POLITECNICO DI TORINO
Repository ISTITUZIONALE

Rational Normal Curves and Hadamard Products

Original

Rational Normal Curves and Hadamard Products / Carlini, Enrico; Catalisano, Maria Virginia; Favacchio, Giuseppe;
Guardo, Elena. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - STAMPA. - 19:3(2022),
pp. 1-22. [10.1007/s00009-022-02050-1]

Availability:
This version is available at: 11583/2987777 since: 2024-04-12T14:04:06Z

Publisher:
Springer

Published
DOI:10.1007/s00009-022-02050-1

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

18 April 2024



Mediterr. J. Math. (2022) 19:134

https://doi.org/10.1007/s00009-022-02050-1
1660-5446 /22,/030001-22 I .
published online May 5, 2022 Mediterranean Journal

© The Author(s) 2022 of Mathematics

Check for
updates

Rational Normal Curves and Hadamard
Products

Enrico Carlini, Maria Virginia Catalisano, Giuseppe Favacchio
and Elena Guardo

Abstract. Given r > n general hyperplanes in P, a star configuration
of points is the set of all the n-wise intersection of the hyperplanes.
We introduce contact star configurations, which are star configurations
where all the hyperplanes are osculating to the same rational normal
curve. In this paper, we find a relation between this construction and
Hadamard products of linear varieties. Moreover, we study the union
of contact star configurations on a same conic in P?, we prove that the
union of two contact star configurations has a special h-vector and, in
some cases, this is a complete intersection.

Mathematics Subject Classification. 13C40, 13C70, 14M10, 14M99, 14N20.

Keywords. Complete intersection, Hadamard product, star configura-
tion, Gorenstein.

1. Introduction

We say that the hyperplanes in a set £ = {¢1,...,4.} C P" r > n, meet
properly if £;, N---N¢;, is a point for any choice of n different indices and
n + 1 hyperplanes are never concurrent. We denote ¢;, N---N¥; by Py, ..

Let £L = {{1,...,£,} C P™ be a set of r > n hyperplanes meeting
properly. The set of points

S(£) = U Py i, CP™.
1<i <. <in <
is called a star configuration of points in P" defined by L.

These configurations of points, and their generalizations, have been in-
tensively studied for their algebraic and geometrical properties, see [2,5,8,
17,26] for a partial list of papers that have contributed to our understanding
them.

Set S = Clzg,...,x,] = C[P"], where C could be replaced by any
algebraically closed field of characteristic zero. We recall that the Hilbert

Y Birkhauser
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function of a set of points X C PP" is the numerical function Hx : Z>o — Z>¢
defined by

where Ix is the ideal defining X, and the h-vector of a set of points X C P?
is the first difference of the Hilbert function of X, that is

hx(t) = Hx(t) — Hx(t — 1),

where we set Hx(—1) = 0.
A star configuration S(L£) defined by a set of r hyperplanes consists of
(;) points, and its h-vector is generic, see for instance [17, Theorem 2.6], that

means hg(z) = (17 R (”71”), ce (Tﬁl)) . Indeed, the ideal defining S(£) is

n—1 n—1
minimally generated in degree r — 1 by all the products of r — 1 linear forms
defining the hyperplanes in L.

We now construct star configurations starting from a rational normal
curve v of P"™. We call them contact star configurations on vy, we will not
mention -y if it is clear from the context. We recall that an osculating hy-
perplane to the curve v at a point P € « is the hyperplane spanned by the
length n scheme nP N+, where nP is a fat point of multiplicity n, (see also
Notation 2.1 and Definition 2.4 in [3]).

Definition 1.1. Let P;,..., P, C P" be distinct points on a rational normal
curve 7 of P". Denote by £ = {{1, ..., ¢} the set of osculating hyperplanes to
~vat Py,..., P, respectively. We say that S(L£) is a contact star configuration
on 7.

Note that, since « is a rational normal curve, the hyperplanes in £
always meet properly. Indeed, via the nth Veronese embedding v,, : P! — P"
defined by v, ([a]) = [a"], where o € C[P]y, the curve v is the variety that
parameterizes the nth powers of linear forms in two variables. Hence, the
points in the hyperplane osculating v at [@"] are parametrized by the forms
a-C[P'],,_1. This implies that the hyperplanes osculating to  at [a]], ..., [a”]
meet, exactly at the point [aq - - o] (see Remark 3.2 in [3]).

The first motivation to introduce these configurations come from
Hadamard products. We show in Sect. 2 that the so called Hadamard star
configurations are indeed contact star configurations, see Theorem 2.1. This
result will give an easy way to explicitly construct examples which only make
use of rational points, see in Remark 3.3.

The second motivation is related to their h-vector. A single contact star
configuration has a generic h-vector, as any other star configuration. But the
behavior of a union of two or more of them deserves further investigation. The
homological invariants of a set of points which is a union of star configurations
have been studied for instance in [2,27,28]. In the known cases, that require
some restrictive assumptions, the h-vector of such a union is always general.

We will mostly focus on P2, therefore, the contact star configurations are
defined by taking lines tangent to an irreducible conic. The study of properties
of families of lines tangent to a planar conic is classical in algebraic geometry,
see for instance the Cremona’s book [11].
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We prove, in Sect. 3, that the union of two contact star configurations
in P2, defined by 7 and s lines, is a complete intersection of type (r — 1, s) if
either s = r—1 or s = r; see Theorem 3.1. We also show that, in these cases,
the curve of degree s can be chosen to be irreducible.

