
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

LogPrécis: Unleashing language models for automated malicious log analysis / Boffa, Matteo; Drago, Idilio; Mellia,
Marco; Vassio, Luca; Giordano, Danilo; Valentim, Rodolfo; Houidi, Zied Ben. - In: COMPUTERS & SECURITY. - ISSN
0167-4048. - ELETTRONICO. - 141:(2024). [10.1016/j.cose.2024.103805]

Original

LogPrécis: Unleashing language models for automated malicious log analysis

Publisher:

Published
DOI:10.1016/j.cose.2024.103805

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987742 since: 2024-04-11T15:29:39Z

Elsevier

Computers & Security 141 (2024) 103805

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

LogPrécis: Unleashing language models for automated malicious log

analysis

Précis: A concise summary of essential points, statements, or facts

Matteo Boffa a,∗, Idilio Drago b, Marco Mellia a, Luca Vassio a, Danilo Giordano a,
Rodolfo Valentim a, Zied Ben Houidi c

a Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
b Università di Torino, Corso Svizzera 185, Torino, 10149, Italy
c Huawei Technologies France, 18 Quai du Point du Jour, 92100, Boulogne-Billancourt, France

A R T I C L E I N F O A B S T R A C T

Keywords:

Language models
Automatic log parsing
Unix shell attacks
Honeypot
Attack fingerprint

Security logs are the key to understanding attacks and diagnosing vulnerabilities. Often coming in the form of
text logs, their analysis remains a daunting challenge. Language Models (LMs) have demonstrated unmatched
potential in understanding natural and programming languages. The question arises as to whether and how
LMs could be also used to automatise the analysis of security logs. We here systematically study how to benefit
from the state-of-the-art LM to support the analysis of text-like Unix shell attack logs automatically. For this,
we thoroughly designed LogPrécis. LogPrécis receives as input malicious shell sessions. It then automatically
identifies and assigns the attacker tactic to each portion of the session, i.e., unveiling the sequence of the
attacker’s goals. This creates a unique attack fingerprint. We demonstrate LogPrécis capability to support the
analysis of two large datasets containing about 400,000 unique Unix shell attacks recorded in a 2-year-long
honeypot deployment. LogPrécis reduces the analysis to about 3,000 unique fingerprints. Such abstraction lets us
better understand attacks, extract attack prototypes, detect novelties, and track families and mutations. Overall,
LogPrécis, released as open source, demonstrates the potential of adopting LMs for security analysis and paves
the way for better and more responsive defence against cyberattacks.
1. Introduction

For security analysts, threat intelligence officers, and forensic teams,
the task of distilling meaningful insights from security logs, often in the
format of text logs, remains one of the most daunting challenges (Du
et al., 2017). While collecting data can be easily automated, the task
of parsing often unclear and malformed logs is a time-consuming
and error-prone process (Arp et al., 2022). Moreover, attackers fre-
quently employ evasion tactics to confuse conventional security mea-
sures, which usually rely on pattern matching and blocklisting. Also,

* Corresponding author.

as attacks continually evolve, maintaining such static rules necessitates
expensive updates and demands expertise.

The rise of Language Models (LMs) and Pre-trained Language Mod-
els (PLMs) is revolutionising the landscape of automated text analy-
sis (Zhao et al., 2023). Thanks to a pre-training phase on massive
corpora, PLMs can learn how humans encode information into text
and attain unprecedented capabilities in understanding natural and
computer languages. By leveraging such knowledge, PLMs promise to
solve tasks such as classification, decision-making, automatic transla-
tion, code auto-completion, and chat applications (Brown et al., 2020a;
Chen et al., 2021).
Available online 13 March 2024
0167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access

E-mail addresses: matteo.boffa@polito.it (M. Boffa), idilio.drago@unito.it (I. Drag

https://doi.org/10.1016/j.cose.2024.103805
Received 5 November 2023; Received in revised form 28 January 2024; Accepted 6
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

o).

March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:matteo.boffa@polito.it
mailto:idilio.drago@unito.it
https://doi.org/10.1016/j.cose.2024.103805
https://doi.org/10.1016/j.cose.2024.103805
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103805&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Boffa, I. Drago, M. Mellia et al.

In this paper, we investigate if and how PLMs can be integrated
into the security analysis pipeline. We envision a future where PLMs
process raw security logs, discern embedded patterns, and summarise
information via intermediate representations. We consider this integra-
tion to be both beneficial and, given the trajectory of the NLP field,
inevitable: PLM can (and will) play a pivotal role in assisting analysts
in tasks such as threat classification, novelty detection, and malicious
behaviour identification.

Despite such promise, the application of PLMs to cybersecurity log
analysis raises several questions (Chen et al., 2021; Le and Zhang, 2023;
Jin et al., 2022). First, as there are no LMs specifically pre-trained
on security logs, it is unclear whether the available models that are
pre-trained on natural language and legitimate code samples can be
successfully applied to malicious logs.1 Second, it is unclear whether
retraining (or fine-tuning) the original PLMs on security logs brings any
benefit or negatively impacts the original knowledge contained in the
models. Conversely, it is equally unclear whether training a specialised
model from scratch directly on the security logs would achieve the same
performance as starting from pre-trained models. Third, there are multi-
ple PLMs and the selection of the best alternative is not straightforward:
indeed, very large and costly models such as those from the GPT fam-
ily (Brown et al., 2020b; Bubeck et al., 2023) may not be any better
than smaller and cheaper models in this scenario. Lastly, there is a lack
of universally accepted benchmarks or set of tasks to evaluate the per-
formance of such PLM-based log analysis systems.

These questions form the foundation of our investigation. We pro-
pose a tool (called LogPrécis) designed to automatically parse and anal-
yse text-like malicious shell logs. Leveraging the representational power
of PLMs, we engineer LogPrécis to map the raw shell scripts into inter-
mediate representations that encapsulate the underlying objectives of
an attacker. Here, we utilise the MITRE ATT&CK Tactics (Mitre, 2022)
as a guiding framework to capture the “whys” of an attack. For instance,
in the session iptables stop; wget http://1.1.1.1/exec;
chmod 777 exec;./exec the attacker first Impacts the system stop-
ping its firewall, and then downloads and Executes a malicious code. We
train LogPrécis to automatically reconstruct the sequence of tactics that
appear in a given shell log. For this, we build on the few-shot learning
capabilities of PLMs (Brown et al., 2020a) and fine-tune them through
a minimal set of 360-labelled sessions.

At inference, LogPrécis labels each term of a session, resulting in
sequence of tactics that becomes our attack fingerprint. This fingerprint
is an effective high-level abstraction that substantially simplifies the
analyst’s tasks. To demonstrate this, we apply LogPrécis to label all
sessions contained in two extensive datasets encompassing years of hon-
eypot logs. LogPrécis reduces nearly 400,000 unique script samples to
fewer than 3,000 distinct fingerprints. These fingerprints offer three
main advantages: i) they significantly aid analysts in forensic analysis
by simplifying the understanding of the attacks, ii) they enhance the
detection of novel attacks over time, and iii) they provide insights into
the origins and patterns of attack families.

Although our focus is on Unix shell scripts harvested from honeypot
logs, the principles and techniques we develop are flexible and adapt-
able. We believe our methodology can be extended to other types of
logs, thereby expanding the scope of LogPrécis. For this, we make the
model and the labelled dataset available to the community to serve as
a benchmark for future research efforts.2

1 At https://huggingface .co /learn /nlp -course /chapter7 /3 ?fw =pt Hugging-
face researchers, a well-known library and framework for LMs, suggest that
even scientific articles or legal contracts, with their specific terms, can severely
deteriorate the performance of a model generically pre-trained on natural lan-
guage.

2 The models are available on HuggingFace at https://huggingface .co /
SmartDataPolito, while the corresponding code and data are accessible on
2

GitHub at https://github .com /SmartData -Polito /logprecis.
Computers & Security 141 (2024) 103805

2. Background and related work

2.1. Language models

Language Models (LM) are used for processing textual data. Re-
search moved from simple statistical techniques to estimate the prob-
ability of word sequences to models exploiting deep neural architec-
tures (Zhao et al., 2023; Qiu et al., 2020; Mikolov et al., 2013). In the
following, we introduce the main background concepts related to LM.

∙ Transformer: The transformer architecture (Vaswani et al., 2017)
finds widespread use in the state-of-the-art PLMs. Transformers’ key fea-
ture is the ability to factor the context a word appears in thanks to the
attention mechanism. Broadly, such ability empowers the model to en-
hance its performance on text-related tasks by selectively focusing on
specific and salient parts of the input text (Qiu et al., 2020; Zhao et
al., 2023). This serves the dual purpose of i) contextualising and better
understanding the entire sentence and ii) inferring the meaning of un-
common or new words based on their contexts, akin to those of known
words. For example, in the analysis of the log rm var./log; his-
tory -c;, the PLM can i) focus on the word var./log to understand
that the attacker is using rm to erase its traces (Defense Evasion) and ii)
infer that the parameter -c, though unfamiliar, has a similar impact on
the history.

∙ Pre-trained Language Models (PLMs): PLMs form an important sub-
set of LMs. PLMs (Devlin et al., 2019) are trained in a self-supervised
fashion using extensive amounts of unlabelled text data.3 This training
approach enables the models to grasp intricate relationships that cap-
ture the nuances present in languages. Also, pre-training serves as the
“secret weapon” of Language Models compared to earlier architectures,
endowing them with unparallelled prior and generic knowledge across
a wide range of fields, with the breadth and generality of knowledge in-
creasing with the size of the corpus. As an illustration, within the realm
of shell logs, models may have acquired expertise during pre-training
by accessing both the man page (i.e., instructions) of UNIX commands
and, ideally, information on known shell attacks with explanations.

Recent models have millions (e.g., BERT (Devlin et al., 2019), Code-
Bert (Feng et al., 2020)) or even billions (e.g, GPT-3 (Brown et al.,
2020b), GPT-4 (Bubeck et al., 2023)) of parameters. They are trained
on terabytes of text, requiring humongous resources (Patterson et al.,
2022). Consequently, these models are pre-trained once. Later they can
be used to solve specialised problems (called downstream tasks), with-
out re-training them from scratch, but only fine-tuning on a few labelled
samples. PLMs with billions of trainable parameters are called Large
Language Models (LLM). They are at the base of the success of applica-
tions like ChatGPT.

∙ Domain Adaptation: In NLP, it is an approach adopted when
the specialised problem contains linguistic properties that differ from
the ones of the pre-training corpus (e.g., task-specific lexicon or lan-
guage) (Howard and Ruder, 2018). Through domain adaptation, the
prior knowledge of a pre-trained model is aligned to some new data
distribution (i.e., specific language) via a few training epochs. For ex-
ample, domain adaptation helps the model to better understand that,
in the downstream task, the word cat will refer to the UNIX command
and not to the animal. Compared with the initial pre-training step, do-
main adaptation is less expensive and requires less data and processing
time. This step is performed on the same self-supervised tasks the PLM
was originally trained and, still, no labels are required. Ultimately, the
efficacy of domain adaptation’s alignment is contingent on whether the
new meanings align with the model’s prior knowledge. If the model has
never encountered the word or something contextually akin to the word
cat during pre-training, the alignment may prove unsuccessful.

