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TOWARDS UNSUPERVISED MULTI-TEMPORAL SATELLITE IMAGE
SUPER-RESOLUTION

Nicola Prette, Diego Valsesia, Tiziano Bianchi, Enrico Magli

Politecnico di Torino - Torino, Italy

ABSTRACT

Multi-temporal super-resolution (SR) whereby a number of
images of the same scene acquired at different times are fused
to enhance its spatial resolution has recently enjoyed great
success thanks to advances in deep learning methods. How-
ever, the literature has so far focused on supervised train-
ing approaches that require the availability of high-resolution
(HR) images at the target resolution. This is a significant lim-
itation because such imagery may not exist, might be difficult
to source or exhibit domain gaps such as different spectral
bands or radiometric characteristics. Unsupervised training
approaches that do not require imagery beyond the input low
resolution are needed to overcome this limitation. This pa-
per presents a first analysis of the problem, taking inspiration
from the literature on blind single-image SR, but also focus-
ing on the uniqueness of multi-temporal satellite images. Our
preliminary results show that it is indeed possible to develop
accurate deep learning models for multi-temporal SR without
HR images.

Index Terms— Super-resolution, multitemporal, Proba-
V, unsupervised.

1. INTRODUCTION

Several applications in the field of remote sensing require
the capture of very high resolution images. However, this
is often not possible due to limitations in the capabilities of
the sensors employed on-board of satellites, and in the chan-
nel capacity between the satellite and Earth. Multi-image
super-resolution (MISR) techniques have recently enjoyed
great success in addressing such scenarios. In particular, the
ESA Proba-V challenge [1] stimulated research on power-
ful deep-learning models that can effectively fuse multiple
low-resolution (LR) images of the same location at different
times to reconstruct a single high-resolution image (HR),
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overcoming challenges like differences in illumination, cloud
coverage and temporal change in the scene.

Still, current literature [2, 3, 4] is focused on the MISR
problem from a supervised learning perspective, which means
that ground truth HR images are available to the training pro-
cess. This is problematic, because, except for a few cases, like
Proba-V, where LR and HR images are taken from the same
platform, it requires collecting data from multiple satellites.
This causes domain gaps since multiple satellites will have
mismatched radiometric properties, causing artefacts or sub-
optimal results. It is also worth noting that HR products may
be difficult to obtain, especially at certain wavelengths, for
very high resolutions, or in the development of new instru-
ments, further limiting the applicability of supervised train-
ing.

In this paper, we take the first steps towards addressing
the unsupervised MISR problem, where our objective is to
develop powerful deep-learning-based SR models from LR
images only to overcome the data requirements and features
mismatch of current supervised training processes. We notice
that a significant body of work in this direction is emerging for
the single-image SR problem [5], but the multi-image prob-
lem in the remote sensing context is yet unexplored. We show
that careful consideration should be placed on modelling the
degradation process that results in the multi-temporal LR ob-
servations. We present preliminary results using the Proba-
V dataset which can provide a reliable HR ground truth for
performance assessment. Our results, obtained with hand-
crafted degradation models, show that unsupervised training
is indeed possible, although it incurs a quality penalty with
respect to supervised training. Bridging this final gap will
be the focus of future work on more advanced deep learning
models including degradation estimation.

2. BACKGROUND

Image SR is a problem that has received great attention over
the years and has recently enjoyed significant improvements
thanks to deep learning methods. Most of the literature [6],
regarding both conventional photographs and remote sensing
images, has focused on single-image SR (SISR). Typical ap-
proaches involve supervised training, which relies on avail-
ability of HR images at the target resolution, following either



paired or unpaired approaches. We remark that some authors
[7] use the “unsupervised” term to describe works using un-
paired data, i.e., where HR images are available but not from
the same scenes as LR images. This marginally alleviates
data requirements, but does not solve the intrinsic difficulty of
needing images at the target high resolution. In this paper, we
use the “unsupervised” term in a stricter matter, i.e., to indi-
cate that no images at resolution beyond the LR observations
are needed for training. Of particular interest to the work in
this paper is the literature on blind SISR [5], where it is shown
that knowledge of the degradation process that generates LR
observations from HR images is critical for real-world SR. In
fact, one of the most commonly used approaches to unsuper-
vised training of SR models is to assume invariance across
scales, i.e., the function to be learned to map from LR to HR
images is the same for any pair of “LR” or “HR” resolutions
coupled by the same degradation process. Under this hypoth-
esis, unsupervised training becomes self-supervised as it is
possible to generate degraded images at a coarser resolution
(CR) directly from LR observations and train a model to re-
cover the original LR. After training, one uses the model in an
extrapolation regime to map the LR image to a higher resolu-
tion. The blind SR literature shows that this works as long as
the degradation process faithfully models that which gener-
ated the LR observations and any mismatch will significantly
degrade SR performance.