Moreover, in Sect. 4, we prove that the union of contact star configura-
tions in P? defined r and s lines has the same h-vector of two fat points of
multiplicities  — 1 and s — 1, see Theorem 4.3. We believe that this corre-
spondence with the h-vector of certain scheme of fat points also occurs for
a union of three and four contact stars, see Conjecture 4.8. We prove it in
some cases, see Theorem 4.5.

In Sect. 5, we apply Theorem 3.1 to the study of a recurring topic in
classical projective geometry: polygons circumscribed around an irreducible
conic in P2, see Proposition 5.1, Corollary 5.2 and Proposition 5.3.

Section 6 contains concluding remarks and conjectures for further work.

We will make use of standard tools from linkage theory; see [25] for
an overview of the topic and [15-17,22,24] for a partial list of papers which
use liaison to study zero-dimensional projective and multiprojective schemes.
A well-known result, see [23, Corollary 5.2.19], relates the h-vectors of two
arithmetically Cohen—Macaulay schemes in P with the same codimension,
that are linked by an arithmetically Gorenstein scheme. In particular, if X, Y
are two disjoint sets of reduced points in P? and X UY is a complete inter-
section of type (a,b), then the following formula connects the h-vectors of X,
Y and X UY:

hxuy(t) = hx(t) + hy(a+b—2—1t), for any integer . (1.1)

Since the h-vector of a complete intersection is well known, having the h-
vector of X allows us to compute that of Y using the formula above.

2. Hadamard Products

In this section, we show that Hadamard star configurations are contact star
configurations. Hadamard products of linear spaces have recently been the
subject of study for many interesting properties, see for instance [4,7,8]. We
briefly recall some general facts about Hadamard products of linear spaces.
Let P=ag:---:ap] and Q = [by : - - : by] be two points in P™. If for some
i, we have both a; # 0 and b; # 0, then we say that the Hadamard product
of P and @, denoted P x @, is defined and we set

PxQ = [agby : -+ : anby] € P".
Given two varieties X and Y in P", the Hadamard product of X and Y,
denoted X xY, is given by
X+xY={PxQ|PeX,QeY, and P*Q is defined} C P"

where the closure is taken with respect to the Zariski topology.
In particular, for a variety X in P™ and a positive integer r > 2, the rth
Hadamard power of X is

X — X*(rfl) * X,
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where we define X*! = X.

When we compute the Hadamard product of X and Y it is often crucial
to ensure some condition of generality on X and Y, this is encoded by their
points not having too many zero coordinates. For this purpose, we let A; be
the set of points of P which have at most ¢ + 1 non-zero coordinates.

A slightly different definition of Hadamard product is given in Definition
2.15 [7]. If X is a finite set of points in P™, then the rth square-free Hadamard
product of X is

X ={Pix---xP.| P,..., P, € X distinc points}.

From [4, Theorem 4.7], it is known that X~ is a star configuration of (7:)
points of P, where X C P” is a set of m > n points on a line ¢ such that
(N A,_o=0. The set X" C P™ is called an Hadamard star configuration.

Let V' be a linear space in P", for a positive integer r, we consider the
subscheme

Ver={P" | PeV}CP",

called the rth coordinate-wise power of V. Properties of these schemes have
been studied in [13]. In the following theorem, we investigate the case where
V is a line. We recall that the linear subspace of dimension d osculating to

a rational normal curve v at P is the linear space spanned by the scheme
(d+ 1)P N+, see Notation 2.1 and Definition 2.4 in [3].

Theorem 2.1. Let £ be a line in P such that £ N A,_o = (. Then,

(i) €°™ = {P*"|P € {} is a rational normal curve;

(ii) let P € £, then the linear subspace of dimension d osculating to °™ at
P*7 s P*(n=d) o p*d - In particular, the osculating hyperplane to (°" at
P*" g P*E*(n_l);

(iii) for each set of n distinct points on £, Py, ..., P, € £, we have

PixPyx--% Py = (P x "Dy (P % 57D,

Proof. The degree of £°™ is n from Corollary 2.8 in [13]. Take a parametriza-
tion of the line ¢, say P,, = [Lo(a,b) : Li(a,b) : -+ : Ly(a,b)] € £ where
the L;(a,b) are linear forms in the variables a, b. Note that, since N A,,_5 is
empty, the forms L;(a,b) are pairwise not proportional.

(1) The curve £°" is parametrized by P}’ = [Lo(a,b)™ : Li(a,b)™ : --- :
L, (a,b)"] € £°", where the components of PX" are a basis for the forms
of degree n in a, b since the L;(a, b) are pairwise not proportional. Hence,
£°™ is a rational normal curve of P".

(ii) We will prove item (ii) by induction on d. Let d = 1. Now let P + tQ
be a point of ¢, (t € C), thus the tangent line to £°" at P*™ is

}1_{% < P*n, (P+tQ)*n > _ th_r)% < P*n’ P*n+ntp*(n71)*Q+.“+th*n>
— < Ig*n7 P*(n_l)*Q > — P*(n—l)*e.