3 According to https://www .semianalysis .com /p /gpt -4 -architecture -
infrastructure, the estimated pre-training corpus for GPT-4 comprehends

∼ 13𝑇 tokens, the equivalent of reading ∼ 17𝑀 Bibles.

https://huggingface.co/learn/nlp-course/chapter7/3?fw=pt
https://huggingface.co/SmartDataPolito
https://huggingface.co/SmartDataPolito
https://github.com/SmartData-Polito/logprecis
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure
https://www.semianalysis.com/p/gpt-4-architecture-infrastructure

M. Boffa, I. Drago, M. Mellia et al.

∙ Fine-tuning and Few-shot Learning: PLMs and LLMs knowledge can
be leveraged to solve a wide range of specialized problems, often
called downstream tasks. Common classification and generation tasks
include sentiment analysis, machine translation, text summarisation,
and named entity recognition. When solving a classification taks, fine-
tuning is a supervised learning step that leverages a labelled dataset.
Since PLMs already have a broad generic knowledge, fine-tuning is typ-
ically done in a few-shot learning manner (Wang et al., 2020), where
limited (typically hundreds or thousands) labelled samples are required
to quickly adapt the PLM to the specific task. Fine-tuning is less ex-
pensive than the original training. This is a great advantage compared
to specific architectures that must be trained from scratch, calling for
often huge amounts of labelled data and training resources.

∙ Tokenizer: From a technical point of view, at the transformers’ in-
put a tokenizer processes the text before feeding it to the neural model.
The tokenizer is model specific: its goal is to split the input text and
efficiently encode it in a way that the model understands (Sennrich et
al., 2015). Naive tokenizers split the text into words based on spaces or
punctuation; more sophisticated tokenizers work at the subword level
handling complex morphology and out-of-vocabulary words by break-
ing them into smaller units.

In summary, PLMs can serve as powerful tools for processing tex-
tual input. Ideally, these models undergo a one-time pre-training on
extensive data; they can be subsequently adapted to specific domains,
and eventually fine-tuned for specific tasks with limited data and effort.
However, two challenges emerge in our context: it is not clear whether
any language model was pre-trained on any/enough UNIX shell logs
to grasp some useful prior knowledge about it; And the uncertainty re-
garding the effectiveness of adapting generic LM pre-trained on natural
or code languages to our malicious language case.

2.2. Related work

To the best of our knowledge, we are the first to leverage the power
of PLM for the direct analysis of shell attack logs. Recent efforts how-
ever explore the use of NLP and representation learning in applications
similar to ours. In Crespi et al. (2021) authors leverage NLP algo-
rithms on honeypot command logs to cluster IP addresses aiming at
botnet detection. In our previous work (Boffa et al., 2022a) we used
Word2Vec (W2V) to learn representations from honeypot logs. Others
follow similar ideas (Dietmüller et al., 2022; Houidi et al., 2022) ap-
plying different algorithms to learn representations, e.g., from network
data. However, all these works are limited to classical NLP approaches
like W2V, which, as we will show, are unable to capture the contextual
information needed to classify complex shell logs.

Authors of Lin et al. (2018) fine-tune PLMs to convert from natural
language instructions to bash commands. Our work goes in the oppo-
site direction, as we focus on learning how to give explanations (i.e.,
sequence of tactics) from shell logs.

PLMs have been used in the security context, for example, in Mar-
celli et al. (2022); Jin et al. (2022); Pei et al. (2020). These efforts
however target problems that are orthogonal to ours, e.g., the binary
function similarity problem or reverse engineering. Authors of Setianto
et al. (2022) use GPT-2C for processing honeypot shell logs to identify
commands, that is, they use GPT as a simple parser.

Honeypots have been used in security activities for years, with
multiple well-established, open-source projects available, such as
Cowrie (Putri, 2019) (used to capture data for our analysis) and
TPot (TPot, 2021). Previous efforts in honeypot research covered many
angles including i) practical aspects of using outdated honeypots (Vet-
terl et al., 2019), ii) the application of data mining to analyse collected
data (Fraunholz et al., 2017), iii) the study of adversarial behaviour
and tactics (Ghiette et al., 2019) using traditional machine learning ap-
proaches. We consider honeypot logs as a data source for illustrating
the power of LogPrécis in real scenarios. We show that simplistic lan-
3

guage models are not sufficient in such a scenario, and advocate that
Computers & Security 141 (2024) 103805

the PLM approach is generic and can be used to assist security analysts
in problems sharing similar properties.

The closest to our work is LogPPT (Le and Zhang, 2023), a method
for parsing logs using few-shot learning that extracts structured in-
formation from software logs. LogPPT however focuses on a scenario
where logs typically record benign activity. Here we focus on malicious
shell logs, which add complexity to the task, as attackers evolve scripts
to i) exploit new vulnerabilities, ii) bypass defences, and iii) hide their
intentions.

2.3. Language models vs static analysis

We posit that security logs, including UNIX logs, despite being more
structured than simple natural language, necessitate semantic under-
standing that straightforward static rules can hardly encapsulate. In
fact, the same command can be used for different goals and tactics and
one can understand the attacker’s goal only by considering the context
the command appears. Attempting to achieve similar results with tra-
ditional means based on static rules would be exceedingly expensive,
especially considering the obfuscation and evasion techniques the at-
tacker could put in place. In this paper, we show that a simple approach
based on Word2Vec, that does not rely on contextualised representa-
tions, cannot address the issue. This justifies the need for more complex
LMs that can consider the context a word appears.

Even in cases where blocklisting or handcrafted methods prove ef-
fective, the natural evolution of attacks requires continuous and ex-
pensive adaptation of such rules by security experts. Language Models
offer a dual advantage: Firstly, by capturing semantic similarities and
not relying on simple rule matching, they are inherently more robust to
novelties and obfuscation techniques. For instance, as demonstrated in
our prior work Boffa et al. (2022b), natural language techniques pro-
ficiently group semantically similar UNIX words (e.g., executable files,
IPs, etc.) even when they have random names and lack syntactic re-
lationships. In this work, we show that the LM’s ability to generalize
based on the context a word appears allows it to assign the correct tac-
tics even to commands never observed before. Secondly, one can easily
update and adapt the LM when some new data and labels become avail-
able, or when suggested by a drift-detection mechanism (Davies et al.,
2023). The automatic and purely data-driven nature of the training and
fine-tuning requires little to no human intervention, thus simplifying
the cumbersome task of deriving and updating the signatures. As we
will show, the model fine-tuning already succeeds with some tens of
samples.

3. LM pipeline and design choices

Several options are available when using LMs to analyse malicious
shell logs, from the input data formatting to the pre-training strategies,
downstream tasks, and evaluation protocols. We describe them here-
after.

3.1. Input: commands, statements, sessions

Attackers often exploit scripts to automate their actions once they
gain access to a system. A shell processes textual statements. Those are
commands followed by flags and parameters. Here we consider the en-
tire shell sessions, i.e., the sequences of statements executed in the shell
by the user from login to logout. These sessions can be interactive or
non-interactive, e.g., a script executed by an automated process, which
is often the case in attacks. The Unix shell has different modes to con-
catenate and execute multiple statements. Separators like ∖n; | ||
&& can be used to create complex sequences of statements. The top
part of Fig. 1 shows a toy session made of 4 statements, each composed
of one command with a variable number of parameters and flags.

Notice that, in contrast to natural language, statements and com-

mands in our case are highly sensitive to slight changes in their order,

Computers & Security 141 (2024) 103805M. Boffa, I. Drago, M. Mellia et al.

Fig. 1. Example of a session, definition of statements, words, tokens, and their classification into MITRE tactics.
which can significantly impact the success probability of an attack. In
the above example, attempting to download something before shutting
down the machine’s firewall could make the attack fail. Equally, minor
syntax errors could result in script errors.

Finally, the shell language observed in attacks is linguistically differ-
ent from natural text and even programming languages. If we intersect
a sample of 50,000 unique words from our datasets with 50,000 En-
glish words from the Wikipedia corpus,4 only 71 words are in common.
The same experiment with Python5 and benign Unix shell sessions6 lead
to 558 and 448 words in common, respectively. Moreover, due to ran-
domisation, ∼ 90% of the words in attack logs appear only once; We
observe this percentage at ∼ 42% for Wikipedia English texts, ∼ 64%
for benign shell session, and ∼ 74% for Python code samples.

These differences likely challenge the few-shot capabilities of PLMs
and therefore call for an in-depth study of trade-offs.

3.2. Downstream classification tasks

We here abstract from the crude per-statement and per-command
analysis into a coarser level of representation that describes the at-
tacker’s intents. We want to unveil the attack goals to the analysts and
facilitate the comparison between families of attacks that may have the
same goals but different execution patterns.

Entity Recognition: Given a session made of several statements, an
entity can be an entire statement, a single word (e.g., a command, flag,
parameter, or delimiter), or even a sub-sequence of characters extracted
from a word, i.e., a token.7 In fact, at their internals, NLP solutions
typically work at the token level (see Section 2). The last line of Fig. 1
shows a Unix shell session when split into possible tokens. Identifying
specific entities is a well-known problem in the NLP literature that goes
under the name of named-entity recognition (NER) (Li et al., 2022). It
seeks to locate and classify a subset of entities (e.g., names, locations,
companies, phone numbers) mentioned in unstructured text. Here, we
would like to automatically assign an entity to the attacker’s intent.
Fig. 1 shows an example of the assignment of tactics to entities.

MITRE Tactics as Class Labels: As intermediate labels, we select the
MITRE Tactics (Mitre, 2022) as a compact vocabulary to represent the
“whys” of an attack. Our approach, however, is independent of this
selection and could be applied with any other taxonomy, provided that
some labelled sessions are available for fine-tuning models.

In the MITRE’s taxonomy, an adversary may try to run some mali-
cious code (Execution), maintain their foothold (Persistence), discover
system properties (Discovery), manipulate the system properties (Im-

pact), avoid being detected (Defence evasion), etc. Tactics are instrumen-

4 https://huggingface .co /datasets /wikitext.
5 https://huggingface .co /datasets /CM /codexglue _code2text _python.
6 https://github .com /TellinaTool /nl2bash /tree /master /data /bash.
7 We call “word” the sequence of characters treated as a unit by the shell.

We consider separators as words too. Since words may be very long, e.g., a text
containing an SSH key or a base64 encoded executable, we truncate them to 30
4

characters.
Fig. 2. Choices for adopting PLMs in a security pipeline. As alternatives, we
also test GPT-3 and classic approaches after fixing the best combination for
other choices.

tal in letting the security analyst understand the attackers’ intentions.
As further detailed in Section 4.2, we create a labelled dataset in which
each statement is assigned a MITRE tactic.

