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DIFFRACTION EFFICIENCY-AWARE RECONSTRUCTION FOR COMPRESSIVE SENSING
IN THE MID-INFRARED

Tiziano Bianchi(1), Donatella Guzzi(2), Cinzia Lastri(2), Enrico Magli(1), Vanni Nardino(2),
Lorenzo Palombi(2), Nicola Prette(1), Valentina Raimondi(2), Diego Valsesia(1)

(1) Politecnico di Torino - Torino, Italy
(2) CNR IFAC - Sesto Fiorentino (FI), Italy

ABSTRACT

Compressive sensing has established itself as a novel
imaging paradigm. In this paper, we analyze the be-
havior of a a compressive instrument based on spatial
light modulators (SLM), operating in the mid-infrared.
We show that, contrary to the well-studied visible and
near-infrared wavelengths, mid-infrared poses modeling
challenges due to non-negligible SLM diffraction effects.
We show a way to model such effect analytically and to
account for them in the reconstruction process, leading
to improved reconstruction quality.

Index Terms— Compressed sensing, mid-infrared,
diffraction.

1. INTRODUCTION

Compressive sensing (CS) [1] has established itself as a
novel approach to imaging, promising to overcome limi-
tations of traditional instrument designs. CS is grounded
in the fact that real images have a sparse nature, i.e.,
they can be compactly represented in some domain, and
this allows to sample them at rates lower than what the
Nyquist criterion would dictate. Imaging hardware ex-
ploiting CS principles may require much fewer detectors
than conventional designs, as popularized by the single-
pixel camera [2]. This has raised interest for the de-
velopment of a novel generation of payloads for Earth
observation missions [3]. Key to the CS theory is the
acquisition of measurements of the light field obtained
via spatial light modulation (SLM) with pseudorandom
masks. Such modulation is typically implemented by
programmable micromirror devices where the behavior
of each micromirror follows the corresponding value of
the pseudorandom mask. Most of the work on CS instru-
ments has been focused on the visible and near-infrared
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spectrum [4], while mid-infrared has received relatively
little attention [5].

In this paper, we analyze the problem of modeling
the behavior of an SLM-based CS instrument operat-
ing in the mid-infrared and how the reconstruction al-
gorithm needs to account for such model. In particular,
we show that there are non-negligible diffraction effects
due to the SLM, resulting in an efficiency term which
is spatially-varying at sub-micromirror level and depen-
dent on the state of a set of neighboring micromirrors
(determined by the pseudorandom mask). While this ef-
fect is negligible in visible and near-infrared, it cannot
be overlooked in the mid-infrared. In fact, not account-
ing for this phenomenon in the reconstruction process
results in degraded image quality. We present a detailed
equivalent mathematical model of the acquisition process
which can be integrated in the reconstruction algorithm
to make it aware of the phenomenon. We show that this
leads to substantial improvements in the quality of the
reconstructed images.

2. SYSTEM MODEL AND RECONSTRUCTION
METHOD

2.1. SLM diffraction efficiency

In real optical systems, the finite size of the various op-
tical elements implies the presence of a Point Spread
Function (PSF) of finite size, even if there are no optical
aberrations. The extent and distribution of the PSF is
dependent on the characteristics of the optical system
and, in any case, proportional to the wavelength. In the
mid-infrared spectral region, the dimensions of the PSF
are typically of the same order of magnitude, or larger,
than those of the elements of commercially-avaiable, low
cost SLMs. If the SLM consists of tilting micro-mirrors,
the phase delay introduced by the micro-mirrors on the
PSF wavefront should be considered.

In order to evaluate the diffractive optical efficiency,
we have applied the basic principles of Fourier optics
and implemented numerical simulations. In particular,



took into account the main optical specifications of the
CS instrumentation as described in [3, 6] and the con-
figuration of the different states (ON/OFF) of the mi-
cromirrors, determined by the applied CS pseudorandom
mask. In the simulations, and for each micropixel, i.e.,
pixel at the resolution of the mage to be reconstructed,
constituted by 4 × 4 micromirrors as in the CS demon-
strator of [3, 6], we considered all possible combinations
of the state of the micropixels surrounding the one of
interest. For each of these configurations, the diffractive
efficiency was evaluated on a regular grid of 12× 12 po-
sitions in order to take into account its variability and
its dependance from the scene. The simulation results
demonstrated that the diffractive efficiency varies up to
20% within the same micropixel and also depends on the
specific configuration of the different states (ON/OFF)
of micromirrors.

This results leads to the necessity to consider this ef-
fect in a numerical model of the acquisition process, so
that it can be properly accounted for during reconstruc-
tion from compressive measurements.