Assume d > 1. By the induction hypothesis, the linear space of dimen-
sion d — 1 osculating to £°" at P*" is P*(n—d+1)  px(d=1) Tet Q # P be



MJOM Rational Normal Curves and Hadamard Products Page 5 of 22 134

a point on ¢. We have
P*(n—d—i—l) *g*(d—l)

= {P*(nid+1) * (alP —+ le) R T ¢ (ad_lP + bd—lQ) | a,;,b,; S (C}

_ < P*n, P*(nfl) *Q, P*(n72) *Q*2, o ,P*(n7d+1) *Q*(d71)> )
Now let again P + tQ be a point of £, (¢ € C). The linear space of

dimension d osculating to £°™ at P*" can be obtained by computing the
following limit:

hm( P*(n—d+1)*€*(d—1)7 (P—‘rtQ)*n >7

t—0
and this limit, by an easy computation and the equality above, becomes

llm< P*n, P*(n—l) * Q7 P*(n—2) * Q*2, o P*(n—d+1) * Q*(d_l), (P + tQ)*n >

t—0

— thr%< P*n, P*(nfl) * Q, o P*(n—d+l) * Q*(dfl)’ p*m + ntP*(nfl) * Q

4ot th*n >
_ }51%( P, prin=1) Q,..., prn—d+1) Q*(d—1)7 (Z)tdp*(n—d) . Q*d L")
— < P*n, P*(n—l) * Q P*(n—cH—l) * Q*(d_l), P*(n—d) * Q*d >

— pr(n=d)  pxd,

(iii) Tt follows from (ii) and the fact that n different osculating hyperplanes
to v meet properly.

O

Theorem 2.1 shows that a point Pyx---xP,, € X" is the intersection of n
hyperplanes that osculate the rational normal curve £°”. Hence, an Hadamard
star configuration X, constructed from a finite set of points X on a line
¢ € P", is a contact star configuration.

In the next remark, we give more details for n = 2.

Remark 2.2. Consider a line ¢ in P? and the respective conic £°2] let C[z, y, 2]
be the coordinate ring of P2. We have the following facts.

(i) Say ¢ defined by the equation ax + Sy — 2z = 0, where «, 8 # 0. Then,
from Theorem 2.1(i), we have that £°? is a conic. Precisely, one can
check that

% (Px+ By — 2)? — 4P BPry = 0.

(ii) From Theorem 2.1(ii), for each P € ¢, the line P ¢ is tangent to £°? at
PxP.

(iii) From Theorem 2.1(iii), for any P,Q € ¢, P # @, the two tangent lines to
£°2 through PxQ are Px/{ and Q«{. Note that this allows us to find an
explicit Hadamard decomposition of any point in the plane P? = ¢ « .
In fact, let A € P2, let @ and b be the tangent lines to the conic £°2
through A, and let P+ P =aN¢°?, Q+Q =bN¢°2, then A = PxQ.

(iv) For any P,Q € £, P # @, the line through Px P and Q@ is the polar
line of the point P * Q with respect to £°2.
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Figure 1. A cubic through 12 points union of 2 contact star
configurations

(v) The condition £ N Ay = @ ensures that £ meets the lines z = 0,y = 0
and z = 0 in three distinct points, say P, P, and P,, respectively. Note
that, from the definition of Hadamard product, P, * £ is the line x = 0
and analogously P, * £ is the line y = 0 and P, * £ is z = 0. Then, the
conic £°? is tangent to the coordinate axes in P, * P, Py P, and P, xP,.

3. Complete Intersections Union of Two Contact Star
Configurations in P?

In this section, v is an irreducible conic in P2, and we set S = Clz,y, 2] =
C[P?]. The main result of this section is the following Theorem. We postpone
its proof until page 7, after the development of some special cases.

Theorem 3.1. Let X = S(L) and Y = S(M) be two contact star configura-
tions in P2 on the same conic, where £L = {{1,..., 4.} and M = {mq,...,ms}
are two disjoint sets of distinct lines. Then,
(a) if s =7 —1, then the general form in (Ixyuy),_, is irreducible;
(b) if s=r—1, then X UY is a complete intersection of type (r— 1,7 —1);
(c) if s =r, then the general form in (Ixuy), is irreducible;
(d) if s =r, then (Ixuz),_, = (Uxuy),_, where Z denotes a set of r — 1
collinear points in Y ;
(e) if s=r, then X UY is a complete intersection of type (r — 1,r).

Remark 3.2. Theorem 3.1 (e) in particular claims that the 12 points of X U
Y, where X = S(¢1,02,03,¢4) and Y = S(mq,ma, ms, my) are contact star
configurations on the same conic and the 8 lines are distinct, lie on a cubic.
This case is pictured in Fig. 1.

Remark 3.3. Combining Theorems 3.1 and 2.1, we are able to explicitly give
the coordinates of a (not trivial) complete intersection of rational points in



MJOM Rational Normal Curves and Hadamard Products Page 7 of 22 134

P? of type (a,b), where either b = a or b = a — 1. First, we need to fix a
rational line ¢ in P2. Then, we take a + b + 1 distinct rational points on ¢
divided in two sets X and Y containing a4+ 1 and b points, respectively. Then,
X” UY” is the complete intersection we are looking for. For instance, let
¢ be defined by the linear form x +y — z and a = b = 3. We pick on ¢ the
following points:

X={[1:1:2,[1:2:3],[1:3:4],[1:4:5]}
and V={[1:—-1:0],[1:—-2:-1],[1:-3:-2]}.
Then, the set of 9 points
XPUY? ={[1:2:6],[1:3:8],[1:4:10],[1:6:12],[1:8:15],[1:12:20]}
U{[1:2:0],[1:3:0],[1:6:2]}
from Theorem 3.1(b), is a complete intersection of type (3, 3).