Supervised Problem Formulation: Armed with labels, we formulate a
supervised learning problem, where a classifier, trained on some ground
truth, automatically assigns the MITRE tactics to unlabelled sessions.
When using words or tokens as entities, we assign a label for each entity.
Notice that multiple consecutive statements might be part of the same
tactic. Also, the order in which statements appear may change tactics.
In fact, a Unix shell command or statement can have a different tactic
according to its context. For instance, the rm command may be part of
the Persistence tactic when it erases the original ssh private keys before
replacing them with the attacker’s; it can be part of the Impact tactic
when removing a firewall configuration file; or it may be part of Defence
Evasion tactic when removing traces of the attack execution. This clearly
calls for a contextualised understanding of commands/statements and
further motivates us to use modern PLMs.

3.3. Design choices

The integration of PLMs into security pipelines calls for a thorough
examination of design choices, from the preprocessing strategy to the
model to adopt. To that, we perform a thorough exploration of the de-
sign space by comparing 3 chunking policies, 3 pre-training strategies,
3 LLMs, and 3 different kinds of entities, for a total of 81 combinations.
Moreover, once fixed the best choices, we also test GPT-3 and classic
NLP approaches as alternatives to the PLMs. Fig. 2 summarises the op-
tions we consider in this paper.

Chunking Strategy: The first choice is how to input the session into
the model. We consider three strategies:

∙ Default: Each PLM splits the input text into tokens (being them
words or sub-words) and has a maximum number of tokens that can be
handled as a single input sequence (max-token, typically 512). This rep-
resents the context the model handles and it depends on the model size
and architecture (Dong et al., 2023). If the input sequence is longer than
max-token, the model simply ignores all the rest of the sequence. This
behaviour creates artefacts both during fine-tuning or domain adapta-
tion and at inference time because sessions that break such limits will
not be correctly labelled (null labelling).

∙ Raw: We split the input sequences into chunks (Gong et al., 2020),
avoiding reaching the max-token limit. Checking the empirical distribu-
tion of statement length, we choose to split each session (at the state-

ment level) so that each part does not reach the max-token constraints.

https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/CM/codexglue_code2text_python
https://github.com/TellinaTool/nl2bash/tree/master/data/bash

M. Boffa, I. Drago, M. Mellia et al.

Breaking sessions at 18 statements avoids the default truncation effect.
Subsequent session portions are treated as separate inputs. In that, ses-
sions longer than max-token get split into chunks losing the context of
the previous (and following) statements.

∙ Context: We truncate each session at 14 maximum statements and
prepend/postpend each portion with 2 previous and 2 following state-
ments (except at the first and last session portion). This gives the model
a contextualised input to work with Chalkidis et al. (2022), providing
each session portion with some context of the previous/following state-
ments.

Pre-training Strategy: We consider whether a) to start from the off-
the-shelf model pre-trained on code/natural language b) to start from
a randomly initialised model and retrain from scratch, or c) to apply
domain adaptation to the pre-trained model.

Options b) and c) provide alternatives specifically designed to han-
dle Unix shell sessions, without relying solely on the model’s previous
natural language and code comprehension. With option b), the model
forgets its pre-training knowledge and is trained in an end-to-end fash-
ion on the downstream task. With option c) we keep the pre-training
knowledge and perform a few training epochs8 to solve the same self-
supervised masked-language task using our data. Notice that we cannot
exclude that models have already seen some Unix shell scripts during
pre-training. We instead know that none of the models has been ex-
clusively trained on Unix shell data and, in particular, exclusively on
malicious data.

Pre-trained Language Model: The literature abounds PLMs, each of
them trained on different self-supervised tasks and on different datasets.
Models can/cannot be freely available and are of different sizes, which
translates into different computing resources for training and inference.
We focus on three popular open-source PLMs and one closed-source
GPT alternative:

∙ BERT (Devlin et al., 2019) is a generic model trained on unlabelled
text. The pre-trained BERT can be fine-tuned with just one additional
output layer to create models for a wide range of tasks. Introduced
by Google in 2018, it is a ubiquitous baseline in NLP. It is trained on
English text.

∙ CodeBERT (Feng et al., 2020) has been designed and trained
by Microsoft specifically to handle programming languages and code.
CodeBERT is pre-trained with 6 programming languages (Python, Java,
JavaScript, PHP, Ruby, Go).

∙ CodeBERTa (Codeberta, 2023) builds on BERT and modifies key
hyper-parameters, removing the next-sentence pre-training objective
and training with larger mini-batches and learning rates. It is trained
with the same languages as CodeBERT and thus is a mix of the previous
models.

∙ GPT-3 Davinci (Brown et al., 2020b), one of the OpenAI’s biggest
models that developers can fine-tune for downstream tasks, with 175
billion parameters, it is three orders of magnitude bigger than BERT.
GPT-3 was trained on 45 TB of data, while BERT was trained on 3 TB.
GPT-3 (and its successors) are not freely available and can be accessed
only via online API with a pay-per-use price model.

Entity Choice: The tactic labels apply naturally to statements and can
be extended to word and token classification (see Fig. 1). Since, intu-
itively, the model can benefit from more examples of words and tokens,
we consider all three alternatives to compare which choice performs
the best in practice.

Note that, independently of which entities the model uses internally,
the predictions can be aggregated or extended to match the desired
granularity. Extending the labels from coarse- (e.g., statements) to fine-
grained (e.g., words) entities is straightforward. Conversely, to aggre-
gate from fine-grained (e.g., tokens) to coarser labels (e.g., words) we

8 For domain adaptation and fine-tuning 5 and 10 epochs are sufficient ac-
5

cording to a grid search we performed.
Computers & Security 141 (2024) 103805

follow the best practice in NLP which considers the label of the first
token for the upper aggregation (Li et al., 2022).

3.4. Fine-tuning for specific classification task

Armed with a given PLM, we fine-tune it to solve the specific task
of assigning a tactic to each entity. For this, we add a simple one-layer
feed-forward fully connected network that maps the internal represen-
tation provided by the model to the tactics. We then train the resulting
architecture in an end-to-end fashion for a few epochs,8 using a labelled
dataset as typically done in supervised learning tasks. Notice that the
overall design choice and procedure we describe here are generic and
can be applied to other problems, labels, and scripting languages.

3.5. Performance metrics

As performance indicators, we rely on standard ML and NLP metrics.
Given a session, the predicted and original tactics, we have:

∙ Accuracy: The correct predictions over the total number of predic-
tions. It can be per class, or overall.

∙ Precision and recall: Given a class, precision is the fraction of cor-
rect predictions among the instances predicted as such class. Recall is
the fraction of correct predictions among all instances belonging to the
class. The F1-score is the harmonic mean of precision and recall.

Note that to measure the performance on the tactic assignment task,
we need to compare the true labels (the reference) with the predicted
ones. In our case, different models can work on statements, words, or
tokens, while our ground truth is labelled at the statement level. For in-
stance, from Fig. 1, we have 4 statements, 12 words, and 24 tokens. One
misclassification would cost 1/4, 1/12, or 1/24 in accuracy. In NLP, the
correctness of a prediction is therefore augmented by the evaluation of
the correctness of the entire sequence of predictions. For this, we con-
sider:

∙ Binary fidelity (or fidelity for short): given a session, it considers
whether the model can correctly predict exactly the original sequence
of tactics. A single added, removed, or differently classified entity leads
to an incorrect classification. The binary fidelity is thus the fraction of
sessions correctly classified.

∙ ROUGE-1 (Lin, 2004): It is a standard metric used for evaluating
machine translation in NLP. It compares the translation from named
entities to categories against the reference ground truth. Given a se-
quence of predicted and reference tactics, the ROUGE-1 precision is the
ratio between the number of tactics that are present both in the pre-
diction and in the reference and the number of tactics in the reference.
In other words, it counts how many of the original labels the model
correctly spotted (ignoring their sequence). A model that makes many
guesses has more chances to have a high precision. To avoid this bias,
the ROUGE-1 recall measures the ratio between the number of tactics
found in prediction and reference over the number of tactics in pre-
diction. The ROUGE-1 F1-score, or ROUGE-1 for short, consists of the
harmonic mean of precision and recall.

All metrics take values in [0, 1] – the higher, the better. In NLP,
ROUGE-1 and fidelity scores above 0.5 are considered already good
results (Lin, 2004; Li et al., 2022).

To provide a fair comparison when using tokens, words, or state-
ments as entities, we summarise consecutive repetitions of the same
tactic into just one label. In a nutshell, we consider if the model can
identify the sequence of tactics a given attack is performing. For exam-
ple, in Fig. 1, we consider the sequence Impact - Execution, no matter if
working at the token, word, or statement level.

At last, we consider Total inference time. It is measured in seconds –
the lower, the better.

4. LogPrécis design and evaluation

We now detail the engineering of LogPrécis, designed to model and

classify Unix shell logs. We first describe the data and labelling pro-

Computers & Security 141 (2024) 103805M. Boffa, I. Drago, M. Mellia et al.

Table 1

Datasets used in this paper.

Dataset Sessions Period Usage

NLP2Bash (Lin et al., 2018) 12,612 – Regular shell domain-adapt.
HaaS (Honeypot as a service (haas), 2023) 7,208 2017-2022 Attack domain-adapt. & labels
Cyberlab (Sedlar et al., 2020) 233,047 2019-2020 Inference
PoliTO (Boffa et al., 2022a) 160,475 2021-2023 Inference
cess, then we present an experimental comparison of models and design
choices. We conclude with a comparison with other NLP approaches.

4.1. Datasets

We rely on four datasets as detailed in Table 1. The NLP2Bash (Lin
et al., 2018) and Honeypot-as-a-Service (HaaS) (Honeypot as a service
(haas), 2023) datasets contain about 20,000 unique Unix Shell scripts
in total. We use them to perform the PLM domain adaptation step for
the Unix shell language.

From the HaaS dataset, we also select 360 sessions that we label to
create the ground truth for the classifier training, validation, and test-
ing. These sessions have been extracted to cover heterogeneous cases,
selecting both long and short sessions, and maximising the diversity of
attacks. Lastly, we include sessions of attacks found in the literature
to augment the dataset and study cases of tactics typically not seen in
honeypots (e.g., lateral movement). We use this composed dataset in
Section 4.3.

Conversely, we use PoliTO dataset9 and CyberLab one for inference
only (Section 5 and Section 6)

The CyberLab dataset (Sedlar et al., 2020) contains shell logs as
recorded by over 50 nodes running Cowrie (Putri, 2019), a popular
Unix shell honeypot, installed at universities and companies in Europe
and US. The collection contains more than 233 000 unique sessions and
spans from May 2019 to February 2020. Notably, on Nov. 8th, 2019 the
honeypots were updated from version Cowrie 1.6.0 to version 2.0.2, and
some high-interaction Cowrie Proxy deployments have been added to
the setup.

