d is used for task τ

yπd
τ

Binary decision variable, taking on 1 when πd
τ is

selected for task τ
zτ Real-valued decision variable representing the task

requests admission ratio
rτ Integer decision variable indicating the no. of RBs

assigned to mobile devices offloading task τ

m(sd) Binary auxiliary variable, indicating whether sd is
used by at least one task

which specifies the number of images over which the inference
task is requested per second.

A task τ can be offloaded by mobile devices to an edge
server using a radio network slice specifically allocated for
the task. The number of resource blocks (RBs) allocated to a
slice, rτ , for task τ may vary over time but the sum for all
admitted tasks requests cannot exceed the available capacity R
(expressed in RBs). Also, denoting with στ the average signal-
to-noise ratio (SNR) experienced by mobile devices offloading
task τ over the allocated radio network, we define B(στ) as
the number of bits that a single RB can carry.

An offloaded task is executed by a dynamic DNN structure,
d, which is built using blocks sd∈Sd. Notice that such blocks
can represent one or multiple layers of a DNN, or versions
thereof pruned by an arbitrary factor. The sequence of blocks
in Sd selected to serve task τ is identified by the path on
the DNN structure, πd

τ=[sd]d∈Πd
τ . As detailed later, training

or fine-tuning the DNNs blocks has a computational cost
(CPU/GPU time in seconds); also, let c(sd) and µ(sd) be,
respectively, the inference computing time and the utilized
memory, associated with block sd, which can be derived exper-
imentally. The fundamental difference between how comput-
ing time and memory utilization associated with active DNN
blocks consume the available edge resources is that, for every
offloaded task, computing time increases proportionally with
the task rate, while memory utilization remains constant.

According to the task context (e.g., image lighting condi-
tions or camera sensor resolution), a quality level qτ∈Qτ is as-
sociated with the task and determines the achievable accuracy
level aτ , derived again experimentally due to its high non-
linearity with respect to the image quality and the processing
path pidτ on the DNN. The quality level also determines the
number of bits per image, β(qτ), to be transmitted over the
radio link from the device offloading task τ to the edge.

A task experiences end-to-end latency, including
both networking and processing components, defined as
lτ (qτ , rτ , στ , yπd

τ
, c(sd))= b(qτ)

B(στ)·rτ +
∑

sd∈πd
τ
c(sd), where

the networking component is the transmission time of β(qτ)
bits over a link of capacity B(στ)·rτ , and the processing one
is given by the sum of processing times of the DNN blocks
that belong to the selected path πd

τ . Finally, the computational
resource capacity that the edge server can devote to offload
tasks is limited to C and M , indicating, respectively, the
available compute time (CPU/GPU time in seconds) and
memory (RAM/VRAM in GB).

The notations used here and in the following are summa-
rized in Table III.

B. DOT Formulation

We consider the following decision variables:
• the task admission vector z=[z1, . . . , zT] where zτ∈[0, 1]
indicates the fraction of task τ request rate that is admitted
for offloading;
• the task-DNN mapping vector xd=[xd

1, . . . , x
d
T], ∀d∈D,

where xd
τ is a binary variable indicating whether task τ is

served by the DNN d or not;
• the DNN path selection vector yπd = [yπd

1
, . . . , yπd

T
], ∀d∈D

and path on d, where yπd
τ

is a binary variable that takes on 1
if πd

τ is used to execute task τ ;
• the radio resource allocation vector r = [r1, . . . , rT] where
rτ is the number of RBs allocated for offloading task τ .

The goal of the DOT problem is to minimize the rejection
rate of the tasks (also accounting for their priority), the cost
of the radio resources for offloading the admitted tasks, and
the cost of the edge resources for both training and inference
of the DNNs deployed to handle such tasks. Thus, the DOT
problem can be formulated as in the colored box below,
where the objective function (1a) weights by parameter α the
task admission term and the resource allocation term. More
specifically, the latter accounts for: (i) the cost of training
each block sd∈S that is selected for serving one or multiple
admitted tasks normalized to the full DNN training cost (for
brevity, we denote with S the set of all possible blocks of
all available DNNs); (ii) the fraction of total radio resources
allocated for offloading the admitted tasks, and (iii) the cost
of CPU/GPU time consumed by each DNN block to execute
inference for the admitted tasks, normalized to the cost yielded
by the full DNN. We remark that the training cost (ct) of a
block sd also depends on the subset of tasks that will use that
block (represented through the decision variables yπd

τ
), thus

accounting for the possible savings that sharing a block among
different tasks can bring [22]. Also, such a cost is zero when no

task makes use of sd. Further, it is worth noting that both the
training (ct) and inference (c) costs can be computed off-line;
hence, given the set of tasks T and possible subsets thereof,
the values of such costs are inputs to the DOT problem.

