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Abstract: Preferential concentration, observed in turbulent flows when particle response times
are of the same order of the flow’s characteristic timescales, manifests as non-uniform particle
distributions in space. Unraveling its governing mechanisms holds crucial implications for both
natural and industrial processes reliant on particle-laden flows. Focusing on particles with small
inertia, this study employs Direct Numerical Simulations coupled with Lagrangian particle tracking
to investigate the influence of the added-mass factor on the preferential concentration of particles
denser than the fluid in the one-way coupling regime. It is shown how the added-mass factor β

affects particle distribution within the channel through the statistical correlations between particle
concentration and typical descriptors of the flow topology. The results suggest that increasing values
of β (corresponding to lighter particles) significantly reduce the effectiveness of turbophoresis in
producing particle accumulation in the near-wall region. Resulting in a gradual decorrelation between
particle concentration and both the strain-rate and the vorticity tensors, higher values of β lead to a
more uniform particle distribution, regardless of the Stokes number.

Keywords: direct numerical simulation; particle-laden flows; channel flows; wall turbulence; added-
mass factor; one-way coupling

1. Introduction

Over the past two decades, particle-laden turbulent flows have garnered renewed
attention, primarily driven by substantial advancements in measurement and simulation
capabilities, as evidenced by the extensive research on the topic recently reviewed in [1].
Most of the work has predominantly focused on small, heavy particles, as they are more
easily tractable than large and light particles in both experiments and numerical simula-
tions [2]. Particles smaller than the smallest dynamically significant flow scale can indeed
be treated as material points, and their evolution can be individually tracked by solving
a set of ordinary differential equations for each particle while simultaneously carrying
out a direct numerical simulation for the carrier flow on a Eulerian grid [3]. Since the
pioneering study on the evolution of particles suspended in decaying isotropic turbulence
by Riley and Patterson [4], this mixed Lagrangian–Eulerian approach, usually referred to as
Point-Particle Direct Numerical Simulation (PP-DNS), has established itself as the preferred
method for simulating flows laden with small particles.

In the majority of PP-DNS applications, the Maxey–Riley equation [5] is commonly
adopted as the ordinary differential equation governing the dynamics of small, rigid
spheres immersed in viscous flows. In this model, particle motion is determined by the
forces exerted by the surrounding fluid, and due to their distinct nature, various force
contributions can be distinguished [5]. Armenio and Fiorotto [6] numerically assessed the
relative importance of force contributions in the Maxey–Riley equation for particle-to-fluid
mass density ratios ρp/ρ f ranging from 2.65 to 2650. They observed that for particles with
mass density much greater than that of the fluid, often referred to as “heavy”, the two
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most significant forces acting on the particle are the gravitational and Stokes drag forces.
The computation of these two forces is also considerably less demanding compared to
the others—namely, the added-mass, pressure gradient, and Basset history forces—which
require the evaluation of either the material derivatives of the flow field at the particle
location or integrals over the particle history, simplifying the numerical simulation. When
the Stokes drag is the most important fluid dynamic action on particles much denser than
the fluid, the key parameter governing heavy particle dynamics is the Stokes response
time, defined as τp = 2ρpr2

p/(9ρ f ν), where rp is the particle radius and ν is the kinematic
viscosity of the fluid. This quantity is the time it takes for a particle to relax its velocity to
that of the surrounding fluid. Therefore, the motion of a particle is governed by the ratio
between τp and the timescale τf of fluid velocity changes, the Stokes number St = τp/τf .

