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Abstract— Research in the development of neuroprostheses 
aims to restore the loss bodily and motor functionalities. In order 
to have effective solutions, the physiological signals used to 
control neuroprostheses must be first measured and then 
properly reconstructed. Miniaturized electronic enables the 
realization of implantable devices suitable for the treatment of 
pathologies that cannot be cured with conventional medicine. 
However, given the limited data processing and transmission 
capabilities of microcontroller-based implantable devices, data 
compression algorithms must be developed with minimal 
distortion upon reconstructions. Although several compression 
techniques are available in the literature, a suitable strategy for 
compression of electroneurographic (ENG) signals has not yet 
been defined so far. The main goal of this work is to propose a 
pipeline to perform the compression of biomedical data. The 
approach is validated on available recordings of ENG signals. As 
main contribution, we applied different compression algorithms 
to the recorded ENG signals that were obtained in response to 
mechanical stimulation of a rat paw. A combination of lossy and 
lossless techniques was studied by measuring the performance in 
terms of time required for data compression, compression ratio, 
and distortion. To evaluate the use in real-time applications, the 
robustness of the techniques has been tested considering a 
temporal constraint of 300 ms. 

Keywords—ENG signals, sciatic nerve, data compression, real 
time application, wireless data transmission. 

I. INTRODUCTION 
Thousands of new cases of peripheral nerve injury occur 

every year in Europe, Japan, and United States. A nerve injury 
can cause varying degrees of deficit, ranging from a muscle 
weakness to a complete loss of sensory and motor function in 
areas innervated by the affected nerve. Therefore, the resulting 
medical condition can dramatically impair individuals’ quality 
of life [1]. Traditional medicine approaches are presently unable 
to solve this clinical issue. However, thanks to the progress of 
miniaturized technologies, a new type of medical market that 
involves the use of implanted devices is emerging. Since these 
devices typically include microcontrollers, which have limited 
capabilities in terms of signal processing, storage, and 
transmission rate, suitable data compression algorithms must 
be developed in order to reduce the computational demand and 
to minimize the distortion introduced on the measured signal. 

Data transfer from implanted devices is often realized with a 
Bluetooth 5 Low Energy (BLE5) interface, which can achieve 
a maximum transmission rate of 2 Mbps. To enable real-time 
applications on patients, the compression techniques in 
implanted devices must be able to handle the largest amount 
of data within the constraint defined by the maximum 
transmission rate [2]. Clearly, if from one side data 
compression allows to satisfy transmission within the limits of 
the used wireless technology, from the other it might introduce 
severe signal distortion.  

Contributions and Applicability 
The main objective of this work is the study of compression 

techniques that can be applied to electroneurographic (ENG) 
signals for reducing the data rate. As is well known, there are 
several options to achieve its decrease. These go from a simple 
reduction of the sampling frequency to the use of complex 
encoding methods. In this work we investigate compression 
approaches with contribution to the: 

1. definition of a pipeline to achieve a minimum distortion 
in the compression of ENG data; 

2. evaluation of the performance of different compression 
methods in terms of efficiency, required time, and 
reconstruction error in a real-time scenario; 

3. verification that the total processing time, which is given 
by the sum of the delay introduced by the compression 
technique and that needed for the transmission, is lower 
than the human response time of 300 ms, thus allowing 
to correctly restore the motor function [2]. 

