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A B S T R A C T

This paper introduces an innovative data-driven approach to uncertainty quantification (UQ) in complex
engineering designs based on polynomial chaos expansion (PCE) and least-square support-vector machine
(LSSVM). While PCE is a prevalent UQ method, its reliance on a predefined model form poses limitations
in the model complexity, training accuracy, and efficiency in high-dimensional settings. To overcome this,
we propose a nonparametric reformulation that draws equivalence with the kernel-based LSSVM. Leveraging
special implicit kernels based on Hermite or Legendre polynomials, our method achieves accurate predictions
with reduced training data. The model is trained through the dual space LSSVM formulation, thereby exploiting
the so-called ‘‘kernel trick’’, while PCE coefficients up to an arbitrary order are efficiently obtained post-
training. Validation encompasses a diverse range of scenarios, including standard benchmarks and real-life
applications in electrical engineering involving up to 26 independent random input parameters. The proposed
‘‘PCE-LSSVM’’ method exhibits superior performance over traditional PCE implementations. It achieves up to
7 times smaller root-mean-square error and up to 10 times lower dispersion across various training datasets,
showcasing superior performance even with a significantly reduced number of training samples. Notably, this
approach is 2 to 50 times more efficient compared to alternative approaches such as ordinary least square
regression or Gaussian quadratures. Overall, PCE-LSSVM emerges as a powerful and efficient tool for accurate
UQ in complex engineering systems.
1. Introduction

Uncertainty quantification (UQ) is becoming of paramount impor-
tance in many domains of science to assess how complex systems react
to random perturbations of their parameters, thus supporting design
optimization and decision making. A (definitely non-exhaustive) list
of applications includes the modeling of weather predictions (Moosavi
et al., 2021), water quality (Freni and Mannina, 2010), water us-
age (Pang and O’Neill, 2018), energy production systems (Kim et al.,
2019), the energy performance of buildings (Srivastav et al., 2013), as
well as the design and safety analysis of nuclear reactors (Avramova
and Ivanov, 2010) and structural health monitoring (Lorenzoni et al.,
2016). Moreover, in modern mass production electronics, manufac-
turing tolerances and process variations play a key limiting factor to
evergrowing miniaturization and frequency scaling and must suitably
taken into account during the design phase (Dietrich and Haase, 2011;
Weng et al., 2015).

In this context, polynomial chaos expansion (PCE) (Xiu and Kar-
niadakis, 2002) has been widely adopted as a robust and well-con-

∗ Correspondence to: Department of Electronics and Telecommunications, Politecnico di Torino, Turin 10129, Italy.
E-mail address: paolo.manfredi@polito.it (P. Manfredi).

solidated tool for UQ and still represents a very active field of re-
search (Liu and Jiang, 2023; Kantarakias and Papadakis, 2023; Bürkner
et al., 2023; Zhang and Ni, 2023; García-Merino et al., 2023; Vauchel
et al., 2023; Lee and Rahman, 2023; Yang et al., 2023). The PCE
leverages special classes of orthogonal polynomials to approximate the
desired quantity of interest (QoI). The popularity of the PCE stems
from the fact that statistical information, like moments and sensitiv-
ity indices, is analytically derived from the model coefficients (Su-
dret, 2008). Indeed, as opposed to other surrogate modeling tools, the
method is specifically designed to deal with uncertain inputs. The PCE
method has been extensively demonstrated to outperform brute force
Monte Carlo (MC) methods in terms of trade-off between accuracy and
efficiency, especially for relatively smooth problems that depend on a
moderate number of uncertain parameters.

Several approaches exist for the calculation of the PCE coefficients.
Most of them are general, as they work on the set of governing equa-
tions, and therefore they are readily applied in any domain (Xiu, 2009).
The stochastic Galerkin method applies projections to the original set
of stochastic equations to arrive at an augmented but deterministic
952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.engappai.2024.108182
Received 1 August 2023; Received in revised form 21 February 2024; Accepted 26
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
February 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:paolo.manfredi@polito.it
https://doi.org/10.1016/j.engappai.2024.108182
https://doi.org/10.1016/j.engappai.2024.108182
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108182&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Engineering Applications of Artificial Intelligence 133 (2024) 108182P. Manfredi and R. Trinchero
set of equations in the unknown coefficients (Ghanem and Spanos,
1991). This method is considered to be the most accurate. However,
it is intrusive, in that it requires to access and modify the governing
equations, and hence it is hardly applicable in conjunction with existing
numerical tools, especially proprietary ones, and/or to nonlinear prob-
lems. Pseudo-spectral collocation methods approximate the projection
integrals by means of suitable quadrature rules, e.g., Gauss or sparse-
grid schemes (Xiu, 2007; Xiu and Hesthaven, 2005). In this regard,
they only need to collect samples of the QoI evaluated for specific
configurations of the input parameters. Their main limitation is that
the number of quadrature nodes increases dramatically with the ex-
pansion order and the number of input dimensions, a problem that is
mitigated only in part by using sparse strategies. Finally, regression-
based approaches fit the model coefficients via a suitable regression
scheme (Hadigol and Doostan, 2018). While ordinary least square
(OLS) strategies are hardly applicable because of the large number of
samples they require to overdetermine the system, sparse approaches
are able to work with a limited amount of data and identify a subset
of most important coefficients. A popular example is the least-angle
regression (LAR) (Blatman and Sudret, 2011), which rapidly became
a popular state-of-the-art technique due to its general applicability
and capability to work with limited data. In general, one of the main
limitations of the PCE is that it is a parametric method, meaning that
the form and the size of the model are determined upfront by the
predefined (maximum) expansion order and truncation scheme, even
for sparse methods. The achievable accuracy is also limited upfront by
the selected expansion order.

In recent years, the burgeoning of machine learning methods has
paved the way to their application to UQ tasks (Psaros et al., 2023).
For instance, neural networks (Shin and Choi, 2023; Zhu et al., 2023;
Qi and Harlim, 2023; Zhang and Shafieezadeh, 2023;
Garg and Chakraborty, 2023; Antil et al., 2023) as well as kernel-based
methods like support vector machines (He et al., 2019; Trinchero et al.,
2018) and Gaussian process regression (Bilionis and Zabaras, 2012;
Bhattacharyya, 2022; Chahar and Mukhopadhyay, 2023; Chang and
Zeng, 2023; Peng et al., 2023; Li et al., 2023) have been investigated for
UQ problems. Specifically, kernel methods are nonparametric as they
do not exhibit a predefined model form. Their complexity scales well
with the input dimensionality, while in fact being mainly determined
by the amount of available training data. In most cases, the learning
capability is virtually arbitrary, provided that a sufficient amount of
training data is provided. In particular, the least-square formulation
of support-vector machines (Suykens et al., 2002) exhibits superior
generalization performance compared to competing methods, and the
performance is not significantly affected by the dimensionality of the
input data (dos Santos et al., 2012). The least-square support-vector
machine (LSSVM) regression has been applied, e.g., to the identification
of thermal processes (dos Santos et al., 2012), to the prediction of
energy consumption (Kaytez et al., 2015), and to the modeling of the
activity of HIV-1 protease inhibitors (Cui and Yan, 2009). As opposed
to the PCE, machine learning methods are general purpose techniques
that can reproduce the input–output relation of a complex simulation
environment, thus lacking interpretability in the UQ scenario. Indeed,
they are used as mere surrogates of the expensive simulator to predict a
large number of samples of the QoI, from which statistical information
is numerically extracted in a MC-like analysis.

This paper bridges the gap between the PCE and kernel-based
machine learning methods by providing a link between the former and
the LSSVM regression. In particular, it is shown that the PCE and the
primal space LSSVM formulation are in fact equivalent, provided that
the classical set of orthogonal polynomials is used as basis functions
in the feature space. Furthermore, two special kernels are introduced
that reproduce the inner product of an infinite sequence of Hermite
or Legendre polynomials. Thanks to these special kernels, the model
training is performed in the equivalent dual space formulation by
2

exploiting the so-called ‘‘kernel trick’’, while the PCE coefficients are
retrieved via back-projection onto the primal feature space. This is
possible because the feature space functions are known, a situation
that rarely holds with standard kernels, and makes the training of the
PCE model virtually transparent to the input dimensionality, expansion
order, and number of basis functions. Indeed, the PCE coefficients
are analytically retrieved in post-processing for each individual basis
function and up to an arbitrary order, without the need to compute
the complete basis at once. The novel contribution put forward in this
paper is twofold: on the one hand, we present an elegant theoretical
framework that links the PCE and LSSVM methods, in which the former
is cast as a primal space formulation of the latter, while the training
is performed in the dual space. On the other hand, we show that the
advocated approach achieves better accuracy compared to the state-of-
the-art LAR method by using a substantially smaller number of training
samples. Specifically, we assess the performance as follows: we quantify
the accuracy based on both the root-mean-square error (RMSE) and
coefficient of determination; we evaluate the reproducibility based on
the dispersion of the above-mentioned metrics across different training
datasets; we determine the efficiency based on the number of training
data and computational resources required.

The remainder of this paper is organized as follows. Sections 2
and 3 provide a brief overview of the PCE and LSSVM methods, as
needed for the subsequent developments. Section 4 first introduces a
link between the two methods based on an explicit definition of the
kernel, truncated to a finite expansion order. This is an intermediate
step that is useful to understand the final result. Then, in Section 5, an
implicit definition of the kernel is introduced for the case of Hermite
and Legendre expansions. The method is illustrated based on a simple
one-dimensional function in Section 6. It is then applied to challenging
application test cases belonging to the electrical engineering domain
in Section 7 and to classical benchmark functions in Section 8. The
outcomes of these analyses are summarized and discussed in Section 9.
Finally, conclusions are drawn in Section 10.

2. Polynomial chaos expansion

This section introduces the PCE, which is the first ingredient of the
proposed methodology. In particular, we review the basic properties,
the orthogonal basis functions, and the state-of-the-art solutions for the
calculation of the expansion coefficients, as needed for the subsequent
developments and to properly compare the proposed technique with
the available approaches.

Consider a set of 𝑑 uncertain parameters 𝒙 = (𝑥1,… , 𝑥𝑑 ). We further
assume the uncertain parameters to be independent and, for the ease of
notation, to have the same distribution. The PCE seeks to approximate
a target function 𝑦 = (𝒙), mapping a configuration 𝒙 of the input
parameters to the corresponding output 𝑦, with a polynomial model in
the form of Xiu and Karniadakis (2002), Xiu (2009)

𝑦 ≈ 𝑦̂ = PCE(𝒙) =
∑

𝜿∈
𝑐𝜿𝜓𝜿 (𝒙), (1)

where 𝜓𝜿 are multivariate polynomials. The basis functions are con-
structed as the product of univariate orthonormal polynomials, i.e.,

𝜓𝜿 (𝒙) =
𝑑
∏

𝑗=1
𝜁𝜅𝑗 (𝑥𝑗 ) (2)

according to the multi-index 𝜿 = (𝜅1,… , 𝜅𝑑 ) ∈ N𝑑 . Since deg(𝜁𝑘) = 𝑘,
the multi-index 𝜿 defines the degree of the basis function in each
dimension.

2.1. Basic properties

The univariate polynomials satisfy the orthogonality condition

⟨𝜁𝑘, 𝜁𝑚⟩ = 𝜁𝑘(𝑥)𝜁𝑚(𝑥)𝑤(𝑥)𝑑𝑥 = 𝛿𝑘𝑚, (3)
∫R
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where 𝑤(𝑥) is the probability density function of the each individ-
ual uncertain parameter 𝑥. The orthogonality readily extends to the
multivariate bases because of their construction via (2).

One of the key aspects of the PCE is the definition of the set of multi-
indices  ⊂ N𝑑 , which in turns defines the truncation of the expansion.
The most common choices are based on bounding some norm of the
multi-indices by a maximum degree 𝑝, e.g., ‖𝜿‖∞ ≤ 𝑝 (tensor product
truncation), ‖𝜿‖1 ≤ 𝑝 (total degree truncation), or ‖𝜿‖𝑢 ≤ 𝑝, with
0 < 𝑢 < 1 (hyperbolic truncation), leading to increasingly sparser
expansions (Blatman and Sudret, 2011).