Computing resource budget requirements are enforced by
(1b) for the memory and (1c) for the CPU/GPU time, which
ensure that they do not exceed the available capacity. We
remark that, whenever multiple tasks use the same DNN
block sd, the memory utilization due to sd is counted only
once; this is done by introducing the binary auxiliary variable
m(sd), which takes 1 when sd is used by at least one task.
Conversely, the consumed compute time is summed over all
tasks using DNN block sd, scaled according to the admission
task rate zτ ·λτ . Similarly, the requirements related to the radio
resources are expressed by (1d) and (1e). The former ensures
that the number of RBs assigned to the radio network slices
serving a task does not exceed the available capacity. The
latter imposes that each task is allocated a radio slice that has
sufficient bandwidth to transmit task input data of quality qτ
generated by the mobile device experiencing channel quality
στ , given the selected admission task rate zτ ·λτ .

DNNs for scalable Offloading of Tasks (DOT)

min
z,xd,
y
πd ,r

∑
τ∈T

α(1−zτ)pτ+(1− α)

∑
sd∈S

ct
(
sd, {yπd

τ
}πd

τ :s
d∈πd

τ

)
Ct

+
∑
τ∈T

zτλτ

rτ
R
+
∑
d∈D

∑
πd
τ∈Πd

τ

∑
sd∈πd

τ

xd
τyπd

τ

c(sd)

C

 (1a)

s.t.∑
d∈D

∑
sd∈Sd

m(sd) · µ(sd) ≤ M, (1b)∑
τ∈T

zτλτ

∑
d∈D

∑
πd
τ∈Πd

τ

xd
τyπd

τ

∑
sd∈πd

τ

c(sd) ≤ C, (1c)

∑
τ∈T

zτrτ ≤ R, (1d)

zτλτ · β(qτ) ≤ B(στ) · rτ , ∀τ ∈T, (1e)
aτ (qτ , yπd

τ
) ≥ Aτ1zτ>0, ∀τ ∈T, (1f)

lτ (qτ , c(s
d, τ), rτ , yπd

τ
, στ)1zτ>0≤Lτ , ∀τ ∈T, (1g)∑

τ∈T
1zτ>0

∑
πd
τ∈Πd

τ

yπd
τ
1sd∈πd

τ
≤ K·m(sd), ∀sd∈Sd, (1h)

∑
τ∈T

1zτ>0

∑
πd
τ∈Πd

τ

yπd
τ
1sd∈πd

τ
≥ m(sd), ∀sd∈Sd (1i)

Task requirements compliance is enforced by constraints
(1f) and (1g). Notice that 1zτ>0 is an indicator function that
takes on 1 if zτ>0. In (1f), the accuracy function associated
with task τ must comply with the minimum accuracy require-
ment Aτ , as long as tasks τ are admitted with a non-zero
ratio zτ . Similarly, in (1g), for every task with a non-zero
admission ratio, the maximum tolerable end-to-end latency
must be satisfied by the task latency function. Finally, (1h)

and (1i) are used to force the values of the auxiliary binary
variable m(sd). Here, 1sd∈πd

τ
is an indicator function taking

1 when DNN block sd is part of path πd
τ . More in detail, (1h)

uses the Big M method notation (here, K takes a large value)
to force m(sd) to take 1 when sd is used by at least one task.
Conversely, according to (1i), m(sd) must take 0 when sd is
not used by any task.

The following proposition holds.
Proposition 1: The DOT problem is NP-hard.

Proof: The proof is based on a reduction in polynomial
time from the binary multi-dimensional knapsack problem,
which is known to be NP-hard (details omitted for brevity).

We remark that, although the DOT formulation above has
been given considering no preexisting DNNs already deployed
at the edge for previously admitted tasks, it can be trivially
extended to deal with a dynamic scenario where new tasks
offloaded by mobile devices may need to be incrementally
accommodated at the edge server. In this case, it is indeed
enough to consider the training cost and memory occupancy
of already-deployed DNN blocks equal to zero, discount the
radio, compute, and memory capacity, and only account for
the additional blocks and RBs that may be needed by the set
of newly requested tasks.

IV. THE OFFLOADNN SOLUTION STRATEGY

In light of the NP-hardness of the DOT problem, we present
a heuristic algorithm, named scalable Offloading of DNN tasks
(OffloaDNN), for serving inference tasks through efficient
sharing and configuration of dynamic DNN structures. Before
detailing our approach, we highlight the characteristics of the
DOT problem and the main challenges it poses, and how
OffloaDNN can effectively address them. The fundamental
aspects and the challenges of the DOT problem include:

(i) Size of the solution space: The solution space, especially
concerning integer optimizing variables, includes the various
permutations of DNN paths for different tasks, which is very
large. Solving the DOT problem thus demands a method to
explore and evaluate potential solutions efficiently while still
being able to make high-quality decisions.

(ii) Accounting for heterogeneous resources: The DOT
problem deals with cost and allocation of resources that are
diverse, in terms of both type and dimensionality, which need
to be considered and effectively utilized in the solution.