Despite its well-known limitations [1], the PP-DNS, rooted in a simplified Maxey–
Riley equation for heavy particles, has proven essential in providing valuable insights into
particle-related phenomena for a wide range of flow configurations, from homogeneous
isotropic turbulence [7–11] to wall-bounded turbulence [12–16]. In these studies, the phe-
nomenon of preferential concentration has been recognized as a typical particle response
to turbulence: particles tend to distribute in a highly non-uniform manner, accumulating
in regions of the flow characterized by specific topology. For instance, heavy particles
have been found to avoid high-vorticity regions and to dwell in strain-dominated regions
in both simulations [8,17–19] and experiments [20]. For small Stokes numbers, the main
mechanism responsible for the tendency of particles to avoid vortical structures, as iden-
tified in [17], is the centrifuge mechanism, which drives particles away from the core of
vortices towards high-strain regions. In wall-bounded flows, distinct manifestations of
preferential concentration are particle drift towards the walls and their accumulation in
low-speed streaks [13]. In these flows, strongly coherent flow structures, namely sweeps
and ejections, play a crucial role in influencing particle motion and, consequently, their
spatial distribution [15]. Instantaneous sweeps and ejections have indeed been identified as
the primary mechanisms through which the carrier flow drives particles toward and away
from the walls, respectively. Bragg and Collins [21] also observed that in inhomogeneous
flows, the centrifuge mechanism is effective in driving particle migration towards the wall
only for very small Stokes numbers, while a path-history effect, wherein the particle’s
past interaction with turbulence becomes important, is the leading mechanism for a larger
inertia. Numerical and experimental results on heavy particles suspended in both homoge-
neous isotropic turbulence [8,22] and channel flow turbulence [14,23,24] have consistently
indicated that preferential concentration, along with other related phenomena such as
inertial clustering, is most intense when particle time scales are on the same order as the
Kolmogorov timescale.

In stark contrast to heavy particles, which are ejected from vortices and sample high-
strain flow regions, both numerical and experimental observations [25,26] suggest that
light particles (ρp/ρ f < 1) tend to accumulate in the core of vortices, so they are most
likely to be found in regions characterized by low pressure and high vorticity. When the
particle mass density is comparable to the fluid density, in addition to the Stokes drag
and gravitational forces, the influence of the added-mass, pressure gradient, and Basset
history forces becomes appreciable [6], with the pressure gradient force generally directed
toward the core of the vortices. Due to its dependence on various particle characteristics,
including size and mass density, and the presence of competing mechanisms affecting
particle dispersion in turbulent flows, the understanding of preferential concentration is
still incomplete.

Building upon this gap, this exploratory study investigates the behavior of particles
that, while denser than the fluid, have a density comparable to that of the fluid. By
incorporating the pressure gradient force alongside other key forces, while excluding the
Basset force, our work aims to elucidate how these forces influence particle distribution in a
wall-turbulent shear flow. Specifically, we analyze the impact of the pressure gradient force
at low Stokes numbers, altering the established centrifugal effect on particle distribution.
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Through an exploratory approach, adopting a simplified Maxey–Riley equation as in
Boffetta et al. [27], our study seeks to unravel some aspects of the nuanced interplay of
these forces, shedding light on the intricate dynamics of particles with densities closer to
that of the fluid in turbulent environments. This type of investigation is crucial for various
industrial applications, especially in energy-related sectors, like the oil industry, which
utilize pipes and channels to transport working fluids, often containing a dispersed phase.
Particle preferential concentration is not only relevant for combustion chambers, where
the distribution of fuel particles, influenced by their density, can impact combustion [28],
but also in processes involving the conveyance of corrosive fluids. Corrosion poses a
significant challenge to energy transition, affecting the equipment used in geothermal
energy and biomass conversion processes, as well as hydrogen storage and transport.
Corrosion inevitably leads to wear, seeding the flow with solid particles that, in the case
of liquids, can have a density comparable to that of the carrier fluid. The structure of the
paper is as follows: the physical model adopted is described in Section 2, along with the
numerical methodology, results are presented in Section 3, and the final conclusions are
drawn in Section 4.

2. Materials and Methods

In this section, we provide a brief description of the physical model and numerical
methods used in particle-laden channel flow simulations, in particular, in regards to the
adopted simplified version of the Maxey–Riley equation under the assumption of small
Stokes numbers.

2.1. Physical Model

We investigate the isothermal turbulent flow in the plane channel, i.e., the flow between
two infinite, flat, and parallel walls driven by a uniform mean pressure gradient, ∂⟨p⟩/∂x.
The x, y, and z axes correspond to the streamwise, wall-normal, and spanwise directions,
respectively, as shown in Figure 1.

x

2h

2πh2πh

y

z

-∇⟨p
⟩

Figure 1. Flow configuration.

The channel is 2h-high in the y coordinate, and its extension in both x and z can
be reduced to a finite length by assuming statistical homogeneity of turbulence in these
directions and imposing periodic boundary conditions. We have set the domain size equal
to 2πh in both the x and z direction, which is much larger than the minimum size required
for a direct numerical simulation according to the analysis by Jiménez and Moin [29].