Remark 3.4. Note that if r = s = 2, then X UY consists of two points and
the statements (c), (d), (e) in Theorem 3.1 are trivially true. The statements
(a), (b) in the case r = 3,8 = 2 are also trivial. Indeed, X UY consists of
four points in linear general position. The first interesting case occurs when
r=s =23 (see Fig. 2A).

In the following lemma, we prove Theorem 3.1 in case r = s = 3.

Lemma 3.5. Let X = S(ly1,02,03) and Y = S(my,ma,m3) be contact star
configurations on the same conic. Then,

(i) the general cubic through X UY is irreducible;

(ii) @ conic containing 5 points of X UY contains X UY;

(iii) X UY is a complete intersection of a conic and a cubic.

Proof. Since the linear system of the cubics through X UY is not composite
with a pencil and it does not have a common component, then by Bertini’s
Theorem, see for instance [21, Section 5] and [20, Corollary 10.9], the generic
cubic of the system is irreducible. To complete the proof, let Cs, C% be two
cubics union of lines through X UY', (see Fig. 2B). The intersection Cs5 N CY
consists of 9 points and, by Brianchon’s Theorem, see [9, pp. 146-147], the
three of them not lying in X UY are on a line (the white circles in Fig. 2B).
Thus, by liaison (use formula 1.1), the set X UY is contained in a conic. [

We now prove Theorem 3.1.

Proof of Theorem 3.1. We proceed by induction on r. The cases r < 3 fol-
low by Remark 3.4 and Lemma 3.5. Therefore, assume r > 3. Set X =
S(£\{¢;}), thus X is a star configuration of points defined by r — 1 lines.

(a) Consider the sets X() UY, fori = 1,...,7—1. By (e) and by induction,
X® UY is complete intersection of type (r — 2,7 — 1), thus there exists
a curve of degree r — 2 through XD UY, say C’ﬁi_)z.
Note that Cﬁi_)Q does not have £, as a component. In fact, if ¢, is a

component of Cf.i_)g, then, by removing /,., since it does not contain
points of Y, we get a curve of degree r — 3 through Y. A contradiction,
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|

(A) Caser=s=3. (B) The nine intersection points
of the two cubics.

Figure 2. (A) union of two contact star configurations. (B)
the nine intersection points of two cubics through the union
of two contact star configurations on the same conic

since Iy starts in degree r — 2.

Since £, is not a component for Cﬁl , then C ~, meets ¢, in exactly

2
r — 2 points that are (X N¢,)\(¢; N¢,.). From here it easily follows that
the linear system of curves

<eiucﬁi_)2|i=1,...,r—1> (3.1)

does not have any fixed component and it is not composite with a pencil.
Thus, by Bertini’s Theorem, the general curve in 3.1 is irreducible.

(b) By (a), since the linear system (3.1) has dimension at least 2, there exist
two irreducible curves of degree r — 1 thorough X UY". Since | X UY| =

(;) + (T?) = (r —1)%, we are done.

(c) From (a) the generic curve of degree 7 — 1 through X UY is ir-
reducible, say Cﬁ)l, for each ¢ = 1,...,r. Then, the linear system

<€i U Cﬁi_)l i=1,..., T> does not have any fixed component and it is
not composite with a pencil Again for Bertini’s Theorem, we are done.

(d) Let Py = ;N4 and Y = SM\{m;}), i = 1,...,7 — 1. From (b),
the set XUY® is a complete intersection of two curves of degree r — 1,
hence

dimy (Ixuy @ ),—q =2
and its h-vector is
hxoyo = (1,2,3,..r—2,r—1,r—2,...,2,1).

Moreover, YO\ Z = S(M\{m;,m,}) is a star configuration defined by
r — 2 lines and then its h-vector is

hY(i)\Z = (1,273, ooy T — 3)
Thus, by liaison, see relation (1.1), we have

hXU(Z\{P,L-,,V}) = (1,2,3, cesy T — 2,T - 1,’/‘ - 2),
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then
dimy, (Ixuz\(Pip), g = 2
Since X U (Z\{P;;}) € X UY @ we have
(Ixuz\iPah)) oy = Txuy @)1 - (3.2)

Note that to prove that dim (IXU(Z\{P“_}))T_I = 2, we can use Lemma
2.2 in [6] instead of liaison.
Let F € (Ixyuz)r—1, then, by (3.2), F € (Ixuyw)r—1 for each i =
1,...,7 — 1. Therefore, F' € (Ixyy)r—1. It follows that (Ixyuy)r—1 =
(Ixuz)r—1-

(e) Let F € (Ixuy),_; as in the proof in item (d). By item (c), there exists
an irreducible form G € (Ixyy), . Since

|F-Gl=r(r—1)=|XUY],
then X UY is a complete intersection of the curves defined by F and G.
O

A natural question related to Theorem 3.1 arises about the irreducibility
of the curve of degree r—1 in the case r = s. It cannot be guaranteed. Indeed,
in the next example, we produce a set of 20 points which is the complete
intersection of a quartic and a quintic (i.e., the case r = s = 5), where the
curve of degree 4 satisfying item (e) of Theorem 3.1 is a union of two conics.

