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Abstract
In this paper, an exact dynamic stiffness formulation using higher-order theories with displacement variables
only is presented and subsequently used to investigate the free vibration characteristics of solid beams, thin-
walled structures and reinforced panel structures. In essence, higher-order displacement fields are developed by
using the Carrera unified formulation (CUF), and by discretizing the cross-section kinematics with bilinear, cubic
and fourth-order Lagrange polynomials. In particular, the component-wise (CW) approach based on Lagrange
expansion is applied in which the solid part and thin-walled part are considered as two independent components
that can be assembled. The principle of virtual displacements is used to derive the governing differential equations
and the associated natural boundary conditions. An exact dynamic stiffness matrix is then developed by relating
the amplitudes of harmonically varying loads to those of the responses. The explicit terms of the dynamic stiffness
matrices are also presented. The Wittrick–Williams algorithm of the dynamic stiffness method (DSM) is applied
with the explicit expressions of the J0 count for beam elements under all above support conditions. In return,
there is no need to refine the element in the DSM, and thus, it becomes immensely efficient. The accuracy and
efficiency of the proposed methodology are extensively assessed for different solid beams, thin-walled structures
and reinforced panels and the results are compared with those appearing in published literature and also checked
by 3D finite element (FE) solutions.

© 2023 Published by Elsevier Ltd.

Keywords: Dynamic stiffness method; Higher-order beam theory; Carrera unified formulation; Lagrange
polynomials; Wittrick–Williams algorithm;

1. Introduction

Beam models are widely used to analyse the mechanical behaviour of slender bodies,
such as columns, rotor-blades, aircraft wings, towers, antennae and bridges amongst oth-
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ers. Interest in beam models is mainly due to their simplicity and low computational costs
when compared to 2D (plate/shell) or 3D (solid) models. The free vibration analysis of
beam structures has always been a major area of activity in structural design. The results
of modal analyses are, in fact, of great interest in dynamic response analyses, acoustics,
aeroelasticity and also to avoid resonance. The classical and well-known beam theories
in the free vibration analysis of beam structures are those by Euler [1] and hereinafter
referred to as EBBM, and Timoshenko [2, 3] and hereinafter referred to as TBM. The
former does not account for transverse shear deformations and rotatory inertia, whereas
the latter assumes a uniform shear distribution along the cross-section of the beam to-
gether with the effects of rotatory inertia. These models yield reasonably good results
when slender, solid section, homogeneous structures are subjected to flexure. Conversely,
the analysis of deep, thin-walled, open section beams may require more sophisticated the-
ories to achieve sufficiently accurate results [4]. Therefore, it is necessary to develop a
higher-order beam model and an accurate and efficient analysis method for free vibration
of beams in engineering applications.

Over the last century, a number of refined beam theories have been developed to over-
come the limitations of classical beam modelling. Different approaches have been used
to improve the beam models [5–12], which include the introduction of shear correction
factors, the use of warping functions based on de Saint-Venant’s solution, the variational
asymptotic solution (VABS), the generalised beam theory (GBT), and others. A com-
prehensive review of existing beam theories was published by Kapania and Raciti [5, 6].
Another review of modern theories for beam structures was published by Carrera et al.
[7]. As far as the free vibration analysis is concerned, a brief overview about refined 1D
models is given here for the sake of completeness. Early researchers have focussed on the
use of appropriate shear correction factors to increase the accuracy of classical 1D formu-
lations, notable contributions include the works of Timoshenko and Goodier [8], Sokolniko
[13], Stephen [14], and Hutchinson [15]. The shear correction factor has generally been
used as a static concept which is restrictive. In this regard, Jensen [16] demonstrated that
the shear correction factor can exhibit variations with respect to the natural frequencies.
Additionally, a review article by Kaneko [17] and a publication by Dong et al. [18] high-
lighted the challenges associated with establishing a universally accepted formulation for
shear correction factors. Another significant class of refinement methods documented
in the literature relies on the utilization of warping functions. Notable contributions in
this area include the works of El Fatmi [19–21] and Ladevéze et al. [22, 23]. Rand [24]
and Kim and White [25] employed a similar approach in the analysis of free vibration
by introducing out-of-plane warping with no in-plane stretching terms. Asymptotic-type
expansions in conjunction with variational methods have been proposed, particularly by
Berdichevsky et al. [26]. They provide a commendable review of previous works on beam
theory developments. Further valuable contributions in this field have been reported by
Volovoi [27], Popescu and Hodges [28], and Yu et al. [29–31]. Additional relevant re-
search can be found in the papers published by Kim and Wang [32] and Firouz-Abad
et al. [33]. The generalised beam theory (GBT) is believed to have originated from the
work of Schardt [34, 35]. GBT improves classical theories by employing a piece-wise beam
description for thin-walled sections. It has been widely utilized and further extended in
various forms by Silvestre et al. [36–38], with a dynamic application being presented by
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Bebiano et al. [39]. Higher-order theories are typically developed by employing refined
displacement fields for the beam cross-sections. Washizu [40] demonstrated how the use
of a suitably chosen displacement field can lead to closed-form exact 3D solutions. Nu-
merous other higher-order theories have also been proposed to incorporate non-classical
effects.

The aforementioned works demonstrate a notable interest in exploring refined beam
theories. In contrast to those publications, the Carrera unified formulation (CUF) is a
hierarchical formulation that has been well established in the literature for over a decade
[41–45]. The strength of CUF lies in its ability to facilitate the automatic development
and compact formulation of any structural theory. This is achieved by expressing the 3D
displacement field as a series expansion of the generalised unknowns, which are defined
along the beam axis in the case of 1D models, through specific cross-sectional functions. A
comprehensive discussion about CUF can be found in Carrera’s work [41]. Over the past
years, the CUF has been applied to different problems by using Taylor expansion (TE)
and Lagrange expansion (LE) as cross-sectional functions [46–48]. In the majority of these
papers on 1D CUF, the finite element method (FEM) has been used to handle arbitrary
geometries and loading conditions. However, the calculation accuracy of the FEM depends
heavily on mesh refinement, which in turn restricts the calculation efficiency. In contrast
to the 1D Carrera unified formulation (CUF) model solved using weak-form solutions such
as FEM, analytical methods are not affected by meshing and can provide highly accurate
dynamic analysis. Giunta et al. [49–51] presented a strong-form solution, known as the
Navier-type solution, for the 1D CUF TE governing equation. They applied this solution
to the free vibration analysis of composite beams [49] as well as the static, buckling,
and free vibration analysis of sandwich beams [50, 51]. The extension of the Navier-type
closed-form solution to the 1D CUF LE for free vibration analysis of isotropic beams was
done by Dan et al. [52]. However, the above analytic method is only limited to the special
boundary conditions, e.g., simply supported. It is not easy to develop analytical solutions
for the free vibration analysis of beams with solid and thin-walled cross-sections under
arbitrary boundary conditions.