The evolution of the carrier flow is described by the incompressible Navier–Stokes
equations. In tensorial notation (x1 = x, x2 = y, x3 = z), by decomposing the pressure as
p = −(∂⟨p⟩/∂x)x + p′, they are expressed as follows:

∂uj

∂xj
= 0, (1)

∂ui
∂t

+
∂(uiuj)

∂xj
= δi,1 −

∂p′

∂xi
+

1
Reτ

∂2ui

∂x2
j

, i = 1, 2, 3. (2)
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Here, ui(t, x) represents the component of the fluid’s velocity in the i-th direction,
p′(t, x) denotes the fluctuating pressure field, and δi,1 is the mean pressure gradient driving
the flow in the x-direction. Equations (1) and (2) have been made dimensionless by rescaling
variables with the channel half-height h, the fluid density ρ f , and the friction velocity

uτ =

√
h
ρ f

∣∣∣∣∂⟨p⟩
∂x

∣∣∣∣. (3)

The only non-dimensional parameter governing the channel flow is the friction
Reynolds number, Reτ = uτh/ν, where ν is the kinematic viscosity of the fluid. No-slip
conditions are applied at the walls,

ui(t, x,±1, z) = 0,

while periodic boundary conditions for the velocity field ui and the fluctuating pressure
field p′ are imposed in both the x and z directions, i.e.,

ui(t, 0, y, z) = ui(t, 2π, y, z), p(t, 0, y, z) = p′(t, 2π, y, z),

ui(t, x, y, 0) = ui(t, x, y, 2π), p′(t, x, y, 0) = p′(t, x, y, 2π).

The flow is seeded with small and rigid spheres with mass density ρp, which can be
comparable to the density of the fluid, ρ f . The particle size is assumed to be smaller than
the smallest scale of the flow, i.e., the viscous scale, so that the mixed Eulerian–Lagrangian
description can be adopted [3]. Therefore, particles are seen as material points moving
in a locally uniform environment, and their motion is thus described by the Maxey–Riley
equations [5]. In their compact dimensional form, these equations can be written as

dxp(t)
dt

= vp(t), (4)

mp
dvp(t)

dt
= Fp(t), (5)

where mp, xp(t), and vp(t) are, respectively, the mass, the position, and the velocity of the
p-th particle, while Fp(t) is the force acting on the particle, including the force exerted by
the fluid phase. According to [5], this force can be expressed as

Fp(t) =
(

mp − m f

)
g + m f

Du
Dt

∣∣∣∣
xp(t)

+
1
2

m f
d
dt

[
u
(
xp(t), t

)
− vp(t)

]
+ 6πrpµ

[
u
(
xp(t), t

)
− vp(t)

]
− 6πr2

pµ
∫ t

0

d/dτ
[
vp(t)− u

(
xp(t), t

)]
[πν(t − τ)]1/2 dτ.

(6)

Here, µ and ν are, respectively, the dynamic and kinematic viscosity of the fluid, rp is
particle radius, m f is the mass of the fluid displaced by the immersed particle, and g is the
gravitational acceleration. Additionally, u

(
xp(t), t

)
and Du/Dt|xp(t) denote, respectively,

the fluid velocity and its material derivative evaluated at the particle location xp(t). The
terms on the right-hand side of Equation (6) represent, in order, the net buoyancy force,
the force exerted by the undisturbed velocity field (commonly referred to as the pressure
gradient force), the added-mass force, the viscous Stokes drag, and the Basset history force.
In order to account for the effects of finite particle Reynolds numbers, the Stokes drag force
contribution is often corrected with the empirical factor proposed in [30] as follows:

FSD = mp
u
(
xp(t), t

)
− vp(t)

τp

(
1 + 0.15 Re0.687

p

)
. (7)



Energies 2024, 17, 783 5 of 16

Here, τp is the particle Stokes response time, defined as

τp =
2
9

ρp

ρ f

r2
p

ν
, (8)

and Rep is the Reynolds number of the relative motion between the particle and the fluid,
given by

Rep =
2rp

∣∣u(xp(t), t
)
− vp(t)

∣∣
ν

. (9)

Using the corrected Stokes drag expression (7), Equation (5) for particle momentum is
rewritten as follows:

mp
dvp(t)

dt
=

(
mp − m f

)
g + m f

Du
Dt

∣∣∣∣
xp(t)

+
1
2

m f
d
dt

[
u
(
xp(t), t

)
− vp(t)

]
+ mp

u
(
xp(t), t

)
− vp(t)