For PoliTO dataset, we collect these sessions using the Cowrie ver-
sion 2.3.0 low-interaction honeypot installed on our premises. We use
24 distinct IP addresses that were online from March 2021 to January
2023. Being inference data, we exclude any of their sessions during
training to avoid biases and over-fitting.

4.2. Labelling process

As in any supervised learning task, we need a labelled dataset to
train the final downstream classifier (i.e., fine-tuning). We thus create
a pool of five domain experts within our institutions. Three experts are
given a set of Unix shell sessions to label, with a subset of about 20% of
common sessions. The other two experts supervise the labelling, help in
labelling unclear sessions, and solve eventual conflicts.

In total, we completed the labelling of 360 unique sessions. Note
that this number is very small compared to the number of samples PLMs
are trained with and fits the few-shot-learning paradigm. We study the
impact of training size on fine-tuning in Section 4.3.

Table 2 summarises the number of tactics breakdown in each
dataset; for simplicity, statistics are at the word level. Notice that, for
the Cyberlab and PoliTO datasets, the numbers come from the model’s
predictions. We consider the tactics that occur at least 100 times in the
training sessions and aggregate the less frequent ones in the Other class.
Similarly, we add a Harmless class to label such cases that would not fit
any MITRE category (e.g., simple sessions like echo ‘pwned’).

9 Link https://smartdata .polito .it /towards -nlp -based -processing -of -honeypot -
6

logs/.
Table 2

Tactics and their breakdown (word level). Notice that, for
the inference datasets, numbers come from the model’s pre-
dictions.

Name HaaS Cyberlab PoliTO
(Training) (Inference) (Inference)

Execution 27.08% 6.29% 1.18%
Persistence 10.55% 11.95% 26.24%
Discovery 52.83% 81.23% 70.71%
Impact 2.51% 0.01% 0.04%
Defense Evasion 2.92% 0.49% 0.90%
Harmless 2.51% 0.03% 0.97%
Other 1.61% 0.01% 0.00%

Total (words) 17,715 28,148,367 17,117,219

Table 3

Off-the-shelf pre-trained model vs train from scratch (word entity task for
all models, HaaS dataset).

Model Accuracy F1-score ROUGE-1 Fidelity

BERT from scratch 0.772 0.408 0.688 0.267
BERT from scratch + UNIX 0.798 0.526 0.717 0.283
BERT NL pre-trained 0.870 0.552 0.735 0.436
CodeBERT Code pre-trained 0.899 0.624 0.735 0.444

As best practice in supervised learning training, we split the 360
sessions into (i) 60% for training, (ii) 20% for validation, and (iii) the
remaining 20% for testing. We repeat each experiment 5 times with
different random splits and present average results.

4.3. Design choice comparison

Here, we guide the PLM design by comparing the different design
options as presented in Sec. 3. We run the experiments using PyTorch

and Hugging Face Python’s libraries on a single machine equipped with
a 16 GB Tesla V100 GPU. Roughly, the domain adaptation on Unix
language takes ≈ 50 minutes for each model; on the other hand, the
fine-tuning step on the tactic classification downstream task takes be-
tween 10 and 20 minutes, depending on the design choices.

Train from scratch or pre-training? We measure the importance of
starting from a model pre-trained on a natural/code language corpus.
Table 3 shows the results of BERT models trained to solve the entity
classification task. Here, we consider each word as an entity. BERT from
scratch is a randomly initialised BERT that we directly train on the fi-
nal classification task. For BERT from scratch + UNIX we also start from
BERT with random weights, but we leverage the UNIX corpus via the
Masked Language self-supervised task before training the resulting PLM
on the final classification.10 BERT NL pre-trained is the standard off-the-
shell BERT model (pre-trained on a natural language corpus) that we
fine-tune to solve the tactics classification task. At last, we report the
results of CodeBERT code pre-trained, again fine-tuned on tactics classifi-
cation. We would expect CodeBERT to take the lead because it has been
pre-trained using programming languages (intuitively more similar to
UNIX).

10 Notice: for this case, we do not call this step domain adaptation, since the

starting model is not pre-trained.

https://smartdata.polito.it/towards-nlp-based-processing-of-honeypot-logs/
https://smartdata.polito.it/towards-nlp-based-processing-of-honeypot-logs/

M. Boffa, I. Drago, M. Mellia et al.

Fig. 3. ROUGE-1 vs. Fidelity for different chunking strategies (HaaS dataset).
18 points per strategy. Each metric is averaged over 5 seeds. Context chunking
is the winning strategy. (For interpretation of the colours in the figure(s), the
reader is referred to the web version of this article.)

Fig. 4. Benefit of domain adaptation (HaaS dataset). Arrows link the same
model and task without and with it. Domain adaptation improves the perfor-
mance 8 times out of 9.

Results show the benefits of starting from a pre-trained model: both
traditional and NLP metrics increase (roughly, +20% Fidelity, +5%
ROUGE-1, etc.) when we use BERT pre-trained on a natural language
corpus. Comparing BERT and CodeBERT, we notice a further boost due
to the pre-training happening on programming languages that have syn-
tax and semantics that are similar to those found in UNIX shell scripts.
From now on, we stick with pre-trained models.

Choice of Chunking Strategy: We next explore the impact of the
chunking strategy. Fig. 3 shows the scatter plot between Fidelity and
ROUGE-1 metrics for the 54 remaining models. We represent the same
chunking strategy with the same marker. ROUGE-1 ranges from 0.66 to
0.85, while Fidelity (stricter metric) ranges from 0.33 to 0.67. The ex-
perimental results clearly show that the Default Chunking strategy (red
start) does not suffice and the Context Chunking (blue circle) performs
the best.

Two considerations hold: First, the max-token parameter which is
optimised for natural or programming languages results too small for
malicious bash sessions because they can be arbitrarily long. Thus,
chunking is needed. Second, giving a bit of previous/following context
to the model is important to let it understand the context in which a
statement is executed. From now on, we stick with the Context Chunk-
ing policy.

Choice of Domain Adaptation: Next, we assess the impact of domain
adaptation of a given PLM to include Unix shell-specific language. Fig. 4
shows the results when performing or not this operation. Points linked
by the arrows refer to the same PLM model with the same task when
enabling domain adaptation. In 8 out of 9 cases, the domain adaptation
improves the results.

Intuitively, even if models have observed some code and likely Shell
scripts during their pre-training, the domain adaptation step is funda-
mental to updating the model on the specific use case. This is common
in NLP and evident in our experiments. From now on we always keep
7

the domain adaptation step.
Computers & Security 141 (2024) 103805

Table 4

PLMs with context chunking and domain adaptation. Code-
BERT with token classification task offers the best results
(HaaS dataset).

Model Entity Accuracy ROUGE-1 Fidelity

CodeBERT token 0.912 0.853 0.669

CodeBERT word 0.896 0.823 0.594
CodeBERTa token 0.889 0.817 0.506
BERT token 0.902 0.811 0.556
BERT statement 0.909 0.807 0.614
BERT word 0.885 0.791 0.486
CodeBERTa statement 0.885 0.788 0.553
CodeBERTa word 0.863 0.781 0.406
CodeBERT statement 0.877 0.739 0.522

Fig. 5. Classification metrics for the best model (HaaS dataset). Error bars report
the variance among the 5 different splits.

Fig. 6. The number of labelled sessions used for fine-tuning (HaaS dataset).

Choice of PLMs and Tasks: At last, we compare the performance of
the PLM models against the three entity types in Table 4. Rows are
sorted in decreasing order of ROUGE-1. CodeBERT with token entities
is the best option. This result confirms the intuition that using a PLM
trained specifically for code analysis improves the results of a natural
language model such as BERT. Notice also that the token-based tasks
perform better than the word-based and statement-based classification
in general.

The intuition is that the token-based problem benefits from a large
number of labelled samples (i.e., more tokens than words or sessions),
and from the opportunity to consider smaller portions of text like flags,
parameters, and even the semantics carried by long words that get split,
e.g., a long PATH, or a long parameter string like a URL.

For completeness, we report the per-class precision and recall for
the winner model: CodeBert with context chunking, domain adaption,
fine-tuned for token-based classification. Results shown in Fig. 5 are
excellent in the most frequent classes (e.g., Discovery, Execution, Per-

sistence) and good for other classes, especially considering the limited
amount of examples in the training data (see Table 2).

Lastly, we report the impact of changing the number of labelled
sessions used to fine-tune the model. We consider again the winner
model. The results in Fig. 6 show that the model starts learning with as

few as 57 sessions.

M. Boffa, I. Drago, M. Mellia et al.

Table 5

Word2Vec, CodeBERT, and GPT-3 (on HaaS dataset). The best re-
sults are in bold. GPT-3 costs depend on the number of queries to
the API.

Model Params ROUGE-1 Fidelity Time Cost [$]

W2V + NN 25k 0.042 0.00 1.3 s 0

W2V + RF 25k 0.282 0.05 1.1 s 0

CodeBERT 130M 0.853 0.669 2.9 s 0

GPT-3 175B 0.829 0.560 68.0 s 105.65

Comparison with other LM: Finally, we compare our best model with
other techniques. We consider Word2Vec (W2V) (Mikolov et al., 2013),
the precursor language model that uses a simple neural network to learn
word associations from a large corpus of text. We also consider the
commercial GPT-3 Davinci (Brown et al., 2020b) model. For W2V, we
train the embedding using the NLP2Bash and HaaS datasets and then
solve the downstream tactic classification task using both a Neural Net-
work (NN) and a Random Forest (RF). Similarly, we follow the Open-AI
guidelines (OpenAI, 2021) to fine-tune the GTP-3 model using the same
360-labelled dataset we use for the CodeBert. Notice that the GTP-3 in-
terface does not allow domain adaptation. This step may be less critical
with GTP-3 because the model has already seen a humongous corpus
of documents during training likely containing samples of Unix shell
sessions. As stated in the guidelines, we format our corpus in the form:

{
"prompt": Unix session,
"completion": sequence of non repeated labels
}

and run the model for the default 3 epochs. As for the other experi-
ments, we use 5 different splits and then average the obtained metrics.

We compare results in Table 5 in terms of model complexity (num-
ber of parameters), ROUGE-1, Fidelity, total inference time, and mon-
etary cost. Results show that W2V is not suited to solve our task. In
sum, the NN classifier cannot converge, while the simpler RF performs
poorly. This is not surprising since W2V is not able to consider the
context in which a word appears, and thus the same word is always as-
sociated with the same embedding (and thus tactic). We will discuss
this aspect further in Sec. 5.2.

