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1. Introduction

Earth observation (EO) data have become ever more vital to our understanding of our
planet and to monitor risks. However, applications are still limited by two main factors:
revisit time and spatial resolution. In particular, EO payloads in the infrared spectral region
from geostationary platforms typically have a spatial resolution limited to some kilometers,
but with a frequent revisit time that is crucial for monitoring rapidly changing events
like wildfires.

The EU-funded H2020 SURPRISE project—acronym for “Super-resolved compressive
instrument in the visible and medium infrared for earth observation applications”—has in-
vestigated the potential of the compressive sensing (CS) paradigm for the development of a
CS-based payload working in the in the visible (VIS), near-infrared (NIR), short-wavelength
infrared (SWIR), and medium infrared (MIR) spectral ranges from geostationary platforms
with enhanced performance in terms of at-ground spatial sampling, onboard processing,
and encryption capabilities. The study included the design and construction of a laboratory
demonstrator that used a commercial digital micromirror device (DMD) as the core element
to implement a CS architecture [1,2]. The laboratory demonstrator, which had 10 spectral
bands in the VIS-NIR and 2 spectral bands in the MIR, was exploited to investigate in
detail the capabilities of the CS-based instrumentation to improve the performance of a EO
payload working in these spectral regions and to outline a roadmap for the development of
a CS-based payload for earth observation from a geostationary platform.

In this paper, we present the instrumental concept of an EO payload from geostationary
platform—based on the CS paradigm and implementing a super-resolution architecture—
specifically conceived for the monitoring of wildfires with a nominal spatial sampling
of 500 m and a revisit time from some hours at a global scale to some minutes at a re-
gional scale.

2. CS-Based Instrument Concept

The idea behind the concept of a CS-based EO payload is a single-pixel camera [3].
Figure 1 shows the working principle of a single-pixel camera: the image generated by the
collection optics is modulated at the image plane by a spatial light modulator (SLM)—acting
as a modulation mask—and the signal transmitted through the SLM is integrated by an
optical condenser and focused on a single-element detector. A set of measurements—each
corresponding to a different modulation mask applied to the image—is used to reconstruct
the original image using suitable CS reconstruction algorithms [4,5].

Target Spatial Light

Modulator

Single
element
detector

Collection optics Optical condenser

Figure 1. Working principle of a CS-based single-pixel camera.

In a CS-based instrument, the image can be efficiently reconstructed from a number
of measurements smaller than the corresponding number of reconstructed image pixels.
According to CS theory, a detector with a number of pixels equal to n can be substituted
with a single-pixel camera that executes p x n measurements, where p usually ranges from
0.1 to 0.5. The quality of the reconstructed image depends on the value of p. A CS-based
system performs an inherently compressed acquisition, merging the acquisition and the
compression steps in a single step. As a consequence, a data compression board—typically
used to reduce the amount of data to be stored or transmitted—is not needed any longer
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since the data are acquired compressed natively. The use of a modulation mask applied to
the image plane for each measurement also paves the way to native encryption.

3. Instrument Requirements and Payload Architecture

Table 1 reports the main observational and spectral requirements for a CS-based
payload for wildfires monitoring from geostationary platform.

Table 1. Main requirements for a geostationary CS payload for fire monitoring.

Parameter Value
Orbit type Geostationary
Orbit altitude 35,786 Km
Acquisition mode Whiskbroom, Step-Stare
0.4-0.9 um (VIS)
Spectral range [1.6,2.2] um (SWIR)

[3.74] (MWIR2)
Number of spectral bands (minimum) 4 bands in the VIS; 2 in the SWIR; 1 in the MWIR
Spatial sampling (nominal) 500 m
Instrument footprint 16 Km x 16 Km

It is worth noting that a payload operating from a geostationary orbit offers the
additional advantage of an almost-still-Earth scenario, which is particularly suitable for the
compressive sensing acquisition mode since the latter requires the acquisition of a series of
measurements of the (almost same) target (the target is meant as the area corresponding to
the instrument footprint) in order to obtain the final image reconstructed. The acquisition of
the entire scene—at a global, regional, or local scale—is achieved by using a bidimensional
scan mirror mechanism (E-W and N-S directions). The time required for the stabilization
after each microstep of the scan mirror (settling time) is the driving factor in the estimate of
the time required for the acquisition of a full scene. Preliminary estimates yield a revisit
time of some hours at a synoptic scale and a few minutes at local-regional scale.

According to the requirements shown in Table 1, the instrument should cover a very
wide spectral range, from the VIS up to 4 um. In order to achieve a nominal spatial sampling
of at least 500 m, a pupil diameter of about 350 mm is required, which in turn needs a large
pointing mirror, due to a working inclination of 45° with respect to the Nadir.

Figure 2 shows the basic architecture of the EO payload concept that fulfil the re-
quirement of operation in a wide spectral range from VIS to MIR. A MicroMirror Array
(MMA) consisting of a 32 x 32 matrix of 16 um pitch micromirrors is used as the SLM.
The instrument relies on a single common collimator positioned after the SLM before the
spectral splitting stage between the MWIR channel (MWIR 2) and the VIS-SWIR channels.
The spectral splitting is achieved by using dichroic filters. The detection system is con-
figured as a single-element detector based on photovoltaic (PV) silicon detectors for the
VIS and NIR bands (from 0.4 pm to 1.0 pm), while HgCdTe PV detectors are used for the
SWIR/MIR bands.
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Figure 2. CS-based EO payload concept for whiskbroom operation from a geostationary platform.

4. Conclusions

CS-based architectures for EO payloads from geostationary platforms can provide
interesting features useful for enhancing their performances in terms of spatial sampling,
compression, and encryption features. Here, we present a concept of a CS-based EO payload
operating from a geostationary platform for fire monitoring with a spatial sampling of
500 m and frequent revisit time, from some hours at a synoptic scale to a few minutes at a
local-regional scale. Next steps include outlining a development roadmap to identify the
most critical aspects, solutions available, and possible technological development needed.
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