II. STATE-OF-THE-ART OF COMPRESSION ALGORITHMS FOR 
BIOMEDICAL SIGNALS 

Data compression methods are a well consolidated topic in 
signal processing [4]. They are typically implemented as the 
sequential combination of a lossy technique like, for example, 
Discrete Cosine Transform (DCT) and Discrete Wavelet 
Transform (DWT), and lossless compression algorithms. 
Some of the most used in the latter category are Run-Length 
Encoding (RLE) [5], GNU Zip encoding (GZIP) [6], Zip 
Compression Library encoding (ZLIB) [6], High 
Compression variant of Lempel-Ziv 4 encoding (LZ4HC) [7], 
and Delta Encoding (DE) [8]. The combination allows to 
obtain a good trade-off between compression and distortion, 
which means the best possible data rate reduction by 
guaranteeing the minimum reconstruction error in the shortest 
possible time. The lossless algorithms give small compression 
ratio (CR), while lossy algorithms guarantee high CR at the 
cost of information loss. It has been observed that hybrid 
methods give the best performance in terms of quality of the 
reconstructed signal [9]-[11].  

With reference to hybrid compression techniques applied to 
biomedical signals, only few compression techniques have 
been proposed in the literature. The study in [9] proposed an 
electroencephalogram (EEG) compression algorithm based 
on wavelets and wavelet packets where the coefficients are 
quantized and encoded using an RLE. In [10] a new approach 
was proposed to compress electrocardiogram (ECG) data, 
which involves the combined use of DWT and Huffman 
coding. Finally, [11] considered the use of JPEG2000, which 



consists in the application of DWT followed by arithmetic 
coding. 

III. FLOWCHART OF THE PROPOSED ENG DATA 
COMPRESSION 

A. Data Set 
The data set selected to evaluate the performance of the 

studied compression algorithms is provided by the University 
of Newcastle [3]. It contains raw ENG signals obtained from 
the measures of mechanical stimulations of the paw of three 
healthy Sprague Dawley rats. The dataset contains signals 
from 16 channels detected by a multi-contact cuff electrode 
positioned on the sciatic nerve. The signals are characterized 
by an amplitude up to 50 µV and a main bandwidth between 
800 Hz and 3 kHz. 

With the aim of standardizing and homogenizing the results 
obtained from the rats, it has been analyzed the proprioceptive 
signals: dorsiflexion and plantarflexion. The ENG signals 
were generated by alternating phases of exercise with phases 
of rest each 3 sec [3, 12, 13]. 

The performance of the compression algorithms was tested 
via MATLAB R2021a on a PC equipped with Intel(R) 
Celeron(R) N4000 CPU @ 1.10GHz, operating system 64-bit, 
and x64-based processor. We have verified that similar 
performances can be obtained with other processors. 
B. Data Compression 

In this paper, for the compression of ENG data we evaluate 
hybrid approaches based on the use of transforms combined 
with lossless compression algorithms. The block diagram of 
the implemented algorithms is shown in Fig. 1. 

With reference to the figure, the first operation is a non-
linear thresholding to limit the range of amplitudes of the 
rough signal in the interval ±50 μV. This is required because 
not all the ENG data are usable. In fact, due to disturbances in 
the measurement equipment, some parts of the recorded 
signals are very noisy, and therefore their amplitude must be 
limited to achieve a better performance. Then, the data 
processing flow envisages the application, first, of a 
transformation and then of a lossless compression algorithm 
preceded by a quantization process to digitize the data. 
Finally, the representative binary data is obtained, which can 
be wirelessly transmitted.  

To enhance the robustness and achieve a high CR an 
additional thresholding (set to 0.5) is introduced in case the 
DCT is performed. This allows us for further control over the 
level of lossy compression in the signal. Samples below the 
specified threshold are considered irrelevant and are assigned 
a value of zero. By selecting the appropriate threshold level, 
it is possible to attain better CR while minimizing any adverse 
impact on the fidelity of the resulting signal. 