The PCE (1) can be rewritten with a scalar indexing as

PCE(𝒙) =
𝐾
∑

𝑘=0
𝑐𝑘𝜓𝑘(𝒙), (4)

where the scalar index 𝑘 maps to the elements of , which are assumed
o be ordered according to a given rule (typically, graded lexicographic
rdering). Hence, 𝐾 = || − 1. Note that a zero-based indexing is
referred, since the first term is always of order zero. Throughout this
aper, we will use either notation as convenient.

One of the peculiar properties of PCEs is that, for any 𝐿2 function,
the approximation error tends to zero if the expansion order 𝑝 is
increased (Xiu, 2009), i.e.,

‖𝑦 − 𝑦̂‖2
𝐿2 = lim

𝐾→∞∫R𝑑
(

(𝒙) −PCE(𝒙)
)2𝑤(𝒙)𝑑𝒙 = 0 (5)

which is equivalent to letting 𝑝 → ∞. Since the norm is defined based
on the inner product (3), a function is 𝐿2 if it has finite variance.
Moreover, thanks to the orthogonality of the polynomials, statistical
moments and sensitivity information are obtained analytically from
the PCE coefficients. For example, the mean and the variance of 𝑦 are
obtained as

E {𝑦} ≈ E {𝑦̂} = 𝑐0 (6)

and

Var {𝑦} ≈ Var {𝑦̂} =
𝐾
∑

𝑘=1
𝑐2𝑘 , (7)

respectively. Sobol’s sensitivity indices, describing the contribution of
individual inputs to the output variance, are obtained by summing
the squares of appropriate subsets of the coefficients (Sudret, 2008).
Because of the aforementioned statistical properties, the PCE has been
widely adopted for uncertainty quantification problems over the recent
years (Najm, 2009; Kaintura et al., 2018; Lüthen et al., 2021).

2.2. Orthogonal polynomials

According to the Wiener–Askey scheme (Xiu and Karniadakis, 2002),
there exist well-known bases of orthogonal polynomials that satisfy (3)
for standard probability distributions. For example, Hermite, Legendre,
and Jacobi polynomials are orthogonal for the Gaussian, uniform, and
beta distributions, respectively. In general, it is possible to numerically
compute orthogonal polynomials for arbitrary and possibly correlated
distributions (Cui and Zhang, 2018a,b). However, for the most general
case of a correlated and non-Gaussian distribution, the multivariate
polynomials are no longer separable as in (2). In the following sections,
we focus the attention on Hermite and Legendre polynomials, which are
the ones associated to the popular Gaussian and uniform distributions.

2.2.1. Hermite polynomials
We consider a Gaussian distributed random parameter 𝑥. We further

assume that 𝑥 is normalized so that 𝑥 ∼  (0, 1). Note that this
can be always achieved by proper translation and scaling. Hence, the
probability distribution of 𝑥 is

𝑤(𝑥) = 1
√

𝑒−
𝑥2
2 . (8)
3

2𝜋 𝜁
he probabilist’s Hermite polynomials are orthogonal based on the
bove measure, and they are generated by the three-term recurrence
elation (Gradshteyn and Ryzhik, 2014)

𝑒𝑘+1(𝑥) = 𝑥𝐻𝑒𝑘(𝑥) − 𝑘𝐻𝑒𝑘−1(𝑥), (9)

or 𝑘 ≥ 0, with 𝐻𝑒0(𝑥) = 1 and 𝐻𝑒−1(𝑥) = 0. The first five Hermite
olynomials are therefore

𝑒0(𝑥) = 1

𝑒1(𝑥) = 𝑥

𝑒2(𝑥) = 𝑥2 − 1

𝑒3(𝑥) = 𝑥3 − 3𝑥

𝑒4(𝑥) = 𝑥4 − 6𝑥2 + 3.

Moreover, since

𝐻𝑒𝑘,𝐻𝑒𝑘⟩ = ‖

‖

𝐻𝑒𝑘‖‖
2
𝐿2 = 𝑘!, (10)

he orthonormal Hermite polynomials, which we shall use for the PCE
1), are defined as

𝑘(𝑥) =
𝐻𝑒𝑘(𝑥)
√

𝑘!
, (11)

the first five being

𝜁0(𝑥) = 1

𝜁1(𝑥) = 𝑥

𝜁2(𝑥) = (𝑥2 − 1)∕
√

2

𝜁3(𝑥) = (𝑥3 − 3𝑥)∕
√

6

𝜁4(𝑥) = (𝑥4 − 6𝑥2 + 3)∕
√

24.

2.2.2. Legendre polynomials
We now consider a uniformly distributed random parameter 𝑥. We

urther assume that 𝑥 is normalized so that 𝑥 ∼  (−1, 1), which
an be always achieved by proper translation and scaling. Hence, the
robability distribution of 𝑥 is

(𝑥) =

{

1
2 |𝑥| < 1
0 |𝑥| > 1

. (12)

The orthogonal polynomials w.r.t. the above measure are the Legen-
dre polynomials, which are generated by the three-term recurrence
relation (Doman, 2015)

𝑃𝑘+1(𝑥) =
2𝑘 + 1
𝑘 + 1

𝑥𝑃𝑘(𝑥) −
𝑘

𝑘 + 1
𝑃𝑘−1(𝑥), (13)

or 𝑘 ≥ 0, with 𝑃0(𝑥) = 1 and 𝑃−1(𝑥) = 0. The first five Legendre
olynomials are therefore

0(𝑥) = 1

1(𝑥) = 𝑥

2(𝑥) =
3
2
𝑥2 − 1

2

𝑃3(𝑥) =
5
2
𝑥3 − 3

2
𝑥

𝑃4(𝑥) =
35
8
𝑥4 − 30

8
𝑥2 + 3

8
.

ince

𝑃𝑘, 𝑃𝑘⟩ = ‖

‖

𝑃𝑘‖‖
2
𝐿2 = 1

2𝑘 + 1
, (14)

the orthonormal Legendre polynomials are defined as

𝜁𝑘(𝑥) =
√

2𝑘 + 1𝑃𝑘(𝑥), (15)

he first five being

0(𝑥) = 1

(𝑥) =
√

3 𝑥
1
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.3. Calculation of the PCE coefficients

Owing to the orthogonality of the basis polynomials, the PCE coef-
icients are rigorously computed as

𝑘 = ⟨𝑦, 𝜁𝑘⟩ = ∫R𝑑
(𝒙)𝜁𝑘(𝒙)𝑤(𝒙)𝑑𝒙. (16)

n practice, the above integral is difficult to evaluate in high-dimensi-
nal settings and/or when the target function  is expensive to eval-
ate. Hence, various numerical techniques were devised for the calcu-
ation of the coefficients (Xiu, 2009; Marelli et al., 2022).

.3.1. Quadrature-based projection methods
Pseudo-spectral collocation methods approximate the integral (16)

y means of Gauss quadratures, possibly combined with sparse (e.g.,
molyak’) grids (Xiu, 2007; Xiu and Hesthaven, 2005). In either case,
he PCE coefficients are calculated as (Marelli et al., 2022)

𝑘 ≈
𝑄
∑

𝑞=1
𝑦𝑞𝜓𝑘(𝒙𝑞)𝑤𝑞 , (17)

hich is an approximation of (16) based on a given quadrature rule
ith 𝑄 nodes 𝒙𝑞 and corresponding weights 𝑤𝑞 , whereas the 𝑦𝑞 =
(𝒙𝑞) are the output observations computed at the quadrature nodes.

lbeit usually very accurate, this approach bears two limitations:

1. The number of quadrature nodes is typically (much) larger than
the number of PCE coefficients, i.e., 𝑄 ≫ 𝐾 + 1, even when
sparse grids are used. This is often not affordable in complex
designs that require time-consuming simulations to compute the
required output observations.

2. It requires to evaluate the output observations at specified
points, which is not always possible, e.g., when data are avail-
able from previous experiments that cannot be easily reper-
formed. Therefore, this approach is not fully ‘‘data-driven’’.

s an example, a third-order (𝑝 = 3) and ten-dimensional (𝑑 = 10) PCE
expansion with total degree truncation features 𝐾 + 1 = 286 terms and
requires 𝑄 = 410 ≈ 106 samples for the projection with a full Gauss
quadrature rule, and a still rather large number of 𝑄 = 1771 samples
with a Smolyak’ grid.

2.3.2. Least-square regression method
Regression-based approaches use samples of the original function to

build an overdetermined problem that is then solved in the least-square
sense (Hadigol and Doostan, 2018), i.e.,

𝒄 = (𝑐0,… , 𝑐𝐾 )𝖳 = arg minE

⎧

⎪

⎨

⎪

⎩

( 𝐾
∑

𝑘=0
𝑐𝑘𝜓𝑘(𝒙) −(𝒙)

)2⎫
⎪

⎬

⎪

⎭

, (18)

where 𝒄 is the vector of PCE coefficients. This leads to the well-known
OLS solution

𝒄 =
(

𝑨𝖳𝑨
)−1 𝑨𝖳𝒚, (19)

where 𝑨 is a matrix with entries 𝐴𝑙𝑘 = 𝜓𝑘(𝒙𝑙) and 𝒚 = (𝑦1,… , 𝑦𝐿) is the
vector of observations, with 𝑦𝑙 = (𝒙𝑙) for 𝑙 = 1,… , 𝐿. As opposed to
quadrature rules, the sampling points are not predetermined, and they
are typically drawn according to the input distribution. In this case,
the requirement is 𝐿 > 𝐾 in order for the regression problem to be
overdetermined. Hence, this method is more parsimonious in terms of
data. Nonetheless, the calculation is less rigorous and prone to larger
4

errors related to the specific set of training data.
2.3.3. Sparse regression methods
Sparse regression methods, such as least-angle regression (LAR)

(Blatman and Sudret, 2011) or orthogonal matching pursuit (Baptista
et al., 2019), are able to identify a sparse subset of basis functions and
calculate the corresponding coefficients by relaxing the requirement
of the system to be overdetermined w.r.t. the original number of
unknowns. Compared to (18), LAR uses a sparse subset of expansion
terms  ⊆  and adds a penalty on the 1-norm of the coefficient vector,
i.e., it solves

𝒄 = arg min
𝒄∈R||

E

⎧

⎪

⎨

⎪

⎩

( 𝐾
∑

𝑘=0
𝑐𝑘𝜓𝑘(𝒙) −(𝒙)

)2⎫
⎪

⎬

⎪

⎭

+ 𝜆‖𝒄‖1, (20)

where ‖𝒄‖1 =
∑

𝒌∈ |𝑐𝒌|. The penalty is a regularization term that
favors low-rank solutions (Marelli et al., 2022). The LAR algorithm
iteratively selects regressors from a candidate set, which is initialized to
the complete set of the full-blown PCE, based on the correlation to the
current residual. Contrary to both the quadrature and OLS methods,
the LAR does not require the number of available samples 𝐿 to be
greater than the (total) number of PCE terms 𝐾 + 1. Because of this
feature, this method can be considered to be fully data-driven, as it
tries to fit the best possible model given the available data. However,
it should be noted the number of identifiable coefficients is limited by
the relation max || = min(𝐾 + 1, 𝐿− 1). Therefore, the number of non-
zero coefficients identified by LAR is bounded by the total amount of
available data.

2.3.4. Stochastic Galerkin method
All the aforementioned methods are non-intrusive, meaning that

they only require some evaluations of the actual function (𝒙) to
calculate the coefficients. On the contrary, the stochastic Galerkin
method (Ghanem and Spanos, 1991) operates on a (linear) system of
equations by performing Galerkin projections to arrive at an augmented
and coupled system of equations in the unknown coefficients, from
which the dependence on the uncertain parameters is removed so that
it can be solved deterministically. It is intrusive in that it requires access
to the system of equations generating the model output 𝑦.

2.4. Limitations of the state-of-the-art methods

The main limitation of the stochastic Galerkin method is that it
requires access to the underlying model equations to be modified by
means of Galerkin projections. Therefore, it is hardly applicable to
complex engineering designs, especially to those that require the use
of proprietary software for their simulation. Moreover, the application
of the Galerkin method to nonlinear systems is highly challenging.
Projection methods and classical regression-based approaches share the
same limitation of requiring a number of samples that is larger than the
number of unknown coefficients to be estimated. While the latter may
work with fewer samples, they are also less accurate. In this framework,
the sparse regression method based on LAR turns out to be the most
comparable to the proposed PCE-LSSVM method, and in general to
machine learning techniques. Therefore, it shall be used as a reference
throughout this paper.