A powerful alternative tool has shown great potential for CUF theories through the
application of the dynamic stiffness method (DSM) to carry out the free vibration analysis
of solid and thin-walled structures in a much broader context by allowing for the cross-
sectional deformation. Furthermore, the dynamic stiffness method (DSM) is applicable
to beam structures with arbitrary boundary conditions. The DSM is often referred to as
an exact method as it is based on the exact general solution of the governing differential
equations [53–60]. This essentially means that, unlike the FEM and other approximate
methods, the model accuracy is not unduly compromised when a small number of elements
are used in the analysis. For instance, one single structural element can be used in
the DSM to compute any number of natural frequencies with any desired accuracy. It
is worth mentioning that compared to other analytical methods, the DSM applies an
efficient and robust algorithm, the Wittrick-Williams (WW) algorithm, which guarantees
that no natural frequency is missed. DSM has been quite extensively developed for beam
elements by Banerjee et al. [53, 59, 60] and Williams and Wittrick [57, 60]. Liu and his
co-authors have proposed DS theories for plate-like structures [61] subjected to general
boundary conditions [62, 63], stochastic boundary conditions [64], and beam built-up
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structures [65]. Recently, Pagani et al. [66–68] have established an exact dynamic stiffness
formulation based on the use of Taylor type polynomials to define the displacement field
above the beam cross-section. Each field consists of a direct extension to higher-order
expansions of the Timoshenko beam theory. However, the use of Taylor-type expansions
has some intrinsic limitations: 1) the introduced variables have a mathematical meaning
(derivatives at the beam axes); 2) higher order terms cannot have a local meaning, they
can have cross-section properties only; 3) the extension to large rotation formulation could
experience difficulties. In addition, the J0 count in the WW algorithm is an important and
difficult problem. J0 is the number of natural frequencies below the trial frequency when
all the nodes of the structure are clamped. Previous researches discretized the structure
into a finer dynamic stiffness mesh to ensure that J0 is equal to zero, which greatly reduces
the computational efficiency and does not bring the merit of the DSM into full play.

To overcome these problems, this work combines the dynamic stiffness method (DSM)
with beam theories that use Lagrange-type polynomial expansions to describe the dis-
placement field of the cross-section. The use of these expansion functions allows for the
representation of displacement variables only. This aspect is particularly advantageous
because [46–48]: 1) each variable has a precise physical meaning (the problem unknowns
are only translational displacements); 2) unknown variables can be put in fixed zones (sub-
domains) of the cross-section area; 3) geometrical boundary conditions can be applied in
sub-domains of the cross-section (and not only to the whole cross-section); 4) geomet-
rical boundary conditions can also be applied along the beam-axis; 5) the extension to
geometrically non-linear problems appears more suitable than in the case of Taylor-type
higher-order theories. In particular, the component-wise (CW) approach based on La-
grange expansion is applied in which the solid part and thin-walled part are considered as
two independent components that can be assembled. In the CW approach, each compo-
nent is modeled individually and simultaneously by using CUF beam elements (see [46]).
Then, continuity conditions among the different components are automatically satisfied
if Lagrange polynomials are used to approximate the cross-section kinematics. A recent
successful application of the CW approach can be seen in [46]. In this work, the Principle
of Virtual Displacements (PVD) is used to derive the differential governing equations and
the associated natural boundary conditions for the LE model. By assuming harmonic os-
cillation, the equilibrium equations and the natural boundary conditions are formulated
in the frequency domain by making extensive use of symbolic computation. The resulting
system of ordinary differential equations of second order with constant coefficients is then
solved in a closed analytical form. Subsequently, the frequency-dependent DS matrix of
the system is derived by relating the amplitudes of the harmonically varying nodal gen-
eralised forces to those of the nodal generalised displacements. Finally, the mode count
J0 of the WW algorithm under support conditions is obtained in this study and extended
WW algorithm is applied to the resulting DS matrix for free vibration analysis of solid
beams, thin-walled structures and reinforced panel structures. This exact solution for free
vibration analysis will be characterized by high efficiency in terms of computational costs
and unprecedented accuracy.

The paper is organized as follows: a brief introduction of 1D CUF beam theory is
given in Section 2. The governing equations of the LE model and analytical solution are
derived using the principle of virtual work in Section 3. Section 4 presents the dynamic
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stiffness formulations and extended WW algorithm. Next, three examples taken from
the literature are used to validate the proposed model in Section 5, these results are also
compared with those from ABAQUS to assess the availability of CUF-DSM to provide
3D accuracy of solid beams, thin-walled structures and reinforced panels under different
boundary conditions. Finally, some meaningful conclusions based on the above analysis
are obtained in Section 6.

2. 1D CUF LE beam theory

2.1. Preliminaries
The adopted coordinate frame of the generic beam model is presented in Fig.1. The

beam has cross-section Ω and length L. The dimensions along y are 0 ≤ y ≤ L. The
displacement vector is

u(x, y, z; t) =
{

ux uy uz

}T (1)
in which ux, uy and uz are the displacement components along x-, y-, z-axes, respectively.
The surperscript “T” represents a transpose. The stress, σ, and the strain, ϵ, components
are grouped as follows

σ = {σyy σxx σzz σxz σyz σxy}T , ϵ = {ϵyy ϵxx ϵzz ϵxz ϵyz ϵxy}T (2)
In the case of small displacements with respect to a characteristic dimension in the plane
of Ω, the strain–displacement relations are

ϵ = Du (3)
where D is the following linear differential operator matrix

D =



0 ∂
∂y

0
∂
∂x

0 0
0 0 ∂

∂z
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0


(4)

According to Hooke’s law, the relationship between stress and strain is

σ = C̃ϵ (5)
In the case of isotropic material, the matrix C̃ is

C̃ =



C̃33 C̃23 C̃13 0 0 0

C̃23 C̃22 C̃12 0 0 0

C̃13 C̃12 C̃11 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃66


(6)
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Fig. 1. Beam model and related Cartesian frame.

Coefficients C̃ij depend on Young’s modulus and Poisson’s ratio, which can be found in
standard texts, see Reddy [69] or Tsai [70].

2.2. Unified formulation of beams
Within the framework of CUF, the 3D displacement field u(x, y, z; t) can be expressed

as an expansion of the generalised displacements through generic functions Fτ

u(x, y, z; t) = Fτ (x, z)uτ (y; t), τ = 1, 2, . . . ,M (7)
where Fτ are the functions of the coordinates x and z on the cross-section, uτ is the
generalised displacements vector and M stands for the number of terms in the expansion.
According to the Einstein notation, the repeated subscript, τ , indicates summation. In
this paper, Lagrange polynomials are used for Fτ functions. In particular, 4-point (L4)
bilinear, 9-point (L9) cubic and 16-point (L16) fourth-order polynomials are used. The
order of the beam model is directly related to the choice of the Fτ cross-sectional poly-
nomial. Refined models of complex structures can also be implemented by considering
cross-sectional assembly of those elements, such as in Fig. 2, where one L9 elements in
actual geometry are shown. Moreover, the isoparametric formulation is exploited to deal
with arbitrary shapes.

Fig. 2. Coordinates mapping between coordinate systems.

In the case of the L4 element, the interpolation functions are given by

Fτ =
1

4
(1 + rrτ ) (1 + ssτ ) , τ = 1, 2, 3, 4 (8)

6
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where r and s are the normalized coordinates that vary from −1 to 1 and rτ and sτ are
the actual coordinates of the four nodes.