GPT-3 Davinci is able to obtain slightly worse performance at the
cost of a much higher inference time than CodeBERT. This is because
GPT is a cloud-based solution, which also creates a significant cost that
grows with the number of queries. For the fine-tuning and testing of
GPT-3 we spent 105.65 USD in total.11

Understanding Errors: Fig. 7 shows how the per-word accuracy varies
according to their occurrences in the training set. We use the best Code-
Bert model and break down the results by word popularity. For instance,
the red curve refers to those 55 words in the test set that appear in the
training set more than 50 times. LogPrécis correctly labels each of them
with accuracy greater than ∼ 80% – 70% of the words with accuracy
of 100%. The accuracy reduces for words that appear less frequently
in the training set. Interestingly, LogPrécis can correctly label 80% of
those “never seen” words, i.e., words are not even present in the train-
ing set (blue curve). These are random words that the attacker injects
into their scripts. Despite not having seen any of them, the Transformer
attention mechanism allows the LM to correctly classify them thanks to
the context in which they appear.

Investigating the position in which the errors tend to occur, we no-
tice that LogPrécis accuracy reduces when we approach the boundary
between two tactics (the accuracy reduces from 0.90 at distance 6 from

11 We attempted to directly query ChatGPT. However, since it is not meant
for classification, we could not measure its (approximately poor) performance.
8

Therefore, we chose not to report such results.
Computers & Security 141 (2024) 103805

Fig. 7. Accuracy of test words w.r.t. their occurrences in the training set (HaaS
dataset).

the change point to 0.82 at distance 1). In fact, deciding where a tac-
tic ends and the next one starts has proven difficult even for the human
experts labelling our data.

In a nutshell, LogPrécis can still correctly label rare or previously
unseen words thanks to its generalisation abilities. The context in which
a word appears usually suffice to assign the correct label, even at the
boundaries of tactics.

4.4. LogPrécis for log analysis

Armed with the fine-tuned CodeBERT language model, we imple-
ment it in LogPrécis, a Python application. It receives as input times-
tamped logs containing Unix sessions and output labels for each token
with the corresponding tactic. Since we are interested in a word-level
analysis, we assign each word its first token label as discussed in
Sec. 3.3.

We complement LogPrécis with a dashboard based on Elasticsearch
and Kibana that allows the analyst to interactively explore the data
over time. In the following, we present some of the results obtained by
applying LogPrécis to analyse both the Cyberlab and PoliTO datasets,
presenting examples of the analysis it unleashes.

5. LogPrécis in the wild - word level analysis

LogPrécis receives as input the raw sessions, and outputs the tactic
prediction for each word. We use LogPrécis to characterise how attack-
ers use different tactics and to identify repeating patterns.

5.1. Inference characterisation

The last two columns of Table 2 show the results of the model’s
predictions on the Cyberlab and PoliTO dataset. In total, we have ≈
17 𝑀 and ≈ 28 𝑀 words that LogPrécis maps to tactics. In both cases,
the Discovery tactic is predominant, accounting for more than 70% of
labels.

Persistence tactic comes second. Here attackers want to secure their
access to the system, for instance, by installing SSH keys or changing the
original password to lock out the account owner. We observe that the
PoliTO collection contains more Persistence than Cyberlab; Oppositely,
Execution represents only the ≈ 1% of PoliTO and the ≈ 6% of Cyberlab
datasets. This testifies how different could be the scenario when chang-
ing the data capture period and the collection infrastructure.

Note also that the number of words associated with Execution is typ-
ically smaller than those associated with the other tactics. In fact, many
sessions start with a (lengthy) Discovery phase. They continue interact-
ing with the machine with a Persistence or/and Execution phase. The
latter is typically completed with few words and statements.

These figures are in line with the intuition of security experts la-
belling our dataset since attackers spend most of their time collecting
information about the system. Indeed, the design of Cowrie – in partic-

ular in its low-interaction mode which is predominant in our datasets –

Computers & Security 141 (2024) 103805M. Boffa, I. Drago, M. Mellia et al.

Fig. 8. Tactics for frequent words. LogPrécis leverages the context to assign the correct tactics.
somehow limits the depth of the attack to its initial phases, where one
expects mainly discovery steps.

5.2. Shell commands to tactics

Let us dive into which commands attackers typically use to pursue
different goals. In Fig. 8a we report the most frequently used words
and the breakdown of tactics they are used for in PoliTO dataset, ignor-
ing separators and common flags. The cell colour and value represent
the fraction of occurrences a given word appears in a given tactic. Val-
ues are column-normalised. As expected, the top frequent words mostly
comprehend Unix shell commands.

Most commands are associated with different tactics. As we antici-
pated in Sec. 3.2, a Unix shell attacker can employ the same commands
for multiple tactics, with the specific goal determined by the context.
This testifies to the need for using approaches that can consider each
word “by the company it keeps” (Britain, 1957). PLM can naturally
handle this aspect thanks to attention-based techniques. In contrast, a
simple regular expression-based solution or even a context-less NLP ap-
proach like Word2Vec is not able to handle these cases effectively. In
Fig. 8, we exemplify how the attackers use the echo and rm commands
for different tactics. They show how the tactic labelling done by Log-
Précis helps the security analyst to understand the attacker’s goal in
different contexts.

Some commands are appropriately associated with only one tactic,
confirming that the LogPrécis classification is robust and consistent.
These are the cases of grep used only for Discovery in these logs; and
of the .ssh folder that attackers manipulate for Persistence only.

5.3. Tactics to shell commands

We investigate which are the most frequent words per tactic for
CyberLab dataset. In Fig. 9 we show the top words associated with the
tactics Execution and Persistence. As before, commands are presented in
9

both lists.
Focusing on Execution, we observe some specific words, like
~/IyEvYmluL2jhc2[…], jeSjax, http://#IP/script.sh,
~/.dhpcd and /tmp/knrm, that immediately catch the analyst’s at-
tention. Manual checks on security forums and previous work (Kolias
et al., 2017) uncover that they are parts of well-known attacks tar-
geting vulnerable SSH servers. ~/IyEvYmluL2jhc2[…] is a base64

script that is part of the so-called “DOTA” attack installing a cryp-
tominer (Dota3, 2020). jeSjax and http://#IP/script.sh appear
in the same sessions: the attacker first downloads the script.sh ob-
ject from a compromised server, saves it as jeSjax file and executes
it (Report 3479, 2019).

At last, we trace the ~/.dhpcd and /tmp/knrm words to attempts
of exploiting “ShellShock” - indeed we confirm that the downloaded bi-
naries aim at installing a compromised DHCP server to inject malicious
responses in the network, which could result in arbitrary code execution
at vulnerable clients (dhcp, 2014). More details are in Appendix 8.

The top word list used in Persistence shows some interesting
patterns related to the DOTA malware. It involves the manipu-
lation of the /cat/tmp/.var03522123; the deployment of the
AAAAB3NzaC1yc2EAAAAD[…] public ssh key to secure access to the
victim machine with the user ’user’ ».ssh/authorized_keys.

In a nutshell, LogPrécis’s ability to abstract from raw words and
identify attacker tactics helps the analyst to understand attacks and find
commonalities, focusing on the salient parts of the attacks.

6. LogPrécis in the wild - session fingerprints

We extend the analysis from the word level to the session level. Par-
ticularly, we introduce the tactics fingerprints, a session’s representation
that leverages the sequences of tactics as a signature. We show how the
representations can help in forensics and novelty detection. Finally, we
show that fingerprints are also useful for investigating common patterns

between attacks.

M. Boffa, I. Drago, M. Mellia et al.

Fig. 9. Most common words often associated with a specific tactic found in the
Cyberlab sessions.

Fig. 10. ECDF of the number of sessions per fingerprint. Around 10% of finger-
prints aggregate more than 10 distinct sessions each.

6.1. Fingerprints at the session level

We showed that thousands of distinct sessions share common words,
such as SSH keys, specific executable names, or filenames. However, the
large number of word combinations makes the number of unique ses-
sions grow to hundreds of thousands and thus it is impractical to analyse
them manually. This leads us to introduce the concept of fingerprint that
we define as the sequence of tactics.

Consider for example the eight words (separators count) session:
wget http://bad.server.com/exec;./exec; rm exec; The
first five are labelled as Execution; the last three as Defence Evasion.
We hence say that Execution X 5 - Defence Evasion X 3 is
the fingerprint of such a session.

Different sessions can be associated with the same fingerprint. We
identify 1 259 and 1 673 unique fingerprints for the PoliTO and Cyber-
lab datasets, respectively. Compared to the about 400 000 total unique
sessions (cfr. Table 1), the number of fingerprints is two orders of mag-
nitude smaller, i.e., each fingerprint groups multiple unique sessions. In
detail, Fig. 10 shows the number of sessions that exhibit the same fin-
gerprint. While 90% of fingerprints group less than 10 sessions, there
are some fingerprints grouping thousands of unique sessions. The re-
maining 10% of fingerprints with more than 10 sessions account for
more than 95% of the sessions in both datasets.

6.2. Fingerprint evolution over time

Since fingerprints aggregate sessions with the same tactic sequences,
the birth of a new fingerprint hints at new attacks or the morphing of a
previous attack.

To appreciate the growth of fingerprints over time, in Fig. 11 we
show the pattern of new and recurring fingerprints for the Cyberlab
dataset. We assign a new identifier each time a new fingerprint emerges.
10

On the y-axis, we sort the fingerprint IDs according to their date of birth.
Computers & Security 141 (2024) 103805

Fig. 11. Fingerprints over time for Cyberlab. On the y-axis, the fingerprints are
sorted per date of birth. On the x-axis, time. The colours and size of the circles
are proportional to the number of sessions associated with a given fingerprint
on a given day.

Then we plot a circle for each session occurring on a given day and
associated with the given fingerprint identifier. The size and the colour
of the circle correspond to the number of associated sessions observed
on such a given day.

In Fig. 11 we observe that the number of fingerprints keeps growing
over time, with different growth rates. For instance, after Cyberlab’s
update to high-interaction Cowrie (see the vertical line), we observe an
increase in the rate of new fingerprints. Cyberlab also enabled Cowrie’s
high-interaction mode in some nodes with this update. This is known to
increase the interactivity of the machines with the attackers. LogPrécis
captures this behaviour by identifying new fingerprints.

More interestingly, some fingerprints keep re-occurring over time
for months. A few fingerprints appear some thousand times on the same
day (see the colour of the circles). We mark those with numbers. These 4
fingerprints aggregate sessions containing the word /var/tmp/dota*
related to the DOTA attack. In fact, these correspond to some mutation
of the DOTA family. The oldest of them appears on Aug. 14th, 2019, and
ends on Dec. 5th, 2019 (marked as 1). The second version appears on
Sept. 18th, 2019 but it becomes significant in volume after Oct. 2019.
The third and fourth versions were popular for a very short amount of
time. In the appendix, we report the patterns over time of all DOTA and
ShellShock fingerprint attacks.

6.3. LogPrécis for novelty detection

When running in real-time, LogPrécis can help the analyst detect
new or modified attacks in a short time. Observe Fig. 12, where we
compare the relationship between the daily count of new unique ses-
sions never seen before (left plot) and new fingerprints’ count (right
plot) on PoliTO dataset. Missing values are due to Honeypots’ down-
time. The system observes hundreds or even thousands of new unique
sessions every day. Indeed, a change of a single character would make
a session unique.

