
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Monitoring Web QoE in Satellite Networks from Passive Measurements / Perna, Gianluca; Trevisan, Martino; Giordano,
Danilo; Perdices, Daniel; Mellia, Marco. - (2024), pp. 669-676. (Intervento presentato al convegno 2024 IEEE 21st
Consumer Communications & Networking Conference (CCNC) tenutosi a Las Vegas (USA) nel 06-09 January 2024)
[10.1109/ccnc51664.2024.10454720].

Original

Monitoring Web QoE in Satellite Networks from Passive Measurements

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ccnc51664.2024.10454720

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987743 since: 2024-04-11T15:40:40Z

IEEE

Monitoring Web QoE in Satellite Networks

from Passive Measurements
Gianluca Perna†, Martino Trevisan‡, Danilo Giordano†, Daniel Perdices⋆, Marco Mellia†

†Politecnico di Torino, ‡University of Trieste, ⋆Universidad Autónoma de Madrid

first.last@{polito.it,dia.units.it,uam.es}

Abstract—Satellite Communication (SatCom) is the only choice
to access the Internet in remote regions and is characterized by
extreme latency and constrained capacity. For SatCom operators,
it is thus fundamental to monitor the Quality of Experience (QoE)
of subscribers, to measure their satisfaction, spot anomalies and
optimize the peculiar network setup. The Web has become the
primary source of Internet content, and Web browsing is the
main activity of internauts. This paper addresses the challenge
of monitoring Web QoE in SatCom environments, proposing a
tailored system that employs a supervised approach to predict
Web QoE using passive measurements. The system collects train-
ing data through Test Agents that mimic real subscribers’ traffic
patterns and uses them to build Machine Learning (ML) models
that predict performance metrics. The findings demonstrate the
feasibility of monitoring Web QoE in SatCom environments, with
limitations on website applicability and temporal stability. The
need for periodic data generation and the development of a
general machine learning model for unseen websites remain open
challenges. This research contributes to enhancing web browsing
experiences in SatCom and expanding understanding of Web
QoE monitoring in diverse network settings.

Index Terms—Satellite Communications, QoE, Web Perfor-
mance, SpeedIndex - OnLoad, Machine Learning, Regression.

I. INTRODUCTION

Satellite Communication (SatCom) offers Internet connec-

tivity where traditional infrastructures are too expensive to de-

ploy, including rural areas and the territory of underdeveloped

countries. Here, we focus on the GEO SatCom technology,

which relies on satellites positioned in geostationary orbits.

Propagation delay makes the Round Trip time (RTT) higher

than 550ms [1] so that the substantial hurdle of high link

latency significantly impairs traditional interactive browsing

experiences [2], [3], [4]. For instance, the download of a

webpage can take several seconds.

In this context, monitoring the Quality of Experience (QoE)

subscribers obtain becomes a crucial factor [5], [6], [7], and

it would allow the SatCom provider to detect anomalies,

plan network upgrades, and optimize management policies.

Because quantifying Web QoE remains a formidable challenge

due to its subjective nature, proxy quality metrics like the

“onLoad” (or Page Load Time) and “Speed Index” are used as

indirect measures within web browsers [8]. Recent research

efforts have focused on proposing unsupervised [9], [10]

and supervised [11], [12], [13] approaches for measuring

web browsing QoE in traditional networks. However, these

approaches cannot be directly used for SatCom scenarios.

This is especially true because operators deploy middleboxes

Test Agent

Web

Server

SatCom

Equipment

Ground

Station

PEP Tunnel

(UDP)

Passive

Meter

Segment 1

(TCP/QUIC)

Segment 2

(TCP/QUIC)

Fig. 1: Test Agent and Passive Meter deployment scenario.

to mitigate the impact of high latency, i.e., Performance

Enhancing Proxies (PEPs) [14]. The impact of PEPs on QoE

is not clear, and the modification to the traffic they cause

challenges traditional QoE estimators.

This paper aims to fill this gap. We propose a system

to monitor Web QoE specifically designed to address the

challenges unique to SatCom. We employ a supervised Ma-

chine Learning (ML) approach to predict Web QoE from

in-network passive measurements and explore the different

factors that affect prediction accuracy. Our system gathers

training data through Test Agents, which automatically visit

the website to monitor. Ingenuity is needed to design such

Test Agents, as they need to generate traffic patterns similar to

real subscribers’ traffic and we illustrate the most significant

challenges to achieving this goal. In addition, the complex

nature of Web traffic requires ad-hoc approaches to construct

meaningful features. After designing a proper ML pipeline to

predict the QoE of a given website, we explore the feasibility

of using a single ML model for all websites. Our results

are negative and show that a website-specific model must be

considered. At last, we explore the model drift with time and

propose a continuous learning solution to address this problem.

Our findings demonstrate the feasibility of monitoring Web

QoE in SatCom environments, albeit with some limitations.

Notably, this approach works well with the subset of websites

whose pages include objects from multiple domains. On the

contrary, for websites hosted on a single infrastructure, the

prediction accuracy remains limited. Periodic generation of

training data becomes essential to adapt to evolving web

dynamics, and it remains an open challenge to build a general

ML model able to predict the QoE of websites unseen at

training time.