Furthermore, for virtually any state-of-the-art method, the main
limitation of the PCE is that it is a parametric model, i.e., its form (and
hence, also the maximum achievable accuracy) is determined a priori,
and the full set of basis functions must be developed in order to solve
for the coefficients. Since the number of basis functions tends to grow
exponentially, even for sparser truncation schemes, the classical PCE
method becomes impractical in high dimensions and/or for problems
that require large expansion orders.

To overcome the abovementioned limitations, we introduce in the
following sections a novel nonparametric formulation of the PCE, in

which the model training is cast as a LSSVM problem.
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3. Least-square support-vector machines

In this section, we outline the second ingredient, i.e., the LSSVM
method and, particularly, the main features that allow drawing the
sought-for analogy with the PCE.

The LSSVM method, in its primal space formulation, seeks to find a
model in the form of Suykens et al. (2002)

𝑦 ≈ 𝑦̂ = LSSVM(𝒙) = ⟨𝒘,𝝋(𝒙)⟩ + 𝑏 =
𝐾
∑

𝑘=1
𝑤𝑘𝜑𝑘(𝒙) + 𝑏, (21)

where 𝝋(𝒙) = (𝜑1(𝒙),… , 𝜑𝐾 (𝒙)) is a vector of basis functions (not
necessarily orthogonal). The model (21) is a parametric model with
feature space 𝝋 ∶ R𝑑 → R𝐾 and is notably similar to (1), with the
zero-order term explicitly represented by 𝑏.

The primal space model (21) is equivalently cast in the dual space
formulation, which reads

LSSVM(𝒙) =
𝐿
∑

𝑙=1
𝛼𝑙𝑘(𝒙,𝒙𝑙) + 𝑏, (22)

where
{

𝒙𝑙
}𝐿
𝑙=1 is a set of ‘‘training samples’’ of the input parameters 𝒙

and

𝑘(𝒙,𝒙′) =
⟨

𝝋(𝒙),𝝋(𝒙′)
⟩

=
𝐾
∑

𝑘=1
𝜑𝑘(𝒙)𝜑𝑘(𝒙′) (23)

is a kernel function. In fact, the dual space model is a linear com-
bination of kernel functions centered at the training samples. The
coefficients 𝜶 and 𝑏 are computed by solving the linear system
(

𝜴 + 𝑰𝐿∕𝛾 𝟏𝐿
𝟏𝖳𝐿 0

)(

𝜶
𝑏

)

=
(

𝒚
0

)

, (24)

where:

• 𝒚 = (𝑦1,… , 𝑦𝐿)𝖳 is the vector of observations evaluated at the
training samples, i.e., 𝑦𝑙 = (𝒙𝑙) for 𝑙 = 1,… , 𝐿;

• 𝑰𝐿 is the 𝐿 × 𝐿 identity matrix and 𝟏𝐿 = (1,… , 1)𝖳 ∈ R𝐿 is a
column vector of ones;

• 𝛾 is a regularization hyperparameter, which is optimized by min-
imizing some error metric, e.g., a cross-validation error;

• 𝜴 is a 𝐿 × 𝐿 Gram matrix with entries

𝛺𝑙𝑚 = 𝑘(𝒙𝑙 ,𝒙𝑚) =
𝐾
∑

𝑘=1
𝜑𝑘(𝒙𝑙)𝜑𝑘(𝒙𝑚). (25)

Moreover, the coefficients 𝜶 satisfy
𝐿
∑

𝑙=1
𝛼𝑙 = 0. (26)

Once the dual space coefficients 𝜶 are computed, the primal space
coefficients 𝒘 are obtained as

𝑤𝑘 =
𝐿
∑

𝑙=1
𝛼𝑙𝜑𝑘(𝒙𝑙), (27)

i.e., as a linear combination of the basis functions evaluated at the
training samples.

There are two features that make the LSSVM model attractive. First
of all, the dual space formulation (22) involves 𝐿+ 1 terms, which are
obtained by solving the (𝐿 + 1) × (𝐿 + 1) linear system (24), instead
of 𝐾 + 1 terms as in the primal space (21) or PCE (1) models. Hence,
the complexity of the dual space model is determined by the available
training data, which in general we want to be smaller than the size
𝐾 of the feature space. Most importantly, the inner products in the
kernel definition (23) do not need to be computed explicitly, since any
(implicit) function 𝑘 ∶ R𝑑 × R𝑑 → R that satisfies Mercer’s condition,
i.e.,

𝑔(𝒙)𝑘(𝒙,𝒙′)𝑔(𝒙′)𝑑𝒙𝑑𝒙′ ≥ 0, ∀𝑔(𝒙) ∈ 𝐿2, (28)
5

∬R𝑑×R𝑑
is a valid kernel for the LSSVM (Mohri et al., 2018). Hence, both
the kernel matrix 𝜴 in (24) and the model predictions in (22) can
be computed by mere function evaluations, which is the so-called the
‘‘kernel trick’’. Popular implicit kernels are, e.g., the polynomial kernel

𝑘(𝒙,𝒙′) = (𝑐 + 𝒙𝖳𝒙′)𝑝 (29)

and the squared-exponential (or RBF) kernel

𝑘(𝒙,𝒙′) = exp

(

−
‖

‖

𝒙 − 𝒙′‖
‖

2

2𝜎2

)

, (30)

here 𝑐, 𝑝, and 𝜎 are hyperparameters that are typically optimized as
art of the training process. On the other hand, a kernel can be always
uilt explicitly as in (23) or, more generally, as (Mohri et al., 2018)

(𝒙,𝒙′) =
𝐾
∑

𝑘=1
𝜆𝑘𝜑𝑘(𝒙)𝜑𝑘(𝒙′), (31)

which satisfies (28) provided that 𝜆𝑘 > 0, ∀𝑘.

4. Nonparametric polynomial chaos formulation: Explicit kernel
definition

This section introduces a first, preliminary formulation of the pro-
posed nonparametric PCE method. The formulation leverages the ex-
plicit definition of the kernel function as the inner product of the
feature space functions. While not being computationally efficient, we
deem this intermediate step useful to understand the final framework.

It is argued that the primal space LSSVM model (21) is virtually
identical to the PCE model (1) if the same set of orthonormal polyno-
mials (𝜓1(𝒙),… , 𝜓𝐾 (𝒙)) is taken as basis functions in the feature space.

he kernel function is then built explicitly according to (23), leading
o

(𝒙,𝒙′) =
𝐾
∑

𝑘=1
𝜓𝑘(𝒙)𝜓𝑘(𝒙′). (32)

ith the above definitions, the primal space coefficients 𝑤𝑘 in (21),
btained via (27), correspond to the PCE coefficients 𝑐𝑘 for 𝑘 > 0,
hereas the zero-order coefficient 𝑐0 corresponds to the bias term 𝑏.
ence, a nonparametric PCE model can be computed with the steps
utlined in Algorithm 1.

It should be noted that the predictions 𝒚∗ for an ensemble of points
𝒙∗𝑖 }

𝑁
𝑖=1 can be compactly obtained as

∗ = 𝜴∗𝜶 + 𝑏, (33)

here 𝜴∗ ∈ R𝑁×𝐿 is a matrix with entries

𝛺∗
𝑖𝑙 = 𝑘(𝒙∗𝑖 ,𝒙𝑙) (34)

for 𝑖 = 1,… , 𝑁 and 𝑙 = 1,… , 𝐿.
Hermite polynomials were already utilized in the kernel construc-

tion to improve the performance in support-vector machine classi-
fiers (Moghaddam and Hamidzadeh, 2016). Moreover, a similar non-
parametric formulation of the PCE was introduced in Cheng et al.
(2017), Cheng and Lu (2018) to compute Sobol’s sensitivity indices
through support-vector regression, whose formulation is similar to the
LSSVM primal space one. However, at present, this formulation still
bears two important limitations:

1. The modeling accuracy is limited by the truncation of the PCE,
i.e., by the maximum order of the polynomials that are used in
constructing the kernel. Obviously, the same limitation affects
also the classical PCE formulation (1).

2. The explicit kernel definition in (32) requires to build and eval-
uate all the 𝐾 basis functions, which can make the evaluation of
the kernel extremely intensive if 𝐿 and/or 𝐾 are large.
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Algorithm 1: Nonparametric PCE
1 Generate a set of input training samples {𝒙𝑙}𝐿𝑙=1;
2 for 𝑙 = 1 to 𝐿 do
3 Collect corresponding observations: 𝑦𝑙 ← (𝒙𝑙);
end

4 Build the 𝐿 × 𝐿 kernel matrix 𝜴 according to (25), using
𝜑𝑘 = 𝜓𝑘, ∀𝑘;

5 Find the coefficients 𝜶 and 𝑏 by solving the LSSVM system
(24), possibly using cross-validation to optimise the
hyperparameter 𝛾;

6 Use (22) to compute predictions;
7 Get the first PCE coefficient: 𝑐0 ← 𝑏;
8 for 𝑘 = 1 to 𝐾 do
9 Retrieve the PCE coefficients 𝑐𝑘 via (27), using 𝜑𝑘 = 𝜓𝑘;
end

Indeed, as already noted, the main advantage of kernel methods
s that they can avoid the explicit calculation of the inner products
sing the kernel trick, i.e., by means of an implicit function evaluation.
n other words, it is desirable to find an implicit kernel function that
llows building matrix 𝜴 without going through the explicit generation
f the basis functions. This is discussed in the next section.

. Implicit kernel definition

In this section, we introduce implicit kernel definitions for Hermite
nd Legendre polynomials, as needed when the input parameters have
aussian or uniform distribution, respectively. These implicit functions
llow avoiding the explicit computation of the kernel as the inner
roduct of a finite and potentially large number of feature space
unctions, thereby dramatically improving both the accuracy and the
omputational efficiency.

.1. Implicit kernel for Hermite polynomials

Let us introduce the probability version (Kibble, 1945) of Mehler
ernel in one dimension (Mehler, 1866), which reads

(𝑥, 𝑥′|𝜌) = 1
√

1 − 𝜌2
exp

(

−𝜌2(𝑥2 + 𝑥′2) − 2𝜌𝑥𝑥′

2(1 − 𝜌2)

)

=
∞
∑

𝑘=0

𝜌𝑘

𝑘!
𝐻𝑒𝑘(𝑥)𝐻𝑒𝑘(𝑥′), (35)

for 0 < 𝜌 < 1. By recalling (11), the kernel is rewritten as

𝐸(𝑥, 𝑥′|𝜌) =
∞
∑

𝑘=0
𝜌𝑘𝜁𝑘(𝑥)𝜁𝑘(𝑥′). (36)

Hence, the Mehler kernel allows for an implicit calculation of (31), with
𝜆𝑘 = 𝜌𝑘 and the orthonormal Hermite polynomials as basis functions in
the feature space. Notably, for 𝜌 = 1, it would correspond to the kernel
of a one-dimensional Hermite PCE with an infinite number of terms!
Unfortunately, the Mehler kernel has obviously a singularity for 𝜌 = 1.
Nevertheless, using 𝜌 < 1 in (36) is equivalent to further rescaling the
asis functions, which makes them no longer orthonormal. Indeed, by
ntroducing the rescaled Hermite polynomials

𝑘̃(𝑥) =
√

𝜌𝑘𝜁𝑘(𝑥) =

√

𝜌𝑘

𝑘!
𝐻𝑒𝑘(𝑥), (37)

we can further express (36) as

𝐸(𝑥, 𝑥′|𝜌) =
∞
∑

𝑘=0
𝜁𝑘(𝑥)𝜁𝑘(𝑥′). (38)

Therefore, (35) can be used as an implicit LSSVM kernel, whose feature
space functions are defined in (37). Once the dual space coefficients are
6
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obtained by solving (24), the primal space coefficients are obtained via
(27). This leads to

𝑤̃𝑘 =
𝐿
∑

𝑙=1
𝛼𝑙𝜁𝑘(𝑥𝑙) =

√

𝜌𝑘
𝐿
∑

𝑙=1
𝛼𝑙𝜁𝑘(𝑥𝑙), (39)

where a tilde was used to highlight that the 𝑤̃𝑘 are the coefficients of
the rescaled Hermite polynomials, and not of the standard orthonormal
ones. The primal space LSSVM model therefore reads

LSSVM(𝑥) ≈
𝐾
∑

𝑘=1
𝑤̃𝑘𝜁𝑘(𝑥) + 𝑏 =

𝐾
∑

𝑘=1

√

𝜌𝑘𝑤̃𝑘𝜁𝑘(𝑥) + 𝑏, (40)

which, for a finite number of terms, is an approximation of the dual
space model. It should be noted that there is no limitation on the
value of 𝐾, and the number of terms in the primal space model can be
increased at will. From (40), we obtain the standard PCE coefficients
as 𝑐0 = 𝑏 and

𝑐𝑘 =
√

𝜌𝑘𝑤̃𝑘 = 𝜌𝑘
𝐿
∑

𝑙=1
𝛼𝑙𝜁𝑘(𝑥𝑙), (41)

or 𝑘 > 1. Hence, once the dual space coefficients 𝜶 are determined,
he PCE coefficients are individually and inexpensively obtained as a
inear combination of the corresponding basis polynomials evaluated at
he training samples. It should be noted that, as opposed to the explicit
efinition in (32), the Mehler kernel also embeds the zero-order basis
unction 𝜁0 = 1. However, the corresponding coefficient 𝑐0 cannot be
eproduced with (41), which would lead to zero because of (26). This
s reasonable since, as noted before, the zero-order term is actually
rovided by the bias term 𝑏.