Then, the interpolation functions of 9-point (L9) cubic polynomial element are given
by

Fτ =
1

4

(
r2 + rrτ

) (
s2 + ssτ

)
, τ = 1, 3, 5, 7

Fτ =
1

2
s2τ

(
s2 + ssτ

) (
1− r2

)
+

1

2
r2τ

(
r2 + rrτ

) (
1− s2

)
, τ = 2, 4, 6, 8

Fτ =
(
1− r2

) (
1− s2

)
, τ = 9

(9)

where rτ and sτ are the actual coordinates of the nine nodes.
Finally, the interpolation functions of 16-point (L16) fourth-order polynomial element

are given by
Fτmn = Lm(r)Ln(s), m, n = 1, 2, 3, 4 (10)

where
L1(r) =

1
16
(r − 1) (1− 9r2) , L2(r) =

9
16
(3r − 1) (r2 − 1)

L3(r) =
9
16
(3r + 1) (1− r2) , L4(r) =

1
16
(r + 1) (9r2 − 1)

(11)

(a) Two-stringer spar (b) Each of the two stringers and the panel are

modelled with one LE 1D element

(c) The panel is modelled with three 1D LE elements

Fig. 3. Component-wise approach through LE elements.

The cross-section displacement fields can be defined according to different elements
and Eq. (7). For instance, the complete displacement field given by one single L4 element
is

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4

(12)

7
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where ux1 , . . . , uz4 are the unknown variables of the problem and represent the transla-
tional displacement components of each of the four points of the L4 element. The above
displacement variables are the only unknowns, which do not lie on the beam element axis.

As already mentioned, the resulting LE can be used for the whole cross-section or
can be introduced by dividing the cross-section into various sub-domains. The resulting
approach is referred to as Component-Wise (CW) because Lagrange elements are used
to model the displacement variables in each structural component at the cross-sectional
level. Fig. 3 shows a possible CW model of the spar where each component is modelled
via one 1D LE element. Each LE element is then assembled above the cross-section to
obtain the global stiffness matrix based on the 1D formulation. Since panels could not be
reasonably modelled via a 1D formulation, 1D CW models can be refined by using several
L-elements for one component. This methodology allows us to tune the capabilities of the
model by (1) choosing which component requires a more detailed model; (2) setting the
order of the structural model to be used.

3. Governing equations of the LE model and analytical solution

The principle of virtual displacements is used to derive the equations of motion

δLint =

∫
V

δϵTσdV = −δLine (13)

where Lint stands for the strain energy and Line is the work done by the inertial loadings.
δ stands for the usual virtual variation operator. The virtual variation of the strain energy
is rewritten using Eqs. (3), (6) and (7). After integrations by part, Eq. (13) becomes

δLint =

∫
L

δuT
τ K

τsus dy +
[
δuT

τ Π
τsus

]y=L

y=0
(14)

where Kτs is the linear differential stiffness matrix and Πτs is the matrix of natural
boundary conditions. For the sake of brevity, these matrices are not given here but
they can be found in [66–68]. The fundamental nuclei have the key property that their
mathematical expressions remain unchanged regardless of the order of the beam theory
or the choice of Fτ functions.

The virtual variation of the inertial work is given by

δLine =

∫
L

δuτ

∫
Ω

ρFτFs dΩüs dy =

∫
L

δuτM
τsüs dy (15)

where ρ denotes the material density and double over dots stand for the second derivative
with respect to time (t). Mτs is the 3×3 fundamental, diagonal nucleus of the mass matrix,

8
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whose components can be found in [40]. The explicit form of the governing equations is

δuxτ :− E66
τsuxs,yy +

(
E22

τ,xs,x + E44
τ,zs,z

)
uxs +

(
E23

τ,xs − E66
τs,x

)
uys,y

+
(
E44

τ,zs,x + E12
τ,xs,z

)
uzs = −Eρ

τsüxs

δuyτ :
(
E66

τ,xs − E23
τs,x

)
uxs,y − E33

τsuys,yy +
(
E66

τ,xs,x + E55
τ,zs,z

)
uys

+
(
E55

τ,zs − E13
τs,z

)
uzs,y = −Eρ

τsüys

δuzτ :
(
E44

τ,xs,z + E12
τ,zs,x

)
uxs +

(
E13

τ,zs − E55
τs,z

)
uys,y − E55

τsuzs,yy

+
(
E44

τ,xs,x + E11
τ,zs,z

)
uzs = −Eρ

τsüzs

(16)

The generic term Eαβ
τ,θs,ζ

above is a cross-sectional moment parameter

Eαβ
τ,θs,ζ

=

∫
Ω

C̃αβFτ ,θFs,ζdΩ (17)

The suffix after the comma denotes the derivatives. Moreover,

Eρ
τs =

∫
Ω

ρFτFs dΩ (18)

Letting Pτ = {Pxτ Pyτ Pzτ}T to be the vector of the generalised forces, the natural
boundary conditions are

δuxτ : Pxs = E66
τsuxs,y + E66

τs,xuys

δuyτ : Pys = E23
τs,xuxs + E33

τsuys,y + E13
τs,zuzs

δuzτ : Pzs = E55
τs,zuys + E55

τsuzs,y

(19)

For a fixed approximation order, Eqs. (16) and (19) have to be expanded using the
indices τ and s in order to obtain the governing differential equations and the natural
boundary conditions of the desired model. In the case of harmonic motion, the solution
of Eq. (16) is sought in the form

us(y; t) = Us(y)e
iωt (20)

where Us(y) is the amplitude function of the motion, ω is an arbitrary circular or angular
frequency, and i is the imaginary unit. Eq. (20) allows the formulation of the equilibrium
equations and the natural boundary conditions in the frequency domain. Substituting
Eq. (20) into Eq. (16), a set of three coupled ordinary differential equations is obtained
which can be written in a matrix form as follows

δUτ : LτsŨs = 0 (21)
where

Ũs = {Uxs Uxs,y Uxs,yy Uys Uys,y Uys,yy Uzs Uzs,y Uzs,yy}T (22)
Lτs is the 3 × 9 fundamental nucleus of the matrix containing the coefficients of the

ordinary differential equations. For the sake of brevity, the explicit expressions concerning
9
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Fig. 4. Expansion of the matrix Lτs for two L4 elements assembls within a beam node.
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these fundamental nuclei are not reported here, but are available from the corresponding
literature [67, 68].

The equations of motion can be obtained in the form of Eq. (23) as given below by
expanding Lτs as shown in Figs. 4. It reads as

LŨ = 0 (23)
In a similar way, the boundary conditions of Eq. (19) can be written in a matrix form

as

δUτ : Ps = BτsÛs (24)
where

Ûs = {Uxs Uxs,y Uys Uys,y Uzs Uzs,y}T (25)
and Bτs is the 3 × 6 fundamental nucleus which contains the coefficients of the natural
boundary conditions which are available from the corresponding literature [67, 68]. For
a given expansion order, the natural boundary conditions can be obtained in the form of
Eq. (26) by expanding Bτs in the same way as Lτs to finally give

P = BÛ (26)
Eq. (23) is a system of ordinary differential equations (ODEs) of second order in y with
constant coefficients. A change of variables is used to reduce the second order system of
ODEs to a first order system.