In contrast, LogPrécis ability to extract the tactics from the raw
words makes the number of new fingerprints in the order of a few tens.
Here, the daily number of novelties drops to around 5-10 per day. Not
reported here for the sake of brevity, we witness some thousands of new
unique sessions and some tens of new unique fingerprints in the Cyber-
lab dataset too. All in all, LogPrécis limits the number of alarms to be
handled by the security team.

Consider now the spike on December 9th, 2022 when the number of
new fingerprints dramatically surges to ≈ 70. Interestingly, the trend of
new sessions has a peak of 1, 357 new unique sessions – 1, 174 of which
are associated with a specific fingerprint born on the 9th of Decem-
ber. By looking at the most frequent words in such sessions, we observe
all these 1, 174 samples contain the word lockr labelled as Persistence.
lockr is a secret management service with integration with Drupal and

WordPress (Lockr, 2013). 68 of the new fingerprints aggregate sessions

M. Boffa, I. Drago, M. Mellia et al.

Fig. 12. New unique sessions vs. new fingerprints per day for PoliTO. Red ar-
rows indicate peaks discussed in the text. LogPrécis reduces the number of novel
signals by 2 orders of magnitude.

Fig. 13. Percentage of unique terms in each position for sessions associated
with 2 fingerprints from the Cyberlab dataset. The fingerprint grouping allows
us to spot which words of the sessions are random or semi-random.

containing the lockr command too. This word never appeared in any
past session. This clearly shows a new attack pattern has started, with
the attacker further changing and improving their tactics. Recent re-
ports12 confirm the use of lockr as part of an SSH brute-force attack
that tries to maintain persistence on the attacked machine. Notice that
reports were compiled on 2023: with LogPrécis online, we would have
been able to automatically spot this attack months earlier.

6.4. Session prototype extraction

Let us shift our focus to a specific fingerprint of interest. Sessions
associated with the same fingerprint have, by definition, the same se-
quence of tactics and, hence, the same number of words. By simply
counting the number of unique words in each position, we can observe
which portion of the sessions makes them unique and extract the proto-

type of such sessions.
Consider an example of a fingerprint containing a sequence of 13

tactics. Fig. 13a shows the percentage of unique words found for each
position in the fingerprint. Words related to the tactic in positions 5, 9,
and 11 assume pseudo-random strings. Those correspond to the name
of an executable the script runs: cd /tmp && chmod +x 61mVjztA
&& bash -c ./61mVjztA; ./61mVjztA;

Consider now the DOTA fingerprint 1 from Fig. 11. It is associ-
ated with > 30, 000 unique sessions, all matching the same 138-long
sequence of tactics. Fig. 13b shows the percentage of unique strings at
each position. The word in position 10 appears random, as it changes
in all the sessions. Instead, the word in position 105 is a semi-random
string, as some of them repeat. We report one of those sessions:

[…] echo "root:xue7wsmGreOb" | chpasswd | bash
[…] echo "root diablo" > /tmp/up.txt; […]

In the first random string, the attacker changes the root password
with a random string to lock out the account owner. Later, the attacker

12 Link: https://www .cyderinc .net /server -administration -ins -and -outs /
11

honeypots -know -your -adversary.
Computers & Security 141 (2024) 103805

stores the password used to enter the system in a local file. These pass-
words sometimes repeat, appearing as a semi-random string. This is
coherent with the Cowrie authentication mechanism used in this de-
ployment: we configured it to accept the attacker’s password after a
random number of attempts.

In total, we observe 131 fingerprints with semi-random strings. We
unveil the usage of dictionary-based passwords, IP addresses of servers
hosting malware, sequences of 4-6 bytes-long groups of characters in
hex-encoded binaries (which turn out to be server IP addresses), etc.
Fingerprints let us find this evidence in a simple, more scalable, and
intuitive manner.

6.5. Tracking session morphing

We now compare fingerprints against each other to highlight simi-
larities and differences in the corresponding associated tactics and pro-
vide examples of the power of summarising sessions into fingerprints.

To measure the distance between two fingerprints, we compute
the Levenshtein distance, i.e., we count the minimum number of tac-
tics that one needs to change (delete, insert, replace) to transform
one fingerprint into another one. For instance, the fingerprint (Ex-
ecution - Execution - Defence evasion) → EED and (Ex-

ecution - discovery - Defence evasion - Defence eva-
sion) → EdDD have a distance of 2 (replace E with d, insert D).

Finding Fingerprint Ancestors: We want to find the ancestors of a
given fingerprint, i.e., the most similar fingerprint observed in the past.
The lockr fingerprint, observed for the first time on Dec. 9th, 2022 on
PoliTO dataset, is an interesting example. We identify the most similar
fingerprints in the past to trace if the attacker has modified previous
scripts to engineer the new ones. We show the result in Fig. 14. For
each fingerprint, we report the first time the fingerprint was seen, the
Levenshtein distance with respect to the ancestor, and a representation
of the fingerprints.

The top fingerprint (marked as 1) is our seed, with an example of an
associated session reported in the top text. The closest fingerprint in the
past (2) was found on Nov. 27th, 2021, more than one year in the past.
The new attack appears to use the same code as its closest ancestor,
extending the Persistence tactic to include the lockr commands. This
observation is in line with online sources13 that underline the similar-
ity between the script containing lockr and some variation of already
existing attacks. While their analysis was mostly manual, LogPrécis en-
ables the semi-automatic identification of similar sessions.

Continuing looking for ancestors, we iterate going back in time until
we reach the start of our collection. We find 8 ancestors in total. We
report a sample session of the oldest fingerprint in the bottom text.
Note how the sequence of Discovery tactics found in the oldest ancestor
is the same in the newest lockr attacks. This clearly points to the usage
of a family of attacks, or some attack-kit code.

We believe this analysis would allow the security analyst to easily
identify the incremental changes and code reuse adopted by the newly
identified attacks.

The Big Picture – Linking Attack Fingerprints: We now generalise
the previous analysis by creating a graph that summarises the relation-
ships between all fingerprints. We build a graph where nodes represent
fingerprints and undirected weighted edges represent how much they
are similar. The weight of the edge is the inverse of the Levenshtein
distance.

We consider the 1, 673 Cyberlab fingerprints. For each fingerprint,
we add two edges connecting its two closest fingerprints, according to
their distances. For fingerprints aggregating more than 10 sessions (see
13 Link: https://www .lockr .io /blog/.

https://www.cyderinc.net/server-administration-ins-and-outs/honeypots-know-your-adversary
https://www.cyderinc.net/server-administration-ins-and-outs/honeypots-know-your-adversary
https://www.lockr.io/blog/

Computers & Security 141 (2024) 103805M. Boffa, I. Drago, M. Mellia et al.

Fig. 14. Ancestor fingerprints for the lockr session of Dec. 09, 2022 (top of the image) found in PoliTO dataset. A session of the root fingerprint at the bottom.
Fig. 15. Fingerprint graph similarities for Cyberlab dataset. Colours represent
communities of similar fingerprints, and we manually assign them a label by
checking their sessions.

Fig. 10), we create further edges, connecting up to the closest 20 nodes,
if their distance is below 0.25.14

Fig. 15 depicts the resulting graph obtained using the Force Atlas 2
algorithm (Jacomy et al., 2014) that uses a gravitational law to position
nodes on a plane. The closer the nodes, the more similar they are. The
Louvain Community Detection algorithm (Blondel et al., 2008) identifies
8 groups represented with colours.

In sum, LogPrécis unveils a clear separation of families of attacks.
Some groups have a lot of fingerprints, showing evolving families with
minor changes in the tactics, possibly including artefacts introduced by
the honeypot that make the attack fail. In the Appendix, we show some
sessions from each family.

7. Conclusion

This paper presented LogPrécis, a novel tool that leverages PLMs for
the automated analysis of Unix shell logs. By mapping raw scripts into
intermediate representations that encapsulate the attacker’s goals, Log-
Précis enables powerful means for threat detection, analysis, and the
understanding of attacks. We illustrated the soundness of our design,
with commands that are associated with different tactics showcasing
the need for a contextual language model. Further, LogPrécis extracts
simple and expressive attack fingerprints, reducing thousands of unique
script samples into tens of new fingerprints per day, enabling efficient
novelty detection and streamlining forensic analysis. When applied at

14 We choose parameters to avoid having a full mesh. Each node has a mini-
mum of 2 edges and a maximum exceeding 20 (since edges are undirected and
12

many nodes could have the same node as closest).
Fig. 16. Fingerprints for DOTA and ShellShock over time (Cyberlab dataset).

scale, LogPrécis helps to uncover evolving patterns and families of at-
tacks.

We believe LogPrécis is a first step towards a future in which AI
models assist security operators in unravelling attacks. Several points
to achieve that vision however remain open. LogPrécis fingerprint may
be the same even for intrinsically different attacks. This design can lead
to misclassification, in particular in the presence of adversaries that ex-
plicitly design attacks to mimic the same fingerprint and bypass the
system. This limitation can be addressed by taking into account the in-
ternal representations learned by the model or by using more expressive
and diverse classes than the MITRE tactics, which we will investigate in
future work.

Although currently designed for Unix shell scripts, our methodology
is flexible enough to be extended to other types of logs. The few-shot
tuning calls for a few labelled samples, thus opening the application to
other security data types. We hope that this work serves as a benchmark
for further research and fosters the security community to refine and
expand our approach.

8. Appendix

8.1. DOTA and dhpcd over time

Fig. 16 details the evolution over time of fingerprints that are related
to the DOTA and ShellShock attacks.

8.2. ShellShock

As another example of how fingerprints are useful in understanding
attack morphing, we compare different fingerprints that contain the
word ~/.dhpcd. Recall that those are cases of attackers trying to abuse
the ShellShock vulnerability by deploying a compromised DHCP server.
In the Cyberlab collection, this word appears on 664 unique sessions.
We focus on the three fingerprints with the largest number of associated

sessions in Fig. 17. Each block represents a tactic in the fingerprint; each

Computers & Security 141 (2024) 103805M. Boffa, I. Drago, M. Mellia et al.

Fig. 17. Relationship between fingerprints related to the ShellShock attack (Cyberlab dataset).

Fig. 18. Examples of sessions from the communities of Fig. 15 (Cyberlab dataset).
colour is the corresponding label. We pad fingerprints to best align them
and improve visualisation.

The first fingerprint corresponds to the first occurrence of this at-
tack. The second fingerprint extends this fingerprint by adding some
initial Discovery steps and a Persistence step in between. Eventually,
the third fingerprint is a truncated version of the first one which ap-
pears starting from Oct. 15th, 2019. The initial tactics are identical,
and apparently, the attacker’s script fails in the Cyberlab honeypot, ei-
ther because the attacker has updated its scripts or as a consequence of
changes in the behaviour of the honeypot after its version upgrade.