Ezample 3.6. Let £ = {{1,...,05} be a set of five lines tangent to an irre-
ducible conic v (the gray parabola in Fig. 3). The contact star configuration
X = S(L) consists of ten points.

We split the ten points into two sets of five points, each contained in
an irreducible conic. Then, we consider the quartic union of these two conics
(the one dashed and the other dotted in Fig. 3).

Now, we take a new line m tangent to ~, see Fig. 4A. Through each of
the four points of intersection of m with the quartic, there is an extra tangent
line to . Call these tangent liness mq,mo, m3, my, see Fig. 4B. The set of
points Y = S({m1,...,mq4,m}) is a contact star configuration and, from
Theorem 3.1 (d), X UY is contained in the quartic. Of course this quartic,
by construction, is not irreducible.

In order to show that the condition s = r or s = r — 1 in Theorem 3.1 is
also necessary for X UY to be a complete intersection, we prove the following
lemma which holds with more general assumptions.

Lemma 3.7. Let X andY be two disjoint star configurations defined by r and
s lines, (r > s), respectively. If X UY is a complete intersection, then either
s=rors=r—1.

Proof. Since hx = (1,2,3,...,r —1) and hy = (1,2,3,...,s — 1), thus, by
liaison, see formula (1.1), the h-vector of X UY must be

hxoy = (1,2,3,...,r—1,5s—1,...,3,2,1).
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Figure 3. Example 3.6: The star configuration X and the
not irreducible quartic through X

(A) The line m intersecting (B) The contact star config-
the quartic in four points. uration Y.

Figure 4. Construction of the set of points X UY on a re-
duced quartic

Since X UY is a complete intersection, then, to ensure the symmetry, we get
s=rors=r—1. O

Theorem 3.1 together with Lemma 3.7 give the following result.

Theorem 3.8. Let X = S(¢1,...,4,) and Y = S(my,...,ms) be two contact
star configurations on the same conic. Then, XUY 1is a complete intersection
if and only if either s =1 or s =1r — 1.
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4. The h-Vector of a Union of Contact Star Configurations in
]P)Z

In this section, we work in P2, so v is always an irreducible conic, and we set
S = C[z,y,2] = C[P?]. The main result of this section, Theorem 4.3, shows
that a union of two contact star configurations on a conic v has the same
h-vector as a scheme of two fat points in P2. This point of view will allow us
to make further considerations on the h-vector of more than two contact star
configurations on a conic v, see Theorem 4.5.

The h-vector of two fat points is well known, several papers investigate
it in a more general setting, see for instance [14, Theorem 1.5 and Exam-
ple 1.6] and also [10,12,18,19] just to cite some of them. Recall that if the
multiplicities of the two points are m and n, with m > n, then the h-vector
is

(1,2,....om—1mmnn—1,...,21). (4.1)
To prove the claimed result, we need the following lemma.
Lemma 4.1. Let Y = S(myq,...,ms) be a star configuration of s lines, and
let Mgq1,...,Msqr be t further lines, t > 1. Consider the star configuration

X =S(my,...,mg,Mgt1,...,Msrt). Then, the h-vector of X\Y is
havy = (Lot = 1,88, ).
——

Proof. Since the h-vector of X is (1,2,...,s+t—1) and X\Y is contained
in a curve of degree ¢, that is ms11 U--- Umyy, then hx\y < (1,...,1 —
1,¢,t,...,t) < hx. Since,

————

S

t t
IX\Y| = (3; )—(3) = (2>+st=1+~--+t—1+t+t+---+t,
—_——

S

we are done. O

The next example shows how we compute the h-vector of a union of two
contact star configurations in P2.

Ezample 4.2. Let X = S({y,...,¢7) and Y = S(my,m2, m3) be two contact
star configurations on a conic 7y, where all the lines are distinct. Figure 5A
gives a representation of this case.

To compute the h-vector of X UY, we consider three further lines
myg, ms, mg tangent to v. Let Y/ = S(my,...,mg) 2 Y, see Fig. 5B.

From Theorem 3.1(b), X UY” is a complete intersection of type (6, 6),
hence the h-vector of XUY" is hxyy' = (1,2,3,4,5,6,5,4,3,2,1). By Lemma
3.7, the h-vector of Y'\Y is hyny = (1,2,3,3,3). Thus, by formula (1.1), we

get
t \012345678910
hxuy(t) 12345654321
hy/\y(l()ft) 33321

hxuy (t) 12345621
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(A) Theset XuUY. (B) The set XuY".

Figure 5. Example 4.2

which shows that X UY has the same h-vector as a scheme of two fat points
of multiplicity 2 and 6, see (4.1).
Now we state the general theorem.

Theorem 4.3. Let X = S({q,...,4,) and Y = S(mq,...,ms) be two contact
star configurations on a conic. Let P,Q be two distinct points in P2. Then,

hxuy = h@r—1)P4(s—1)Q-

Proof. Assume s < r. If either s = r or s = r — 1, then the statement follows
from Theorem 3.1. In fact, in both the cases, X UY is a complete intersection
and it has the required h-vector.