(iii) DNN block sharing among different inference tasks:
The DOT problem involves choosing the best DNN blocks
sequence (i.e., paths) for the offloaded tasks, where these
paths share memory resources and training costs. Achieving
efficiency in terms of total memory utilization and training cost
requires considering the fact that DNN blocks can be shared
by different tasks and accounting for such possible correlations
while selecting the optimal paths for the various tasks.

In our OffloaDNN approach, we address the characteristics
and challenges of DOT as follows:

(i) Graph-based model: We tackle the problem complexity
by modeling the solution space through a graph that is built

 Clique 3

 Clique 3

 Clique 2

 Clique 1

Layer 1

Layer 2

 Clique 2 Clique 2

 Clique 3

 Clique 3

 Clique 3

 Clique 3

Layer 3

Fig. 5. Hierarchical tree representation for T=3 tasks. Here, task τ=1 has
highest priority with N1 siblings in clique 1, τ=2 has second highest priority
with N2 siblings in clique 2, and τ=3 has third highest priority with N3

siblings in clique 3. Each vertex vj=πj
τ in the clique at t-th layer corresponds

to a possible path on a DNN that can serve the task of priority t.

by processing the tasks sequentially (instead of in parallel)
according to their priority level, from highest to lowest. Each
vertex then represents a possible decision for a task, i.e., a path
on a dynamic DNN structure that can be used for that task
execution, and edges connect different deployment options
when transitioning between tasks. To reduce the solution space
and explore it in an efficient manner, upon processing a new
task, only the vertices corresponding to feasible solutions,
i.e., honoring accuracy and inference latency constraints, are
included.

(ii) Assigning attributes to vertices: Vertices carry multi-
dimensional and heterogeneous attributes capturing the di-
verse nature of the resources to be allocated: total memory
consumption, training and inference compute time, and radio
resource allocation for data transfer. Additionally, attributes
represent the task admission ratio, and the accuracy and
latency associated with a given path. Attributes also provide
flexibility in modeling the system, in that their values can
vary in dynamism: they can be fixed, dynamic, or subject to
optimization upon graph traversal.

(iii) Tree structure: The graph we build has a tree structure,
with each layer corresponding to the decisions that are possible
for a given task, from the highest-priority task to the lowest-
priority one (the tree root represents the process starting point).
Every layer accommodates “sibling” groups of vertices, i.e.,
groups of vertices that are replicated almost the same but for
the value taken by the total memory utilization and the training
cost attributes. The group of siblings at layer t is referred to as
clique t (Fig. 5.) Each repetition of a clique connects to a single
parent vertex, enabling us to track the dependencies of memory
and training cost from previously selected paths during graph
traversal (i.e., the choices concerning the higher-priority tasks).
Indeed, the vertex total memory consumption and training
cost attributes update dynamically during traversal. Further,
by properly ordering the vertices within each clique according
to their inference compute time, we dramatically reduce the
complexity of tree exploration by selecting the tree branch that
minimizes this metric.

The tree construction and branch selection are detailed next.

A. Tree Construction

We begin by defining a directional tree T =(V, E) where
each vertex, vi∈V , models a possible DNN configuration
(path) for the execution of a task. The set of edges E represents
directional connections, from parent to child vertices. The
tree has T=|T| layers: each layer in T corresponds to a
specific task τ , with the sequence of layers from root to leaves
matching the descendent order of the tasks priority.

Each layer is constructed by replicating a group of vertices
referred to as a clique (Fig. 5): all vertices within a clique
share the same parent and represent suitable DNN paths for
that specific task. Within each clique, we arrange vertices {vi}
from left to right based on the increasing inference compute
time of the DNN paths represented by the vertices.

At a given layer, different cliques differ by the value taken
by the total memory utilization attribute and the associated
training cost. Given |D| DNNs suitable for task τ of priortiy
t, with each DNN d offering Nd=|Πd

τ | potential paths, a
clique for task τ involves aggregating Nτ=

∑
d∈D Nd vertices,

with the j-th vertex representing a DNN path, i.e., vj=πj
τ .

These vertices encapsulate information about the utilized
DNN blocks, their characteristics, and their cost. Specifically,
each vertex embodies static, dynamic, and to-be-optimized
attributes. The static attributes of a vertex include the attained
accuracy aτ , inference latency l′τ , required computational time
by the inference task

∑
sd∈πj

τ
c(sd), and number of bits β(qτ)

to be transmitted over the radio interface from the mobile
device providing the edge with the input data for the task
with quality qτ . The variable attributes are the total memory
consumption and associated training cost attributed to the
corresponding blocks for the tasks processed till this tree layer.
The attributes to optimize include task admission ratio zτ and
resource block allocation rτ , which are initialized to 1 during
the tree construction phase.

Edges e∈E link each vertex within a layer to all vertices in
the subsequent task’s clique, maintaining task priority order.
This creates a complete tree structure comprising Πτ∈TNτ

vertices; thus, traversing all vertices proves computationally
challenging. To manage complexity, at every layer, vertices
violating the accuracy constraint or associated with an infer-
ence compute time greater than Lτ are removed.