8.3. Communities explanation

See Fig. 18 for examples of sessions related to the communities
13

found in Sec. 6.5.
CRediT authorship contribution statement

Matteo Boffa: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Visualization, Writing – original
draft, Writing – review & editing. Idilio Drago: Conceptualization,
Data curation, Investigation, Methodology, Supervision, Validation,
Visualization, Writing – original draft, Writing – review & editing.
Marco Mellia: Conceptualization, Funding acquisition, Investigation,
Methodology, Project administration, Supervision, Validation, Writing
– original draft, Writing – review & editing. Luca Vassio: Concep-
tualization, Formal analysis, Investigation, Methodology, Supervision,
Writing – original draft, Writing – review & editing. Danilo Giordano:

Methodology, Supervision, Validation, Writing – original draft, Writing
– review & editing. Rodolfo Valentim: Investigation, Software, Valida-
tion, Writing – review & editing. Zied Ben Houidi: Conceptualization,

Data curation, Funding acquisition, Investigation, Methodology, Project

M. Boffa, I. Drago, M. Mellia et al.

administration, Supervision, Validation, Writing – original draft, Writ-
ing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data and code are available in open repositories that are mentioned
in the manuscript.

Acknowledgement

The research leading to these results has been partly funded by
the Huawei R&D Center (France), by the project SERICS (SEcurity and
RIghts In the CyberSpace - PE00000014) under the MUR National Re-
covery and Resilience Plan funded by the European Union, as well
as the ACRE (AI-Based Causality and Reasoning for Deceptive Assets
- 2022EP2L7H) and xInternet (eXplainable Internet - 20225CETN9)
projects - funded by European Union - Next Generation EU within the
PRIN 2022 program (D.D. 104 - 02/02/2022 Ministero dell’Università
e della Ricerca). This manuscript reflects only the authors’ views and
opinions and the Ministry cannot be considered responsible for them.

References

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro,
L., Rieck, K., 2022. Dos and don’ts of machine learning in computer security. In: 31st
USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston, MA,
pp. 3971–3988. https://www .usenix .org /conference /usenixsecurity22 /presentation /
arp.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theory Exp. 2008 (10), P10008.

Boffa, M., Milan, G., Vassio, L., Drago, I., Mellia, M., Houidi, Z.B., 2022a. Towards NLP-
based processing of honeypot logs. In: Proceedings of the IEEE European Symposium
on Security and Privacy Workshops, EuroS&PW’22, pp. 314–321.

Boffa, M., Vassio, L., Mellia, M., Drago, I., Milan, G., Houidi, Z.B., Rossi, D., 2022b. On
using pretext tasks to learn representations from network logs. In: Proceedings of the
1st International Workshop on Native Network Intelligence, pp. 21–26.

Britain, P.S.G., 1957. Studies in Linguistic Analysis. Publications of the Philological Soci-
ety, Blackwell. https://books .google .com .hk /books ?id =JWktAAAAMAAJ.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al., 2020a. Language models are few-shot learners.
Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., Amodei, D., 2020b. Language models are few-shot learners. In: Ad-
vances in Neural Information Processing Systems 33, NeurIPS’20, pp. 1877–1901.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee,
Y., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M., Zhang, Y., 2023. Sparks
of artificial general intelligence: early experiments with GPT-4. http://arxiv .org /abs /
2303 .12712.

Chalkidis, I., Dai, X., Fergadiotis, M., Malakasiotis, P., Elliott, D., 2022. An exploration of
hierarchical attention transformers for efficient long document classification. arXiv :
2210 .05529.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., et al., 2021. Evaluating large language models trained
on code. preprint. arXiv :2107 .03374.

Codeberta, 2023. roberta-like model trained on the codesearchnet dataset from github.
https://huggingface .co /huggingface /CodeBERTa -small -v1.

Crespi, V., Hardaker, W., Abu-El-Haija, S., Galstyan, A., 2021. Identifying botnet IP ad-
dress clusters using natural language processing techniques on honeypot command
logs. http://arxiv .org /abs /2104 .10232.

Davies, C., Vilamala, M.R., Preece, A.D., Cerutti, F., Kaplan, L.M., Chakraborty, S., 2023.
Knowledge from uncertainty in evidential deep learning. arXiv :2310 .12663.

Devlin, J., Chang, M., Lee, K., Toutanova, K., 2019. BERT: pre-training of deep bidirec-
tional transformers for language understanding. http://arxiv .org /abs /1810 .04805.

Dietmüller, A., Ray, S., Jacob, R., Vanbever, L., 2022. A new hope for network model
generalization. In: Proceedings of the 21st ACM Workshop on Hot Topics in Networks,
14

HotNets’22, pp. 152–159.
Computers & Security 141 (2024) 103805

Dong, Z., Tang, T., Li, L., Zhao, W.X., 2023. A survey on long text modeling with trans-
formers. arXiv :2302 .14502.

Dota3, 2020. Is your Internet of things device moonlighting?. https://blogs .juniper .net /
en -us /threat -research /dota3 -is -your -internet -of -things -device -moonlighting.

Du, M., Li, F., Zheng, G., Srikumar Deeplog, V., 2017. Anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, New York, NY, USA,
pp. 1285–1298.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang,
D., Zhou, M., 2020. CodeBERT: a pre-trained model for programming and natural lan-
guages. In: Findings of the Association for Computational Linguistics, EMNLP 2020,
pp. 1536–1547.

Fraunholz, D., Zimmermann, M., Hafner, A., Schotten, H., 2017. Data mining in long-term
honeypot data. In: Proceedings of the IEEE International Conference on Data Mining
Workshops, ICDMW’17, pp. 649–656.

Ghiette, V., Griffioen, H., Doerr, C., 2019. Fingerprinting tooling used for SSH compromi-
sation attempts. In: Proceedings of the 22nd International Symposium on Research in
Attacks, Intrusions and Defenses, RAID’19, pp. 61–71.

Gong, H., Shen, Y., Yu, D., Chen, J., Yu, D., 2020. Recurrent chunking mechanisms
for long-text machine reading comprehension. In: Jurafsky, D., Chai, J., Schluter,
N., Tetreault, J. (Eds.), Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association for Computational Linguistics,
pp. 6751–6761. https://aclanthology .org /2020 .acl -main .603. Online.

Honeypot as a service (haas), 2023. https://haas .nic .cz.
Honeypots, 2023. Know your adversary. https://www .cyderinc .net /server -

administration -ins -and -outs /honeypots -know -your -adversary.
Houidi, Z., Azorin, R., Gallo, M., Finamore, A., Rossi, D., 2022. Towards a systematic

multi-modal representation learning for network data. In: Proceedings of the 21st
ACM Workshop on Hot Topics in Networks, HotNets’22, pp. 181–187.

How shellshock can be exploited over dhcp. https://www .helpnetsecurity .com /2014 /10 /
09 /how -shellshock -can -be -exploited -over -dhcp/.

Howard, J., Ruder, S., 2018. Universal language model fine-tuning for text classification.
arXiv :1801 .06146.

Jacomy, M., Venturini, T., Heymann, S., Bastian, M., 2014. Forceatlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi soft-
ware. PLoS ONE 9 (6), e98679.

Jin, X., Pei, K., Won, J.Y., Lin, Z., 2022. Symlm: predicting function names in stripped
binaries via context-sensitive execution-aware code embeddings. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
’22, pp. 1631–1645.

Kolias, C., Kambourakis, G., Stavrou, A., Voas, J., 2017. DDoS in the IoT: mirai and other
botnets. Computer 50 (7), 80–84. https://doi .org /10 .1109 /MC .2017 .201.

Le, V., Zhang, H., 2023. Log parsing with prompt-based few-shot learning. arXiv :2302 .
07435 [cs].

Li, J., Sun, A., Han, J., Li, C., 2022. A survey on deep learning for named entity recog-
nition. IEEE Trans. Knowl. Data Eng. 34 (1), 50–70. https://doi .org /10 .1109 /TKDE .
2020 .2981314.

Lin, C.-Y., 2004. Rouge: a package for automatic evaluation of summaries. In: Text Sum-
marization Branches Out, pp. 74–81.

Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D., 2018. Nl2bash: a corpus and semantic
parser for natural language interface to the Linux operating system. arXiv :1802 .08979
[cs].

Lockr, 2013. https://www .lockr .io /blog/.
Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri, M., Balzarotti,

D., 2022. How machine learning is solving the binary function similarity prob-
lem. In: Proceedings of the 31st USENIX Security Symposium, USENIX Security’22,
pp. 2099–2116.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word represen-
tations in vector space. http://arxiv .org /abs /1301 .3781.

Mitre enterprise tactics. https://attack .mitre .org /tactics /enterprise/.
OpenAI, 2021. Fine-tuning. https://platform .openai .com /docs /guides /fine -tuning.
Our selection of alerts on honeypots: report 9 – may 2023 https://tehtris .com /en /blog /

our -selection -of -alerts -on -honeypots -report -9 -may -2023.
Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D.,

So, D.R., Texier, M., Dean, J., 2022. The carbon footprint of machine learning train-
ing will Plateau, then shrink. Computer 55 (7), 18–28. https://doi .org /10 .1109 /MC .
2022 .3148714.

Pei, K., Xuan, Z., Yang, J., Jana, S., Ray, B., 2020. Trex: learning execution semantics
from micro-traces for binary similarity. arXiv :2012 .08680 [cs].

Putri, D., 2019. Honeypot cowrie implementation to protect ssh protocol in ubuntu
server with visualisation using kippo-graph. Int. J. Adv. Trends Comput. Sci. Eng. 8,
3200–3207. https://doi .org /10 .30534 /ijatcse /2019 /86862019.

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X., 2020. Pre-trained models for natural
language processing: a survey. Sci. China, Technol. Sci. 63 (10), 1872–1897.