Therefore, assume s < r — 1 and let t = r — s — 1. Consider ¢ further
lines, mgi1,...,Mstt, tangent to v, and denote by Y’ = S(myq, ..., msty).
From Theorem 3.1 (b), X UY” is a complete intersection of type (t + s,t+ s)
and its h-vector is

hxoyr = (1,2,...,t+s—1t+s,t+s—1,...,2,1).
By Lemma 3.7, the h-vector of Y/\Y is
hy =(1,2,...t—1,t,t,....t).
———

By formula (1.1), we get

hxuy =(1,2,...,t+s—1,t+s,s—1,s—2,...,2/1) =
=(1,2,...,r—=2,r—1,s—1,s—2,...,2,1)

which is the h-vector of (r — 1)P + (s — 1)Q. O

Theorem 3.1 allows us to compute the h-vector of a union of three
contact star configurations, on the same conic in the special case described
in Theorem 4.5. The proof of Theorem 4.5 requires the following well-known
result about the Hilbert function of a scheme of three fat points not lying on
a line (see for instance [10, Theorem 3.1]).

Proposition 4.4. (The Hilbert function of three fat points) Let Z = m P, +
moPs + m3P3 be a scheme of three general fat points of multiplicity mq, >
me > mg > 1, respectively. Then,
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Hy(d) = {4+ 1FHE( = 1) if 0 < d < myfmp =2
Z\%) = deg(Z) ifd>mq+mg—1
where Z' = (m1 - I)Pl + (m2 — 1)P2 + m3P3.
Theorem 4.5. Let X =S(¢1...,¢,),Y =S(my,...,ms) and W =S(nq,...,n)
be contact star configurations on a conic, wheret > r > s > 2, and the r+s+t
lines are distinct. Let Z = (t — 1)Py + (r — 1)Po + (s — 1) P3 be a scheme of
three general fat points. If t € {r +s— 1,7+ s, + s+ 1}, then
hxuyuw = hz
=1,...,t—2,t—1,r+s—2 r+s—4,...,r—s+2,
s—1
r—s,r—s—1r—s—2...). (4.2)

r—Ss

Proof. We prove the theorem for ¢ = r+s. The other two cases can be proved
similarly.

First we compute the h-vector of X UY U W.

Note that X UY is contained in the contact star configuration T' =
S(mi,...,mp,n1,...,ng). Then, TUW, by Theorem 3.1 (d), is a complete
intersection of type (r +s—1,r + s), and so

hrow =1,...;r+s—=2, r+s—1, r+s—1, r+s—2,...,1).

Since the set T\(X UY') is a complete intersection of type (r,s), then
its h-vector is

(I...,s—=1, s, ...,s,s—1,...,1).
——
r—s+1
Hence, by formula (1.1), we get

hxuoyow = (1,...,r+s=2, r+s—1Lr+s—2, r+s—4,...,r—s+2

s—1
r—s,r—s—1r—s—2,...). (4.3)
r—s
Observe that, for s = 2, we get
hxoyvow = (1,...,r, r4+1, ror—2,r—3,...),

r—2
for r = s, we have
hxuoyow = (1,...,2r — 2, 2r —1, 2r — 2, 2r —4,...,2),

r—1

and forr = s =2
hXUYUW = (17 27 37 2)

We will prove the theorem by induction on 2r + 2s — 3, that is, on the
sum of the multiplicities of the three fat points. If 2r + 2s — 3 = 5, then
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Z = 3P, + P>+ Ps, whose h-vector is (1, 2, 3, 2), so the statement is proved
for (r,s) = (2,2).

Assume 2r +2s—3 > 7, and recall that Z = (r+s—1)P, + (r—1)P, +
(s—1)P; ( r > s > 2). By Proposition 4.4, we have

Hy) = [T HHz (A=) H0<d< (s — 1)+ (r—1) =2
237 deg(2) ifd>(r+s—1)+@r—1)—1
where Z' = (r+s—2)P; + (r — 2) P, + (s — 1) P5. Hence, the h-vector of Z is
1+ hy(d—1) fo<d<(r+s—1)+@r—1)—2
hz(d) =< deg(Z) —d—Hz/(d—2)ifd=(r+s—1)+(r—1)—1
0 ifd>(r+s—1)+(r—1)

(4.4)
Now, we will compute Hz/(d—2) ford = (r4+s—1)+(r—1)—1=2r+s-3.
Forr >s,wehaver+s—2>r—-2>s—1l,andd—2=2r+s—5=
(r+s—2)+ (r—2) — 1, which is the sum of the two highest multiplicities.
Hence, by Proposition 4.4, we get Hz/(2r + s — 5) = deg(Z’).
If r = s, we have Z/ = (2r —2)P; + (r — 2) Py + (r — 1) P3 and we need to
compute Hyz (3r —5). Since the line P; Ps is a fixed component for the curves
of degree 3r — 5 through Z’, we have

dim(Iz/)3,—5 = dim(Iz/ )36,

where Z" = (2r — 3)Py + (r — 2) P> + (r — 2)P5. Since the scheme Z” gives
independent conditions to the curve of degree 3r — 6 (see again Proposition
4.4), hence Hz(3r — 6) = deg(Z"). Tt follows that
HZ/(?)T - 5) = (ST;3> - dim(IZ/)3T_5 = (dr;d) - dim(IZH)gT_G
= ("% - (3T54) +deg(Z") = 3r? — 5r + 1.