τp
Φ
(
Rep

)
− 6πr2

pµ
∫ t

0

d/dτ
[
vp(t)− u

(
xp(t), t

)]
[πν(t − τ)]1/2 dτ,

(10)

with
Φ
(
Rep

)
= 1 + 0.15 Re0.687

p . (11)

In this work, we do not consider the effect of gravity, which would lead to particle
deposition and sedimentation. In such a situation, Boffetta et al. [27] suggested a for-
mulation of the Maxey–Riley equations that neglects the Basset history force, which is
expected to be the least important force. Under the hypothesis of small particle response
times, the material derivative of the fluid velocity evaluated at the particle location can
be approximated with the time derivative of fluid velocity following the particle motion.
Thus, Equation (10) for particle momentum becomes

mp
dvp(t)

dt
=m f

d
dt

[
u
(
xp(t), t

)]
+

1
2

m f
d
dt

[
u
(
xp(t), t

)
− vp(t)

]
+ mp

u
(
xp(t), t

)
− vp(t)

τp
Φ
(
Rep

)
.

(12)

Dividing Equation (12) by the particle mass and rearranging its terms, it becomes

d
dt

[
vp(t)− βu

(
xp(t), t

)]
=

u
(
xp(t), t

)
− vp(t)

τ̂p
Φ
(
Rep

)
, (13)

where β is the so-called added-mass factor, defined as

β =
3

2ρp/ρ f + 1
, (14)

and τ̂p is a modified particle response time, given by

τ̂p = τp

(
1 +

ρ f

2ρp

)
=

r2
p

3βν
. (15)

Equation (13) can be put in a simple form by defining the particle covelocity wp(t) as

wp(t) = vp(t)− βu
(
xp(t), t

)
, (16)
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so that the resulting equations can be recast in a form close to the equations valid for
particles much denser than the fluid,

dxp(t)
dt

= vp(t) = wp(t) + βu
(
xp(t), t

)
, (17)

dwp(t)
dt

=
(1 − β)u

(
xp(t), t

)
− wp(t)

τ̂p
Φ
(
Rep

)
. (18)

Equations (17) and (18) state that particle motion is governed by two parameters: the
added-mass factor (β) and the modified response time (τ̂p). Both these parameters are
determined by the particle-to-fluid density ratio and particle radius. The non-dimensional
form of the particle equations (Equations (17) and (18)) maintains the same structure as
their dimensional counterparts when scaled with the flow reference scales (specifically, h,
ρ f , and uτ). In the dimensionless equations, the resulting particle response time would be
given by τ̂p = Reτr2

p/(3β), where rp represents henceforth the non-dimensional particle
radius. As non-dimensional governing parameters, we selected the added-mass factor, β,
and the Stokes number obtained with the wall viscous timescale, i.e., St+ = τ̂p/τη , where
τη is non-dimensional and given by τη = 1/Reτ .

In this work, we consider the one-way coupling regime only, so that no particle force
on the fluid is present in Equation (2) and the particle volume fraction plays no dynamical
role. Indeed, the primary goal of this work is not to investigate flow modifications caused
by particles, nor the effect of particle collisions, but to assess how the finite ratio ρp/ρ f
influences the particle distribution in the near-wall region.

2.2. Numerical Methods

The Navier–Stokes equations (Equations (1) and (2)) are reformulated in terms of the
wall-normal component of the vorticity vector, η = ∂u/∂z − ∂w/∂x, and the wall-normal
component of the velocity field, v, as in [31]. This formulation consists of a second-order
equation for η and a fourth-order equation for v, in which pressure does not appear. Spectral
methods are employed for spatial discretization: Fourier–Galërkin in the two homogeneous
directions (x and z) and Chebyshev–Tau in the wall-normal direction (y), as detailed in [31].
The 2/3-rule [32] is employed to remove the aliasing error arising from the pseudo-spectral
evaluation of non-linear terms. The fluid equations are advanced in time using the implicit
Crank–Nicolson scheme for the viscous terms and the explicit two-step Adams-Bashforth
method for the convective terms. The application of these integration schemes results in
one-dimensional Helmholtz equations for η and φ = ∇2v for each pair of Fourier modes,
(kx, kz). The resulting algebraic formulation involves a quasi-tridiagonal matrix where even
and odd Chebyshev coefficients are decoupled. This allows the problem to be split into two
smaller problems, which are solved using the Thual algorithm [33] for quasi-tridiagonal
systems of equations. In order to ensure consistency between the wall boundary conditions
for v and φ = ∇2v, the Kleiser–Schumann algorithm proposed in [34] is applied.