Report 3479, 2019. https://corvus .inf .ufpr .br /reports /3479/.
Sedlar, U., Kren, M., Štefanič Južnič, L., Volk, M., 2020. Cyberlab honeynet dataset.

https://doi .org /10 .5281 /zenodo .3687527.
Sennrich, R., Haddow, B., Birch, A., 2015. Neural machine translation of rare words with
subword units. preprint. arXiv :1508 .07909.

https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib770682AEB79712677C22EE8CB90B78F6s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib770682AEB79712677C22EE8CB90B78F6s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE421AEB92F7ECA631837CF6CA30D568s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE421AEB92F7ECA631837CF6CA30D568s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE421AEB92F7ECA631837CF6CA30D568s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib96F754C1FD34A4DDBC509E6F0F23D15As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib96F754C1FD34A4DDBC509E6F0F23D15As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib96F754C1FD34A4DDBC509E6F0F23D15As1
https://books.google.com.hk/books?id=JWktAAAAMAAJ
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibB2393D951029E8562D6E2F600EA2FB54s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib955BFE3892C4BF9A4293959743E8820As1
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib36394331118146C33484A9B4141D522Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib36394331118146C33484A9B4141D522Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib36394331118146C33484A9B4141D522Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib19A8298E369B99DA92F4C00117A3413As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib19A8298E369B99DA92F4C00117A3413As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib19A8298E369B99DA92F4C00117A3413As1
https://huggingface.co/huggingface/CodeBERTa-small-v1
http://arxiv.org/abs/2104.10232
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib4737A771C67E14402E0D7622E6EC083Ds1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib4737A771C67E14402E0D7622E6EC083Ds1
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib7F94F7043C1B06498EF7356F48877A85s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib7F94F7043C1B06498EF7356F48877A85s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib7F94F7043C1B06498EF7356F48877A85s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib7CEA3655CEC32D64298CA4539E4C77B1s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib7CEA3655CEC32D64298CA4539E4C77B1s1
https://blogs.juniper.net/en-us/threat-research/dota3-is-your-internet-of-things-device-moonlighting
https://blogs.juniper.net/en-us/threat-research/dota3-is-your-internet-of-things-device-moonlighting
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib113F168A3CB7AD6A27B0D5574A1B1C27s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib113F168A3CB7AD6A27B0D5574A1B1C27s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib113F168A3CB7AD6A27B0D5574A1B1C27s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib113F168A3CB7AD6A27B0D5574A1B1C27s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibE05FD386C4ABC2E2C5BF47AE70B407EDs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibE05FD386C4ABC2E2C5BF47AE70B407EDs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibE05FD386C4ABC2E2C5BF47AE70B407EDs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibE05FD386C4ABC2E2C5BF47AE70B407EDs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib60AEC76196E1B7F5F08777922FA2399Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib60AEC76196E1B7F5F08777922FA2399Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib60AEC76196E1B7F5F08777922FA2399Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib5EAA195EC486B809F845B97F4454594Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib5EAA195EC486B809F845B97F4454594Bs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib5EAA195EC486B809F845B97F4454594Bs1
https://aclanthology.org/2020.acl-main.603
https://haas.nic.cz
https://www.cyderinc.net/server-administration-ins-and-outs/honeypots-know-your-adversary
https://www.cyderinc.net/server-administration-ins-and-outs/honeypots-know-your-adversary
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibEA345C5F295BDE41C3F4DCDA9DE6F41Es1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibEA345C5F295BDE41C3F4DCDA9DE6F41Es1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibEA345C5F295BDE41C3F4DCDA9DE6F41Es1
https://www.helpnetsecurity.com/2014/10/09/how-shellshock-can-be-exploited-over-dhcp/
https://www.helpnetsecurity.com/2014/10/09/how-shellshock-can-be-exploited-over-dhcp/
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibAF3879CBAF83683942BA81ED9DED4181s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibAF3879CBAF83683942BA81ED9DED4181s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib964C8D1C5A7BC9F743A769F555C946C1s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib964C8D1C5A7BC9F743A769F555C946C1s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib964C8D1C5A7BC9F743A769F555C946C1s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib6690BA5C0777F1F9C6C9376DD6A7E4A6s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib6690BA5C0777F1F9C6C9376DD6A7E4A6s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib6690BA5C0777F1F9C6C9376DD6A7E4A6s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib6690BA5C0777F1F9C6C9376DD6A7E4A6s1
https://doi.org/10.1109/MC.2017.201
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib74ECC919F9C1B321BE02EF20F9E86D40s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib74ECC919F9C1B321BE02EF20F9E86D40s1
https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1109/TKDE.2020.2981314
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib0644DDCE81B9BAB7009C70E81843E154s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib0644DDCE81B9BAB7009C70E81843E154s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib2246B875C532A55F91CC3508B74F3FF9s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib2246B875C532A55F91CC3508B74F3FF9s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib2246B875C532A55F91CC3508B74F3FF9s1
https://www.lockr.io/blog/
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE8EBBDB301E7E875E9BBF25155F0AD4s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE8EBBDB301E7E875E9BBF25155F0AD4s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE8EBBDB301E7E875E9BBF25155F0AD4s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibBE8EBBDB301E7E875E9BBF25155F0AD4s1
http://arxiv.org/abs/1301.3781
https://attack.mitre.org/tactics/enterprise/
https://platform.openai.com/docs/guides/fine-tuning
https://tehtris.com/en/blog/our-selection-of-alerts-on-honeypots-report-9-may-2023
https://tehtris.com/en/blog/our-selection-of-alerts-on-honeypots-report-9-may-2023
https://doi.org/10.1109/MC.2022.3148714
https://doi.org/10.1109/MC.2022.3148714
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibC6D0A06F91819B5B5BF44E61B13659E3s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibC6D0A06F91819B5B5BF44E61B13659E3s1
https://doi.org/10.30534/ijatcse/2019/86862019
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib245C1436210B846B8A6B9DC4F631ED6Ds1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib245C1436210B846B8A6B9DC4F631ED6Ds1
https://corvus.inf.ufpr.br/reports/3479/
https://doi.org/10.5281/zenodo.3687527
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibDB66A807BCA51B0F24E05CA1680C5F18s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibDB66A807BCA51B0F24E05CA1680C5F18s1

M. Boffa, I. Drago, M. Mellia et al.

Setianto, F., Tsani, E., Sadiq, F., Domalis, G., Tsakalidis, D., Kostakos, P., 2022. GPT-2C:
a parser for honeypot logs using large pre-trained language models. In: Proceedings
of the 2021 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, ASONAM ’21, pp. 649–653.

TPot, 2021. The all in one honeypot platform. https://github .com /telekom -security /
tpotce.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Vetterl, A., Clayton, R., Walden, I., 2019. Counting outdated honeypots: legal and useful.
In: Proceedings of the IEEE Security and Privacy Workshops, SPW’19, pp. 224–229.

Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M., 2020. Generalizing from a few examples: a survey
on few-shot learning. ACM Comput. Surv. 53 (3), 1–34. https://doi .org /10 .1145 /
3386252.

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J.,
Dong, Z., et al., 2023. A survey of large language models. preprint. arXiv :2303 .18223.

Matteo Boffa is a PhD student at Politecnico di Torino
(PoliTO), Italy and a member of the SmartData@Polito research
center. He obtained a B.Sc. in Management Engineering at Po-
litecnico di Torino in 2019 and an M.Sc. in ICT for Smart Soci-
eties at Politecnico di Torino in 2021. In his research, he applies
machine and deep learning solutions to the fields of cybersecurity
and networking.

Idilio Drago is an Associate Professor at the University of
Turin, Italy. His research interests include network security, ma-
chine learning, and Internet measurements. He is particularly
interested in how machine learning can help extract knowledge
from network data, and secure the network. Drago has a Ph.D.
from the University of Twente, the Netherlands. He was awarded
the IETF/IRTF Applied Networking Research Prize.

Marco Mellia (F’21) is a full professor at PoliTO, Italy. He
coordinates the SmartData@PoliTO centre, an interdisciplinary
lab focusing on Machine Learning, Data Science and applications
to network management and cybersecurity. He has co-authored
over 250 papers published in international journals and leading
conferences. He won the IRTF ANR Prize at IETF-88, and many
best paper awards. He is the EiC of the Proceedings of ACM on
Networking.
15
Computers & Security 141 (2024) 103805

Luca Vassio is an Assistant Professor at PoliTO, Italy. He
received ‘cum laude’ a Ph.D. in telecommunication engineering
and an M.Sc. in mathematical modeling. His research interests
span from big data analytics to machine learning and optimiza-
tion approaches, including GNNs. He applies them to internet
measurements, social networks, and mobility. He collaborated,
among others, with MIT, Bell Labs, and GE Aviation.

Danilo Giordano (S’22), Ph.D., is an Assistant Professor at
Politecnico di Torino and member at the SmartData@Polito lab.
His research interests focus on data analytics in Small Data and
Big Data environments using statistical and Machine Learning
(ML) techniques. In particular, he is interested in the develop-
ment and application of ML in the context of network mea-
surements and predictive maintenance and study future devel-
opments in shared mobility in smart cities. He has co-authored
more than 40 conference and journal papers and is a member
of the editorial board of the Computer Network journal. He was

awarded the best student paper award at the ITC conference and the IETF Applied Net-
working Research Prize in 2016.

Rodolfo Vieira Valentim has a master’s degree in Computer
Science at UFES (Brazil). In 2015, he was awarded a scholar-
ship to spend one year at the Hanze Institute of Technology in
the Netherlands as an exchange student. His research interests
are Network Security, Artificial Intelligence, and Anomaly Detec-
tion. Currently, he is a Ph.D. student conducting his research at
the SmartData@PoliTo Center in association with Huawei. His
research aims to build an AI-assisted approach for network secu-
rity based on multiple darknets and honeypots.

Zied Ben Houidi is a Principal AI Researcher in the Huawei
Paris Research Center working on the intersection of NLP and
networks with applications to network control, data analysis and
security. He received his PhD from Université Pierre et Marie
Curie in France while working at Orange Labs. He then joined
Bell Labs where he led various research projects on network data
valorization (e.g. human-level behaviour analytics) as well as au-
tomated reasoning for standards specification.

http://refhub.elsevier.com/S0167-4048(24)00106-8/bibA7FFF335A2E2236C565846D9784AA927s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibA7FFF335A2E2236C565846D9784AA927s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibA7FFF335A2E2236C565846D9784AA927s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibA7FFF335A2E2236C565846D9784AA927s1
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib8FE9D4D886E6CA6AD65C7FB5583433EEs1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bib8FE9D4D886E6CA6AD65C7FB5583433EEs1
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibCFFA401BADB0ADE6677104230CF12685s1
http://refhub.elsevier.com/S0167-4048(24)00106-8/bibCFFA401BADB0ADE6677104230CF12685s1

	LogPrécis: Unleashing language models for automated malicious log analysis
	1 Introduction
	2 Background and related work
	2.1 Language models
	2.2 Related work
	2.3 Language models vs static analysis

	3 LM pipeline and design choices
	3.1 Input: commands, statements, sessions
	3.2 Downstream classification tasks
	3.3 Design choices
	3.4 Fine-tuning for specific classification task
	3.5 Performance metrics

	4 LogPrécis design and evaluation
	4.1 Datasets
	4.2 Labelling process
	4.3 Design choice comparison
	4.4 LogPrécis for log analysis

	5 LogPrécis in the wild - word level analysis
	5.1 Inference characterisation
	5.2 Shell commands to tactics
	5.3 Tactics to shell commands

	6 LogPrécis in the wild - session fingerprints
	6.1 Fingerprints at the session level
	6.2 Fingerprint evolution over time
	6.3 LogPrécis for novelty detection
	6.4 Session prototype extraction
	6.5 Tracking session morphing

	7 Conclusion
	8 Appendix
	8.1 DOTA and dhpcd over time
	8.2 ShellShock
	8.3 Communities explanation

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