IV. QUALITY METRICS 
The main performance metrics [4] used in the analysis of the 

different compression methods are the following: 
• Compression Ratio (CR), which indicates how much the 

data has been reduced. Let  
 

                               𝑣𝑣 = [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛]                              (1) 

be the vector of n ENG signal samples and 
 

                              𝑣𝑣′ = [𝑣𝑣1′ , 𝑣𝑣2′ , … , 𝑣𝑣𝑚𝑚′ ]                            (2) 

 
FIGURE 1: BLOCK DIAGRAM OF THE HYBRID COMPRESSION SCHEMES WITH 
THRESHOLDING. 

be that of m compressed samples. By introducing the 
length reduction factor as 
 

                                        Ɛ =
𝑚𝑚
𝑛𝑛

                                          (3) 
and the ratio between the size of the data types in bits 
(integer, double, float, …) as 

                          𝜆𝜆 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠 𝑣𝑣′)  [𝑏𝑏𝑠𝑠𝑑𝑑𝑠𝑠] 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠 𝑣𝑣)  [𝑏𝑏𝑠𝑠𝑑𝑑𝑠𝑠]

,                  (4) 

the CR turns out to be by the product 

                                              𝐶𝐶𝐶𝐶 =  Ɛ ∙ 𝜆𝜆.                                     (5) 

• Percentage Root mean square Difference (PRD), which 
gives the distortion in the reconstructed signal. It is 
defined as 

                             𝑃𝑃𝐶𝐶𝑃𝑃 =  
‖𝑥𝑥 −  𝑥𝑥�‖
‖𝑥𝑥‖

 ∙ 100 (%),                    (6) 

      where 𝑥𝑥  and 𝑥𝑥�  are the original and the reconstructed 
signal, respectively, and ‖∙‖ is the Euclidean norm. 

• Compression Time (CT) and Transmission Time (TT), 
which are dependent on the used processor and the used 
wireless technology. For these measures, two cases were 
considered: 

- offline approach, which involves the compression 
of the entire matrix containing the data collected 
from all the electrodes; 

- online approach, which consists in compressing 
windows of different temporal durations (50, 250, 
and 500 ms).  

Note that, the lower is the value of each of the above metrics 
and the better is the performance of the specific algorithm. For 
the offline case, the performances were evaluated for all the 
techniques listed in Sec. II. For the online approach, the 
performance was tested only for the best and the worst three 
techniques of the offline case. Thanks to our analysis it is 
possible to concretely evaluate how these techniques behave 
in view of a future real application on a human patient.  

For the offline approach, only the CT and the decompression 
time (DT) were calculated (excluding the TT) to highlight 
how long it takes the algorithm to reconstruct the data starting 
from the transmitted ones.  



Regarding the evaluation of the time in the online approach, 
three metrics were calculated: the CT, which is the execution 
time of the compression algorithms, the TT, which is the time 
spent in the transmission of the compressed data, and the total 
time CT+TT, which is given by the sum of the previous two. 
The transmission protocol is BLE 5 implemented on Nordic® 
nRF52805 RF chip, having a theoretical bit-rate of 1.4 Mbit/s 
and a real one of 1 Mbit/s. The compression performance was 
evaluated by computing the Mbits of the compressed data. 
This quantity turns out to be the product of the sampling 
frequency 𝑓𝑓𝑠𝑠 (in this work set to 30 kHz), the number of 
selected channels 𝑁𝑁𝑐𝑐ℎ (contacts, set equal to 16 for the cuff 
electrode size), the size of the data packet in bits (set equal to 
8 if data set is an integer or to 16 in others case of float),  the 
window length 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑤𝑤𝑛𝑛 of the time interval considered for the 
compression (in sec), and the 𝐶𝐶𝐶𝐶∗, which indicates how much 
the data (samples) have been reduced. The computation gives 

Mbits = 𝑓𝑓𝑠𝑠(MHz) ∙ 𝑁𝑁𝑐𝑐ℎ ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑡𝑡𝑡𝑡𝑠𝑠) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑤𝑤𝑛𝑛 ∙ 𝐶𝐶𝐶𝐶 (7) 
Since the compression technique must be implemented in 

real-time applications, due to the latency introduced by the 
transmission and the subsequent operations (preprocessing, 
classification, and other operations such as neuromodulation), 
the total duration of the cumulative operation made for the 
data compression should be less than 300 ms (human sensory 
response [2]). Therefore, it is necessary to define an indicative 
threshold that establishes whether the implemented algorithm 
is acceptable or not. In this regard, the residual value (RT, 
Redundancy Time) can be defined, which indicates how much 
time is still available to carry out further operations to stay 
under the human response. It is equal to the tolerable limit of 
the human sensory response minus the total time taken by 
each delay operation for the compression and transmission (so 
CT and TT) in one specific window (50, 250, 500 ms): 