For the multivariate case, the kernel is readily constructed as the
roduct of univariate kernels (Vapnik, 1998)

(𝒙,𝒙′|𝝆) =
𝑑
∏

𝑗=1
𝐸(𝑥𝑗 , 𝑥′𝑗 |𝜌𝑗 ), (42)

here 𝝆 = (𝜌1,… , 𝜌𝑑 ). In general, the kernel parameters can differ
or each dimension, thereby making the kernel anisotropic. The above
ernel is readily shown to embed all basis function of an infinite
eries of multivariate Hermite polynomials. When such a kernel is used
n a multivariate problem, the calculation of the coefficients in (41)
eneralizes to

𝜿 =

( 𝑑
∏

𝑗=1
𝜌
𝜅𝑗
𝑗

) 𝐿
∑

𝑙=1
𝛼𝑙𝜓𝜿 (𝒙𝑙), (43)

or 𝜿 ∈ ∖{𝟎}, where the multi-index notation has been used for
onvenience.

The outlined nonparametric PCE formulation has several advan-
ages compared to the state of the art. First of all, it does not directly
uffer from the ‘‘curse of dimensionality’’, since there is no need to
xplicit build all basis functions simultaneously. Indeed, the PCE co-
fficients are retrieved in post processing using (43), by considering
ne basis function at a time and up to an arbitrary order, since the
ernel inherently embeds all possible basis functions. The considered
asis functions could be even selected adaptively. Furthermore, the for-
ulation is equivalent to using a PCE with an infinite number of terms.
his means that the accuracy is not limited a priori by a predefined
xpansion order. Rather, the model can represent any 𝐿2 function with
n arbitrary accuracy, provided that a sufficient number of training
amples is used. The explicit kernel formulation (32) tends to approach
he implicit one as the expansion order is increased. Finally, it is worth
entioning that in principle any value of 𝜌 ∈ (0, 1) can be used. In fact,

his is another kernel hyperparameter to be optimized in the training

hase.
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5.2. Implicit kernel for Legendre polynomials

A similar implicit kernel is found also for Legendre polynomials.
Starting from the univariate and non-normalized Legendre polynomials
(13), the kernel is defined as (Prudnikov et al., 1990; Anli and Gungor,
2007)

𝐸(𝑥, 𝑥′|𝜌) =
2𝐾(𝑢)

𝜋
√

𝑎 − 𝑏
=

∞
∑

𝑘=0
𝜌𝑘𝑃𝑘(𝑥)𝑃𝑘(𝑥′), (44)

for −1 ≤ 𝑥, 𝑥′ ≤ 1 and 0 < 𝜌 < 1, where

𝑢 =
√

2𝑏
𝑏 − 𝑎

, 𝑎 = 1 − 2𝑥𝑥′𝜌 + 𝜌2, 𝑏 = −2𝜌
√

1 − 𝑥2
√

1 − 𝑥′2 (45)

nd 𝐾(𝑢) is the complete elliptic integral of the first kind:

(𝑢) = ∫

1

0

𝑑𝑡
√

(1 − 𝑡2)(1 − 𝑢2𝑡2)
. (46)

In (44), 𝜌 plays a similar role as in (35), and it is therefore consid-
ered as a hyperparameter. Following the above definitions, we intro-
duce the rescaled Legendre polynomials

𝜁𝑘(𝑥) =
√

𝜌𝑘𝑃𝑘(𝑥). (47)

Combining (44) and (47) with the dual space LSSVM formulation, the
primal space coefficients are obtained as

𝑤̃𝑘 =
𝐿
∑

𝑙=1
𝛼𝑙𝜁𝑘(𝑥𝑙) =

√

𝜌𝑘
𝐿
∑

𝑙=1
𝛼𝑙𝑃𝑘(𝑥𝑙). (48)

Recalling (15), the primal space model is expressed in terms of the
orthonormal Legendre polynomials as

LSSVM(𝑥) ≈
𝐾
∑

𝑘=1
𝑤̃𝑘𝜁𝑘(𝑥) + 𝑏

=
𝐾
∑

𝑘=1

√

𝜌𝑘𝑤̃𝑘𝑃𝑘(𝑥) + 𝑏 =
𝐾
∑

𝑘=1

√

𝜌𝑘

2𝑘 + 1
𝑤̃𝑘𝜁𝑘(𝑥) + 𝑏, (49)

which is a finite-order approximation of the dual space model.
The multivariate kernel is constructed from the univariate ker-

nel (44) as in (42). After solving the dual space LSSVM problem, the
PCE coefficients for the multivariate orthonormal Legendre polynomi-
als are retrieved as 𝑐0 = 𝑏 and

𝑐𝜿 =
⎛

⎜

⎜

⎝

𝑑
∏

𝑗=1

𝜌
𝜅𝑗
𝑗

√

2𝜅𝑗 + 1

⎞

⎟

⎟

⎠

𝐿
∑

𝑙=1
𝛼𝑙𝜓𝜿 (𝒙𝑙), (50)

for 𝜿 ∈ ∖{𝟎}.

5.3. Implementation

The proposed method is implemented in MATLAB. A Bayesian
optimizer (Močkus, 1989; Garnett, 2023) is invoked to tune the hy-
perparameters, i.e., 𝝆 ∈ (0, 1)𝑑 and 𝛾 > 0, based on leave-out-out
cross-validation error. This corresponds to a 𝑘-fold cross-validation
with 𝑘 = 𝐿 folds, i.e., as many as the number of available training
samples. At each iteration of the optimizer, 𝐿 models are built based
on 𝐿−1 training samples and used to predict the observation at the left-
out sample. This strategy is viable, as the training of a single LSSVM
model is relatively quick. For large training datasets, employing cross-
validation with a lower number of folds may represent a good tradeoff
in favor of training efficiency.

Since the benefit of anisotropic kernels is found to be marginal,
sotropic kernels will be used in all simulations, i.e., the same 𝜌 is

used for each input dimension. The availability of implicit kernels for
Hermite and Legendre polynomials suggests that similar kernels may
be found also for other orthogonal polynomials from the Wiener–Askey
scheme.
7

Fig. 1. Coefficients of a tenth-order Hermite PCE of function (51). Blue circles:
reference results computed by projection; red diamonds and green asterisks: coefficients
computed with the LAR and the proposed PCE-LSSVM formulation, respectively, based
on 𝐿 = 5 training samples.

6. Illustrative example

Before considering realistic application examples, the advocated
method is first illustrated based on an analytical one-dimensional func-
tion:

𝑦 = (𝑥) = 𝑒−10∕𝑥 (2 cos(𝑥) + sin(𝑥)) . (51)

he following error metrics are introduced to assess and compare the
erformance of the various methods:

• The RMSE between the target value and the model prediction for
𝑁 randomly generated input samples, defined as

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2. (52)

The RMSE has several advantageous features like handling the
penalization of smaller errors, sharing the same units and scale as
the QoI thereby being more interpretable, and being less sensitive
to outliers (Bajaj, 2023).

• The coefficient of determination (𝑅2) over the same dataset,
defined as

𝑅2 = 1 −
∑𝑁
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)

2

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦̄𝑖)2

, (53)

where

𝑦̄ = 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 (54)

is the dataset mean. The coefficient of determination describes
how much of the total variation in the QoI is explained by the
variation in the model. If the sum of the squared error between
the model predictions and the reference is small, 𝑅2 will be close
to 1 (ideal case), meaning that the model is able to capture nearly
100% of the variance in the QoI. Conversely, if the model is not
able to capture any variance in the QoI, 𝑅2 will be close to 0 or
even negative (Bajaj, 2023).

In all simulations for this example, an independent test dataset with
𝑁 = 10000 samples is considered. Since the target function is analytical
and one dimensional, the reference PCE coefficients are computed via
an accurate numerical integration of (16).

6.1. Gaussian variability

We start by considering the case of a Gaussian distribution of the

input parameter, with 𝑥 ∼  (5, 1). The reference coefficients of a
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Table 1
Error metrics for the LAR and PCE-LSSVM methods for five independent runs with 𝐿 = 5 training samples.

run #1 run #2 run #3 run #4 run #5

LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM

RMSE 1.280×10−1 1.595 × 𝟏𝟎−𝟐 1.318 × 10−1 2.026 × 𝟏𝟎−𝟐 1.243 × 10−1 1.579 × 𝟏𝟎−𝟐 2.117 × 10−1 3.121 × 𝟏𝟎−𝟐 1.260 × 10−1 2.062 × 𝟏𝟎−𝟐

𝑅2 0.6343 0.9944 0.6125 0.9909 0.6553 0.9948 0 0.9787 0.6458 0.9905
tenth-order Hermite PCE are obtained by numerically computing the
projection integral (16). The results are shown by the blue circles in
the stem plot of Fig. 1. Next, we compute the same coefficients using
a state-of-the-art sparse method based on LAR (Blatman and Sudret,
2011) and the proposed PCE-LSSVM formulation. For the former, the
PCE module in the UQLab toolbox is used (Marelli et al., 2022).
We choose LAR as a reference since it is one of the few PCE-based
methods that is able to work with ‘‘sparse’’ data and compute PCE
coefficients even when the amount of training samples is smaller than
the total number of PCE terms, which is what we are targeting with the
proposed PCE-LSSVM method. Other methods, such as OLS regression
or quadrature-based approaches, would require a larger amount of
training data and therefore would not be directly comparable. Indeed,
for both methods, the same and rather small set of 𝐿 = 5 training
samples is considered, drawn according to the distribution of 𝑥. Owing
to the Gaussian distribution of the input parameter 𝑥, the Mehler kernel
is used in the PCE-LSSVM. The PCE coefficients are then retrieved from
the dual space coefficients as outlined in Section 5. The results of the
two approaches are shown in Fig. 1 by the red and green markers,
respectively. It is observed that, despite the very low number of training
samples, which is less than half of the coefficients, the values obtained
via the PCE-LSSVM are much closer to the reference ones. Because of
the low number of training samples, the coefficients for 𝑘 > 2 estimated
by the LAR are actually zero, and the UQLab model is in fact of order
two.

Table 1 provides the error metrics achieved by the two meth-
ods. Since the performance may depend on the specific realization of
the training samples, especially given the small number considered,
the results are reported for five independent runs. For all the runs,
the proposed PCE-LSSVM method substantially outperforms the LAR,
achieving RMSE values that are almost one order of magnitude lower. It
is important to mention that the RMSE and 𝑅2 values of the PCE-LSSVM
method are computed based on the primal space PCE model, which
is truncated to order 10. Nonetheless, the difference w.r.t. the dual
space model, which uses a kernel with an infinite number of expansion
terms, is in this case negligible, meaning that the truncation error for
a tenth-order PCE is marginal. This is also highlighted by the small
magnitude of the last two coefficients, i.e., 𝑐9 = 6.2289 × 10−4 and
10 = 1.5422 × 10−3, which provide a less than 0.01% contribution
o the variance according to (7). Indeed, the difference between the
rimal space and dual space predictions or, equivalently, the drop
n the coefficients’ magnitude can be used as reasonable criteria to
etermine the PCE truncation when converting from the dual space to
he primal space model.