Z = {Z1 Z2 . . . Zn}T = Û

=
{
Ux1 Ux1,y Uy1 Uy1,y Uz1 Uz1,y . . . UxM UxM,y UyM

UyM,y UzM UzM,y

}T
(27)

where Û is the expansion of Ûs for a given theory order, M is the number of expansion
terms for the given DSM-LE theory, and n = 6 × M is the dimension of the unknown
vector as well as the number of differential equations. In [67], an automatic algorithm to
transform the L matrix of Eq. (23) into the matrix S of the following linear differential
system was described

Z,y (y) = SZ(y) (28)
Once the differential problem is described in terms of Eq. (28), the solution can be

written as follows 
Z1

Z2
...
Zn

 =


δ11 δ21 . . . δn1
δ12 δ22 . . . δn2
... ... . . . ...
δ1n δ2n . . . δnn




C1e
λ1y

C2e
λ2y

...
Cne

λny

 (29)

11
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where λi is the i-th eigenvalue of the S matrix, δij is the j-th element of the i-th eigenvector
of the S matrix and Ci are the integration constants which need to be determined by using
the boundary conditions. The above equation can be written in matrix form as follows

Z = δCeλy (30)
Vector Z does not only contain the displacements but also their first derivatives. If

only the displacements are needed, according to Eq. (27), only the lines 1, 3, 5, · · · , n−1
should be taken into account, giving a solution in the following form

Ux1(y) = C1δ11e
λ1y + C2δ21e

λ2y + . . .+ Cnδn1e
λny

Uy1(y) = C1δ13e
λ1y + C2δ23e

λ2y + . . .+ Cnδn3e
λny

Uz1(y) = C1δ15e
λ1y + C2δ25e

λ2y + . . .+ Cnδn5e
λny

...
UzM(y) = C1δ1(n−1)e

λ1y + C2δ2(n−1)e
λ2y + . . .+ Cnδn(n−1)e

λny

(31)

Once the displacements are known, the boundary conditions are obtained by substi-
tuting the solution of Eq. (30) into the boundary conditions (Eq. (26)). In fact, it should
be noted that Û is equal to Z (Eq. (27)). It reads

P = BδCeλy = ΛCeλy (32)
where Λ = Bδ. The boundary conditions can be written in explicit form as follows

Px1(y) = C1Λ11e
λ1y + C2Λ12e

λ2y + . . .+ CnΛ1ne
λny

Py1(y) = C1Λ21e
λ1y + C2Λ22e

λ2y + . . .+ CnΛ2ne
λny

Pz1(y) = C1Λ31e
λ1y + C2Λ32e

λ2y + . . .+ CnΛ3ne
λny

...
PzM(y) = C1Λn1e

λ1y + C2Λn2e
λ2y + . . .+ CnΛnne

λny

(33)

4. The dynamic stiffness formulation

4.1. Dynamic stiffness matrix
Once the closed form analytical solution of the differential equations of motion of

the structural element in free vibration has been sought, a number of general boundary
conditions which are usually the nodal displacements and forces - equal to twice the
number of integration constants in algebraic form needs to be applied (see Fig. 5).

Starting from the displacements, the boundary conditions can be written as
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Fig. 5. Boundary conditions of the beam element and sign conventions.

y = 0 :

Ux1(0) = Ū1x1

Uy1(0) = Ū1y1

Uz1(0) = Ū1z1
...
UzM(0) = Ū1zM

y = L :

Ux1(L) = Ū2x1

Uy1(L) = Ū2y1

Uz1(L) = Ū2z1
...
UzM(L) = Ū2zM

(34)

By evaluating Eq. (31) at y = 0 and y = L and applying the boundary conditions of
Eq. (34), the following matrix relation for the nodal displacements is obtained

Ū1x1
Ū1y1
Ū1z1

...
Ū1zM
Ū2x1
Ū2y1
Ū2z1

...
Ū2zM



=



δ11 δ21 . . . δn1
δ13 δ23 . . . δn3
δ15 δ25 . . . δn5
... ... . . . ...

δ1(n−1) δ2(n−1) . . . δn(n−1)

δ11e
λ1L δ21e

λ2L . . . δn1e
λnL

δ13e
λ1L δ23e

λ2L . . . δn3e
λnL

δ15e
λ1L δ25e

λ2L . . . δn5e
λnL

... ... . . . ...
δ1(n−1)e

λ1L δ2(n−1)e
λ2L . . . δn(n−1)e

λnL





C1

C2

C3
...

Cn
2

Cn
2
+1

Cn
2
+2

Cn
2
+3

...
Cn



(35)

The above equation can be written in a more compact form as
U = AC (36)

Similarly, boundary conditions for generalised nodal forces are as follows
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y = 0

Px1(0) = −P̄1x1

Py1(0) = −P̄1y1

Pz1(0) = −P̄1z1
...
PzM(0) = −P̄1zM

y = L :

Px1(L) = P̄2x1

Py1(L) = P̄2y1

Pz1(L) = P̄2z1
...
PzM(L) = P̄2zM

(37)

By evaluating Eq. (33) at y = 0 and y = L and applying the BCs of Eq. (37), the
following matrix relation for the nodal forces is obtained

P̄1x1
P̄1y1
P̄1z1

...
P̄1zM
P̄2x1
P̄2y1
P̄2z1

...
P̄2zM



=



−Λ11 −Λ12 . . . −Λ1n

−Λ21 −Λ22 . . . −Λ2n

−Λ31 −Λ32 . . . −Λ3n
... ... . . . ...

−Λn1 −Λn2 . . . −Λnn

Λ11e
λ1L Λ12e

λ2L . . . Λ1ne
λnL

Λ21e
λ1L Λ22e

λ2L . . . Λ2ne
λnL

Λ31e
λ1L Λ32e

λ2L . . . Λ3ne
λnL

... ... . . . ...
Λn1e

λ1L Λn2e
λ2L . . . Λnne

λnL





C1

C2

C3
...

Cn
2

Cn
2
+1

Cn
2
+2

Cn
2
+3

...
Cn



(38)

The above equation can be written in a more compact form as
P = RC (39)

The integration constants vector C from Eqs. (36) and (39) can now be eliminated
by relating the harmonically varying amplitudes of the generalised nodal forces to the
corresponding generalised displacements to give the DS matrix of one beam element as
follows

P = KU (40)
where

K = RA−1 (41)
K is the required DS matrix. The DS matrix given by Eq. (41) is the basic building block
to compute the exact natural frequencies of a higher-order beam. The global DS matrix
can be obtained by assembling elemental matrices as in the classical way of FEM [61]. In
particular, it is possible to assemble elemental DS matrices to form the overall DS matrix
of any complex structures consisting of beam elements (see Fig. 6).

The global DS matrix can be written as

P
G
= KGU

G (42)
where KG is the square global DS matrix of the final structure. For the sake of simplicity,
the subscript “G” is omitted hereafter. The boundary conditions can be applied by simply
removing rows and columns of the stiffness matrix corresponding to the degrees of freedom
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Fig. 6. Assembly of dynamic stiffness matrices of a beam with different cross-sections.

which are zeroes. Due to the presence of degrees of freedom at each interface, a multitude
of boundary conditions can be applied at the required nodes.

4.2. The extended Wittrick–Williams algorithm and mode shapes computation
Once the dynamic stiffness matrix is developed, the Wittrick–Williams algorithm can

be applied to compute the natural frequencies ω of structures. The following equation is
the key equation of the Wittrick–Williams algorithm, which is used to calculate the mode
count J when ω is lower than the trial frequency ω∗

J = J0 + s (K(ω∗)) (43)
where K(ω∗) is the elemental dynamic stiffness matrix, s(K(ω∗) is the number of negative
diagonal elements after upper triangular transformation by using Gauss elimination of
K(ω∗), and J0 is the number of natural frequencies between ω = 0 and ω = ω∗ when
the nodal boundaries of the beam element are fully clamped. There is no doubt that J0
plays an important role in the Wittrick–Williams algorithm. However, calculating J0 is
generally a difficult problem, and the traditional way is to refine the mesh to make sure
J0 = 0. Obviously, it will introduce unnecessary computational cost significantly.