Particle equations are advanced in time by means of the same explicit Adams–Bashforth
scheme employed for the carrier flow. In each time step, the computation of the fluid veloc-
ity at the particle location, necessary for evaluating the Stokes drag, is performed through
trilinear interpolations. Wall collisions are assumed to take place when the particle center
is within one radius’s distance from the walls, and these collisions are modeled as perfectly
elastic, i.e., kinetic energy is conserved: at the end of each time-integration step, if a particle
has crossed a solid wall, it is reintroduced into the domain by mirroring its new position
with respect to the crossed solid boundary. The streamwise and spanwise components
of the particle velocity remain unaltered, while the wall-normal velocity changes sign.
Furthermore, particles exiting the domain through a periodic boundary reenter through
the opposite side with the same velocity.
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3. Results and Discussion

Three particle-laden channel flow simulations have been performed at a single fric-
tion Reynolds number, Reτ = 180, and three added-mass factors: β = 0.1, β = 0.4, and
β = 0.9. Each simulation involved three groups of Np = 5,120,000 particles, with each group
characterized by a specific Stokes number: St+ = 0.1, St+ = 0.4, and St+ = 0.9. The param-
eters set for these simulations are presented in Table 1. The number of particles we have
simulated results in volume fractions higher than the upper limit of validity of the one-way
coupling regime [35]. However, not considering collisions, particles move independently of
each other: a larger particle number allows for a larger ensemble of particles, which improves
the accuracy of statistics without the need to repeat the simulations in order to have more
realizations of the flow. Thus, this expedient only serves to obtain more accurate statistics
while limiting the computational burden, as observed in [36], and is not meant in any way to
represent the actual behavior of a concentrated suspension.

Table 1. Added-mass factor, density ratio, Stokes number, number of particles, non-dimensional
particle radius, and non-dimensional temporal scales simulated in the three PP-DNS.

β ρp/ρ f St+ Np rp t

Run 1 0.1 14.50
0.1 5,120,000 9.62× 10−4

240.4 5,120,000 1.93× 10−3

0.9 5,120,000 2.89× 10−3

Run 2 0.4 3.25
0.1 5,120,000 1.93× 10−3

240.4 5,120,000 3.85× 10−3

0.9 5,120,000 5.77× 10−3

Run 3 0.9 1.17
0.1 5,120,000 2.89× 10−3

240.4 5,120,000 5.77× 10−3

0.9 5,120,000 8.66× 10−3

For all computations, the Fourier representation employed 192 modes in both the
streamwise and spanwise directions, while 201 Chebyshev polynomials were used in the
wall-normal direction. The physical grid resolution in the homogeneous directions was
uniform, with a spacing ∆x+ = ∆z+ ≃ 5.9 in wall units. In the wall-normal direction,
Chebyshev–Gauss–Lobatto points were used, resulting in a grid spacing ranging between
∆y+ ≃ 0.02 and ∆y+ ≃ 2.9, respectively, at the walls and the center of the channel. Each
run simulated 24 non-dimensional temporal scales, starting from an initial velocity field
obtained from a previous simulation that had reached statistical stationarity at the same
friction Reynolds number. At the beginning of the simulation, the flow is seeded with
particles uniformly introduced at random positions in the computational domain. Their
velocities have been initialized with the values of the fluid velocity at their locations. Initial
positions and velocity of particles determine only the length of transient toward the statisti-
cally steady state but do not affect the resulting asymptotic condition. Post-processing was
performed over the last 14 temporal scales to ensure that particle variables had reached
statistical stationarity as well. All statistics have been computed by averaging both in time
and on planes parallel to the walls to take advantage of the statistical homogeneity in the
streamwise and spanwise directions.