Thus, for d = 2r + s — 3, we have

o gy Jdeg(Z) —(2r+s—3)—deg(Z') =1 ifr>s
deg(Z) —d— Hz(d=2) = {deg(Z) —(Br—-3)—Br2=5r+1)=2ifr=s"

From this equality and from (4.4), we get

1+ hy(d—1)if0<d<2r+s—4

1 ifd=2r+s—3andr>s
2 ifd=3r—3andr=s ’
0 ifd>2r+s—2

hz(d) = (4.5)

Now, if r > s, from the inductive hypothesis, by substituting r with r—1
in formula (4.2), we get the h-vector of Z' = (r4+s—2)P;+(r—2) Py +(s—1) P,
that is,
hzo=0,....r+s—=3, r+s—2,r+s—3, r+s—5,...,r —s+1,

s—1

r—s—1,r—s—2,...).

r—s—1

In case r = s, we have Z' = (2r — 2)P; + (r — 1)P; + (r — 2) P, (note
that 2r —2 > r—1 > r —2). Let & = r — 1. With this notation Z’' =
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(A) The union of three contact (B) The nine points in 7'\ (XUY)
star configurations on a conic. on a grid.

Figure 6. Example 4.7

(r+s —1)P, + (r—1)P3+ (s’ — 1) P». By applying the inductive hypothesis
and then by substituting s’ with » — 1, we get

hgr=0,...,r+8 =2 r+s —1,r+s -2, r+s —4,...7r—5 +2,

s'—1
r—s,r—s —1r—s-2..,1)
=(1,...,2r =3, 2r —2,2r — 3, 2r —5,...,3,1).
r—2
By (4.3) and (4.5), the conclusion follows. O

Remark 4.6. Note that this theorem gives a non-algorithmic formula for the
h-vector of three fat points of multiplicities mq, mo, ms when mq, = my + mg
or mi = ms +mg £ 1.

We illustrate the case r = 3,s = 3,¢ = 6 in the following example.

Ezample 4.7. Let X = S(ly,02,03),Y = S(my, ma, m3) and W = S(nq,...,ng)
be contact star configurations on the same conic, see Fig. 6A. Set T' =
S(ly,£a, 03, m1, ma, m3), see Fig. 6B.

Then,

hWUT = (1a 2) 37 47 57 5a 4a 37 27 1)7
hT\(XUY) = (1a 2,3,2, 1)7

and, by liaison, hxuyuw = (1,2,3,4,5,4,2), which is the h-vector of three
fat points of multiplicity 2,2, 5.

Theorem 4.5 and experiments using CoCoA [1] suggest the following
conjecture.

Conjecture 4.8. The h-vector of a scheme of s < 4 general fat points of
multiplicities m;, (i = 1,...,5) is equal to the h-vector of the union of s
contact star configurations defined by m; + 1 lines tangent to the same conic.

The next example shows that the conjecture does not hold for s = 5.

Ezample 4.9. The h-vector of five general fat points of multiplicity 2 in P?
is

(1,2,3,4,4,1)
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Figure 7. The case described in Proposition 5.1

but we checked with CoCoA [1] that the h-vector of five general contact star
configurations on a conic defined by three lines is

(1,2,3,4,5).

5. Applications of Theorem 3.1 to Polygons

As an application of Theorem 3.1, we get a result that in a certain sense
extends the Brianchon’s Theorem to an octagon circumscribed to a conic.

Proposition 5.1. Let Ay,..., Ag be the vertices of an octagon and let {;; be
the line AlAJ Set P1 == élg n 623 and PQ = flg N 534 and let 71 and Y2 be
the conics through Ay, Aa, As, Ag, Py and As, A3, Ag, A7, Py, respectively. Let
v Nye = {As, Ag, By, Ba}. If the octagon circumscribes a conic v, then the
points Ay, As, B1, By are on a line. (See Fig. 7).

Proof. Note that, by Theorem 3.1 (d), the point P35 = £45 N £g7 belongs to
the conic 1. In fact, Ay, Ao, Py and As, Ag, P3 are two contact star config-
urations on the same conic and then a complete intersection of type (2,3).
Analogously, the point Py = f56 N £7g belongs to the conic 2. Moreover,
observe that the points Aj, As, As, Py, Po, Ps = {15 N {34, and the points
As, Ag, A7, P3, Py, Ps = {45 N f7g are two contact star configurations each
defined by four lines tangent to the same conic, hence by Theorem 3.1 (d)
these 12 points are a complete intersection of type (3,4), thus their h-vector
is (1,2,3,3,2,1).

Now, consider the two quartics v1 U £34 U f7g and o U f18 U £45. This two
quartics meet in a complete intersection of 16 points, that consists of the 12
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Figure 8. The case described in Corollary 5.2

points described above and the points A4, Ag, By, Bo. By relation (1.1), we
get

0123456
The h -vector of the 16 points 1234321
The h -vector of the 12 points 123321
The h -vector of {Ay4, Ag, By, B2} 1111

The table above shows that the four points are collinear. O

Corollary 5.2. Let Ay, ..., Ag be the vertices of an octagon and let £;; be the
line AlAJ Set P1 = 818 0623, P2 = 612 0534,]33 = 623 ﬂ€457 P4 = 634m£56 and
let ~y; be the conic through A;y Ait1, Agyi, Asyi, By ,i=1,...4 (Ag = Ay). If
the octagon circumscribes a conic vy, then the eight points (41 Ny3) U (y2Nv4)
are on a conic. (See Fig. 8).