Fig. 2 shows the results computed based on 𝐿 = 20 training sam-
ples. The left panel compares the PCE coefficients. Now, two different
maximum expansion orders are considered for the LAR, namely 𝑝 = 3
(purple square markers) and 𝑝 = 10 (red diamond markers). For the
ormer, the LAR is able to provide an estimate for all coefficients. For
he latter, only two additional coefficients are identified compared to
he case with 𝐿 = 5 samples, thereby yielding a fourth-order expansion.
t is noted that the preselected expansion order affects the results. This
s because the LAR is a parametric method whose output depends on
he particular form of the regressors. Typically, in regression-based
ethods, the coefficients of a lower-order expansion are estimated with
igher accuracy for a given training set size. Nevertheless, the error is
till rather large for both expansion orders. On the contrary, the PCE-
SSVM coefficients now perfectly match the reference ones. Moreover,
8

ince they are computed in post-processing and individually for each
basis function, the truncation order can be tuned at will, with no need
to retrain the model. This highlights another important advantage in
the operation of the proposed method.

The right panel of Fig. 2 shows instead the parametric approxi-
mation of the target function provided by the various models. The
predictions of the third- and tenth- (or, in fact, fourth-) order models
computed with UQLab (dashed purple and red lines, respectively) are
compared with the approximation provided by the third-order primal
space PEC-LSSVM model (dash-dotted yellow line) and by the dual
space model (dotted green line). The tenth-order primal space PCE-
LSSVM model is omitted since it is very close to the dual space one.
The comparison shows that the accuracy of the dual space model,
which is based on an infinite expansion, is mainly determined by the
training samples. On the contrary, the accuracy of the primal space
model is limited by the truncation. Overall, with 20 training samples,
the dual space PCE-LSSVM models achieves excellent accuracy. Even
when considering a low-order truncation in the primal space, however,
the results are still more accurate than the corresponding ones obtained
with the LAR, as shown by the accuracy of the coefficients. The superior
performance is further confirmed by the error metrics reported in
Table 2. It is noted that, for a given expansion order, the primal space
PCE-LSSVM model provides higher accuracy compared to the LAR.
Moreover, it is also confirmed that the tenth-order primal space model
and the dual space one provide similar accuracy.

6.2. Uniform variability

The simulations are repeated by now assigning a uniform variability
to the input parameter, with 𝑥 ∼  (1, 9). Therefore, the Legendre
kernel (44) is used. The coefficients of a tenth-order Legendre PCE are
computed with both the LAR and the proposed PCE-LSSVM formulation
by using 𝐿 = 10 training samples. The results are provided in the
left panel of Fig. 3 (red diamonds and green asterisks) and compared
against the reference result obtained by projection (blue circles). In this
case, the LAR returns only two null coefficients, i.e., 𝑐2 and 𝑐9. How-
ever, a significant error is obtained even for the non-zero coefficients,
whereas the results achieved with the PCE-LSSVM are in excellent
agreement with the actual coefficients. The superior accuracy of the
PCE-LSSVM model is further appreciated in the right panel of Fig. 3,
which compares the parametric approximation provided by the UQLab
and PCE-LSSVM models. Despite an overall good accuracy in the center
of the interval, the UQLab model (dashed red line) exhibits a large error
towards the extrema of the interval. The PCE-LSSVM model is instead
very accurate everywhere and, also in this case, negligible difference
is found between the primal space and dual space models (dash-dotted
yellow and dotted green lines, respectively).

Table 3 collects the relevant figures concerning the accuracy of the
LAR and PCE-LSSVM methods for five independent runs. For this test
case with uniform variability, it is once again confirmed that the PCE-
LSSVM approach yields a more accurate model for a given expansion
order and training dataset. In particular, the RMSE is about two orders
of magnitude lower compared to the LAR result.

6.3. Implicit vs explicit kernels

As already noted, using implicit kernels provides two major advan-

tages:
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Fig. 2. Hermite PCE coefficients of function (51) (left) computed for different orders with 𝐿 = 20 training samples and corresponding function approximation (right). Blue: reference;
urple and red: models computed by means of LAR with maximum order 𝑝 = 3 and 𝑝 = 10, respectively; green: model obtained with the proposed PCE-LSSVM formulation. In the

right panel, the dotted green and dash-dotted yellow curves correspond to the PCE-LSSVM dual space model and primal space model truncated to order three, respectively.
Table 2
Error metrics for the LAR and PCE-LSSVM models trained with 𝐿 = 20 samples.
order LAR PCE-LSSVM (primal space) PCE-LSSVM (dual space)

𝑝 = 3 𝑝 = 10 𝑝 = 3 𝑝 = 10 –

RMSE 6.767 × 10−2 5.341 × 10−2 5.266 × 10−2 9.920 × 10−4 9.496 × 𝟏𝟎−𝟒

𝑅2 0.8978 0.9363 0.9381 1.0000 1.0000
Fig. 3. Left panel: coefficients of a tenth-order Legendre PCE of function (51) computed with 𝐿 = 10 training samples. The coefficients computed by means of LAR (red diamonds)
and the proposed PCE-LSSVM formulation (green asterisks) are compared to the exact coefficients obtained by projection (blue circles). Right panel: corresponding function
approximation. Solid blue line: actual function; dashed red line: UQLab model based on LAR; dash-dotted yellow and dotted green line: primal and dual space PCE-LSSVM models,
respectively.
Table 3
Error metrics for the LAR and PCE-LSSVM methods for five independent runs with 𝐿 = 10 training samples.

run #1 run #2 run #3 run #4 run #5

LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM

RMSE 9.165×10−2 7.641 × 𝟏𝟎−𝟒 1.004 × 10−1 3.708 × 𝟏𝟎−𝟑 1.004 × 10−1 9.624 × 𝟏𝟎−𝟒 1.543 × 10−2 8.918 × 𝟏𝟎−𝟒 7.736 × 10−2 1.205 × 𝟏𝟎−𝟑

𝑅2 0.8532 1.0000 0.8238 0.9998 0.8237 1.0000 0.9958 1.0000 0.8954 1.000
1. As seen from the dual space LSSVM formulation (22), the order
of the model is the same as the order of the kernel. Since implicit
kernels have an infinite dimensionality, the achievable accuracy
is inherently higher compared to explicit kernels, which are
bounded by a predefined expansion order.

2. We do not need to form the inner product (32) explicitly, which
would become intractable for high-dimensional problems with
thousands of basis functions.

In this section, we compare the performance between explicit and
mplicit kernels in the examples of the previous two sections. For the
xplicit kernels, the same order as for the target PCE is considered,
.e., 𝑝 = 10. It should be noted that the conversion from the dual space
o the primal space is in this case exact. Table 4 compares the error
etrics obtained with the LAR method and with the LSSVM formulation
sing both explicit and implicit kernels. The results for implicit kernels
efer to the primal space (PCE) model although, as already noted, the
9

difference w.r.t. the dual space model is negligible. It is observed that,
while being generally better than LAR, the formulation using explicit
kernels is substantially less accurate than the same formulation using
implicit kernels. Therefore, it will not be considered further in the
remainder of the paper.

7. Application examples: Circuit-level and full-wave simulations
of electronic designs

In this section, the proposed technique is applied to the uncer-
tainty quantification of electronic designs. Owing to the ever-growing
miniaturization, the impact of manufacturing processes on multiple
design parameters must be taken into account for a robust design.
The structures are typically described by either circuit-level equations
(relating voltages and currents) or electromagnetic equations (relating

the electric and magnetic fields). Since the quantity of interest (QoI)
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Table 4
Error metrics obtained for five independent runs with the LAR and PCE-LSSVM method, the latter implemented with both explicit and implicit kernels.

Run Metric Gaussian distribution Uniform distribution

𝐿 = 5 𝐿 = 20 𝐿 = 10

LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM

Explicit Implicit Explicit Implicit Explicit Implicit

#1 RMSE 1.312 × 10−1 7.505 × 10−2 2.131 × 𝟏𝟎−𝟐 2.828 × 10−2 1.460 × 10−3 8.189 × 𝟏𝟎−𝟒 1.1626 × 10−2 6.0808 × 10−3 1.0021 × 𝟏𝟎−𝟑

𝑅2 0.6159 0.8743 0.9899 0.9822 1.000 1.000 0.9976 0.9994 1.000

#2 RMSE 1.133 × 10−1 6.345 × 10−2 1.993 × 𝟏𝟎−𝟐 5.728 × 10−2 1.343 × 10−3 9.252 × 𝟏𝟎−𝟒 1.6403 × 10−2 5.0544 × 10−2 9.0075 × 𝟏𝟎−𝟒

𝑅2 0.7136 0.9101 0.9911 0.9268 1.000 1.000 0.9953 0.9553 1.000

#3 RMSE 1.189 × 10−1 6.061 × 10−2 1.850×𝟏𝟎−𝟐 3.377 × 10−2 1.509 × 10−3 7.441 × 𝟏𝟎−𝟒 9.6497 × 10−2 7.2710 × 10−2 1.5899 × 𝟏𝟎−𝟑

𝑅2 0.6843 0.9180 0.9924 0.9746 1.000 1.000 0.8372 0.9076 1.000

#4 RMSE 3.155 × 10−1 2.017 × 10−1 1.410 × 𝟏𝟎−𝟐 3.315 × 10−2 1.517 × 10−3 9.031 × 𝟏𝟎−𝟒 1.0751 × 10−2 2.2609 × 10−3 7.3802 × 𝟏𝟎−𝟒

𝑅2 −1.2223 0.0924 0.9956 0.9755 1.000 1.000 0.9980 0.9999 1.000

#5 RMSE 3.276 × 10−1 7.677 × 10−2 2.186 × 𝟏𝟎−𝟐 2.793 × 10−3 1.455 × 10−3 1.043 × 𝟏𝟎−𝟑 8.1370 × 10−2 7.9287 × 10−2 6.3323 × 𝟏𝟎−𝟒

𝑅2 −1.3956 0.8685 0.9893 0.9826 1.000 1.000 0.8843 0.8901 1.000
Table 5
Nominal geometrical parameters for the transmission line sections in the network of Fig. 4.

Parameter 𝑤1 𝑤2 𝑤3 𝑑1 𝑑2 𝑑3 𝑔 ℎ 𝑡1 𝑡2 𝑡3
Nominal value 150 μm 130 μm 170 μm 100 μm 140 μm 70 μm 150 μm 200 μm 30 μm 20 μm 40 μm
Fig. 4. Schematic of the multicondutor transmission line network for the first application test case (a) and cross-sectional geometry of the coupled transmission line sections (b).
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s often a function of time or frequency, and multiple QoIs may be
resent, particular care has to be taken in handling such large datasets.
naive approach would be to train a separate model for each output

nd time or frequency point of interest. However, this strategy turns
ut to be highly inefficient, since the training cost is usually low, yet
ot negligible. An effective approach based on dimensionality reduction
ia principal component analysis (PCA) was proposed in Manfredi and
rinchero (2020) and shall be adopted in this paper. The strategy is
eadily applied in conjunction with any data-driven surrogate modeling
echnique (e.g., Bhattacharyya (2022), Pulch and Youssef (2020)).
urther details will be provided later on, as needed. Moreover, for
requency-domain simulations, the QoIs are complex-valued. In this
ase, the real and the imaginary parts are handled separately, and the
quared magnitude of the difference is taken in the calculation of the
rror metrics (52) and (53).