3.1. Particle Distribution

In order to analyze the effect of the added-mass factor β on particle spatial distribution,
we study the statistics of the particle number density n, i.e., the number of particles per unit
volume, which in the following will be implicitly rescaled with the mean concentration
of particles in the channel (which, in dimensionless form, is equal to Np/

(
8π2)). The

time-averaged particle concentration, ⟨n⟩, and its variance, ⟨n′n′⟩, are shown in Figure 2,
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plotted against y+ = yReτ for various St+. Particle concentration profiles reveal that
heavier particles, characterized by β = 0.1 and β = 0.4, exhibit a notable tendency to
accumulate very close to the walls. Furthermore, the concentration peak occurring in
the viscous sublayer (y+ < 5) strengthens with higher Stokes numbers. This observation
aligns with previous findings described in the literature [14,23,24], confirming that particle
drift toward the walls is more pronounced as the particle response times approach the
viscous timescale of the flow. Interestingly, as the added-mass factor increases, particles
exhibit a progressive shift toward a more uniform spatial distribution. Regardless of the
Stokes number, concentration profiles flatten out around the mean value (yellow lines in
Figure 2a,c,e), and the concentration variance consistently decreases, even if the wall regions
still keep a much higher variance than the channel center.

 0.5
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β = 0.9
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(f)

St+ = 0.9

Figure 2. (a,c,e) Time-averaged particle concentration, ⟨n⟩, as a function of y+. (b,d,f) Particle concen-
tration variance, ⟨n′n′⟩, as a function of y+. Results are shown for various Stokes numbers: St+ = 0.1
(a,b), St+ = 0.4 (c,d), and St+ = 0.9 (e,f).

The increased uniformity in the spatial distribution of particles with higher values of
β at a fixed Stokes number (St+ = 0.9) is also visible in the visualizations of instantaneous
particle positions in wall-parallel planes (Figure 3). In the viscous sublayer, heavier particles
form distinctive elongated accumulation patterns, which are streamwise-oriented, as shown
in Figure 3a. The formation of these particle necklaces, first observed in [37], occurs in
low-velocity flow regions as a direct consequence of turbophoresis: inertial particles tend to
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disperse more rapidly where velocity fluctuations are more intense, consequently drifting
toward low-turbulence regions [38]. However, as the added-mass factor increases, these
elongated clusters become less visible, and particle instantaneous distribution progressively
appears more uniform, as shown in Figure 3c,e. Lighter particles are found to visit high-
velocity flow regions as well. This redistributive effect of the added-mass factor, resulting
in a more homogeneous particle concentration, is observed across the entire domain.
Figure 3b,d,f, which shows particle instantaneous distribution in the buffer layer for
y+ ≃ 20, confirms that while heavier particles disperse inhomogeneously, tending to avoid
high-velocity regions, lighter ones uniformly sample the domain.

(a)

St+ = 0.9 β = 0.1 y+ ' 3

(b)

St+ = 0.9 β = 0.1 y+ ' 20

(c)

St+ = 0.9 β = 0.4 y+ ' 3

(d)

St+ = 0.9 β = 0.4 y+ ' 20

(e)

St+ = 0.9 β = 0.9 y+ ' 3

(f)

St+ = 0.9 β = 0.9 y+ ' 20

Figure 3. Visualizations of the instantaneous position of particles (shown out of scale), superimposed
on the fluid streamwise velocity fluctuations, u′(x, t), in the wall-parallel planes at y+ ≃ 3 (a,c,e) and
y+ ≃ 20 (b,d,f) at t = 24 for St+ = 0.9 and different added-mass factors β. The particles shown in the
left column are those contained between the wall-parallel planes at y+ = 2.1 and y+ = 4.2, while the
particles in the right column are those contained between the planes at y+ = 18.2 and y+ = 21.0.

3.2. Flow Topology

A better understanding of particle distribution in the channel can be obtained by
analyzing how particle distribution relates to flow topology under the influence of the
added-mass factor, evaluating the correlation coefficients between the particle concentration



Energies 2024, 17, 783 10 of 16

field and fluid variables representative of the main flow structures. Hereafter, the correlation
coefficient between particle concentration n and any other variable ζ is defined as

Corr(n, ζ) =
⟨n′ζ ′⟩√

⟨n′n′⟩
√
⟨ζ ′ζ ′⟩

, (19)

where primes denote temporal fluctuations and the brackets ⟨·⟩ represent the average, so
that ζ ′ = ζ − ⟨ζ⟩.

Figure 4 illustrates the correlation between particle concentration, n, and the stream-
wise and wall-normal components of the fluid velocity along the channel half-height for
various values of St+ and β.
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Figure 4. (a,c,e) Correlation coefficient between particle concentration, n, and the streamwise velocity,
u, as a function of y+. (b,d,f) Correlation coefficient between particle concentration and the wall-
normal velocity, v, as a function of y+. Both correlations are shown for different Stokes numbers:
St+ = 0.1 (a,b), St+ = 0.4 (c,d), and St+ = 0.9 (e,f).