MISR has so far largely focused on supervised training.
In the computational photography setting, focus has been
placed on the burst SR [8] problem where a camera (typically
a smartphone) acquires a set of photos in rapid succession
with possibly camera and scene movements in between cap-
tures. Recent burst SR techniques have been developed under
supervised conditions where an HR ground truth of the scene
is captured by a separate camera, typically with a telephoto
lens [9]. In remote sensing, the Proba-V dataset has been
used for numerous MISR works thanks to the availability of
both LR images at 100m resolution and HR images at 300m
from the same platform and with a non-trivial degradation
function connecting the two acquisitions. New datasets [10]
are emerging with increased diversity and with higher resolu-
tion imagery, which could be useful for further development
of both supervised and unsupervised methods.

3. MODEL AND BASELINE APPROACH

The goal of this section is to study how to correctly frame the
problem of unsupervised MISR, discuss the main ingredients
that are needed for future development of successful mod-
els, and develop some insights on the problem, specifically
for remote sensing imagery. Subsequently, we will provide a
baseline of what unsupervised approaches could achieve and
how they compare with respect to the state-of-the-art in the
supervised literature.

A baseline approach [11] towards unsupervised SR is to

consider the SR function as approximately scale-invariant.
This allows us to synthetically degrade the LR images to a
coarser resolution (CR) using a degradation model and train
a neural network to recover the original LR image. When
testing on real images, we assume that the learned function
can extrapolate to the generation of a higher resolution im-
age from the LR input. For this scope, correct modeling of
the degradation kernel is pivotal as it is known that training
on the wrong kernel leads to poor generalization [12]. We
argue that the following degradation model is suitable for a
multitemporal set of T satellite images:

XLR,t = [KtXHR]↓D + nt t = 1, . . . , T (1)

where Kt represents a spatially-variant and time-dependent
degradation kernel, ↓ D the decimation operator by a factor of
D, and n represents additive noise. The application of kernel
Kt amounts to multiplying the neighborhood of each pixel by
a different set of weights. This model reduces to a convolu-
tion operation if the degradation kernel is spatially-invariant,
i.e., the same weights are used for the neighborhoods of all
pixels. The reason to consider the general case of a spatially-
variant and time-dependent kernel is due to the full process-
ing chain of satellite images and their multitemporal nature.
For satellite MISR, it is common practice to operate on or-
thorectified images, both due to data availability and because
this simplifies the image registration process. However, the
orthorectification process distorts the original sensor grid and
interpolates pixel values and thus can be seen a further degra-
dation which is spatially-variant due to the grid resampling.
Furthermore, since the satellite attitude changes over time, the
orthorectification process, and hence the degradation kernel,
is different for each time instant. Besides the degradation due
to the orthorectification process, the degradation kernel also
includes the effect of the optics point spread function (PSF)
which is space- and time-invariant.

Since the degradation kernel depends on both the opti-
cal system and the image processing chain, its realization can
be highly dependent on the satellite under consideration and
change over time. In order for the self-supervised training
procedure to be effective and generalize beyond the training
set, it is imperative to estimate Kt accurately and precisely.
In fact, an accurate estimation for the given satellite and time
instant allows us to invert its effects as best as possibile. How-
ever, we also need to characterize the expected variability in
the Kt values. Training by simulating all the possible vari-
ations in Kt realizations allows the MISR model to become
robust to new unseen realizations (if sufficiently similar to the
training ones).

In theory, knowing the instrument PSF and the parame-
ters of the orthorectification process should allow to analyti-
cally estimate Kt to some extent. However, in practice, the
scarce availability of such information calls for blind estima-
tion methods from the images themselves. Some kernel esti-
mation methods [13] based on neural networks have recently



enjoyed some success but they are currently limited to single-
image problems.

4. EXPERIMENTAL RESULTS

In this section we perform a series of experiments that aim at
verifying the potential for the development of unsupervised
MISR techniques in remote sensing. We test the performance
of a few unsupervised model with respect to the state-of-the-
art in remote sensing MISR and validate the model presented
in the previous section. For this analysis, we use the Proba-V
dataset for both training and testing. Unsupervised training
only uses the LR data, but the availability of real HR data for
testing allows us to quantitatively measure SR performance
in a real setting without having the degradation process un-
der our control. The paired nature of the dataset also allows
straightforward comparisons with supervised training using
the HR data.

Our baseline study utilizes the state-of-the-art PIUnet
neural network architecture [2], whose performance under
supervised training is well known. We then study a few
handcrafted degradation kernels in the aforementioned un-
supervised training process in order to assess their impact
on the SR performance. This can be considered a baseline
study as we do not modify the original architecture nor we
introduce other trainable components, which could improve
the performance of unsupervised SR. Indeed, future work
will focus on a joint model integrating estimation of the true
degradation kernel (rather than a handcrafted definition) and
of the SR image. For all experiments, we use 10 LR images,
where 9 are degraded to CR using the kernel under investiga-
tion, downsampled by a factor of 3 and provided as network
input, and the remaining LR image serves as target for the
loss function. We use the original values for hyperparameters
and the L1 loss for training for both the unsupervised and
supervised PIUnet. The results are therefore compatible with
the well-studied supervised setting.