II. PROBLEM STATEMENT

Our goal is to design and implement a monitoring sys-

tem that uses passively collected measurements to estimate

the Web QoE of SatCom users. We target GEO operators,

which rely on one or a few satellites positioned at a fixed

distance from Earth, providing continuous coverage over large

geographic areas. In GEO SatCom, operators typically deploy

PEPs to improve performance on the satellite segment. In

particular, PEPs are designed to overcome TCP limitations

in high-latency scenarios. For this, the PEP transparently

manipulates TCP connections. Referring to Figure 1, the

user’s SatCom home gateway impersonates the server for all

TCP connections initiated by the end-user devices (Segment

1 in the Figure). Acting as TCP proxy, the home gateway

buffers the TCP data stream and forwards it to the operator’s

ground station via a bidirectional UDP tunnel (PEP Tunnel in

the Figure). Complex reservation and scheduling algorithms

decide how to share the SatCom link capacity among active

users. The ground station receives the tunneled traffic and acts

as a second TCP proxy. It opens a new TCP connection toward

the actual server to download and store the responses before

forwarding them to the home gateway through the shared

satellite link (Segment 2 in the Figure). The PEP complicates

the collection of passive in-network measurement, as it splits

each TCP flow into two sections. A passive probe installed

on the ground station will then only observe Segment 2 –

i.e., the TCP connection the ground station PEP opens –,

and not the actual traffic as received by the end-user device.

As such, any QoS metric collected for TCP (such as packet

loss, throughput, or RTT) might not be representative of the

end-user experience. In the case of QUIC (over UDP), PEPs

operate in a slightly different fashion: Packets are tunneled

via UDP, but the home gateway cannot impersonate the

server as QUIC header encryption prevents middleboxes from

manipulating connections.

We depict our deployment scenario in Figure 1. We control

a number of Test Agents that are connected as regular end-

user devices. At the same time, a passive probe collects

measurements at the ground station, where it observes the

traffic of all subscribers. The passive monitor collects per TCP

and per UDP flow summaries with rich statistics. Here we rely

on Tstat [15] which exports more than 100 features per each

TCP/UDP flow, including the server name (as recovered from

Server Name Indication (SNI) in TLS Header), the RTT, the

total number of packets and bytes exchanged from the server to

the client and vice versa, the size and timing of each flow first

packets, etc. Notice that the observed timings radically differ

from the time at which packets are transmitted by/delivered to

the subscriber’s devices as packets are collected after/before

they travel the satellite segment. We assume that each sub-

scriber is uniquely identified by their subscriber IP address.

Using passive measurements, we design a system to esti-

mate the Web QoE of subscribers using ML models that map

flow-level and packet-level features to quantitative metrics. As

target metrics, we consider well-established measures that are

correlated with users’ subjective QoE. We contemplate:

• onLoad: The time when the browser fires the onLoad

event, i.e., when all objects of the page, (images,

stylesheets, javascript, etc.), have been downloaded and

processed;

• Speed Index: Proposed by Google1, it represents the

time at which the visible part of the page rendering is

completed. It is computed by tracking the visual progress

of the page rendering over time.

We use Test Agents to periodically collect QoE measurements

resulting from automated visits to a list of monitored websites.

The test agents access the internet via the Satellite modem

offered by the operator with a standard subscription.

III. SYSTEM DESIGN

A. Test Agent Design

A Test Agent aims to emulate the behavior of a regular

user by visiting a set of websites to gather the necessary QoE

metrics for training the ML models. The operator chooses the

list of websites to include websites of particular interest, such

as business-related portals.

A Test Agent consists of dedicated physical machines

connected as a regular end-user device. It uses a browsing au-

tomation suite (the dockerized version of Browsertime2 in our

case) to automatically visit webpages. We assume Test Agents

continuously operate and seek to maximize (i) the diversity

within collected data and (ii) the size of the data available to

train ML models. Creating an accurate and realistic training set

requires cleverness and involves overcoming various pitfalls,

here detailed.

Our Test Agent takes into account three aspects that have

been recently shown to largely impact automatic web exper-

imentation: The need to include internal pages of a target

website; The need to accept the cookie policies; The need

to visit pages with warm browser caches.

In fact, recent literature [16], [13] has shown that it is

necessary to include websites’ internal pages when running

any kind of web testing. Thus, for each website, Test Agents

visit at least 10 internal pages chosen to maximize diversity.

Notice that several approaches can be used to automate this

task. Here, we opt for manually defining such a list.

Second, the presence of Privacy Banners (also known as

Cookie Walls) impairs automated navigation[17]. If not specif-

ically instrumented, the Test Agents will always visit a website

as a “first visit” so that the website will show the privacy

banner and will not download any third-party elements that

require the user to accept the cookie policy first. Given 95%

of users simply click on “accept all cookies and policies” [17],

here we create a custom Javascript script to accept the Privacy

Banner and continue the navigation just like a normal user

would do.

Third, the presence of a browser cache radically impacts

the resulting network traffic. Thus, we run repeated visits to

webpages, so that subsequent visits occur with a populated

browser cache.