These correlation profiles indicate that in the buffer layer (5 < y+ < 30), the con-
centration of heavier particles (β = 0.1 and β = 0.4) correlates with negative values of
streamwise velocity fluctuations and positive values of wall-normal velocity fluctuations.
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This result suggests that heavier particles tend to collect and dwell longer in low-speed
streaks near the wall, as negative values of u′ and positive values of v′ are distinctive
features of these flow structures, which are generated and lifted away from the wall by the
most energetic streamwise vortices occurring in the buffer layer [39]. The peaks of the red
and blue curves in Figure 4, corresponding to β = 0.1 and β = 0.4, respectively, become
more pronounced as the Stokes number increases, indicating that preferential concentration
in low-speed streaks is more intense as particle response time approaches the viscous
timescale, as observed in previous studies [14,23,24]. In clear contrast is the influence of the
added-mass factor. Indeed, with an increase in β, the concentration of particles gradually
decorrelates from both the streamwise and wall-normal velocity components of the fluid.
These results are consistent with the findings on the redistributive effect of β on particles
presented in the previous section and suggest that the centrifugal mechanism, primarily
responsible for turbophoresis at the relatively small Stokes numbers considered, weakens
as particle mass density decreases, regardless of the Stokes number. This result can be
expected by considering that the pressure-gradient force is directed toward the centers
of vortices, where pressure is expected to have a local minimum, and is proportional to
the fluid density. Since particles with β = 0.9 have a mass density only 1.17 times greater
than the density of the fluid, this force is able to almost balance the centrifugal effect,
proportional to the particle density, so that in such conditions, particles tend to behave
almost like spherical and rigid fluid particles. Consequently, even if their velocity field
is not solenoidal, and a weak clustering is still possible, these particles are able to closely
trace the carrier flow.

Given the well-known tendency of heavy particles to preferentially sample high-strain
regions of the flow, further insight can be obtained by examining the correlation between
particle concentration and three other quantities representative of the local flow topology:
the magnitude of the strain-rate tensor, defined as

S =
√

SijSij, (20)

with Sij = 1/2
(
∂ui/∂xj + ∂uj/∂xi

)
, the magnitude of the vorticity,

ω =
√

ωiωi, (21)

with ωi = εkji∂ui/∂xj, and the second invariant of the velocity gradient tensor, defined as

IId = −1
2

(
SijSij −

1
2

ωiωi

)
. (22)

Figure 5 shows the influence of the added-mass factor on the correlation coefficients
Corr(n, S) and Corr(n, ω) for various Stokes numbers. Heavier particles show a positive
correlation between n and S within the range 5 < y+ < 100, i.e., in the buffer layer,
logarithmic layer, and a segment of the outer layer, with a peak value at y+ ≃ 35. In
contrast, the correlation between n and ω is positive throughout the buffer layer and turns
negative from the logarithmic layer onward, reaching its minimum near the centerline of
the channel. Despite being small, these correlations indicate that heavier particles tend to
sample high-strain and low-vorticity flow regions across most of the domain, supporting the
existing literature on the preferential concentration of heavy particles [14]. Consistently, the
effects of St+ and β observed so far are confirmed. Higher Stokes numbers are associated
with stronger correlations. Conversely, as the added-mass factor increases, and particle
density becomes closer to the fluid density, particle concentration gradually decorrelates
from the magnitude of both the strain rate and the vorticity. This effect of β strongly
suggests that the centrifuge mechanism weakens, as particles are allowed to visit and
collect in high-vorticity regions as well. Ultimately, no particle preferential concentration is
observed for β = 0.9.
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Figure 5. (a,c,e) Correlation coefficient between particle concentration, n, and the magnitude of
strain-rate tensor, S, as a function of y+. (b,d,f) Correlation coefficient between particle concentration
and vorticity magnitude, ω, as a function of y+. Both correlations are represented for different Stokes
numbers: St+ = 0.1 (a,b), St+ = 0.4 (c,d), and St+ = 0.9 (e,f).