                   𝐶𝐶𝑅𝑅 = 300 ms −𝑤𝑤𝑠𝑠𝑛𝑛𝑑𝑑𝑤𝑤𝑤𝑤 − (𝐶𝐶𝑅𝑅 + 𝑅𝑅𝑅𝑅).            (8) 
Note that, the introduction of the RT allows us to consider 

suitable or not a proposed algorithm for real-time applications 
only if its value is positive.  

V. NUMERICAL RESULTS 
The CR and PRD are calculated for both offline and online 

approaches. In the first case, the CT and the CT+DT are also 
measured, to compare the different algorithms. For the second 
case, in addition to the CT, the total time taken to CT and TT 
the data for the different time windows is also calculated. The 
DE has been studied separately because is not used in 
combination with transforms. 

A. Offline Approach 
As a result of several data compressions, the offline metrics 

were evaluated for the three datasets discussed in Sec. III. 
Results are reported in Tables 1, 2, and 3 as averages over 
each if the three animals for dorsiflexion and plantarflexion. 
The best and the worst three algorithms were obtained by 
analyzing in detail the behavior of CR, PRD, and CT. A 
discussion about the criteria used for their evaluation will be 
done in Sec. VI. 
B. Online Approach 
For the online case, we wanted to highlight how CR, PRD, 
and CT varied in each time window considering only the ENG 

TABLE 1: QUALITY METRICS OF DWT + LOSSLESS METHODS FOR OFFLINE 
APPLICATION 

   
TABLE 2: QUALITY METRICS OF DCT + LOSSLESS METHODS FOR OFFLINE 
APPLICATION 

   

TABLE 3: QUALITY METRICS OF DE FOR OFFLINE APPLICATION                              S   

   
 

segments from the start to the end of stimulations, i.e., the 
useful part of the signal. The remaining part of the signal and 
its noisy parts were discarded. 

Once the window was fixed, the metrics were calculated for 
all the traces, reporting a slight variability in the results. Since 
the signal has not undergone preprocessing to clean up any 
noise, the median value for each window has been reported. 
Fig. 2 shows how the different metrics vary with the window 
length.  

VI. ANALSYS AND DISCUSSION OF NUMERICAL RESULTS 

A. Analysis of the Offline Approach 
Selected techniques are very similar to each other, and the 

PRD tends to increase when the CR value decrease. In 
addition, DCT turns out to be better than DWT in terms of 
PRD (less than 4 %) for any technique. Therefore, it is 
preferred not to decrease the information content inside the 
signal for a future classification application. On the contrary, 
DWT turns out to be better than DCT with respect to the CR, 
but with a greater computational complexity. 

In summary, Table 1 highlights that DWT in combination 
with ZLIB satisfactorily provides good performance and an 
average PRD of 26 %. In Table 2 it can be observed that the 
combination of DCT with GZIP and ZLIB provide the best 
performance in terms of CR, PRD, and CT. These are 
considered valid approaches since their performance is 
superior to all other proposed algorithms. LZ4HC and RLE, 
despite their intrinsic simplicity, are quite effective even if the 
obtained CR is not meaningful, i.e., its value is too high. The 
two methods also give a PRD very low, i.e. within 4 %. In 
Table 3, DE has a unitary CR, which means no compression. 