.1. Test case #1: Crosstalk in a multiconductor transmission line network

The first application example considers the multiconductor trans-
ission line network of Fig. 4, which consists of a connection of lumped
C elements, distributed transmission line sections, and nonlinear loads
inverters) (Ahadi and Roy, 2016). The nominal values of the geomet-
ical parameters of the transmission lines are provided in Table 5. We
onsider three different simulation scenarios with an increasing number
f uncertain parameters. We investigate the voltage coupling from the
ource on the left to the 0.5-pF termination on the bottom right, which
s termed ‘‘far-end crosstalk’’ (𝑣𝐹𝐸𝑋𝑇 ). The excitation is a pulse with an

amplitude of 5 V, a duration of 1 ns, and rise/fall times of 100 ps. The
simulations are carried out using a Simulation Program with Integrated
Circuit Emphasis (SPICE) (Synopsis Inc., 2009), an industry standard
for circuit-level simulations (Vladimirescu, 1994). For each scenario,
reference results are generated via the MC simulation of an independent
10
test dataset with 𝑁 = 5000 random configurations of the uncertain
parameters, drawn according to a Latin hypercube scheme.

7.1.1. Scenario (a): Maximum crosstalk
In this first scenario, the variability is caused by six independent

geometrical parameters of the transmission lines, namely the trace
widths 𝑤𝑗 and their distances 𝑑𝑗 from the ground plane (with 𝑗 =
1, 2, 3). An independent Gaussian variation with a relative standard
deviation of 10% is assumed. The variation is considered to be the
same for all the traces and distances within the same section. The
gap between the traces 𝑔, the substrate thickness ℎ, and the trace
thicknesses 𝑡1, 𝑡2, 𝑡3, are considered to be deterministic parameters. We
ake the maximum crosstalk voltage occurring over time as the QoI.
his is particularly challenging, since the location and the sign of the
aximum crosstalk level may vary non-smoothly with the uncertain
arameters.

The UQLab toolbox and the proposed PCE-LSSVM formulation are
sed to compute a third-order Hermite PCE leveraging a total degree
runcation, which leads to 84 basis functions. For the latter, an isotropic
ehler kernel is used. Although with the PCE-LSSVM method the

xpansion order can be increased at will without re-training the model,
e fix it to 𝑝 = 3 for a direct comparison with LAR, which requires

to define the expansion order a priori. Both models are trained using
an increasing number of 𝐿 = {10, 20, 30} training samples. For each
parameter configuration, a transient simulation is performed and the
maximum of the absolute value of crosstalk over time is taken as the
QoI.

The results are collected in Table 6, which provides the mean
value and the standard deviation of the QoI predicted by the various
methods, as well as the RMSE between the surrogate models and the
MC samples. It is noted that, for all training set sizes, the PCE-LSSVM
method achieves better accuracy than LAR in terms of RMSE. Moreover,
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Table 6
Mean value, standard deviation, and RMSE versus MC obtained with LAR and PCE-LSSVM methods for three different training datasets with increasing number of samples.

MC 𝐿 = 10 𝐿 = 20 𝐿 = 30

LAR PCE-LSSVM LAR PCE-LSSVM LAR PCE-LSSVM

Mean (V) 0.4761 0.4842 0.4787 0.4755 0.4768 0.4759 0.4757
Std (V) 0.0549 0.0583 0.0571 0.0518 0.0541 0.0545 0.0542
RMSE (V) – 5.4466 × 10−2 7.6828 × 𝟏𝟎−𝟑 9.2424 × 10−3 5.1324 × 𝟏𝟎−𝟑 9.8703 × 10−3 4.8779 × 𝟏𝟎−𝟑
Fig. 5. RMSE obtained with the LAR (left) and PCE-LSSVM (right) methods over 50 independent runs and different training set sizes.
t also provides more accurate or comparable estimates of the mean and
tandard deviation for the training datasets with 𝐿 = 10 and 𝐿 = 20

samples. However, the convergence rate seems to be lower, and LAR
provides a more accurate estimate with the largest dataset.

For a more robust assessment of the performance in terms of accu-
racy and convergence, the analysis is repeated for 50 independent runs
for each training set size, and the results for the RMSE are provided
in Fig. 5. The two boxplots allows appreciating the dispersion of the
error achieved by the two methods across the various runs and for
the different training set sizes. In particular, the red line indicates the
median, the bottom and top edges are the 25th and 75th percentiles,
respectively, whereas the whiskers indicate the minimum and maxi-
mum values. The red crosses are outliers. This analysis shows that,
for this test case, the advocated PCE-LSSVM formulation significantly
outperforms the LAR, achieving both a lower median error (indicated
by the lower red bar) and a lower dispersion across different training
datasets (indicated by the narrower box size).

7.1.2. Scenario (b): Transient crosstalk
We now consider the entire transient crosstalk as the QoI, computed

at 𝑀 = 5001 equally-spaced time points over a window of 50 ns.
Moreover, in this second scenario, the variability is provided by the
trace widths 𝑤1, 𝑤2, 𝑤3, and the trace gap 𝑔, which are now considered
to vary independently also within the same section, leading to a total of
11 independent uncertain parameters. The same nominal values as in
the first test scenario are considered, again with a Gaussian distribution
and a 10% standard deviation.

The naive modeling of the crosstalk at each time point as a separate
output would require to train 5001 surrogates, which is impracti-
cal. Rather, we build a 𝑀 × 𝐿 training dataset 𝒀 and we apply
CA (Manfredi and Trinchero, 2020), leading to a compressed dataset

̃ = 𝑼̃𝖳(𝒀 − 𝒀̄ ), (55)

where 𝒀̄ is the dataset mean over the 𝐿 training samples and 𝑼̃ is a
𝑀 × 𝑛̃ matrix with the first 𝑛̃ left-singular vectors of 𝒀 − 𝒀̄ . A truncation
on the singular values 𝜎𝑛 is considered, such that
𝜎𝑛
𝜎1

< 𝛿 (56)

or ∀𝑛 > 𝑛̃. A threshold of 𝛿 = 10−2 is used in this paper. Hence, the
ataset 𝒁̃ is of size 𝑛̃ ×𝐿, typically with 𝑛̃ ≪ 𝑀 , and only 𝑛̃ surrogates
11
need to be trained. Predictions for the original outputs are obtained by
reverting (55), leading to a prediction dataset

𝒀̂ = 𝒀̄ + 𝑼̃ 𝒁̂ (57)

starting from matrix 𝒁̂, which contains the surrogate predictions for
the 𝑛̃ principal components.

Three training datasets with 𝐿 = {15, 30, 110} are considered, which
are compressed to 13, 15, and 18 principal components, respectively,
thereby achieving compression factor of over 99.6% in all cases. These
datasets are used to train a third-order Hermite PCE with total degree
truncation, which features up to 364 terms. Once again, we aim at using
an amount of training data that is much smaller than the number of
terms in the full-blown PCE, which makes LAR one of the only viable
solutions for the calculation of reference coefficients.

Fig. 6 collects the results, restricted to a window of 15 ns for the
sake of readability. For each training dataset, the top panels show the
standard deviation of the transient crosstalk computed from the MC
samples (solid blue line), with the UQLab surrogate based on LAR
(dashed red line), and with the primal space PCE-LSSVM model (dotted
green line). The bottom panels provide instead the RMSE. The plots
indicate that the standard deviation obtained with the proposed PCE-
LSSVM formulation better matches the reference result from the MC
analysis, especially when the number of training samples is small. This
is also confirmed by the (much) smaller RMSE, particularly in the
initial part of the transient. For the largest training dataset, the two
approaches achieve a similar accuracy. Therefore, also for this example,
it is confirmed that the proposed method yields a more accurate model
compared to the LAR when the number of training samples is small.

The above conclusion is further corroborated by Fig. 7, showing the
probability density function (PDF) of the crosstalk voltage at 1.7 ns (top
panels) and 3.2 ns (bottom panels) obtained with the three training
datasets. These were selected as two time points at which the crosstalk
voltage exhibits significant variability. It is observed that the PDFs
obtained from the PCE-LSSVM model trained with 15 samples are
remarkably accurate and do not substantially differ from the ones ob-
tained by using 110 training samples, and they are in good agreement
with the reference MC distribution. On the contrary, the UQLab model

attains a similar accuracy only with the largest training dataset.
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Fig. 6. Standard deviation (top panels) and RMSE (bottom panels) obtained with the PCE surrogates trained with LAR (dashed red lines) and PCE-LSSVM (dotted green lines)
using datasets of increasing size. In the top panels, the solid blue line is the reference standard deviation from the MC samples.
Fig. 7. PDF of the crosstalk voltage at 1.7 ns (top panels) and 3.2 ns (bottom panels). The distribution of the MC samples (blue bars) is compared against the PDF obtained from
the PCE-based surrogates trained with the LAR (solid red line) and PCE-LSSVM (dashed green line) using 𝐿 = 15 (left), 𝐿 = 30 (center), and 𝐿 = 110 samples (right).
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7.1.3. Scenario (c): Maximum crosstalk in high-dimensional settings
In order to push the proposed method to high-dimensional settings,

we further increase the number of independent uncertain parameters to
26. Now all the geometrical parameters indicated in Fig. 4 and Table 5,
i.e., the trace widths 𝑤1, 𝑤2, 𝑤3, the trace thicknesses 𝑡1, 𝑡2, 𝑡3, the trace
distances from the ground plane 𝑑1, 𝑑2, 𝑑3, the gap between the traces 𝑔,
and the substrate thickness ℎ, vary with a Gaussian distribution and a
10% relative standard deviation. The variation is independent for each
trace and section with the exception of the substrate thickness ℎ, for
which a common variation is assumed for all the three sections. This is
reasonable since all transmission lines lie on the same substrate. There-
fore, in addition to the substrate thickness, there are 11 independent
uncertain parameters in the first transmission line section and 7 in both
the second and third sections. As in the first scenario, we focus the
analysis on the maximum crosstalk over time. We use both LAR and
the proposed PCE-LSSVM to compute a third-order Hermite PCE, which
now features up to 3654 terms, based on three training datasets with
𝐿 = {40, 60, 80} samples only.

Fig. 8 compares the accuracy in terms of RMSE obtained with
the LAR and the PCE-LSSVM based on 50 independent runs. Also
for this scenario, the proposed PCE-LSSVM achieves a lower RMSE
compared to LAR. Specifically, the upper whiskers of the PCE-LSSVM
boxes are lower than the red lines of the LAR boxes, indicating that the
12

largest error obtained with the advocated technique is lower than the t
median error of the reference LAR method. This example confirms the
good performance of the proposed method also in a high-dimensional
scenario.

7.2. Test case #2: Microstrip line with ground plane discontinuity

The second test case deals with the microstrip transmission line
with ground plane discontinuity depicted in Fig. 9 (Manfredi and
Grivet-Talocia, 2021). Such a ground plane discontinuity affects the
return path of the current propagating along the line, causing a sig-
nificant degradation of the signal integrity. The electrical performance
is characterized by means of the scattering parameters 𝑆11 (return
loss) and 𝑆21 (insertion loss), which are complex-valued and frequency-
ependent quantities that describe the signal reflection and transmis-
ion along the line, respectively. For such a passive structure, their mag-
itude is limited between 0 and 1, respectively meaning zero and total
eflection/transmission. The magnitude is often expressed in decibels
dB), therefore ranging between −∞ and 0 dB. The scattering param-
ters are computed by means of electromagnetic full-wave simulations
t 1859 equally-spaced frequency points from dc to 10 GHz, performed
ia the CST Studio Suite® software from Dassault Systemès (Dassault
ystemès, 2022).

The variability is provided by the length and position of the slot in

he ground plane, which are ascribed a Gaussian distribution with a
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Fig. 8. RMSE obtained with the LAR (left) and PCE-LSSVM (right) methods over 50 independent runs and different training set sizes for the scenario with 26 independent uncertain
parameters.
Fig. 9. Geometry of the microstrip transmission line with ground plane discontinuity.
10% relative standard deviation. This example is particularly challeng-
ing because the large variability of the scattering parameters at high
frequency requires high expansion orders, unless a rational model is
used (Manfredi and Grivet-Talocia, 2021). Therefore, a Hermite PCE
of order 𝑝 = 10 is trained using 𝐿 = 50 samples. As before, PCA is
used to compress the training dataset and limit the amount of surrogate
models to build. The original training dataset, consisting of 50 samples
of the response computed at 1859 frequency points for each of the
four scattering parameters 𝑆𝑖𝑗 (with, 𝑖, 𝑗 = 1, 2), is compressed to a
mere 50 samples of 15 principal components only. Reference results are
generated with a MC analysis based on a test dataset with 𝑁 = 1000
configurations of the uncertain parameters.