Each branch within the tree, denoted by bk, comprises
vertices corresponding to distinct layers, ensuring that each
branch contains a single vertex representing a specific DNN
path (i.e., configuration option) for a task τ from layer t. Each
branch holds records of attributes associated with the vertices
traversed in that branch, as detailed next.

B. Tree Traversal

We define the cost function representing the total cost
associated with a tree branch as the DOT objective function
in (1a). In so doing, the optimal solution can be found by
selecting the least-cost branch. Traversing the tree to compute
the branches cost involves employing a Depth-First Search
(DFS) approach to track branch costs and update the dynamic
attributes of the vertices within each branch.

More specifically, while traversing the vertices of a branch
bk, the memory consumption and training cost at each subse-
quent vertex vj=πj

τ at layer t and task τ are updated, consid-
ering the additional costs incurred by employing new blocks
{sd} compared to those used by the preceding vertices within
the same branch up to layer t−1. If the memory consumption
exceeds the threshold M at any vj=πj

τ vertex on a branch
bk, exploration of that branch halts. Thus, after exploring all
branches, the cost for each branch can be computed by solving
an optimization problem with (i) the objective function as in
(1a) but with xd

τ , yd
τ , πd

τ given (note that the latter are the
vertices on the considered branch); (ii) the constraints are
as in (1c)–(1e) and (1g), since while building the tree we
already made sure that those related to memory, accuracy,
and latency were honored. Finally, the branch with the least
cost, denoted by b∗, provides the optimal task admission ratio
z∗τ and resource allocation r∗τ . Within this branch, the vertex
information πj

τ at layer t identifies the optimal DNN d and
the corresponding DNN path for task τ , implying that xd

τ=1
and yπd

τ
=1.

In this new optimization problem, the objective function
is a linear combination of known constants and decision
variables zτ and rτ . The first two and the fourth constraints
are linear and, hence, convex. The third constraint involves
linear combinations of zτ and rτ . Also, B(στ) is positive and
b(qτ) is a convex function. Hence, the problem is convex in
zτ and rτ and can be solved to the optimum by using any
convex optimizer. Nevertheless, the above solution strategy
has exponential complexity, namely, O(NT

maxT
2). Indeed, the

possible number of vertices in a clique is
∑

d∈D] |Πd
τ | (see

Sec. IV-A); hence, the total number of vertices in T is at most
Nmax=Πτ∈T

∑
d∈D] |Πd

τ |. Also, the worst case complexity for
solving the linear optimization problem for zτ and rτ with
2(T+1) constraints and maximum 2T variables for a branch
is O(4T×(T+1)).

We therefore leverage the method followed while construct-
ing the tree (i.e., the fact that at each layer vertices appear
in increasing order w.r.t. their inference compute time), and,
while traversing the tree from the root to the leaves, we
select the first branch. The rationale is that, in (1a), the total
inference cost is minimized when the corresponding compute
time of all tasks is minimal. Notably, though the inference
compute cost of the branches increases from left to right,
the value of the DOT objective function may not follow the
same trend, as it includes further terms. However, OffloaDNN
exhibits now a polynomial, and indeed dramatically reduced
complexity, namely, O(T 2), at the expense of achieving a sub-
optimal solution. We will show in Sec. V that, in spite of this,
OffloaDNN matches the optimum very closely.

V. EXPERIMENTAL EVALUATION

In this section, we first introduce the setup configuration
used to derive our numerical results and the performance of
OffloaDNN against the optimum in a small-scale scenario, and
against the SEM-O-RAN state-of-the-art competitor [5] in a
larger-scale scenario (Sec. V-A). Then we describe the settings

1 2 3 4 5

No. of inference tasks, T

10
0

10
1

10
2

R
u
n
 t
im

e
 [
s
] OffloaDNN

Optimum

Fig. 6. Comparison of the average runtime taken by the optimum and the
OffloaDNN solution strategies, in the small-scale scenario, as the number of
inference tasks T varies.

1 2 3 4 5

No. of inference tasks, T

0

0.25

0.5

0.75

1

N
o
rm

a
liz

e
d
 D

O
T

 c
o
s
t

OffloaDNN

Optimum

1 2 3 4 5

No. of inference tasks, T

0

0.25

0.5

0.75

1

N
o
rm

a
liz

e
d
 t
o
ta

l

 r
e
q
u
ir
e
d
 m

e
m

o
ry OffloaDNN

Optimum

Fig. 7. Small-scale scenario: Comparison of the total DOT cost and memory
utilization due to active DNN blocks, under the optimal and the OffloaDNN
strategies, as the number of inference tasks T varies.

adopted for the validation of OffloaDNN on the Colosseum
emulator and the end-to-end latency that we obtained for the
considered inference tasks (Sec. V-B).