Proof. The quartics y; U4 and 2 U3 meet in 16 points, in black and white
in figure 5.2. Eight of them, the black dots, that is (3 N72) U (73 Ny4), by
Proposition 5.1, lie on two lines. Therefore, the h-vector of these eight points
must be (1,2,2,2,1). By formula (1.1), the residual points lie on a conic. [

Recall that, by Theorem 3.1(e), the six points in the union of two contact
star configurations each defined by three lines tangent to the same conic, are
contained in a conic. An interesting case occurs considering three such contact
star configurations, see Proposition 5.3, which can also be translated into a
property of a polygon of nine sides circumscribing a conic.

Proposition 5.3. Let X7 = S(¢1, 42, l3), Xo = S(m1,ma,m3), X3 = S(n1,n2,n3)
be contact star configurations on a conic. Let 7;; be the conic containing
XiUX;. Then, y12,713, Y23 meet in a point. See Fig. 9A.
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(A) Three conics meet- (B) The cubic and the quartic.

ing in a point.
Figure 9. Proposition 5.3

Proof. Consider the cubic y12Uny and the quartic y13Um; Ums (respectively,
dotted and dashed in Fig. 9B). The cubic and the quartic meet in 12 points
(twice in mq N my). Six of these points, precisely X1 U S(nq, m1, ms), lie on
a conic, by Theorem 3.1(e). Therefore, also the residual six points lie on a
conic (by formula 1.1) that is, by Theorem 3.1(d), the conic 7a3. O

6. Further Directions

According to our computations, it should be possible to extend some of the
results in this paper to higher dimensional spaces. We state the following
conjecture.

Conjecture 6.1. Let X:=S({y,...,¢,.) and Y:=S(my,...,ms) be two contact
star configurations in P™, where r > s and all the hyperplanes are distinct.
Then, the h-vector of X UY 1is

o (1) (DG ()

In particular, if either s =1 or s =1 — 1 then X UY 1is a Gorenstein set of
points.

If Conjecture 6.1 is true, then it is possible to generalize Remark 3.3
in order to construct Gorenstein sets of rational points in P with a special
h-vector. We show the procedure in the following example.

Ezample 6.2. Let S = Clx,y,2,t] = C[P?] and let £ C P? be the line in P3
defined by the ideal (z —x —y,t — x +y). Consider two sets of four points on
l

={[1,1,2,0],[1,2,3,1],[1,3,4,2], [1, 4,5, ]},

— {[1,—1,0,—2], [1,~2,—1, =3, [1, -3, —2, -], [1, -4, —3, 5]}
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Then,

X* Uy = {[1,6,24,0],[1,8,30,0],[1, 12,40, 0], [1, 24, 60, 6] }U
{[17 _67 Oa _24]7 [17 _87 Oa _30]7 [17 _127 07 _4017 [15 _247 _65 _60]}

According to CoCoA, the set of eight points X*UY*” C P2 is in fact Goren-
stein and its h-vector is (1, 3,3,1).

On the other hand, it is interesting to ask if contact star configurations
need to be constructed on rational normal curves. Of course, one can extend
the definition by taking, for instance, high contact linear spaces to some other
irreducible curve or surface and, with some assumptions of generality, again
get a star configuration. However, we do not know if this construction on a
variety of a different kind will lead to configurations with special properties
either from the point of view of the h-vector or something else. Therefore, we
ask if the converse of Conjecture 6.1 is also true.

Question 6.3. Let X:=S({q,...,4,) and Y:=S(mq,...,m), where r > s, be
two star configurations in P™ defined by distinct hyperplanes. Suppose that
the h-vector of X UY 1is

O ) L S e D)

Then, are X and Y two contact star configurations on the same rational
normal curve?

A similar question can be asked in the case of a Gorenstein set of points.

Question 6.4. Let X:=S({1,...,4,.) and Y:=S(mq,...,ms), where r > s, be
two star configurations in P™ defined by distinct hyperplanes. Suppose that
X UY is a Gorenstein set of points in P™. Then, are X and Y two contact
star configurations on the same rational normal curve with either s = r or
s=r—17¢

In the next proposition, we positively answer Question 6.4 in P? for the
case r = s = 3.

Proposition 6.5. Let X and Y be two star configurations, both defined by 3
distinct lines. Let X UY be a complete intersection of type (2,3). Then, X
and 'Y are contact star configurations on the same conic .

Proof. Let denote X = S({1,{s,/3) and Y = S(my, ma, m3). Set P;j:={; N {;
and Q;;:=m;Nm,;. Let denote by p;; and ¢;; the lines dual to FP;; and Q;; and
by L; and M, the points dual to the lines ¢; and m;. By hypothesis there is a
conic ¢ passing thorough the six points in X UY". Then, the lines p;; and g;;
are tangent to the conic ¢V dual to c¢. Then, {L;, Lo, L3} and {M;, Ms, M3}
are ¢”-contact star configurations. Hence, from Theorem 3.1 (e), there is a
conic vV passing through {Ly, Ly, L, My, My, M3}. This proves that X and
Y are contact star configurations on a conic -, that is, the conic dual to
YV, O
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