Fig. 10 shows the results for the return loss (left panels) and inser-
tion loss (right panels). The top panels provide a subset of MC responses
(solid gray lines) as well as the average response computed from the MC
samples (solid blue line), from the PCE model trained with LAR (dashed
red lines), and with the primal space PCE-LSSVM model (dotted green
lines). A large variability is observed above 6 GHz, especially in the
insertion loss. This indicates that the transmission of information is
significantly affected around that frequency. In the higher frequency
range, a larger error on the average is also established for the LAR
model compared to the PCE-LSSVM one. The superior accuracy of the
PCE-LSSVM model is further confirmed by the bottom panels, which
provide the variance and the RMSE. A much lower error is obtained
with the PCE-LSSVM in the entire frequency range.

Fig. 11 shows the PDF of the magnitude of 𝑆11 (left) and 𝑆21 (right),
computed at the frequencies of 6.2 GHz (top panels) and 7.3 GHz
(bottom panels). These values are selected as two frequencies at which
the scattering parameters exhibit a large variability (cfr. Fig. 10). In this
case, the distribution of the MC samples (solid blue lines) is compared
against the results of two PCE models, one with order 𝑝 = 3 and
rained with 𝐿 = 20 samples and one with order 𝑝 = 10 and trained
ith 𝐿 = 50 samples. The former requires to train a surrogate for
13

2 principal components, in place of the 15 surrogates required by
Table 7
Nominal parameters for the transmission line sections and BJT in the schematic of
Fig. 12.

Parameter Nominal value

Microstrip trace widths 𝑤1, 𝑤2, 𝑤3 0.25 mm
Microstrip trace width 𝑤4 0.8 mm
Forward current gain 145
Base-emitter depletion capacitance 0.3109 pF
Base-collector depletion capacitance 0.1377 pF
Collector substrate capacitance 0.6675 pF
Collector inductance 1.1 nH
Base inductance 1.1 nH
Emitter inductance 0.25 nH
Base-emitter substrate resistance 25 Ohm
Base-emitter bonding pad capacitance 145 fF
Collector–emitter substrate resistance 19 Ohm
Collector–emitter bonding pad capacitance 145 fF

the larger dataset, whereas the latter is the same model as considered
in Fig. 10. The comparisons highlight once more that the PCE-LSSVM
model (dashed green lines) achieves a much higher accuracy compared
to the LAR model with the same order and training dataset (solid
red lines). In particular, a lower discrepancy is observed between the
two PCE-LSSVM models, with the tenth-order one being in excellent
agreement with the reference MC distribution. This is consistent with
the results of Manfredi and Grivet-Talocia (2021), which showed that a
single PCE of low order provides an inaccurate model at high frequency.

7.3. Test case #3: Low noise amplifier

The third and last application test case considers the low noise am-
plifier (LNA) whose schematic is illustrated in Fig. 12 (Buss, 1996). The
LNA makes use of a bipolar junction transistor (BJT) and is designed to
amplify an electrical signal at the frequency of 2 GHz with a nominal
gain of 16 dB when operating with a current of 5 mA at the collector
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Fig. 10. Variability analysis of the return loss (left panels) and insertion loss (right panels) of the microstrip line with ground plane discontinuity. The top panels show a subset
of responses from the MC analysis (solid gray lines) as well as the average response computed from the MC samples (solid blue line) and with the LAR and PCE-LSSVM models
(dashed red and dotted green lines, respectively). The bottom panels provide the RMSE instead, using the same color scheme.

Fig. 11. PDF of the magnitude of the return loss (left panels) and insertion loss (right panels) computed at 6.2 GHz (top panels) and 7.3 GHz (bottom panels). Solid blue lines:
reference distribution from the MC samples; solid red lines: PDF obtained from the PCE model of order 𝑝 = 3 (square markers) and 𝑝 = 10 (diamond markers) trained with LAR;
dashed green lines with cross and diamond markers: PDF obtained from the same PCE models trained with the PCE-LSSVM formulation.

Fig. 12. Schematic of the low noise amplifier.
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Fig. 13. PDF of the LNA gain at 2 GHz. The distribution of the MC samples (blue bars) is compared against the PDF obtained from the PCE model with coefficients computed
by means of LAR (solid red line) and PCE-LSSVM (dashed green line) using 𝐿 = 20 (left), 𝐿 = 40 (center), and 𝐿 = 60 samples (right).
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terminal. Specifically, the BJT with part number BFG425W produced by
NXP Semiconductors N.V. is used for the design. The circuit is simulated
in HSPICE to calculate the insertion loss (i.e., the scattering parameter
𝑆21) between the radio frequency (RF) input and output ports via a
small-signal analysis. The magnitude of 𝑆21 at the operating frequency
i.e., 2 GHz) corresponds to the gain. The SPICE model of the transistor
s available from the vendor website (N.V., 2012).

In this example, the variability is provided by 25 independent
ncertain parameters, which are summarized below:

• The resistance of the four resistors shown in the schematic of
Fig. 12;

• The capacitance of the six capacitors in the schematic of Fig. 12;
• The widths of the four microstrip transmission line sections

(i.e., TL𝑖, with 𝑖 = 1,… , 4);
• 11 parameters within the BJT model, which are listed in Table 7.

he nominal values of the resistors and capacitors are indicated in
ig. 12, whereas the nominal value of the uncertain transmission line
nd BJT parameters are indicated in Table 7. The Reader is referred to
he datasheet and the SPICE model of the BJT for the definition of the
nternal parameters of the transistor. All parameters have a uniform
istribution within ±20% around the nominal value. Both LAR and
he proposed PCE-LSSVM method are used to construct a third-order
egendre PCE, which features up to 3276 terms. Three training datasets
ith 𝐿 = {20, 40, 60} samples are considered. Reference results are
enerated via the MC simulation of an independent test dataset with
= 5000 samples.
Fig. 13 compares the PDFs obtained with LAR (solid red lines) and

CE-LSSVM (dashed green lines) against the reference distribution from
he MC simulation (blue histogram). For a given training set size, the
istribution obtained with the proposed method agrees better with the
eference. In particular, with both 𝐿 = 40 and 𝐿 = 60 samples, the
istribution of the PCE-LSSVM model is in excellent agreement with
he MC one.

The excellent accuracy achieved with a small training dataset by the
CE-LSSVM method is further confirmed by the boxplots in Fig. 14. It
s once again established that the advocated technique achieves a lower
rror for a given training set size as well as a lower dispersion across
ifferent training datasets. In particular, the median error obtained by
he PCE-LSSVM is two to three times lower than the one achieved with
he LAR.

. Benchmark functions

In this section, we consider popular benchmark functions for stochas-
ic methods to further validate the proposed PCE-LSSVM method. These
unctions are typically designed to stress the features of the tested
ethods. In particular, we introduce the following test functions of

ncreasing dimensionality.
15
.1. Ishigami function

The Ishigami function (Ishigami and Homma, 1990) is a popular
hree-dimensional benchmark for UQ and sensitivity analysis methods
cfr., e.g., Schobi et al., 2015). It is defined as

= (𝒙) = sin(𝑥1) + 7 sin2(𝑥2) + 0.1𝑥43 sin(𝑥1), (58)

ith 𝑥𝑖 ∼  (−𝜋, 𝜋), for 𝑖 = 1, 2, 3. Given the high nonlinearity, a large
xpansion order is necessary for PCE-based methods (cfr. Blatman and
udret, 2011). Therefore, we train a tenth-order Legendre expansion
or this function.

.2. Sobol’ function

The Sobol’ function (Soboĺ, 1993) is eight-dimensional with uniform
nputs:

= (𝒙) =
8
∏

𝑖=1

|4𝑥𝑖 − 2| + 𝑐𝑖
1 + 𝑐𝑖

, (59)

where 𝑥𝑖 =  (0, 1), for 𝑖 = 1,… , 8, and 𝒄 = (1, 2, 5, 10, 20, 50, 100, 500). It
is a non-smooth function around 𝑥𝑖 = 0.5, which we aim to model with
a third-order Legendre expansion.

8.3. O’Hagan function

The O’Hagan function was defined in Oakley and O’Hagan (2004)
as a 15-dimensional benchmark with Gaussian inputs:

𝑦 = (𝒙) = 𝒂𝖳1𝒙 + 𝒂𝖳2 sin(𝒙) + 𝒂𝖳3 cos(𝒙) + 𝒙𝖳𝑸𝒙, (60)

where 𝑥𝑖 ∼  (0, 1), for 𝑖 = 1,… , 15. We refer to Oakley and O’Hagan
(2004) for the definition of vectors 𝒂1, 𝒂2, 𝒂3 and matrix 𝑸. We model
the O’Hagan function using a third-order Hermite PCE.

8.4. Morris function

The Morris function is a 20-dimensional benchmark with uniform
inputs that was originally defined in Morris (1991). Since the original
definition featured some random coefficients, we consider here the
modified function introduced in Schobi et al. (2015), i.e.,

𝑦 = (𝒙) =
20
∑

𝑖=1
𝛽𝑖𝑤𝑖 +

20
∑

𝑖<𝑗
𝛽𝑖𝑗𝑤𝑖𝑤𝑗 +

20
∑

𝑖<𝑗<𝑙
𝛽𝑖𝑗𝑙𝑤𝑖𝑤𝑗𝑤𝑙 +5𝑤1𝑤2𝑤3𝑤4, (61)

where (Blatman, 2009)

𝑤𝑖 =

⎧

⎪

⎨

⎪

2
(

1.1𝑥𝑖
𝑥𝑖 + 0.1

− 0.5
)

𝑖 = 3, 5, 7

2(𝑥 − 0.5) otherwise
, (62)
⎩

𝑖
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Fig. 14. RMSE obtained with the LAR (left) and PCE-LSSVM (right) methods over 50 independent runs and different training set sizes for the LNA test case.
Fig. 15. RMSE obtained with the LAR (left) and PCE-LSSVM (right) methods over 50 independent runs and different training set sizes for the Ishigami (a), Sobol’ (b), O’Hagan
c), and Morris (d) benchmark functions.
ith 𝑥𝑖 ∼  (0, 1), for 𝑖 = 1,… , 20. The coefficients are defined as
ollows:

𝛽𝑖 =
{

20 𝑖 ≤ 10
(−1)𝑖 𝑖 > 10

𝛽𝑖𝑗 =
{

−15 𝑖, 𝑗 ≤ 6
(−1)𝑖+𝑗 𝑖, 𝑗 > 6

𝛽𝑖𝑗𝑙 =
{

−10 𝑖, 𝑗 ≤ 5
0 𝑖, 𝑗 > 5

.

(63)

e build a third-order Legendre PCE for this function.

.5. Results

Fig. 15 collects the boxplots describing the RMSE achieved by the
AR and PCE-LSSVM methods over 50 independent runs. For each
enchmark, an independent test dataset is considered with 𝑁 = 10000
amples, drawn according a Latin hypercube sampling scheme. The
ize of the training datasets varies with the test function instead, and
he choice is inspired by literature results (Schobi et al., 2015). The
omparisons show that for the low-dimensional Ishigami and Sobol’
unctions, the proposed PCE-LSSVM achieves a lower, or at least less
ispersed error with the smaller training datasets. However, the con-
ergence appears to be slower, with the LAR obtaining more accurate
16
predictions for the largest training dataset. For the high-dimensional
O’Hagan and Morris functions instead, the PCE-LSSVM method attains
a better performance for all training set sizes. For these benchmarks,
a similar performance is observed as for the application test cases of
Section 7.

Table 8 compares the performance, in terms of training set size
and RMSE, of the LAR and PCE-LSSVM methods against alternative
state-of-the-art approaches, namely a full Gauss quadrature, a Smolyak’
sparse quadrature, and an OLS regression. All the additional methods
are implemented via the UQLab toolbox. It should be noted that the
two quadrature methods provide a deterministic result, as the sampling
points are predefined by the quadrature scheme. Conversely, the OLS,
LAR, and PCE-LSSVM techniques use randomly drawn samples and
their result is therefore stochastic. Another source of variability in the
PCE-LSSVM is the Bayesian optimizer used to tune the hyperparam-
eters. Hence, their RMSE is assessed in terms of both average and
standard deviation over 50 runs, the latter indicating the dispersion
of the performance across the various training datasets. For the OLS,
the minimum required dataset size is considered, corresponding to
𝐿 = || + 1.