In this study, the J0 problem of the beam element is resolved by applying an indi-
rect method, it improves the computational efficiency of the dynamic stiffness method.
According to the Wittrick–Williams algorithm, the mode count Js of the beam element
with all simply supported (SS) when the half-wave number in the y direction is m can be
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given by Eq. (43), which can be recast as

J0 =
m∑
1

J0m (44)

J0m = Jsm − s (Ks(ω∗)) (45)
where J0m is J0 when the half-wave number in the y direction is m and Ks(ω∗) is the
dynamic stiffness matrix K(ω∗) for a beam element with all simply supported when m
is a certain value. The detailed solution process for Jsm is given as follows: The first
step is to solve the natural frequencies ωS of the beam element under certain m for SS
boundary conditions. Consider the BC of the beam element is SS, the displacement fields
are assumed as a sum of harmonic functions

uxτ (y; t) = Uxτe
iωt sin(αy)

uyτ (y; t) = Uyτe
iωt cos(αy)

uzτ (y; t) = Uzτe
iωt sin(αy)

(46)

where α is
α =

mπ

L
(47)

By substituting Eq. (46) into the Eq. (16), it holds

δUxτ :
(
α2E66

τs + E22
τ,zs,x + E44

τ,zs,z − ω2Eρ
τs

)
Uxs

− α
(
E23

τ,xs − E66
τs,x

)
Uys +

(
E44

τ,zs,x + E12
τ,xs,z

)
Uzs = 0

δUyτ : α
(
E66

τ,xs − E23
τs,x

)
Uxs +

(
α2E33

τs + E66
τ,zs,x + E55

τ,zs,z

−ω2Eρ
τs

)
Uys + α

(
E55

τ,zs − E13
τs,z

)
Uzs = 0

δUzτ :
(
E44

τ,xs,z + E12
τ,zs,x

)
Uxs − α

(
E13

τ,zs − E55
τs,z

)
Uys +

(
α2E55

τs

+E44
τ,xs,x + E11

τ,zs,z − ω2Eρ
τs

)
Uzs = 0

(48)

The above equations can be converted into the algebraic eigensystem as

(K
S − ω2M

S
)U = 0 (49)

where KS and M
S are the fundamental nuclei of the algebraic stiffness and mass matrices,

respectively. The components of the linear stiffness matrix K
S are

K
S
=


(
α2E66

τs + E22
τ,xs,x + E44

τ,zs,z

)
−α

(
E23

τ,xs − E66
τs,x

) (
E44

τ,zs,x + E12
τ,xs,z

)
α
(
E66

τ,xs − E23
τs,x

)
α2E33

τs + E66
τ,xs,x + E55

τ,zs,z α
(
E55

τ,zs − E13
τs,z

)(
E44

τ,xs,z + E12
τ,zs,x

)
−α

(
E13

τ,zs − E55
τs,z

)
α2E55

τs + E44
τ,xs,x + E11

τ,zs,z


(50)
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The components of the linear mass matrix M
S are

M
S
=

 Eρ
τs 0 0
0 Eρ

τs 0
0 0 Eρ

τs

 (51)

Once the natural frequencies ωS of the beam element under certain m for SS bound-
ary conditions are computed, Jsm is equal to the number of these frequencies ωS that
are lower than the trial frequency ω∗. Finally, through Eqs. (43), (44) and (45), the
natural frequency of the beam under different boundary conditions can be calculated ac-
curately and efficiently. After computing the natural frequency and evaluating the global
dynamic stiffness (DS) matrix, the corresponding nodal generalized displacements can be
determined by solving the associated homogeneous system of Eq. (42). By utilizing the
nodal generalized displacements U, the integration constants C of the element can be
calculated using Eq. (36). Subsequently, employing Eq. (31), the unknown generalized
displacements can be obtained as a function of y. Finally, by employing Eqs. (1) and
(20), the complete displacement field can be generated as a function of x, y, z, and time
t (if an animated plot is required). The plot of the desired mode and element can be
visualized on a fictitious 3D mesh.

5. Numerical results

The accuracy and computational efficiency of the present approach are demonstrate
by carrying out the free vibration analysis of both solid and thin-walled structures in
this section. In Section 5.1, free vibration of beams with rectangular cross-section are
addressed so as to make an easy and straightforward comparisons with classical beam
theories, CUF(TE)-DSM, CUF(LE)-Navier theory and reference FE results. In Section
5.2, a thin-walled C-shaped cross-section beam is considered. Free vibration analysis is
carried out for different BCs and the present CUF(LE)-DSM models are also compared
with reference solutions from the literature together with the results obtained from the
FE commercial software ABAQUS.

5.1. Solid beam structures
A beam with a solid rectangular cross-section are considered for preliminary assess-

ments. The LE cross-sectional discretizations with Lagrange elements are depicted in
Fig. 7 for the problem under consideration. Unless differently specified, “1” in “1 × 2L4”
stands for the number of L4 elements along the ox direction, and “2” is the number of
L4 elements along the oz direction. The beam has a square cross-section (a = b), with
b = 0.2 m. A slenderness rotios L/b equal to 10. The isotropic material datas are: Young
modulus, E = 75GPa, Poisson ratio, ν = 0.33, material density, ρ = 2700 kg/m3.

Table 1 shows the first seven non-dimensional flexural frequencies ω∗ = (ωL2/b)
√

ρ/E
for the simply supported (SS) square beam with L/b = 10. The results from the present
LE models are compared to those from classical theories (EBBM, TBM), CUF(TE)-DSM,
CUF(LE)-Navier theory and reference FE results from Ref. [52, 67]. Various LE models
are considered in the table as shown in Fig. 7. The comparison of the results in Table
1 shows the correctness of the present strong form LE beam. Even the most simple one,
1L4, demonstrates its convergence with respect to EBBM. The results obtained by the
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Fig. 7. LE modelling of the square cross-section beam. (a) 1L4. (b) 1 × 2L4. (c) 2 × 1L4. (d) 2 × 2L4.
(e) 1L9. (f) 1L16.