In conclusion, the three algorithms that provide the best 
compromise between compression and distortion are: 



 
 (A) 

 
 (B) 

 
 (C) 

 

FIGURE 2: MEAN QUALITY METRICS OF (A) CR (B) PRD, AND (C) CT FOR 
ONLINE APPLICATION. 

 
• DCT + GZIP; 
• DCT + ZLIB; 
• DWT + ZLIB. 
On the other hand, the three compression algorithms that 

provide the worst compromise turn out to be:  
• DE; 
• DCT + LZ4HC; 
• DWT + RLE. 

B. Analysis of the Online Approach 
Next, we focused on the comparative analysis of the three 

best algorithms and the three worst algorithms considering 
different time windows. 

As it can be seen from Fig. 2a, the CR varies as a function 
of the time window. In particular, for all the algorithms the 
CR tends to increase as the compression window size 
decreases. DWT + ZLIB achieves the best CR (on average, 
around 0.45) followed by DCT in combination with GZIP and 
ZLIB (CR equal to, on average, 0.6). Anyway, the three worst 
methods provide a CR lower than unity, except for DCT 
combined with LZ4HC that, considering increasingly smaller 
windows,   gets   worse,   with   an   increase    in   the   CR   (time  

 
 (A) 

 
 (B) 

 
 (C) 

FIGURE 3: MEAN QUALITY METRICS OF TOTAL TIME INCLUDING CT+TT FOR 
(A) DCT + GZIP, (B) DCT + ZLIB AND (C) DWT + ZLIB FOR ONLINE 
APPLICATION. 

 

windows of 50 ms are compressed giving a value of 1.03). A 
comparison of the results reported in Fig. 2b with those in 
Tables 1, 2, and 3, reveals that for the online approach the 
PRD values are lower and approximatively constant for the 
DE (25 %), the DWT (15 %), and the DCT (7 %). These results 
are independent on the type of considered lossless algorithm 
and depends only on the lossy technique. In general, we 
observed that techniques with higher PRD exhibits lower CR. 

Considering CT, Fig. 2c shows how for increasingly larger 
windows, the different techniques take longer time to 
compress the data, especially if the segment contains high 
numbers of samples (e.g., 500 ms). Unlike the other methods, 
DCT + LZ4HC is the slowest. 

In addition, Fig. 3 shows the total cumulative time given by 
the sum of all CT obtained using a fixed window and the 
associated transmission TT. From the figure it can be seen that 
signal compression allows to reduce the final data size saving 
a lot of time for the transmission. But it is fair to point out that 
the total time is dominated by the TT, which in turn depends 
on the CR obtained. Since the TT in this case is cumulative, 
its value depends on the total number of windows to be 
compressed given their length, on the CR obtained by 
 



  
 (A) 

 
 (B) 
 

FIGURE 4: RT FOR THE 3 BEST TECHNIQUE FOR BLE REAL DATA 
TRANSMISSION 1.0 MBIT (A) AND OPTIMAL ONE 1.4 MBIT (B) FOR ONLINE 
APPLICATION. 
compression, and on the transmission bit-rate of the BLE5. 
The figures show two transmission cases, an optimal one, 
with 1.4 Mbit/s, and a real one, with 1 Mbit/s (due to 
interference during transmission). 

Concerning with RT, Fig. 4 shows the remaining time 
available to perform different operations (i.e., preprocessing, 
classification, and neuromodulation) after data compression 
to stay under the human sensory response [2]. The results in 
Fig. 4 are for a single window, not the cumulative values as 
for Fig. 3 where results are shown only for the three techniques 
that obtained the best metrics. From Fig. 4 it is evident that 50 
ms windows are optimal for real-time application compared 
to the others. The RT results are equal for both the cases: the 
real case of BLE5 communication at 1.0 Mbit/s, Fig. 4a, and 
the optimal case at 1.4 Mbit/s, Fig. 4b. In general DWT + 
ZLIB was found to be the combination that guaranteed the 
highest RT. The greater is the external communication 
interference, the lower the RT value will be. 
C. Complexity Analysis 