For the experiments in this paper, we use two Test Agents,

focusing on 10 websites. We chose them among the most

visited ones by the operator’s subscribers. These include top

websites for e-commerce, news, search engines, and adult

1https://web.dev/speed-index/
2https://www.sitespeed.io/documentation/browsertime/

ac
cu

w
ea

th
er

.c
om

am
az

on
.c
om

go
og

le
.c
om

le
figa

ro
.fr

le
qu

ip
e.
fr

po
rn

hu
b.

co
m

re
pu

bb
lic

a.
it

st
ac

ko
ve

rfl
ow

.c
om

xn
xx

.c
om

xv
id

eo
s.c

om

yo
ut

ub
e.
co

m
0

10

20

30

40

50

60

70

T
im

e
[s

]
OnLoad

SpeedIndex

Fig. 2: BoxPlot OnLoad vs SpeedIndex

videos. In building such a list, we exclude those websites for

which user login is needed to consume most of the website’s

content (e.g., online social networks). The website list can

be derived from Figure 2. For each website, we select p=5

representative internal pages. We run a first measurement

campaign in September 2022 and a second one from December

2022 to February 2023. Each campaign includes about 2 000
visits to each website and page. In Figure 2, we show the

distribution of QoE metrics in the form of boxplots. The

boxes represent the Inter-Quartile range, while the whiskers

span from the 5th to the 95th percentile. The central stroke

represents the median. Observe how different are the metrics

on each website, and how the onLoad and SpeedIndex are in

the order of tens of seconds and radically higher than those

seen on wired or mobile networks [18]. This testifies to the

peculiar SatCom extreme latency, which impairs the browsing

experience.

B. Feature Engineering

Next, we propose to follow a domain expert-driven approach

to engineer specific features that are highly correlated with the

target QoE metrics. As done in the previous works [19], [12],

we focus on time-related and volume-related metrics that we

extract from the flow-level measurements. For this, to gather

passive measurements, we deploy a Tstat passive probe in

between the operator’s ground station and the internet access,

where we continuously collect flow-level data. Our system is

designed to be scalable. Once data is collected at the probe,

records of different subscribers can be processed indepen-

dently, making our architecture amenable to parallelization on

large computing infrastructures.

To build the training set for ML models, we first join

the passive data (i.e., flow records collected at the operator’s

ground station) with Test Agent data (i.e., the target metrics

onLoad and Speed Index). We join the Test Agent and passive

data records using subscriber IP addresses as key.

Referring to Figure 3, we identify the beginning of a new

webpage visit when a client contacts the domain of one of

the target websites. To this end, we exploit the observation of

a flow with the contacted domain name. We call this event

Trigger. It serves as the observation initial point for building

the features. We mark those with thick arrows in Figure 3. We

refer to the Trigger Flow as f0.

After the Trigger, we open an Observation Window of

∆T = 30 seconds during which we extract the information on

the first n = 10 packets of the first k = 5 flows. The rationale

behind this choice is twofold. First, the webpage rendering

process entails contacting different servers to download all

webpage objects. Thus, we want ML models to leverage

information from the group of Related Flows immediately

subsequent to the visit start. Second, we want to minimize the

impact of caching and persistent HTTP connection that allows

the same flow to download multiple objects (i.e., when a user

scrolls a page, the browser downloads new images and material

using the same previously opened TCP connections). For this,

we extract features only from the first n = 10 packets of a flow

to include uniquely the first instants of the communication. In

the following, we refer to Related Flows as f1, . . . , fk.

We engineer features using the information available in the

first n packets of the Trigger flow f0 and Related Flows

f1, . . . , fk. Given a flow f , we denote with ci,f and si,f
the ith packet on the client and server side, respectively.

Each packet ci,f (or si,f) is characterized by its size |ci,f |,
its timestamp t(ci,f) and the value of its Time-To-Live field

TTL(ci,f). From them, we build our features. Specifically,

each dataset entry represents a webpage visit and is described

by the following features:

• We build two sets including, respectively, the size of all

client packets |ci,f | and the size of all server packets |si,f |
for Trigger and Related flows. Out of each set, we extract

the 25th, 50th, 75th and 90th percentiles, as well as the

mean, standard deviation, maximum, minimum values, and

the occurrences of the missing samples3.

• We compute the inter-arrival time of each packet as the

time elapsed since the previous packet in the same direc-

tion. Given ci,f (or si,f), its inter-arrival time is defined

as t(ci,f) − t(ci−1,f), with i ≥ 2. We build two sets

including all inter-arrival times for client and server packets,

respectively. Out of them, we extract the same statistics as

for packet sizes.

• For each Related Flow fi, we compute its relative starting

time with respect to the Trigger as t(c1,fi)− t(c1,f0) with

i ∈ {1 . . . k}.

• For each flow fi, we compute the time between the first

server and client packet t(s1,fi)− t(c1,fi). This time mea-

sures, in fact, the Round Trip Time between the operator’s

ground station and the actual server.

• For each flow, we compute the size of the first flight in

each direction. A flight is the total size of the application

payload contained in packets sent without any confirmation

received from the counterpart. It provides an estimate of

Client and Server Hello TLS messages. For the client side,

given flow fi, we compute it as
∑jmax

j=1
|cj,fi | with jmax set

to highest j that verifies t(cj,fi) < t(s1,fi). For the server

side, we compute the same measure specularly.4

3Missing samples can occur if a flow has less then n packets, or if a website
opens less than k flow in ∆T

4For the server side, we clearly neglect client packets related to the first
flight while computing jmax.

S
N

I=
le

q
u

ip
e.

fr

Related Flows

c1,f c2,f … cn,f

Client Server

First n=10 packets

Trigger

Flow

Observation Window (ΔT=30s)

f1 f2 f3 f4
f5

s1,f s2,f … sn,f

Fig. 3: Detection of Related Flows and corresponding features.