The results show that the full Gauss quadrature provides, as ex-

pected, the most accurate results. For 𝑑 > 4, the Smolyak’ quadrature
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Fig. 16. PDF of the Ishigami (top left), Sobol’ (top right), O’Hagan (bottom left), and Morris (bottom right) functions. The blue histograms are the reference distributions. The
shaded areas indicate the dispersion of the distributions predicted with the LAR (red) and PCE-LSSVM (green) methods over 50 independent runs.
Table 8
Performance comparison of various PCE methods over the benchmark functions.

Function Dimensionality Metric Full Gauss quadrature Smolyak’ quadrature OLS LAR PCE-LSSVM

Ishigami 3
# training samples 1331 6292 287 20 20
RMSE (mean) 0.0065 0.0287 1.9262 4.0959 3.0964
RMSE (std) n/a n/a 2.4507 0.6719 0.4323

Sobol’ 8
# training samples 65 536 969 166 16 16
RMSE (mean) 0.1279 0.1249 1.8760 0.2813 0.3669
RMSE (std) n/a n/a 0.9498 0.0900 0.0552

O’Hagan 15
# training samples ≈ 109 OOM 817 50 50
RMSE (mean) OOM OOM 22.1561 8.6353 5.1110
RMSE (std) n/a n/a 13.3636 0.8370 0.3236

Morris 20
# training samples ≈ 1012 OOM 1772 30 30
RMSE (mean) OOM OOM 251.7106 37.4001 29.2775
RMSE (std) n/a n/a 229.3047 3.0402 1.8952
requires far fewer samples while providing comparable accuracy (cfr.
the Sobol’ function). Nevertheless, both quadrature methods run out
of memory (OOM) for the O’Hagan and Morris functions due to the
extremely large number of samples required. It is also noted that
the OLS provides larger average error and dispersion for the higher-
dimensional benchmarks compared to LAR and PCE-LSSVM, despite the
much larger dataset used. For most test cases, the proposed PCE-LSSVM
method achieves lower average RMSE and lower dispersion compared
to LAR.

For a better visualization of the prediction performance, Fig. 16
compares the distributions predicted with the two methods. The blue
histograms are the PDFs of the reference samples. The red and green
shaded areas show the dispersion, over the 50 independent runs, of
the distributions predicted by the LAR and PCE-LSSVM models, re-
spectively. The results refer to the models trained with the largest
dataset, i.e., with 𝐿 = 60 for the Ishigami function, 𝐿 = 64 for the
obol’ function, 𝐿 = 150 for the O’Hagan function, and 𝐿 = 120 for

the Morris function. Hence, the area indicates the upper and lower
bounds of the predicted distributions. The results are consistent with
the performance highlighted in Fig. 15. Indeed, a good accuracy, but
also a larger dispersion of the PCE-LSSVM model is observed for the
Ishigami and Sobol’ functions. The proposed method attains instead a
higher accuracy for the O’Hagan and Morris functions. The analysis of
this section suggests that the advocated PCE-LSSVM method is compet-
itive with the state-of-the-art LAR method also for these challenging
17

benchmarks.
9. Discussion on accuracy, computational cost, and future re-
search

This section provides an assessment of the proposed PCE-LSSVM
method in terms of accuracy and computational cost, and it outlines
directions for future research.

The PCE-LSSVM technique was applied on a number of test cases,
including an illustrative one-dimensional function, real-life electronic
designs with up to 26 uncertain parameters, and standard benchmark
functions with up to 20 uncertain inputs. The advocated technique was
combined with PCA to efficiently tackle multi-output problems.

For most of the examples, the PCE-LSSVM achieved a very high
accuracy even with a very low number of training samples. For the
illustrative function (51), the PCE coefficients of a tenth-order expan-
sion were estimated with a good accuracy using five training samples
only, and with an excellent accuracy with 20 and 10 training samples
for a Gaussian and a uniform input distribution, respectively. Very
good results were shown also in terms of RMSE and coefficient of
determination 𝑅2 over five independent runs with different sets of ran-
domly drawn training samples. For the electronic designs, the proposed
method achieved, for a given training set size, an average RMSE that
is up to 7 times smaller and a dispersion that is up to 10 times lower
across different training datasets compared to the state-of-the-art LAR
method. Specifically, the PCE-LSSVM methods attained a very low error

with as few as 𝐿 = 10, 𝐿 = 15, and 𝐿 = 40 training samples for the
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Table 9
Summary of the main distinctive features of the proposed PCE-LSSVM method and alternative state-of-the-art approaches.

Feature Stochastic Galerkin Full Gauss quadrature Smolyak’ quadrature OLS LAR PCE-LSSVM

Intrusive yes no no no no no
Deterministic yes yes yes no no no
Dispersion n/a n/a n/a high moderate low
# training samples n/a very high high moderate small small
crosstalk scenarios with 𝑑 = 6, 𝑑 = 11, and 𝑑 = 26 uncertain parameters,
respectively. This is at least 3 to 45 times smaller than the number
of training samples required by alternative approaches based on OLS
regression or Gaussian quadratures. Excellent results were reported
with 𝐿 = 50 training samples for the slotted waveguide example. This
test case was particularly challenging since the response was modeled
in a broadband frequency range, in which the scattering parameters
exhibited a very large variability. Excellent results were achieved also
for the low noise amplifier test case with as few as 𝐿 = 40 train-
ing samples. Finally, the proposed method was further benchmarked
against standard functions. Compared to LAR, a superior performance
was observed especially for the higher-dimensional O’Hagan and Morris
functions.

Based on the results reported in this work, Table 9 summarizes
the key features of the main state-of-the-art PCE techniques and the
proposed PCE-LSSVM method. All methods but the stochastic Galerkin
one (not considered in this paper) are data-driven and hence non-
intrusive. The OLS, LAR, and PCE-LSSVM are all stochastic, meaning
that the achieved result varies depending on the specific choice of
the (randomly generated) training dataset. However, as shown by
the multiple test cases, the PCE-LSSVM method achieves the lowest
dispersion across different training datasets. It was also observed that
the quadrature methods require a massive amount of sampling points
and quickly run out of memory. The number of training samples
required by the OLS regression method is lower-bounded by the total
number of PCE coefficients, thereby being still moderately high for
high expansion orders and/or large dimensionalities. Both LAR and
PCE-LSSVM methods work well with a substantially smaller amount
of training data instead, with the latter overall achieving a superior
performance in most of the considered test cases.

The good performance of the PCE-LSSVM method can be explained
by the fact that it leverages kernels of infinite dimensionality (equiv-
alent to expansions of infinite order), which makes the accuracy vir-
tually infinite for any 𝐿2 function. This contrasts with standard PCEs,
whose the accuracy is limited a priori by the predefined expansion
order. Moreover, the training is conveniently performed using the solid
LSSVM framework, which provides a rigorous calculation of the model
coefficients in the dual space using a limited amount of training data.
Thanks to the special implicit kernels introduced in Section 5, the PCE
coefficients are analytically and inexpensively derived from the dual
space coefficients. We conclude that the proposed PCE-LSSVM exploits
the most advantageous features of both the PCE and LSSVM methods,
i.e., their accuracy as well as the model interpretability in UQ settings
of the former and the efficient training of the latter.

Concerning the computational time, the training cost is comparable
with standard LSSVM formulations, as in fact we only make use of
different kernels. Table 10 summarizes the figures for the proposed test
cases. For each example, the configuration that is the most costly for
the training, given the PCE order and the number of training samples,
is reported. All simulations are performed on a Lenovo Thinkpad X13
Yoga laptop with an Intel(R) Core(TM) i7-10510U, CPU running at
1.8 GHz, and 16 GB of RAM. In all the proposed test cases, the hyper-
parameters are tuned using a leave-one-out cross-validation strategy,
i.e., using as many folds as the number of available training samples 𝐿.
This becomes less efficient for the largest datasets, since at every
iteration 𝐿 models must be trained (with 𝐿 − 1 samples each). In
this case, adopting a strategy with a lower number of folds may be a
reasonable tradeoff to improve the training efficiency. The training time
18
is always within a few seconds, except for the test cases of the transient
crosstalk and of the microstrip with ground discontinuity. Indeed, these
examples require to train multiple models for the principal components
in order to capture the entire time- or frequency-domain behavior. The
conversion from the dual space to the primal space to retrieve the PCE
coefficients is analytical and takes a very limited time even for the
largest problems in terms of PCE size (see the last column of Table 10).
It should be noted that, for the targeted applications, the training time
is often negligible compared to the acquisition of training data. As an
example, for the transient crosstalk test case, it took 326 s (5 min 26 s)
to simulate the 110 training configurations. On the other hand, the
corresponding MC simulation with 5000 samples required 19013 s (5 h
17 min).

At present, implicit kernels were introduced for Hermite and Legen-
dre polynomials only, i.e., for Gaussian and uniform distributions of the
inputs. Finding specific kernels for other distribution types is certainly
one direction for further research. Moreover, a common limitation of
both kernel-based and sparse regression methods such as LAR is that
they inherently work with scalar outputs. In order to mitigate this
issue, the method was applied in conjunction with PCA to reduce the
dimensionality of the output space, rather than training an independent
model for each of the original outputs. The combination with an
inherent multi-output formulation of the LSSVM (e.g., Xu et al., 2013)
is worth to be investigated. Finally, the application of the proposed
approach to other kernel-based methods and the improvement of the
training strategy are other goals for future works.

10. Conclusions

This paper proposed a novel formulation for computing a PCE
model based on the LSSVM method. The approach is based on the
introduction of special implicit kernels of infinite dimension, whose
feature space basis functions are the Hermite or Legendre polynomials,
i.e., the same basis functions as leveraged by the PCE framework
for Gaussian and uniform distributions. The training is conveniently
performed with a limited number of samples by exploiting the dual
space LSSVM formulation. The PCE coefficients up to an arbitrary order
are then obtained in post-processing by reverting from the dual space
formulation to the primal space one, a step that is made possible by the
fact that the feature space functions are known explicitly. Therefore, the
training is performed in a nonparametric way, while avoiding forming
the complete set of basis functions at once. Moreover, owing to the
infinite dimensionality of the kernel, high accuracy is obtained even
with a small training set size compared to state-of-the-art techniques,
whose maximum accuracy is inherently limited by the expansion order
that must be defined a priori.

The advocated approach was first demonstrated based on a simple
one-dimensional function. It was then applied to the UQ of electronic
designs with up to 26 uncertain parameters and characterized by means
of circuit or electromagnetic simulations, as well as to standard bench-
mark functions with up to 20 inputs. The proposed PCE-LSSVM method
achieved an excellent accuracy with a very low amount of training data.
A low dispersion of the error across different training datasets was also
observed. For most test cases, the advocated approach outperformed a
state-of-the-art method based on LAR, whereas alternative PCE-based
approaches were not directly comparable owing to the larger number
of samples they required.

Plans for future research envisage the extension of the approach
to other distribution types, to multi-output formulations, as well as to

other kernel-based methods.
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Table 10
Summary of the training cost for all the considered test cases.

Test case PCE order (𝑝) Dimension (𝑑) PCE size (𝐾 + 1) # training samples (𝐿) Training time PCE time

Maximum crosstalk 3 6 84 30 7.9 s < 0.1 s
Transient crosstalka 3 11 364 110 115.8 s 1.7 s
Maximum crosstalk 3 26 3654 80 27.7 s 4.7 s
Microstrip with discontinuityb 10 2 66 50 242.5 s 0.4 s
Low noise amplifier 3 25 3276 40 10.9 s 2.5 s
Ishigami function 10 3 286 60 9.3 s 0.1 s
Sobol’ function 3 8 165 64 11.1 s 0.1 s
O’Hagan function 3 15 816 150 15.4 s 0.5 s
Morris function 3 20 1771 120 12.1 s 1.6 s

a Model for 18 principal components.
b Model for 15 complex-valued principal components (a total of 30 models is trained for the real and imaginary parts).
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