2.2. Reconstruction algorithm

An equivalent model for SLM diffraction efficiency phe-
nomenon introduced in Sec. 2.1 can be developed. In this
equivalent description, the efficiency term is a scalar field
modulating the scene to be acquired. We consider the
scene at a higher spatial sampling rate, such as 12 times
higher, than the SLM micromirrors due to the aforemen-
tioned sub-mirror non-uniformity. Being the efficiency
field dependent on the micromirrors state, this needs to
be precomputed via simulation for each pseudorandom
mask to be used in the acquisitions. In formulas, the
i-the measurement value is modeled as:

yi = Φivec
(
[[U⊙ ε(Φi)] ∗HPSF ∗BD]↓D

)
= Avec(U)

(1)

where Φi is the current SLM mask, U is the ideal scene
under acquisition, ε(Φi) is the SLM efficiency field as
a function of the SLM mask, HPSF is the optics point
spread function, BD is a box function of size D×D, ↓ D
is 2D decimation by a factor D in each direction, vec is
a vectorization operation and, finally, ⊙ and ∗ denote
elementwise product and convolution, respectively. No-
tice that the entire model is linear and can be expressed
with operator A. While this model needs to involve a
super-sampled scene to account for the effect of SLM ef-
ficiency, we are only ultimately interested in estimating
the image as it would be acquired by a detector placed
on the SLM plane. The ground truth image we seek to
reconstruct is therefore modeled as:

X = [U ∗HPSF ∗BD]↓D (2)

The reconstruction algorithm is based on total variation
minimization and it accounts for the full model in Eq.
(1) to properly include the efficiency term. The scene
reconstruction is obtained as:

Û = argmin
U

∥y −Avec(U)∥22 + λTV(U). (3)

The reconstructed image we are interested in is then ob-
tained from the scene through the forward model in Eq.
(2):

X̂ =
[
Û ∗HPSF ∗BD

]
↓D

. (4)

It should be noted that due to the super-sampling factor
D, solving Eq. (3) can be computationally expensive,
especially for high target resolutions. It is also worth
noting that, while for this preliminary investigation, we
use total variation minimization, a number of physics-
informed deep learning methods [7] could be used for
reconstruction. However, this is left as future work since
the large dynamic range and bimodal distributions typ-
ically encountered in real mid-infrared images can pose
challenges in neural network designs.

3. EXPERIMENTAL RESULTS

The experimental setup simulates mid-infrared scenes
and the acquisition process previously described in the
previous section. The CS acquisition process uses binary
random matrices with ±1 entries with a block size of
32 × 32 pixels. We study three compression ratios, i.e.,
the number of measurements acquired for each block,
namely 75%, 50%, 25% (768, 512, 256 measurements,
respectively). In our setup, the super-sampling factor
for the scene is D = 21. Table 1 reports some results
in terms of relative error of the reconstructed image as
function of the compression ratio, i.e., the ratio between
the number of CS measurements and the number of im-
age pixels. We first determine the performance under an
ideal scenario in which efficiencies are negligible (ε = 1)
to set the benchmark. For this benchmark, the variable
of the optimization problem is directly the reconstructed
image, so we do not attempt to reconstruct the scene and
then apply the forward model. We then observe how
the diffraction efficiency degrades reconstruction qual-
ity when naive reconstruction is performed, i.e., total
variation minimization seeking to reconstruct X with-
out knowing the existence of the diffraction efficiency
model. We can however see how the efficiency-aware
reconstruction of Eq. (3) is capable of improving re-
construction performance with respect to naive recon-
struction. It is worth noting that at 25% compression
ratio, efficiency-aware reconstruction improves upon the



benchmark that had measurements without any diffrac-
tion efficiency. This can be explained by the more accu-
rate modeling of the forward process generating the im-
age with extra terms such as the optical PSF. However,
we can also notice a performance floor due to diffraction,
whereby increasing the number of measurements does
not significantly improve performance. Finally, Fig. 1
shows a qualitative comparison of the reconstruction pro-
duced without correctly modeling diffraction efficiency
and the efficiency-aware method.

4. CONCLUSIONS

This paper presented an investigation of a compressive
instrument based on SLMs operating in the less-studied
mid-infrared. We showed the importance of carefully
modeling diffraction effects in order to improve recon-
struction quality.
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Table 1. Reconstruction relative error
Compression ratio

25% 50% 75%
Benchmark (efficiency=1) 10.75% 2.31% 1.54%
Naive reconstruction 11.72% 9.45% 8.76%
Efficiency-aware reconstruction 6.97% 6.65% 6.21%

Fig. 1. Comparison between naive reconstruction without modeling SLM diffraction efficiency and efficiency-aware
reconstruction. Left to right: ground truth, naive reconstruction, efficiency-aware reconstruction. Log scale.