• For each flow, we extract the Time-To-Live (TTL) value

from the IP header of server packets. This is a coarse indi-

cation of the server’s distance (in number of hops). As the

TTL could vary within a single flow, we take the minimum

value. For each flow fi, we extract minj∈1...n TTL(sj,fi).

In total, we have 52 features. By design, they are L4-

agnostic, meaning that even if the communication is carried

over UDP/QUIC, the system continues to operate seamlessly.

At last, observe that, once the Starting Point is triggered,

the first k Related Flows may include some flows generated

by background traffic and applications. This may result in

occasional uncorrelated flows that can confuse the classifier.

For instance, if the user accesses multiple web pages at the

same time, the flows each page generates gets multiplexed in

the network, possibly impacting the feature extraction process.

C. ML Pipeline

To train the ML models, we adopt the typical pipeline for

supervised tasks. We formulate the problem as a regression

task, the goal being the prediction of the value of the target

QoE-related metrics. Given a data point yi, we aim at building

a model ŷi = f(xi), where x is the array of the input features

described in the previous section.

To measure prediction performance, we use two estab-

lished metrics: R2 Score and Mean Absolute Percentage Error

(MAPE). The R2 coefficient serves to determine whether a

linear regression can be used to describe the target variable.

An R2 score of 0 signifies a model x that is not able to

predict correctly the actual values (i.e., x cannot explain y).

Conversely, R2 = 1 means f(x) is a perfect predictor. In

mathematical terms:

R2 = 1−

∑z

i=1
(ŷi − yi)

2

∑z

i=1
(ŷi − ȳ)2

(1)

where ŷi represents the predicted values of the actual sample

yi, ȳ being the mean yi and z the number of data points.

The MAPE is a metric used to assess the accuracy of a

predictive model in percentage terms. It measures the average

percentage error between the predicted and actual values:

MAPE = 100
1

z

z
∑

i=1

∣

∣

∣

∣

ŷi − yi

yi

∣

∣

∣

∣

(2)

We apply a feature selection stage to identify the most

relevant features from an initial array x of 52 variables. This

4 8 12 16 20 24 28 32 36 40 44 48 52

Number of features

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
2

S
c
o
re

Fig. 4: Prediction performance for OnLoad with a different

number of features.

Random
Forest

Decisi
on Tree

KNN
Linear

lequipe.fr

pornhub.com

xnxx.com

accuweather.com

xvideos.com

amazon.com

repubblica.it

lefigaro.fr

youtube.com

google.com

R
2 Score

0.77 0.72 0.71 0.38

0.74 0.74 0.69 0.58

0.67 0.64 0.65 -1.92

0.66 0.61 0.61 0.42

0.57 0.48 0.52 0.51

0.45 0.31 0.33 0.29

0.39 0.20 0.25 0.16

0.31 0.04 0.23 0.21

0.29 0.08 0.20 0.17

-0.01 -0.03 0.01 0.00

0.48 0.38 0.42 0.08
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
2

S
co

re

Fig. 5: Comparision of prediction performance for onLoad,

using one model per site.

reduces the complexity of the model by discarding either

features that are redundant or uncorrelated with the target

variable. To tackle this task, we utilize the Recursive Feature

Elimination (RFE) algorithm [20] in conjunction with a Ran-

dom Forest Regressor-based model. This approach involves

systematically training the algorithm and iteratively discarding

features deemed least important. The output x’ is then used to

build the model f(x’)
We train a specific ML model for each website using

the selected features and adopting the standard Stratified K-

Fold Cross-Validation methodology to mitigate the risk of

overfitting, with 70% and 30% of data used for training

and validation. As regression models f(x’), we test Decision

Tree Regressor (DTR), Random Forest Regressors (RFR),

Linear Regressors (LR) and K-Nearest Neighbors Regression

(KNNR).

IV. EXPERIMENTAL RESULTS

In this section, we show and discuss the experimental re-

sults, delving into feature and ML model choice and evaluating

the performance in different scenarios. To determine the most

suitable ML model and training strategy, we undertake a

systematic exploration of several ML models and alternatives

on how to build them.

A. Feature and algorithm impact

We first discuss the impact of the feature selection and the

choice of regression algorithm. As detailed in Section III-C,

TABLE I: List of 25 most important features according to RFE.

Measure Direction Statistics

Packet Inter-arrival Time Client Mean, Standard Deviation, Maximum, #(Zero Value), Percentiles 25, 50, 75, 90
Packet Inter-arrival Time Server Standard Deviation, Maximum, Percentiles 50, 75
Time-To-Live Server Minimum value of the first 3 flows
Time between first Client and Server packet - First 5 flows
Relative time of Related Flows - All Related Flows

we adopt the RFE feature selection method to find the most

meaningful features among the 52 we extract. In Figure 4,

we show how R2 Score varies with models that consider only

the top-k ranked features for the onLoad prediction. Boxplots

represent the distribution across the 10 websites. We observe

that the median R2 score significantly increases up to 20

features. Including more than 25 features brings negligible

improvement.

Looking at which are the most relevant features, we observe

those related to packet inter-arrival time and other flow timings

(relative starting time in particular), as well as some on the

server Time-To-Live. For completeness, we list in Table I the

set of 25 features that we use in all experiments.