A generalization of the average computational complexity 
regarding the compression (relative time in sec and relative 
power consumption in bytes, see the specifications of the 
device used and the version of MATLAB in Sec. III) of the 
three best and the three worst algorithms relative to the offline 
case is provided in Table 4.  From the table we see that DCT 
combined with GZIP is the most efficient from an energy 
point of view and this motivates its use in real-time 
applications for implantable devices. The DCT combined 
with ZLIB is the second best, while DWT combined with 
ZLIB uses more energy, and therefore it is more 
computationally demanding although the compression 
efficiency is much higher.  

TABLE 4: GENERALIZATION OF THE COMPUTATIONAL COMPLEXITY OF THE 
COMPRESSION 

 

To understand better how the compression facilitates the 
decrease of power in wireless transmission see [14]. 

D. Downsampling of the Data Set at 10 kHz 
The robustness of the compression was assessed by 

downsampling the raw data set at 10 kHz, to see how the 
various best algorithms would behave in the case of different 
ENG signals. As shown in Fig. 5a, the CR decreases as the 
time window increases, bringing the value above 0.5 for the 
three best techniques. In particular, DWT + ZLIB obtains a 
CR of up to 0.41. The values shown in Fig. 5a are obtained by 
comparing the downsampled ENG with the compressed 
downsampled one. In order to compare the CR metric with 
that of the original signal, the values shown in Fig. 5a must be 
multiplied by 0.33 (so the CR for DWT + ZLIB with the 
original is 0.13). For the PRD, in Fig. 5b it is shown that the 
values worsen, bringing its values to 14 % for DWT and to 
12.5 % for DCT. The behavior remains consistent with what 
seen before, that is, by varying the amount of data with 
windowing or downsampling the proportionality between CR 
and PRD is constant. No significant variations are present as 
far as the time parameters are concerned, as shown in Fig. 2c 
and Fig. 5c. 

VII. CONCLUSION 
In this paper we have analyzed the performance of different 

compression techniques for implantable devices in peripheral 
nervous system applications. We have proposed a pipeline for 
processing biomedical nerve signals based on the combination 
of transform and lossless compression algorithms. The goal 
was to perform a compression of the ENG signals in order to 
reduce the amount of data and the necessary time to transmit 
them. The compression not only decreases the power required 
for data transmission but also reduces the overall device 
power consumption. In real-time applications, the quantitative 
results show the superiority of ZLIB and GZIP in combination 
with DCT and DWT over other methods. Good CR are 
achievable, PRD remain within 7 % (for DCT), power 
consumption is decreased compared to sending the entire 
signal uncompressed, and the morphology of the input signal 
is well preserved. About the compression window size for 
future applications the 50 ms window should be considered 
for real-time applications as it leads to a good compromise 
between the various compression metrics. In summary, our 
results have revealed that DCT and DWT in combination with 
GZIP or ZLIB is a powerful tool for compressing ENG 
signals.  

Despite their intrinsic simplicity, we have found them quite 



 
 (A) 

 
 (B) 

  
 (C) 

 

FIGURE 5: MEAN QUALITY METRICS OF (A) CR (B) PRD, AND (C) CT FOR 

ONLINE APPLICATION WITH DOWN-SAMPLING. 
effective and, although the compression efficiency is not too 
high, they represent the best option among the proposed 
solutions.  

Although this research has focused on data compression 
techniques that can be implemented in a biomedical 
implantable device, and the same methodology can be applied 
to explore more innovative techniques. Consequently, in case 
of a large amount of data to be handled during a data 
transmission, hybrid data compression algorithms such as the 
ones reported can be used. The analysis can be extended to 
any type of signal presenting this type of problem for the 
purpose of real time-applications.  

Further investigations may be conducted modetail about the 
window size to be used for compression and other 
compression algorithms not covered within this article, such 
as algorithms for image compression [15]. 
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