Table 1. First seven non-dimensional flexural frequencies ω∗ = (ωL2/b)
√

ρ/E for the simply supported
(SS) square beam, L/b = 10

Model 1 2 3 4 5 6 7

TBM-DSM [67] 2.807 10.779 22.849 37.858 54.856 73.192 92.334
EBBM-DSM [67] 2.838 11.213 24.742 42.847 64.869 90.330 117.859

FEM [67]
NAS1D50 2.813 10.841 23.055 38.225 55.256 73.331 91.907
NAS1D100 2.813 10.841 23.060 38.246 55.323 73.491 92.225
NAS1D200 2.813 10.842 23.062 38.254 55.340 73.532 92.296

CUF (TE)-DSM [67]
N=3 2.803 10.723 22.621 37.299 53.812 71.509 89.963
N=4 2.803 10.722 22.617 37.282 53.765 71.402 89.759

CUF (LE)-Navier [52]
1L4 3.063 11.704 24.653 40.573 58.415 77.456 97.226

1 × 2L4 2.914 11.168 23.617 39.030 56.416 75.074 94.536
2 × 1L4 2.998 11.474 24.213 39.923 57.575 76.452 96.083
2 × 2L4 2.839 10.890 23.055 38.143 55.187 73.500 92.621

1L9 2.808 10.784 22.869 37.902 54.929 73.268 92.453
1L16 2.803 10.722 22.618 37.291 53.794 71.472 89.898

Current theory
1L4 3.063 11.704 24.653 40.573 58.415 77.456 97.226

1 × 2L4 2.914 11.168 23.617 39.030 56.416 75.074 94.536
2 × 1L4 2.998 11.474 24.213 39.923 57.575 76.452 96.083
2 × 2L4 2.839 10.890 23.055 38.143 55.187 73.500 92.621

1L9 2.808 10.784 22.869 37.902 54.929 73.268 92.453
1L16 2.803 10.722 22.618 37.291 53.794 71.472 89.898
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present method are in good agreement with the Navier solution which also uses LE model.
Attention should be paid to 1 × 2L4 and 2 × 1L4, which are different models, and thus
presenting different behavior in the flexure directions along ox and oz. Though the 2 ×
2L4 model of Fig. 7(d) has the same number of DOFs as 1L9, the latter presents slightly
more precise results, at least in the range of the lower frequencies. The results of the 16L9
model show the higher-interpolation, fourth-order capabilities, owning the best accuracy,
which is particularly evident in the higher frequencies range.

Fig. 8. First (a), second (b) , third (c) and forth (d) flexural modes for a SS square beam (L = b× 10),
L9.

Fig. 8 shows the first four flexural modes of the beam with SS boundary conditions
obtained from the CUF-DSM analysis when using a 1L9 LE model. It should be empha-
sised that DSM results are mesh independent and the mesh used in Fig. 8 is merely a
plotting grid for convenience. Those figures clearly demonstrate the 3D capabilities of the
present CUF-DSM beam formulation.

One of the most important features of the DSM is that it provides exact solutions for
any kind of boundary conditions. Moreover, LE theories are able to take into account
several non-classical effects such as warping, in-plane deformations, shear effects and
flexural-torsion couplings. Table 2 shows the first two flexural modes and the first two
torsional modes for a clamped–free (CF) square beam for L/b = 10. The exact solutions
for classical, linear and higher-order beam theories are also shown and they were computed
using the DSM [67]. The CUF(TE)-DSM and reference FE results were computed from
Ref. [67]. It can be seen that the present simple one (1L4) LE model is able to characterise
the flexural behaviour of solid cross-section beams. A higher-interpolation (1L16) LE
model is necessary to correctly detect torsional frequencies.

Fig. 9 shows some representative modal shapes for the 1L9 LE model of the CF
beam. Those figures also demonstrate the 3D capabilities of the present CUF-DSM beam
formulation for both flexural and torsional modes with any kind of boundary conditions.
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Table 2. Non-dimensional natural frequencies ω∗ = (ωL2/b)
√

ρ/E for the CF square beam, L/b =
10

Model I Flexural II Flexural I Torsional II Torsional

TBM-DSM [67] 1.008 6.069 - a - a

EBBM-DSM [67] 1.013 6.276 - a - a

FEM [67]
NAS3D12 1.021 6.117 8.822 26.318
NAS3D24 1.016 6.088 8.852 26.516

CUF (TE)-DSM [67]
N=3 1.014 6.075 9.631 28.893
N=4 1.013 6.070 8.871 26.619
N=5 1.013 6.069 8.868 26.603

Current theory
1L4 1.107 6.626 9.631 28.894

1 × 2L4 1.052 6.319 9.631 28.894
2 × 1L4 1.052 6.319 9.631 28.894
2 × 2L4 1.039 6.246 9.631 28.894

1L9 1.015 6.106 9.631 28.893
1L16 1.013 6.073 8.870 26.612

a Not provided by the model.

Fig. 9. First flexural (a), second flexural (b), first torsional (c) and second torsional (d) modes for a CF
square beam (L = b× 10), L9.
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5.2. Thin-walled beam structures
Free vibration analyses of a thin-walled C-shaped beam were carried out next for the

assessment of the present beam model. The geometry of the cross-section is shown in
Fig. 10(a). The sides of the cross-section are a =0.2 m and b = a. The thicknesses are
t = a/10, and the length-to-side ratio L/a = 10. The material data are: Young modulus,
E =198 GPa; Poisson ratio, ν =0.3; Material density ρ =7850 kg/m3. Various order LE
models are considered in the following analysis and some cross-sectional discretizations
are shown in Figs. 10(b)–(f) for illustrative purposes.

Fig. 10. C-shaped cross-section and LE discretizations. (a) C-shaped cross-section. (b) 5L4. (c) 14L4.
(d) 5L9. (e) 8L9. (f) 14L9.

Table 3 shows the first eight natural frequencies (Hz) of the SS C-shaped cross-section
beam. The results from the present LE models are compared to those from CUF(LE)-
Navier theory and reference FE results from Ref. [52]. Various LE models are considered
in the table as shown in Fig. 10. L4 models from 5 to 14 elements, and L9 models
from 5 to 14 elements prove the accuracy of the proposed solution by comparing with the
CUF(LE)-Navier solution. The results show that L9 models are affected by errors that are
lower then 3% with respect to the 3D FEM solutions. On the other hand, considerable
errors are produced by lower-order beam models in the higher frequencies range. The
reason lower order L4 models do not give good results is that models from 5L4 to 14L4 do
not have enough DOFs to characterize the shell-like modes. This aspect is clarified from
Fig. 11, which shows the modes of vibrations by the 5L9 model.

Fig. 11 shows the first nine modes of the beam with SS boundary conditions obtained
from the CUF-DSM analysis when using a 5L9 LE model. The first three modes (see
Figs. 11(a)–(c)) are flexural mode, while all the later modes (Figs. 11(d)–(i)) show the
coupled modes. The ability of 1D DSM-LE models in dealing with 2D shell-like analyses
is documented in the present works. It is worth noting that arbitrarily complex modes
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Table 3. First eight natural frequencies (Hz) related of the SS C-shaped cross-section beam

Model
Natural frequencies

1 2 3 4 5 6 7 8

FEM [52]
3D FEM coarse 69.019 122.172 213.841 266.065 295.383 333.546 376.303 397.905
3D FEM finer 68.894 122.152 213.405 266.418 293.450 331.633 374.324 395.995

CUF (LE)-Navier [52]
5 × L4 71.399 125.190 230.710 269.411 966.524 978.398 461.403 1011.057
14 × L4 69.700 122.510 220.824 267.473 457.367 490.185 417.933 530.673
5 × L9 69.360 122.256 218.971 267.083 314.103 350.559 409.009 414.623
8 × L9 69.158 122.173 215.103 266.894 300.941 339.205 383.042 404.349
14 × L9 68.995 122.149 214.018 266.780 297.059 335.286 377.374 400.022

Current theory
5 × L4 71.399 125.190 230.710 269.411 966.524 978.398 461.403 1011.057
14 × L4 69.700 122.510 220.824 267.473 457.367 490.185 417.933 530.673
5 × L9 69.360 122.256 218.971 267.083 314.103 350.559 409.009 414.623
8 × L9 69.158 122.173 215.103 266.894 300.941 339.205 383.042 404.349
14 × L9 68.995 122.149 214.018 266.780 297.058 335.286 377.374 400.022

Fig. 11. Uncoupled (a-c) and coupled (d-f) modal shapes for a SS C-shaped cross-section beam (L =
a× 10), 5L9.
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can be obtained by using only one element in the length direction by using the DSM,
because the DSM provides the exact solution of the differential equations of the motion
once the structural model has been formulated. In addition, each variable has a precise
physical meaning by using Lagrange-type polynomials.