We now compare the performance of different classification

algorithms. For each one, we run a hyper-parameter tuning step

using a coarse grid search. A Random Forest Regressor with

100 estimators provides the best performance in all cases, for

both OnLoad and SpeedIndex and for both the R2 and MAPE

performance metrics. In Figure 5, we detail the average per-site

R2 scores of all algorithms in predicting the OnLoad. The last

row presents the column-wise average. As said, the Random

Forest model provides the best performance for all websites,

followed by KNN. However, the latter entails large models, as

they must contain the entire training set. Thus, we believe the

Random Forest model represents the best choice. A Decision

Tree provides modest performance for all websites, while the

Linear regressors perform largely worse than other methods,

hinting they are not well-suited for this kind of problem.

At last, we test the performance of Neural Network (NN)

models. However, the need for large amounts and always

recent data limits their applicability in this scenario. Our

dataset in fact was too small to let the NN converge. In

practice, the cost of obtaining thousands of samples for each

target website increases the cost of data collection with a

limited payoff.

B. Per-website Model Performance

We now dissect performance for different websites and

target metrics. We build a website-specific model, an option

suitable for our target deployment, where the operator can

select the target websites. Here we consider the Random Forest

Regressor, which provides the best results (see Sec. IV-A).

In Figure 6, we show per-website performance in terms of

R2 score (top plot) and MAPE (bottom plot). As expected,

values of the R2 score and MAPE are negatively correlated.

Prediction accuracy radically varies across websites, with

some exhibiting very good performance while others have

unsatisfactory results. For onLoad, 6 websites have R2 score

> 0.5 and MAPE < 25%, hinting that ML models are capable

lequipe.fr

pornhub.com

xnxx.com

accuweather.c
om

xvideos.c
om

lefigaro.fr

repubblic
a.it

amazon.com

youtube.com

google.com

0

25

50

75

0

0.25

0.5

0.75

1.0

M
A

P
E

[%
]

R
2

S
co

re

OnLoad Speed Index

Fig. 6: Performance on different websites, measured using R2

Score and MAPE.

of providing a reliable prediction for them. However, for the

remaining 4 websites, the predictive power of the model is very

poor, with an R2 score below 0.25 or negative (not visible as

the scale represents positive values only). For amazon.com,

youtube.com and google.com, we link bad prediction to the

fact that those websites include objects that are served by

a few domains hosted in the same infrastructure owned by

the same company. This limits the number and the diversity

of related flows that are often below k = 5 impacting

the set of meaningful features. Conversely, for repubblica.it

we observe that all pages include a very large number of

third-party objects. Some of them are advertisement banners

extremely slow to load. This impairs the OnLoad time as

observed in Figure 2, which exceeds 35 seconds most of

the time. This makes the prediction for this website very

unreliable. Similar considerations hold for the Speed Index,

even if prediction accuracy is overall lower – only 3 websites

present R2 score above 0.5. This is somewhat expected, as the

Speed Index value depends on how the webpage is rendered

by the browser [8], [21] and, thus, network traffic has a more

indirect impact.

We provide two examples to qualitatively illustrate predic-

tions for a website with a high/poor R2 score in Figure 7.

We show the predicted and real values for the OnLoad metric

using a scatter plot. Each point represents a different visit, and

the color indicates the density of points. Ideally, in the case of

a perfect regressor, all points should lie on the main diagonal.

12 16 20 24 28 32

OnLoad [s]

12

16

20

24

28

32
lequipe.fr

0 3 6 9 12 15 18

OnLoad [s]

0

3

6

9

12

15

18
google.com

P
re

d
ic

te
d

[s
]

Fig. 7: Scatter plots of predicted and real OnLoad values for

two websites.

This is what happens for lequipe.fr (R2 = 0.8) where points

lie on the diagonal stretched between 16 and 30 seconds,

hinting that predictions are accurate both for slow and fast

visits. Different is the picture for google.com (R2 < 0). The

model exhibits almost no prediction power, with predictions

that are massed in a circular shape centered along 6 seconds,

regardless of the real visit OnLoad time.

In summary, the different performance indicates that the

operator shall carefully select the target websites and test the

prediction performance of the regressor before deploying it.

C. One vs Many Models

We now discuss the possibility of using a single model to

predict the QoE for multiple websites.

First, we consider the case of building a single model

trained on all websites. The intuition is to create a model

that generalizes the complexities and nuances present across

multiple domains, resulting in a more robust and adaptable

solution. For this, we create a single set containing all points

for all websites. We use it for training (70%) and testing (30%

split) a single model. We normalize the target metrics in a

website-wise fashion to obtain values in the same order of

magnitude. In Figure 8, we compare the R2 score we obtain

for different scenarios. The first two columns compare the

prediction performance with a Specific Model for each website

(first column) with the performance of the Single Model

(second column). Overall, prediction accuracy, measured as R2

score, decreases but never more than 0.2. For some websites,

the drop is negligible (see for example pornhub.com), while

for accuweather.com, we even observe a moderate increase.5

Again, some websites present awful performance in general

We now evaluate the scenario in which the ML model is

used to predict the QoE for websites unseen at training time.

The intuition is to have a global single model that works for

any website. To this end, we adopt a leave-one-out approach:

we train a model using all data from all websites except

the one under consideration for testing, i.e., systematically

excluding data about one target domain at a time during the

training phase. The resulting performance is depicted in the

third column of Figure 8. It shows that almost no prediction

capability is offered in such a scenario. In most cases, the R2

score is negative, and above 0.5 only in two cases. This clearly

demonstrates that we need to include samples during training

5The increase is moderate and not statistically significant.