These findings are also supported and summarized by the correlation coefficients
between n and the second invariant of the velocity gradient (IId), which are illustrated in
Figure 6 for the three St+ simulated. From Equation (22), it can be noticed that large positive
values of IId correspond to high-enstrophy/low-strain flow regions, and conversely, large
negative values of IId correspond to low-enstrophy/high-strain regions. The concentration
of particles at β = 0.1 and β = 0.4 is observed to correlate with negative values of IId
across the entire height of the channel (red and blue curves in Figure 6), highlighting the
tendency of heavier particles (strengthened by growing St+) to concentrate preferentially
in strain-dominated regions and elude vortices. For nearly neutrally buoyant particles
(β = 0.9), the correlation coefficients Corr(n, IId) vanish, in agreement with the individual
correlations between n and S, and between n and ω, discussed earlier.
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Figure 6. Correlation between particle concentration, n, and the second invariant of the veloc-
ity gradient, IId, as a function of y+. Correlations are represented for various Stokes numbers:
(a) St+ = 0.1, (b) St+ = 0.4, and (c) St+ = 0.9.

We conclude our analysis with the investigation of the influence of β on the Joint
Probability Mass Function (Joint-PMF) characterizing the relationship between particle
concentration and the second invariant of the velocity gradient tensor (IId) across the entire
computational domain. While the Joint-PMF has been calculated for each simulation,
for the sake of clarity and to highlight the role of the added-mass factor, we present, in
Figure 7, specific instances corresponding to a single Stokes number (St+ = 0.9). The
peaks in the Joint Probability Mass Function (Joint-PMF) at IId = 0 can be attributed to
the inherent characteristic of the second invariant of the velocity gradient tensor, which
consistently assumes a zero value for the mean flow. Consequently, zero emerges as the
most probable outcome for the instantaneous realizations of IId. Notably, irrespective of
the added-mass factor, all Joint-PMFs exhibit an asymmetric distribution around IId = 0,
which distinctly protrudes towards negative values of IId. This observation implies that
both heavier and lighter particles are more likely to be found in regions characterized by
negative IId, where strain dominates over vorticity. However, as the added-mass factor
grows, the IId < 0 lobe of the Join-PMFs shrinks, while higher values of joint probabil-
ity between n and IId gradually populate the positive semi-axis of IId, as evident from
Figure 7b,c. Consistent with prior observations regarding the role of β in decorrelating
particle concentration from the local flow topology, this outcome indicates that lighter
particles exhibit a comparable likelihood of being found in regions characterized by high
vorticity as they do in those dominated by strain.
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(a)

St+ = 0.9 β = 0.1

(b)

St+ = 0.9 β = 0.4

(c)

St+ = 0.9 β = 0.9

Figure 7. Joint Probability Mass Function (Joint-PMF) of particle concentration n and the second
invariant IId of the velocity gradient tensor at a fixed Stokes number St+ = 0.9 and various added-
mass factors: (a) β = 0.1, (b) β = 0.4, and (c) β = 0.9.

4. Conclusions

The influence of the added-mass factor β on particle preferential concentration in
turbulent channel flows has been numerically investigated using Point-Particle Direct
Numerical Simulations under the assumption of small particle Stokes numbers. Specifically,
this study explored how β, along with the Stokes number determined with the wall
viscous timescale, influences the spatial distribution of particles within the channel and
the statistical relationship between their concentration and the local flow topology. The
analysis of particle spatial distribution highlighted a distinct trend: heavier particles (lower
β) tend to accumulate in elongated low-speed regions very close to the walls, as a direct
manifestation of turbophoresis [38]. This tendency is strengthened as the particle response
time approaches the viscous timescale of the flow, in agreement with the current literature
on heavy particles [14,23,24]. Notably, this phenomenon diminished at higher β, leading
to a more uniform particle distribution across the entire domain. Exploring the statistical
relation between particle concentration and the flow topology, the study demonstrated
that, regardless of the Stokes number, higher β result in a gradual decorrelation between
particle concentration and various fluid variables, including the strain-rate tensor, the
vorticity tensor, and the second invariant of the velocity gradient. This suggests that the
main mechanism responsible for driving particles away from the stronger vortices at the
relatively low Stokes numbers considered, namely the centrifuge mechanism, becomes
ineffective as the particle’s density approaches the fluid’s density. The Joint Probability
Mass Function of particle concentration and the second invariant of the velocity gradient
corroborated these findings, indicating that the probability of particles being found in
strain-dominated regions, as opposed to vortical regions, decreases with increasing β. The
implications of these findings extend to a wide range of processes involving particle-laden
flows, from natural to industrial, and emphasize the importance of considering the effects
of the added-mass factor in particle predictive models and simulations. Future studies
should encompass the effect of Basset’s forces, which cannot be ignored when β∼1.
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