Table 4. First eight natural frequencies (Hz) related of the CF C-shaped cross-section beam for L/a = 10

Model DOFs
Natural frequencies

1 2 3 4 5 6 7

FEM
3D FEM coarse 62854 32.233 44.223 105.569 139.126 257.324 286.801 299.924
3D FEM finer 125706 32.089 44.208 105.429 138.793 257.131 283.633 297.873

Current theory
5 × L4 60 33.253 45.264 107.148 145.662 266.540 339.104 501.316
14 × L4 150 32.600 44.324 106.060 141.450 259.421 318.894 450.373
5 × L9 165 32.443 44.246 105.816 140.640 258.211 304.028 314.907
8 × L9 255 32.278 44.220 105.599 139.543 257.497 290.528 302.835
14 × L9 435 32.182 44.211 105.503 139.117 257.253 286.672 299.916

In order to prove that DSM-LE can also provide accurate solutions for thin-walled
beam structures with different boundary conditions, Table 4 shows first eight natural
frequencies (Hz) related of the CF C-shaped cross-section beam for L/a = 10. Various
LE models are considered in the table as shown in Fig. 10. FEM results from various
ABAQUS models are also shown in Table 4. The ABQ C3D20 model with 125706 DOFs
(finer) and 62854 DOFs (coarse) is adopted. From rows 3 to 7, the 14L9 model always
shows the best accuracy among five different LE models because it has enough DOFs. In
the first five natural frequencies, the percentage differences between the L4 models and
the ABQ C3D20 model are small. Starting from the 6th frequency, the L4 model cannot
produce reasonable results anymore. Especially for the 8th frequency, the percentage
difference of the 5L4 and 14L4 model from the ABQ C3D20 model are 84.81% and 48.41%,
respectively. The reason the L4 model cannot give good results is that L4 models do not
have enough DOFs to characterize the shell-like modes. This aspect is also clarified from
Fig. 12, which shows the modes of vibrations by the 5L9 model.

Fig. 12 shows the first eight modes of the beam with CF boundary conditions obtained
from the CUF-DSM analysis when using a 5L9 LE model. The first five modes (see Figs.
12(a)–(e)) are uncoupled mode, while all the later modes (Figs. 12(f)–(h)) show the
coupled modes. The ability of 1D DSM-LE models in dealing with 2D shell-like analyses
for thin-walled beam structures with different boundary conditions is documented in the
present works.

In order to further reflect the computational efficiency of this method, Table 5 shows
first seven natural frequencies (Hz) related of the CF C-shaped cross-section beam for
L/a = 5. Various LE models are considered in the table as shown in Fig. 10. FEM
results from ABQ C3D20 models with 62854 DOFs (finer) and 31292 DOFs (coarse) are
also shown in Table 5. The results illustrate that the DSM-LE can achieve comparable
accuracy to a FEM model while requiring a significantly shorter calculation time, typically
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Fig. 12. Uncoupled (a-e) and coupled (f-h) modal shapes for a CF C-shaped cross-section beam
(L = a× 10), 5L9.

around 1 to 2 times faster. This is even more remarkable considering that the FEM
model uses an optimised commercial solver while the DSM-LE runs as a research code
in Matlab. This is due to the J0 count solution technique presented in this paper, which
greatly improves the computational efficiency, and the merit of the DSM is brought into
full play.

Table 5. First seven natural frequencies (Hz) related of the CF C-shaped cross-section beam for L/a = 5

Model DOFs
Natural frequencies

Time(s)1 2 3 4 5 6 7

FEM
3D FEM coarse 31292 93.452 170.981 298.535 348.665 381.341 414.005 617.638 36.00
3D FEM finer 62584 93.194 170.592 295.751 347.635 379.253 410.764 612.586 59.00

Current theory
5 × L4 60 97.643 175.803 356.999 452.262 898.287 930.900 967.509 0.95
14 × L4 150 94.928 171.495 351.733 416.394 457.858 542.390 722.540 5.11
5 × L9 165 94.353 171.060 315.900 350.837 409.526 429.649 634.275 5.93
8 × L9 255 93.640 170.738 302.783 348.861 386.618 419.013 624.405 13.89
14 × L9 435 93.361 170.633 298.875 348.138 381.639 414.531 618.391 29.38

5.3. Stiffened panel structures
Free vibration analyses of a stiffened panel were carried out next for the assessment of

the present approach. A stiffened panel consisting of the stringer component and panel
component is a common research object which is shown as Fig. 13. In the CW approach,
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each component is modeled individually and simultaneously by using CUF beam elements
and the geometry of the cross-section is shown in Fig. 14(a). The sides of the cross-section
are a1 =0.096m, a2 =0.032m, b1 =0.1m and b2 =0.2m. The length of total panel is 1.5m.
The relevant material properties are shown in Table 6. Various order LE models are
considered in the following analysis and some cross-sectional discretizations are shown in
Figs. 14(b)–(f) for illustrative purposes.

Fig. 13. Component-wise approach for a stiffened panel structure.

Table 6. Material properties of stiffened panel structure.
Material Elastic modulus (GPa) Poisson ratio Mass density (kg/m3)

Stringer 210 0.2 7850
Panel 69 0.3 2500

Table 7 shows the first six natural frequencies (Hz) of the stiffened panel for differ-
ent boundary conditions (BCs), namely, simply supported (SS) and clamped–free (CF)
BCs. The solutions for various LE models considering in Fig. 14 are obtained using the
CUF(LE)-DSM. The results are compared to FEM solutions from ABAQUS models which
are referred to as ABQ C3D20 model with 91423 DOFs (coarse) and 182845 DOFs (finer).
In the analysis, the 10L9 model always shows the best accuracy among five different LE
models because it has enough DOFs. In the first one, three, four and six natural frequen-
cies (flexural modes), the percentage differences between the L4 models and the ABQ
C3D20 model are small. In the first two and five natural frequencies (shell-like modes),
the L4 model and 7L9 model cannot produce reasonable results anymore. The reason the
is that L4 models and 7L9 model do not have enough DOFs to characterize the shell-like
modes under different boundary conditions.

In addition, the first six modal shapes for a SS stiffened panel structure attained
from 8L9 models are depicted in Fig. 15. The first one, three, four and six modes are
flexural modes, respectively. The two and five modes are shell-like modes. It has been
demonstrated from Table 7 and Fig. 15 that 1D higher-order models based on LE model
are necessary to detect shell-like modes of combined structures such as reinforced panel.
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Fig. 14. Stiffened panel cross-section and LE discretizations. (a) Stiffened panel cross-section. (b) 8L4.
(c) 7L9. (d) 14L4. (e) 8L9. (f) 10L9.

Table 7. First six natural frequencies (Hz) of the stiffened panel for different boundary conditions.