Specific Model

Single
Model

Leav
e One Out

Tim
e Shift

lequipe.fr

pornhub.com

accuweather.com

xnxx.com

xvideos.com

amazon.com

lefigaro.fr

repubblica.it

youtube.com

google.com

0.78 0.73 0.59 0.26

0.77 0.74 0.45 -0.30

0.74 0.77 0.14 -0.05

0.69 0.64 0.64 0.31

0.60 0.54 0.42 0.32

0.45 0.39 -4.19 -0.09

0.35 0.37 -3.89 -0.36

0.31 0.29 -1.22 -0.62

0.26 0.14 -0.95 -0.13

0.06 -0.05 -2.30 -0.02
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
2

S
co

re

Fig. 8: Performance for onLoad in different scenarios.

for the specific target website the operator wants to monitor.

In a nutshell, it is not possible to generalize a single model

applicable to any website. This reflects the specificity of the

traffic generated by each website and underlines the need to

collect site-specific data for training.

We conclude that the best results are obtained by consider-

ing a site-specific model. It would be possible to train a single

model on multiple websites, even with a moderate penalty.

However, it is not possible to train a generic model to predict

the QoE of a website unseen at training time.

D. Temporal Stability

We finally evaluate the impact of training data and model

freshness. We want to quantify to what extent a model trained

on a dataset collected at a given point in time can correctly

predict the QoE later in time. To this end, we use the data

collected in September 2022 to train models, while we use data

from February 2023 to evaluate their prediction performance.

We use the best-performing regressor, i.e. Random Forest

regressor, trained for each website. We show results in the

last column of Figure 8. With few exceptions, the predictive

capabilities of the models are completely lost. For instance, the

lefigaro.com R2 drops from 0.78 to 0.26. For xnxx.com and

xvideos.com, some prediction capability survives after three

months. In the other cases, the prediction power is completely

lost, with negative R2 scores. This is due to changes in the

website aspect, in the infrastructure that serves them, or/and

in the network properties. For instance, manual inspection of

available snapshots on the Wayback Machine6 reveals that

some websites incurred a graphical restyle in the last weeks

of 2022. This clearly makes the previously collected training

set totally outdated.

We simulate such a system using the data in the December

2022 - February 2023 dataset. In Figure 9, we show the

evolution over time of the R2 score for pornhub.com. The

blue dashed line reports performance when using always the

same model trained using only the first week of data (the

penultimate week of December 2022), and then testing its

performance on all visits occurring in each period of 5 days.

Clearly, the frozen model becomes quickly obsolete over time.

From the beginning of 2022, its prediction power vanishes. In

6https://web.archive.org/

20
22

/1
2/

28

20
23

/0
1/

02

20
23

/0
1/

07

20
23

/0
1/

12

20
23

/0
1/

17

20
23

/0
1/

22

20
23

/0
1/

27

20
23

/0
2/

01

20
23

/0
2/

06

20
23

/0
2/

11

20
23

/0
2/

16

20
23

/0
2/

21

20
23

/0
2/

26
0.00

0.25

0.50

0.75

1.00

R
2

S
co

re

Sliding No Update

Fig. 9: Prediction performance for OnLoad of pornhub.com

with different training strategies.

a nutshell, the regression model is becoming too outdated. We

observe the same behavior for all websites: in the long term,

any model must be updated.

To overcome the model aging, we propose to use the walk-

forward approach typically used for time series prediction.

Here, we assume test agents continuously collect data. For

each target website, at the end of a period (e.g., a few days),

we use the data collected from the past w days to train a

new model. We follow a sliding-windows approach, i.e., we

keep constant the size of the training set. We then use this

freshly trained model to predict the performance during the

next period of time.

We simulate a system that implements the walk-forward

policy previously described. We show results with the red solid

line in Figure 9. Here, we consider a period of w equal to 5

days for training a model. We then evaluate its performance

for the following 5 days. Since we use a model that is trained

always on the most recent dataset, the R2 score remains stable

at around 0.75.

We conclude that it is mandatory to continuously operate

Test Agents to ensure the freshness of the training data which

is key to maintaining model performance consistent in time.

V. RELATED WORK

The QoE of Internet users is a wide and complex topic as

it involves the subjectivity of users and has been extensively

studied in the literature [22], [23]. Several works address

the challenges of gathering meaningful metrics and the im-

pact of different network conditions [24], [5], [6], [7], [25].

Commonly, Web QoE is measured through proxy metrics,

which have been shown to be correlated with users’ subjective

experience. Notably, Page Load Time (also called OnLoad)

and Speed Index are the most widely adopted, although Bocchi

et al. [8] have shown that they do not necessarily model all

factors influencing users’ perceptions. More recently, “Above-

The-Fold” metrics have been proposed as a more accurate

estimation of users’ QoE [21].

Regarding SatCom environments, the literature extensively

explores the role of the physical layer on the seamless network

operation and Quality of Service [26], [27]. Several works

proposed approaches to enhance browsing performance in Sat-

Com environments using the most diverse techniques, includ-

ing Performance Enhancing Proxies and HTTP caching [2],

[3], [4]. However, there is still a dearth of studies evaluating or

measuring QoE in these kinds of networks. Recent efforts re-

gard estimating video QoE [28] or measuring the performance

of the QUIC novel protocol in the SatCom environment [29],

[30]. Similar to us, these works follow leverage ML to estimate

QoE in SatCom, but target different types of services.