TABLE IV
SCENARIOS PARAMETERS

Parameter Small scenario Large scenario
T {1, . . . , 5} 20
T {1}, . . . {1, . . . , 5} {1, . . . , 20}
λτ [req./s] 5 ∀τ ∀τ low: 2.5; medium: 5;

high: 7.5
Aτ [top-1] [0.9, 0.8, 0.7, 0.6, 0.5] 0.8− 0.015 · τ , τ∈T
Lτ [ms] [200, 300, 400, 500, 600] 200 + 20 · τ , τ∈T
|D| 3 125
|Πd

τ | 5 10
C [s] 2.5 10
Ct [s] 1000 1000
M [GB] 8 16
β(στ) [Kb] 350 350
B(στ) [Mbps] 0.35 0.35
α 0.5 0.5
pτ [0.8, 0.7, 0.6, 0.5, 0.4] [1, 0.95, . . . , 0.1, 0.05]
R [RBs] 50 100

A. Numerical Results

Small-scale scenario. We crafted a small-scale scenario to
compare OffloaDNN to the optimum, which can be practically
derived only for problem instances with few tasks, from 1 to
5. Tasks are ordered according to decreasing priority, while
their request rate is fixed at 5 req/s for every task. Each task
is also assigned a distinct latency and accuracy requirement
as specified in Table IV. For the DNNs and paths reported
in the table, we remark that each DNN path is composed of
four blocks; the costs implied by the different blocks were
experimentally characterized under settings similar to those
used in Sec. II.

As outlined in Sec. IV-B, the optimal solution of the DOT
problem can be obtained by traversing all branches of the tree
T . For each branch, the optimization involves adjusting zτ and
rτ , followed by the computation of the total DOT cost for that

1 2 3 4 5

No. of inference tasks, T

0

2

4
W

e
ig

h
te

d
 t
a
s
k
s

a
d
m

is
s
io

n
 r

a
ti
o

OffloaDNN

Optimum

1 2 3 4 5

No. of inference tasks, T

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 n

o
.
o
f

 R
B

s
 a

llo
c
a
te

d OffloaDNN

Optimum

1 2 3 4 5

No. of inference tasks, T

0

0.2

0.4

0.6

0.8

1

T
o
ta

l
tr

a
in

in
g

 c
o
m

p
.
u
s
a
g
e OffloaDNN

Optimum

1 2 3 4 5

No. of inference tasks, T

0

0.2

0.4

0.6

0.8

1

T
o
ta

l
in

fe
re

c
n
e

c
o
m

p
.
u
s
a
g
e OffloaDNN

Optimum

Fig. 8. Small-scale scenario: comparison between OffloaDNN and the optimum as a function of the number of inference tasks T : (left) average task admission
ratio weighted by the tasks’ priority; (center-left) total number of RBs allocated to the tasks’ slices, normalized to the maximum available; (center-right) total
compute usage for the training of the active DNNs; (right) total compute usage for the admitted inference tasks, normalized to the maximum available.

Task ID

T
a

s
k
 a

d
m

is
s
io

n
 r

a
ti
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

O
ff
lo

a
D

N
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

S
E

M
-O

-R
A

N

Low request rate Medium request rate High request rate

Fig. 9. Large-scale scenario: admission rate of each task for OffloaDNN (top)
and SEM-O-RAN (bottom).

specific branch. The branch with the lowest cost provides the
optimal solution. This benchmark serves here as the basis for
evaluating our proposed OffloaDNN.

The reduction in run-time complexity exhibited by Of-
floaDNN compared to solving the DOT problem to the op-
timum is highlighted in Fig. 6. Already for a number of tasks
greater than 1, the runtime of OffloaDNN is over one order
of magnitude less than that of the optimum. Remarkably,
this comes at the expense of a negligible increase in the
cost, as shown in Fig. 7(left) reporting the normalized value
of the DOT objective function obtained with OffloaDNN
and the optimum. Fig. 7(right) shows that also OffloaDNN
memory consumption is just slightly higher than that of the
optimum, suggesting that OffloaDNN lets tasks share fewer
DNN blocks than they could. It is worth noticing, however,
that the objective of DOT is not to reduce the total memory
consumption at the edge, rather to maintain it below the
available quota M – a goal that is amply achieved as memory
usage is at most 64% of the available budget.

The cost breakdown in its components is reported in
Fig. 8. The weighted tasks admission ratio (Fig. 8(left)) is
computed as the summation over all tasks of the product of
the task admission ratio and the task corresponding priority.
We observe that OffloaDNN allows for the same weighted
task admission ratio as the optimum. Similarly, looking at
the total number of RBs allocated to the tasks offloading
(normalized to the available bandwidth R) in Fig. 8(center-
left), one can observe that OffloaDNN performs as good
as the optimum. Fig. 8(center-right) reveals that the slightly
higher DOT cost under OffloaDNN relatively to the optimum
is due to an increased cost of training the selected DNNs
structures. However, remarkably, Fig. 8(right) underlines that
OffloaDNN requires a lower inference compute usage than

the optimum, with such usage accounting for the aggregate
compute resource fraction necessary for executing all inference
tasks admitted at the edge. The reduction of this relevant
metric is attained thanks to the way OffloaDNN has been
designed. Specifically, it is due to the combination of sorting
the vertices within each clique based on the required compute
time while building the weighted-tree graph, and the selection
of the first branch of the tree performed by OffloaDNN.