BCs Model DOFs
Natural frequencies

1 2 3 4 5 6

SS

3D FEM coarse 91423 95.218 252.87 364.44 373.96 526.55 816.93
3D FEM finer 182845 95.215 251.11 364.28 373.94 522.48 816.82

8 × L4 162 96.221 295.78 367.01 378.59 628.06 829.47
14 × L4 234 95.826 294.38 365.85 377.06 624.05 826.17
7 × L9 405 95.166 293.92 365.57 374.96 622.92 817.84
8 × L9 459 95.224 262.72 364.73 374.05 537.36 817.50
10 × L9 567 95.218 258.46 364.65 373.97 530.21 817.01

CF

3D FEM coarse 91423 34.093 143.35 153.59 209.97 383.46 572.08
3D FEM finer 182845 34.074 142.77 153.52 209.91 379.70 571.85

8 × L4 162 34.427 154.41 160.01 212.31 472.05 580.06
14 × L4 234 34.297 154.06 159.41 211.52 468.74 577.90
7 × L9 405 34.080 154.05 159.27 209.88 468.21 572.36
8 × L9 459 34.078 148.95 153.68 209.91 395.17 572.25
10 × L9 567 34.075 147.87 153.61 209.94 388.85 572.06
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Fig. 15. Flexural (a,c,d,f) and shell-like (b,e) modal shapes for a SS stiffened panel structure (L =
a1 × 15), 8L9.

5.4. Reinforced panels with four stifeners

Fig. 16. Reinforced panels with four stifeners.

This section extends the use of the present approach to a reinforced panel structures.
For purpose of description, in this work the same notation as used in [66] has been adopted.
Therefore, the symbolism C-F-F-F identifies a plate with the edges y = 0, x = a, y = b,
and x = 0 having clamped, free, free, free boundary conditions, respectively (see Fig.
1). Similarly S-F-S-F denotes a plate with two opposite simply-supported edges and two
opposite free edges. The dynamic analysis of a reinforced panel with four stiffeners as
shwon in Fig. 16 is presented and the geometry of the structure is shown in Fig. 17.
The sides of the cross-section are a =0.5m, b =0.5m, h1 = h2 =0.2m and t =0.2m. The
material data are: Young modulus, E =198 GPa; Poisson ratio, ν =0.3; Material density
ρ =7850 kg/m3. Various order LE models are considered in the following analysis and
some cross-sectional discretizations are shown in Figs. 18(a)–(c) for illustrative purposes.

Table 8 shows the first seven natural frequencies (Hz) of the reinforced panel with
four stiffeners for different boundary conditions (BCs), namely, S-F-S-F and C-F-F-F
BCs. The solutions for various LE models considering in Fig. 18 are obtained using the
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Fig. 17. The geometry of the reinforced panels with four stifeners.

Fig. 18. Reinforced panels cross-section and LE discretizations. (a) 7L9 & 10L9. (b) 10L9 & 16L9. (c)
13L9 & 22L9.
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Table 8. The first seven natural frequencies (Hz) of the reinforced panel with four stiffeners for different
boundary conditions (BCs), namely, simply supported (SS) and clamped–free (CF) BCs.

BCs Model DOFs
Natural frequencies

1 2 3 4 5 6 7

SS

3D FEM coarse 10996 177.86 231.98 541.18 578.89 585.71 603.43 754.92
3D FEM finer 38845 176.97 228.83 539.40 573.71 580.14 593.68 751.05

7 × L9 & 10 × L9 555 178.75 233.37 542.03 583.69 587.88 606.15 755.76
10 × L9 & 16 × L9 825 178.02 231.62 540.92 578.16 585.13 602.27 753.23
13 × L9 & 22 × L9 1095 177.35 231.02 540.13 576.79 584.03 600.54 752.49

CF

3D FEM coarse 10996 70.655 135.89 252.97 357.35 443.92 459.93 630.37
3D FEM finer 38845 70.031 132.74 252.01 354.09 434.92 455.05 629.83

7 × L9 & 10 × L9 555 70.705 135.66 253.24 357.93 444.61 463.92 631.89
10 × L9 & 16 × L9 825 70.505 134.41 252.56 356.45 440.85 458.94 631.05
13 × L9 & 22 × L9 1095 70.309 134.03 252.39 355.88 439.78 457.98 630.51

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 19. The first four mode shapes for a SS reinforced panels with four stifeners evaluated with FEM
models.
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CUF(LE)-DSM. The results are compared to FEM solutions from ABAQUS models which
are referred to as ABQ C3D20 model with 10996 DOFs (coarse) and 38845 DOFs (finer).
The comparison between the the results by FEM and those from the present models
demonstrate the efficiency of the CUF(LE)-DSM models, in fact, a higher accuracy is
reached with a reduction in the computational costs. In the analysis, the 13 × L9 & 22
× L9 model always shows the best accuracy among five different LE models because it
has enough DOFs.

Fig.19 shows the first four mode shapes for a S-F-S-F reinforced panels with four
stifeners evaluated with FEM models. 3D FEM model is used as a reference solution
which is made using only 3D elements for all the components of the plate and stringers.
The results from the present approach are comparable with those from the 3D FEM model
in terms of accuracy, but can be achieved using 13% of the degrees of freedom.

6. Conclusions

This paper has developed new CUF-DS models for the efficient analysis of the free
vibrations of solid beams, thin-walled structures and reinforced panels with arbitrary
boundary conditions. By exploiting the Carrera unified formulation (CUF) and Lagrange
polynomials to discretize the beam cross-sectional kinematics, refined models with only
displacement variables have been developed. The resulting DS matrix is applied using
the extended Wittrick–Williams algorithm to compute the natural frequencies and mode
shapes of some solid and thin-walled structures. Using those approaches, higher order
models that are able to deal with shear deformation and higher-order effects, such as
warping, can be captured straightforwardly with the help of CUF. The following consid-
erations arise from the comparison of the present approach with results available in the
literature and 3D FEM solutions from commercial software:

• A higher-order exact DS formulations have been developed by first using Lagrange
polynomials to define the displacement field above the cross-section of the beam.
The Lagrange-based formulation offers enhanced capabilities compared to Talyor-
based CUF modelling. The accuracy improves with a higher order of Lagrange
polynomials.

• The mode appearance can be interchanged in lower-order LE models (L4), even if
a large number of elements on the cross-section are used. By using higher Lagrange
polynomials (L9 or L16) with fewer elements, interchange can also be shown.

• The resulting LE-DSM based on Component-Wise (CW) can be used for the whole
cross-section or can be introduced by dividing the cross-section into various sub-
domains, because Lagrange elements can be used to model the displacement vari-
ables in each structural component at the cross-sectional level. This characteristic
allows us to separately model.

• Analytical expressions of the J0 count have been developed for the Wittrick–Williams
(WW) algorithm. With the J0 problem resolved, there is no need to split a large
dynamic stiffness element into smaller ones unnecessarily as the majority of existing
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works did. Therefore, very few DOFs are required for beam structures, which has
made the DSM to be highly efficient.

The results agree with those obtained using ABAQUS FEM models and with those
from the literature. The present analytical CUF(LE)-DSM formulation clearly demon-
strates its efficiency over 3D FEM solutions and the capabilities of capturing higher-order
refined effects. The investigation provides optimism for future studies on the dynamic
analysis of composite structures.
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