Measuring QoE using passive network measurements poses

additional challenges, as it is not trivial to derive meaningful

metrics or features from network traffic, especially when

encryption is in place. Recent research efforts have focused

on proposing unsupervised [9], [10] and supervised [11],

[12], [13] ML approaches to monitor browsing QoE. These

techniques have in common careful feature engineering and

the use of machine learning models to derive measures that

correlate to users’ perceived QoE or to well-known proxy

metrics. However, none of them has been studied specifically

for SatCom environments or even tested in such a scenario,

and no existing literature comprehensively studies Web QoE

metrics in SatCom networks. Our work aims to bridge this

gap. We engineer a system based on supervised learning

and exploit some of the intuitions proposed in [9], [11],

specifically the link of different flows to the same user visit.

We tailor our system to be deployed at the SatCom operator’s

premises, where the presence of complex middleboxes (i.e.,

PEPs) challenges the harvest of truthful metrics.

VI. CONCLUSIONS AND DISCUSSION

A. Lessons Learned

In this paper we explored the possibility of predicting

website performance in a SatCom scenario. Using ingenuity to

gather training data, it is possible to reach good prediction per-

formance for a given subset of websites. However, the diverse

content dynamics, resource loading patterns, and architectural

variations across different websites prevent the construction

of a general model able to operate on new websites unseen at

training time. While a unified model encompassing multiple

domains is conceivable, the ability to accurately predict the

performance of unseen websites remains a daunting task.

Our results highlight the indispensable role of continuous

model training. Given the dynamic nature of websites, char-

acterized by evolving content and fluctuating infrastructure

deployment, it turns mandatory to update and train models

on a regular basis. An iterative training process as the walk-

forward approach is fundamental to ensure that models adapt

to the ever-changing nature of traffic patterns and maintain

their efficacy over time.

Considering ML models, we showed that a simple random-

forest algorithm suffices. While Neural Network models may

outperform it, the need for large training data coupled with the

need to continuously update the model with freshly collected

data hinders their adoption.

B. Next Directions

Our results show the feasibility of the approach. They

represent an initial step towards a large-scale QoE-monitoring

infrastructure for SatCom operators. Aspects related to tempo-

ral stability and model generalization shall be further studied

using larger and more diverse datasets. In particular, the

diverse and global coverage offered by SatCom networks that

span entire continents mandates considering (i) the diversity

of users’ habits and interests in different websites, (ii) the

subscriber setup (WiFi, wired, shared, etc.), and (iii) the

backbone that connects the ground station to the servers and

CDNs. Transfer learning and domain adaptation mechanisms

shall be considered to adapt and generalize models so that they

can be ported to different countries or continents.

Moreover, further ingenuity shall be used to design more

accurate and realistic Test Agents. Additional dimensions to

study include testing different browsers, emulating mobile

devices, or accurately modeling users’ web browsing behavior.

Moreover, mobile applications are more and more used to

access Internet services as an alternative to classical web

browsers for smartphone users. Gathering data from native

mobile applications is notably cumbersome and requires fur-

ther work.

ACKNOWLEDGEMENT

The research leading to these results has been funded by the

PRIN 2022 Project ACRE (AI-Based Causality and Reasoning

for Deceptive Assets - 2022EP2L7H) and the PRIN 2022

Project COMPACT (Compressed features and representations

for network traffic analysis in centralised and edge internet

architectures - 2022M2Z728).

REFERENCES

[1] D. Perdices, G. Perna, M. Trevisan, D. Giordano, and M. Mellia, “When
Satellite is All You Have: Watching the Internet from 550 Ms,” in
Proceedings of the 22nd ACM Internet Measurement Conference, ser.
IMC ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 137–150.

[2] P. Davern, N. Nashid, C. J. Sreenan, and A. Zahran, “HTTPEP: A
HTTP performance enhancing proxy for satellite systems,” International

Journal of Next Generation Computing (IJNGC), vol. 2, pp. 242–256,
2011.

[3] I. Bisio, S. Delucchi, F. Lavagetto, and M. Marchese, “Transmission
rate allocation over satellite networks with Quality of Experience-Based
performance metrics,” in 2014 7th advanced satellite multimedia systems

conference and the 13th signal processing for space communications

workshop (ASMS/SPSC). IEEE, 2014, pp. 419–423.
[4] A. Thibaud, J. Fasson, F. Arnal, D. Pradas, E. Dubois, and E. Chaput,

“QoE enhancements on satellite networks through the use of caches,”
International Journal of Satellite Communications and Networking,
vol. 36, no. 6, pp. 553–565, 2018.

[5] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer, “Quantifying
the impact of network bandwidth fluctuations and outages on Web
QoE,” in 2015 Seventh International Workshop on Quality of Multimedia

Experience (QoMEX), 2015, pp. 1–6.
[6] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the

Industrial Standard for User Perceived Web Performance to web QoE,”
in 2018 Tenth International Conference on Quality of Multimedia

Experience (QoMEX), 2018, pp. 1–6.
[7] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and D. Rossi,

“”Narrowing the Gap Between QoS Metrics and Web QoE Using Above-
the-fold Metrics”,” in Passive and Active Measurement, R. Beverly,
G. Smaragdakis, and A. Feldmann, Eds. Cham: Springer International
Publishing, 2018, pp. 31–43.