Large-scale scenario. We now consider 20 inference tasks,
which, again, have the same requesting rate but distinct values
of priority as well as accuracy and latency requirements. In this
case, we also investigate the system performance for different
values of tasks requests rate, from low to medium and high
(see Table IV), thus varying the load of task requests at the
edge. Other relevant parameters are defined in Table IV. As
for the DNN blocks, we consider the individual layers of the
state-of-the-art ResNet-18 for image classification, in their full
version as well as fine-tuned and then pruned by 80%. Again,
each DNN path is composed of four blocks, and the blocks
costs were experimentally characterized.

As obtaining the optimum in the large-scale scenario is
impractical, we compare OffloaDNN against the SEM-O-RAN
state-of-the-art solution [5]. We recall that SEM-O-RAN aims
to maximize the total number of admitted offloaded tasks, mul-
tiplied by their value (i.e., the priority level in our scenario),
till there are enough resources available. Furthermore, SEM-O-
RAN does not admit/reject individual inference task requests,
rather either it admits all requests for a given inference task,
or it rejects them all.

The experiments reveal that, at a low request rate, all tasks
achieve admission ratio equal to 1 in OffloaDNN, while only
16 get admitted in SEM-O-RAN (Fig 9). With a medium
request rate, OffloaDNN admits 19 out of 20 tasks with ratio
1 and the lowest priority task with 0.99 admission ratio. In
contrast, SEM-O-RAN still admits only 16 out of 20 tasks; this
occurs because the task requests deplete all RBs (Fig. 10(left-
center)). A similar trend is observed at high task requests
rate, where OffloaDNN admits the top 10 priority tasks with
admission ratio 1, while the next 7 had diminishing admission
ratio, and the last three are all rejected due to RB saturation.
SEM-O-RAN, instead, admits only 13 tasks and rejects all the
others. Consequently, for both OffloaDNN and SEM-O-RAN,
the weighted tasks admission ratio (Fig. 10(left)) decreases
as the task request rate increases, but our solution always
outperforms its counterpart.

In terms of allocated RBs, Fig. 10(left-center) underlines

Low Medium High

Task request rates

0

5

10
W

e
ig

h
te

d
 t
a
s
k
s

a
d
m

is
s
io

n
 r

a
ti
o

OffloaDNN

SEM-O-RAN

Low Medium High

Task request rates

0

0.5

1

N
o

rm
a

liz
e

d
 n

o
.

o
f

R
B

s
 a

llo
c
a

te
d

OffloaDNN

SEM-O-RAN

Low Medium High

Task request rates

0

0.5

1

N
o

rm
a

liz
e

d
 t

o
ta

l

re
q

u
ir
e

d
 m

e
m

o
ry

OffloaDNN

SEM-O-RAN

Low Medium High

Task request rates

0

0.5

1

T
o

ta
l
in

fe
re

n
c
e

c
o

m
p

.
u

s
a

g
e

OffloaDNN

SEM-O-RAN

Fig. 10. Large-scale scenario: comparison between OffloaDNN and SEM-O-RAN as the tasks requests rate varies: (left) average task admission ratio weighted
by the tasks priority; (center-left) total number of RBs allocated to the tasks slices, normalized to the maximum available; (center-right) total memory utilization
for the active DNNs; (right) total compute usage for the admitted inference tasks, normalized to the maximum available.

that OffloaDNN saves nearly 33% of the RBs when the task
request rate is low. Moreover, both OffloaDNN and SEM-O-
RAN tend to saturate the available RBs as the task request rate
grows from low to medium and high. As for the total required
memory, Fig. 10(right-center) shows that OffloaDNN achieves
significant savings compared to SEM-O-RAN due to block
sharing among 20 tasks. Notice also that, under OffloaDNN,
memory usage remains the same for low and medium task
request rates because our solution selects the same tree branch
and uses the same amount of memory. In the case of high task
request rate, OffloaDNN still chooses the same branch, but
the admission ratio of the last three tasks being zero results
in fewer active blocks, thus reducing memory utilization.

Additionally, although the total inference compute us-
age increases with the task request rate for both schemes
(Fig. 10(right)), OffloaDNN substantially outperforms SEM-
O-RAN, thanks to the way it sorts and selects the DNN
paths. Instead, SEM-O-RAN, consistently with its objective,
tends to serve the tasks with higher priority (i.e., higher
value) and discards entirely the low-priority ones whenever
there are not enough resources. It follows that, as the tasks
requests rates grow, SEM-O-RAN can accommodate fewer and
fewer “difficult” tasks that, due to their stringent accuracy and
latency requirements, would require large resource usage.