Multiple degradation kernels were tested. First, bicubic
interpolation was used as it is a widespread choice in absence
of kernel information, albeit we will see that it leads to poor
generalization. For all the other cases, we assumed a degrada-
tion model with anisotropic Gaussian filters [15]. We experi-
mented with the use of a single spatially-invariant anisotropic
Gaussian filter with a random covariance matrix for each im-
age. The generated kernels have size 9 × 9 and a covariance
matrix with random eigenvalues σ1, σ2 ∼ U(0.5, 1.5) and ro-
tation angle θ ∼ U(0, π

2 ). Finally, we tested the more general
case in which the kernel changes pixel-by-pixel and time-by-
time. Two variants of this model: i) the filters used for ev-
ery pixel are independent from each other, each following the
same distribution equal to the one of the spatially-invariant
case; ii) a handcrafted a spatial correlation pattern between
the filters used in neighbouring pixels using the following

equations:

σ1,2(u, v) = α1,2
σ1,2(u− 1, v) + σ1,2(u, v − 1)

2
, (2)

α1,2 ∼ U(0.9, 1.1)

θ(u, v) =
θ(u− 1, v) + θ(u, v − 1)

2
+ β, (3)

β ∼ U
(
−π

8
,
π

8

)
with the value of σ1,2(0, 0) being initialized using σ1, σ2 ∼
U(0.5, 1.5) and θ ∼ U(0, π

2 ). This latter case models the idea
that a process like orthorectification is expected to produce a
smoothly-varying spatial degradation.

The quality of the SR image compared to the HR was esti-
mated using the corrected PSNR (cPSNR) metric [16]. Table
4 reports some quantitative results of the unsupervised and
supervised approaches, as well as of a few classical model-
based methods. It can be noticed that, despite the lack of HR
training images, unsupervised deep learning approaches out-
perform traditional methods (bicubic+mean and IBP [14]). It
can also be noticed that using the bicubic kernel as degrada-
tion model for training leads to poor generalization and the
resulting cPSNR is only marginally better than using IBP.
Substantial gains can be obtained by proper modeling of the
degradation kernel. In particular, for the NIR dataset, the best
performance is achieved by using a space- and time-variant
declination of the degradation, suggesting that the most gen-
eral formulation of the degradation model in Eq. (1) is in-
deed needed. These results suggest that unsupervised MISR
for satellite images has potential to be close to supervised
training in performance, while not requiring images beyond
the LR observations. Indeed, since the presented results re-
lied on handcrafted unoptimized degradation models, it is ex-
pected that end-to-end architectures for MISR that properly
estimate both the degradation kernel and the SR image could
exhibit strong performance, even compared to supervised ap-
proaches, while solving the data availability and domain gap
issues. Future work will pursue such avenue.

5. CONCLUSIONS

This paper presented a preliminary study on the topic of un-
supervised satellite super-resolution from multi-temporal im-
ages, motivated by the difficulty of collecting high-resolution
imagery beyond the native sensor resolution. We showed
that the problem requires careful modelling of the degrada-
tion process incurred by the observed LR images, realizing
its time- and space-varying nature. However, our preliminary
analysis with handcrafted degradation models showed that it
is indeed possible to train deep learning models that signif-
icantly outperform classic unsupervised approaches and are
close to supervised training. This result shows promise and
the next step to bridge the gap to supervised training will fo-
cus on the development of a single architecture that can di-



Table 1. Quantitative performance - cPSNR (dB)
Classic Unsupervised deep SR Supervised deep SR

Bicubic int.
+Mean

IBP [14]
PIUnet w/

Bicubic kernel
PIUnet w/
SI kernel

PIUnet w/
Pixel kernel (uncorr.)

PIUnet w/
Pixel kernel (corr.)

PIUnet

cPSNR (NIR) 45.44 45.96 46.08 46.78 46.69 46.98 48.41
cPSNR (RED) 47.34 48.21 48.24 49.02 48.99 48.97 50.53

rectly estimate the degradations and use it both for training
and inference. We also would like to encourage increased
public availability of non-orthorectified imagery in order to
properly study its effects on satellite MISR.
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[1] Marcus Märtens, Dario Izzo, Andrej Krzic, and Daniël
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Horst Bischof, “Conditioned regression models for non-
blind single image super-resolution,” in 2015 IEEE
International Conference on Computer Vision (ICCV),
2015, pp. 522–530.

[16] Andrea Bordone Molini, Diego Valsesia, Giulia Fracas-
toro, and Enrico Magli, “Deepsum: Deep neural net-
work for super-resolution of unregistered multitemporal
images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, no. 5, pp. 3644–3656, 2019.