[8] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of
experience of web users,” ACM SIGCOMM Computer Communication

Review, vol. 46, no. 4, pp. 8–13, 2016.
[9] M. Trevisan, I. Drago, and M. Mellia, “PAIN: A Passive Web perfor-

mance indicator for ISPs,” Computer Networks, vol. 149, pp. 115–126,
2019.

[10] L. R. Jiménez, M. Solera, M. Toril, C. Gijón, and P. Casas, “Content
matters: Clustering web pages for QoE analysis with WebCLUST,” IEEE

Access, vol. 9, pp. 123 873–123 888, 2021.

[11] A. Huet, A. Saverimoutou, Z. B. Houidi, H. Shi, S. Cai, J. Xu,
B. Mathieu, and D. Rossi, “Revealing qoe of web users from encrypted
network traffic,” in 2020 IFIP Networking Conference (Networking).
IEEE, 2020, pp. 28–36.

[12] P. Casas, S. Wassermann, N. Wehner, M. Seufert, J. Schüler, and
T. Hossfeld, “Mobile Web and App QoE Monitoring for ISPs-from
Encrypted Traffic to Speed Index through Machine Learning,” in 2021

13th IFIP Wireless and Mobile Networking Conference (WMNC). IEEE,
2021, pp. 40–47.

[13] P. Casas, S. Wassermann, N. Wehner, M. Seufert, and T. Hossfeld,
“Not all Web Pages are Born the Same Content Tailored Learning
for Web QoE Inference,” in 2022 IEEE International Symposium on

Measurements & Networking (M&N). IEEE, 2022, pp. 1–6.
[14] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro,

“Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations,” RFC 3135, Jun. 2001. [Online]. Available: https:
//www.rfc-editor.org/info/rfc3135

[15] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi, “Traffic
analysis with off-the-shelf hardware: Challenges and lessons learned,”
IEEE Communications Magazine, vol. 55, no. 3, pp. 163–169, 2017.

[16] W. Aqeel, B. Chandrasekaran, A. Feldmann, and B. M. Maggs, “On
landing and internal web pages: The strange case of jekyll and hyde
in web performance measurement,” in Proceedings of the ACM Internet

Measurement Conference, 2020, pp. 680–695.
[17] N. Jha, M. Trevisan, L. Vassio, and M. Mellia, “The Internet with privacy

policies: Measuring the Web upon consent,” ACM Transactions on the

Web (TWEB), vol. 16, no. 3, pp. 1–24, 2022.
[18] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia, A. Brun-

strom, O. Alay, S. Alfredsson, and V. Mancuso, “Web experience in
mobile networks: Lessons from two million page visits,” in The world

wide web conference, 2019, pp. 1532–1543.
[19] S. Wassermann, P. Casas, Z. B. Houidi, A. Huet, M. Seufert, N. Wehner,

J. Schüler, S. Cai, H. Shi, J. Xu et al., “Are you on mobile or desktop?
on the impact of end-user device on web qoe inference from encrypted
traffic,” in 2020 16th International Conference on Network and Service

Management (CNSM). IEEE, 2020, pp. 1–9.
[20] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for

cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[21] D. N. da Hora, A. S. Asrese, V. Christophides, R. Teixeira, and
D. Rossi, “Narrowing the gap between QoS metrics and Web QoE
using Above-the-fold metrics,” in Passive and Active Measurement: 19th

International Conference, PAM 2018, Berlin, Germany, March 26–27,

2018, Proceedings 19. Springer, 2018, pp. 31–43.
[22] O. Kondratyeva, N. Kushik, A. Cavalli, and N. Yevtushenko, “Evaluating

quality of web services: A short survey,” in 2013 IEEE 20th Interna-

tional Conference on Web Services. IEEE, 2013, pp. 587–594.
[23] S. Baraković and L. Skorin-Kapov, “Survey of research on Quality of

Experience modelling for web browsing,” Quality and User Experience,
vol. 2, pp. 1–31, 2017.

[24] T. Hoßfeld, S. Biedermann, R. Schatz, A. Platzer, S. Egger, and
M. Fiedler, “The memory effect and its implications on Web QoE
modeling,” in 2011 23rd International Teletraffic Congress (ITC), 2011,
pp. 103–110.

[25] D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Ton-
gaonkar, and S. Saha, “Youlighter: A cognitive approach to unveil
youtube cdn and changes,” IEEE Transactions on Cognitive Commu-

nications and Networking, vol. 1, no. 2, pp. 161–174, 2015.
[26] C. Niephaus, M. Kretschmer, and G. Ghinea, “QoS provisioning in

converged satellite and terrestrial networks: A survey of the state-of-
the-art,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp.
2415–2441, 2016.

[27] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M.
Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff et al.,
“Satellite communications in the new space era: A survey and future
challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1,
pp. 70–109, 2020.

[28] M. Petrou, D. Pradas, M. Royer, and E. Lochin, “Forecasting YouTube
QoE over SATCOM,” in The IEEE 97th Vehicular Technology Confer-

ence, 2023.
[29] L. Thomas, E. Dubois, N. Kuhn, and E. Lochin, “Google quic perfor-

mance over a public satcom access,” International Journal of Satellite

Communications and Networking, vol. 37, no. 6, pp. 601–611, 2019.
[30] N. Kuhn, F. Michel, L. Thomas, E. Dubois, E. Lochin, F. Simo, and

D. Pradas, “Quic: Opportunities and threats in satcom,” International

Journal of Satellite Communications and Networking, vol. 40, no. 6,
pp. 379–391, 2022.