For completeness, we also report the total DOT cost:
[0.35,0.44,0.74], and training cost: [0.81,0.81,0.67], for low,
medium, and high traffic load (resp.), obtained under Of-
floaDNN. With a penalty for reduced admission rates, the
DOT cost rises with increasing task request rates. Meanwhile,
the total training compute usage remains constant for low
and medium task request rates but decreases for high task
request rates, aligning with the explanation provided for the
total required memory.

As a result, when compared to SEM-O-RAN, on average
OffloaDNN exhibits a sensible gain in the number of
offloaded tasks that can be served at the edge (26.9%
increase), while substantially reducing memory and com-
pute usage (by 82.5% and 77.3% resp.), as well as radio
resources consumption (by 4.4%).

B. Experimental Results on Colosseum

We conduct real-world experiments of a small-scale sce-
nario on the Colosseum wireless network emulator [11], to
recreate a realistic LTE network scenario, with a Standard
Radio Node (SRN) acting as an Edge Platform, hosting the

0 5 10 15 20

Time [s]

0.2

0.4

0.6

0.8

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 [
s
]

1 2 3 4 5

Fig. 11. Experiments in Colosseum: time evolution of task end-to-end latency
and maximum latency targets (diamond markers). For clarity, a moving
average with a window size of 3 samples is used.

vRAN Base Station, the computing platform for the execution
of offloaded tasks, and the OffloaDNN controller, while 5
SRNs generate task requests and act as UEs. For the massive
channel emulator (MCHEM) configuration, we set a 20 MHz
FDD bandwidth (100 RBs), entirely dedicated to the LTE
cell, and a static 0 dB path loss. We set tasks with λτ , Aτ ,
and Lτ as specified in Table IV for the small-scale scenario.
We also consider 10 different DNN paths, each exhibiting
distinct values of accuracy, training cost, memory usage, and
inference compute time. The details of these DNNs are input
into the OffloaDNN controller, which outputs, for each task,
the optimal DNN path, task admission ratio, and no. of
allocated RBs. Such values are used to configure Colosseum’s
computing and networking environment. Specifically, the RB
allocation is set through SCOPE [23], while the admission
ratio is sent to the UEs to set the task inference rate. Fig. 11,
which reports the evolution over time of the end-to-end latency
experienced by the different tasks, validates our framework
from the operational viewpoint and demonstrates that the
solution generated by OffloaDNN provides latency values
within the specified task constraints.

VI. RELATED WORK

Several recent works have addressed the task offloading
optimization problem, which is generally formulated as a
mixed integer non-linear problem (MINLP) and, due to its
complexity, in most cases, cannot be solved to optimality. A
formulation (again as a MINLP) of the joint optimization of
the offloading strategy and the allocation of edge computing
resources can be found in [24], where the authors solve it
by quasi-convex/convex optimization methods and an efficient
heuristic algorithm. The study in [25] formulates the MINLP

problem of joint offloading, content caching, and resource
allocation and solves it by tree-search and branch and bound.

Another body of work aims to solve the above problems,
and variants thereof, through machine-learning techniques. For
instance, [26] develops a deep learning method for multi-
label classification, while minimizing the system overhead in a
single-user, single-cell scenario. In [24], the authors propose a
feedforward neural network to jointly optimize the offloading
decision and the allocation of computing resources at the edge,
considering latency constraints. Latency constraints are also
the focus of [27], which deals with statistical rather than
deterministic latency guarantees. In particular, [27] formulates
a model to correlate QoS guarantees with task offloading
strategies, and proposes an algorithm to offload tasks with
statistical QoS using convex optimization.

In the context of CV tasks execution, [28] proposes a
solution for real-time CV applications that tries to achieve
the best DNN accuracy and delay according to the hardware
type for which the DNN workload is intended. The authors
of [29] use a feature specific for CV, i.e., adaptive quality
optimization, to offload tasks by selecting a suitable execution
version according to task latency constraints. A similar concept
of adaptive task quality is employed by SEM-O-RAN [5],
a task offloading framework that maximizes the number of
admitted tasks by (i) applying semantic compression to task
input images, which decreases the consumption of edge re-
sources, and (ii) allocating edge resources of different types in
a balanced manner, as to avoid resource starvation. Contrary to
ours, the above approaches do not leverage DNN blocks shar-
ing, optimizations of the DNNs structure, or fine-tuning and
pruning, and only consider binary task admission decisions.

In summary, to the best of our knowledge, no existing work
specifically addresses the scalability of CV tasks offloading,
or looks at the CV DNN structures as a way to optimize the
execution of such tasks at the edge.

VII. CONCLUSIONS

We tackled the problem of executing multiple computer
vision tasks offloaded by mobile devices to the edge. In so
doing, we leveraged three main innovations: (1) a proper
set of DNN layers can be shared among diverse offloaded
tasks to save memory resources at the edge; (2) a tailored
number of common layers can be “frozen” while task-specific
layers can be fine-tuned, to limit training costs, preserve
previously acquired knowledge, and, at the same time, fulfill
tasks accuracy requirements; (3) task-specific layers can be
pruned in a customized manner to further save memory and
computing time at the edge while meeting accuracy require-
ments. To best apply such innovations, we formulated an
optimization problem that determines the most efficient DNNs
configurations to be deployed, the tasks offloading rate that the
edge can support, and the radio and computing resources to
be allocated. We then envisioned a low-complexity solution
strategy that efficiently and effectively solves the above (NP-
hard) problem. Using ResNet-18, extensive numerical results,
and real-world experiments on the Colosseum emulator, we

validated our framework and demonstrated that our solution
matches the optimum very closely in small-scale scenarios,
and substantially outperforms its state-of-the-art alternative
(with 82.5% reduction in memory usage, 77.3% decrease in
inference compute time, and 26.9% more admitted offloaded
tasks) in larger-scale scenarios.

REFERENCES

[1] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in IEEE
CVPR, pp. 4510–4520, 2018.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[3] S. Jošilo and G. Dán, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Trans. on Netw., vol. 28,
no. 2, 2020.

[4] X. Wang, J. Ye, and J. C. Lui, “Decentralized task offloading in
edge computing: A multi-user multi-armed bandit approach,” in IEEE
INFOCOM 2022, 2022.

[5] C. Puligheddu, J. Ashdown, C. F. Chiasserini, and F. Restuccia, “SEM-
O-RAN: Semantic O-RAN slicing for mobile edge offloading of com-
puter vision tasks,” IEEE Trans. on Mob. Comp., 2023.

[6] Z. Dong and et al., “EdgeMove: Pipelining device-edge model training
for mobile intelligence,” in ACM WWW, 2023.

[7] H. Sun and et al., “BIRP: Batch-aware inference workload redistribution
and parallel scheme for edge collaboration,” in ACM ICCP, 2023.

[8] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in
transfer learning?,” Adv. in Neur. Inf. Proc. Syst., vol. 33, 2020.

[9] K. Ahmed, M. H. Baig, and L. Torresani, “Network of experts for large-
scale image categorization,” in Computer Vision – ECCV 2016 (B. Leibe,
J. Matas, N. Sebe, and M. Welling, eds.), (Cham), Springer International
Publishing, 2016.

[10] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neur. Netw., 2019.

[11] L. Bonati and et al., “Colosseum: Large-scale wireless experimentation
through hardware-in-the-loop network emulation,” in IEEE DySPAN,
2021.

[12] K. He, R. Girshick, and P. Dollár, “Rethinking ImageNet pre-training,”
in IEEE/CVF ICCV, 2019.

[13] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,” in IEEE
CVPR Workshops, 2014.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE CVPR, 2009.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv:1510.00149, 2015.

[16] X. Ma, , et al., “Sanity checks for lottery tickets: Does your winning
ticket really win the jackpot?,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

[17] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv:1810.05270, 2018.

[18] N. Lee, T. Ajanthan, and P. H. S. Torr, “SNIP: Single-shot network
pruning based on connection sensitivity,” 2018.

[19] J. van Amersfoort, M. Alizadeh, S. Farquhar, N. Lane, and Y. Gal,
“Single shot structured pruning before training,” arXiv:2007.00389,
2020.

[20] H. Kohama, H. Minoura, T. Hirakawa, T. Yamashita, and H. Fujiyoshi,
“Single-shot pruning for pre-trained models: Rethinking the importance
of magnitude pruning,” in IEEE/CVF ICCV, 2023.

[21] G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang, “Depgraph: Towards
any structural pruning,” in IEEE/CVF CVPR, 2023.

[22] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong
learning with a network of experts,” in IEEE CVPR, 2017.

[23] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Scope: An open and
softwarized prototyping platform for nextg systems,” in ACM MobiSys,
2021.

[24] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation offloading
in multi-access edge computing: A multi-task learning approach,” IEEE
Trans. on Mob. Comp., vol. 20, no. 9, 2021.

[25] J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet of
Things J., 2019.

[26] S. Yu, X. Wang, and R. Langar, “Computation offloading for mobile
edge computing: A deep learning approach,” in IEEE PIMRC, 2017.

[27] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “Qos driven
task offloading with statistical guarantee in mobile edge computing,”
IEEE Trans. on Mobile Computing, 2022.

[28] Z. Fang, J.-H. Lin, M. B. Srivastava, and R. K. Gupta, “Multi-tenant
mobile offloading systems for real-time computer vision applications,”
in ACM ICDCN, 2019.

[29] A. Toma, J. Wenner, J. E. Lenssen, and J.-J. Chen, “Adaptive quality
optimization of computer vision tasks in resource-constrained devices
using edge computing,” in IEEE/ACM CCGRID, 2019.

