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This paper derives optimized coefficients for optimized Schwarz iterations for the time-dependent Stokes–
Darcy problem using an innovative strategy to solve a nonstandard min-max problem. The coefficients take
into account both physical and discretization parameters that characterize the coupled problem, and they
guarantee the robustness of the associated domain decomposition method. Numerical results validate the
proposed approach in several test cases with physically relevant parameters.
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1. Introduction

The Stokes–Darcy problem has been extensively studied during the last two decades due to its relevance
to model filtration phenomena in industrial and natural applications. The steady problem introduced in
the seminal works (Lagarias et al., 1998; Discacciati et al., 2002) has been extended to consider the
time-dependent case in, e.g., Discacciati (2004b); Cao et al. (2010); Moraiti (2012); Çeşmelioğlu et al.
(2013); Cao et al. (2014); Rybak & Magiera (2014).

In both settings, the spatial discretization of the Stokes–Darcy model leads to a large linear system
(possibly at each time step) that has to be effectively preconditioned. A possible strategy to achieve
this is to adopt a monolithic approach considering the whole coupled linear system at once (see,
e.g., the recently proposed robust monolithic preconditioner derived using an operator preconditioning
framework in Mardal & Winther, 2011). However, the multi-physics nature of the Stokes–Darcy problem
makes it suitable for decoupled strategies based on domain decomposition that set up an iterative
process where the Stokes and Darcy problems are solved separately at each iteration until convergence.
Nevertheless, the computational efficiency of a domain decomposition approach depends on the number
of subdomain iterations that are needed to reach convergence, especially in the time-dependent case. It
is now well understood that the way in which the subdomain are coupled at each iteration significantly
affects the convergence rate.

© The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2252 M. DISCACCIATI AND T. VANZAN

Earlier works focused on Dirichlet–Neumann algorithms (Discacciati & Quarteroni, 2004;
Discacciati, 2004a; Discacciati & Quarteroni, 2009), FETI and BDD methods (Galvis & Sarkis, 2007,
2010), which however exhibit slow convergence for small values of the viscosity of the fluid and the
permeability of the porous medium.

More recent efforts have focused on Robin–Robin transmission conditions (Discacciati et al., 2007;
Cao et al., 2011; Chen et al., 2011; Caiazzo et al., 2014; He et al., 2015), which generally show
better properties in terms of convergence and robustness with respect to the physical parameters,
provided that the Robin parameters are properly selected. Their optimization is usually carried out in a
simplified geometrical setting using Fourier analysis. Robin-Robin domain decomposition methods that
use optimized Robin parameters belong to the family of optimized Schwarz methods (Gander, 2006),
which have been proven to be very effective, beyond the limitations set by the Fourier analysis, for
several different equations (Dolean et al., 2009; Gander & Xu, 2016; Gander & Vanzan, 2019, 2020b) and
geometric configurations (Gigante & Vergara, 2016; Gigante et al., 2020; Chen et al., 2021). Optimized
Schwarz methods have been first studied for the stationary Stokes–Darcy system in Discacciati &
Gerardo-Giorda (2018) and Gander & Zhang (2019); Gander & Vanzan (2020a).

Few works have considered the time-dependent Stokes–Darcy coupling with Robin interface condi-
tions. References Feng et al. (2012); Cao et al. (2014) present a loosely coupled implicit time-marching
scheme that at each time step solves the Stokes and Darcy problems separately, without iterating. The
two subdomains are coupled through a Robin boundary condition that depends on the solution computed
in the other subdomain at the previous time step. Despite being noniterative and preserving optimal
accuracy, this approach has the downside that the iterates do not fulfill the physical coupling conditions
at each time step. Time parallel strategies based on waveform relaxation algorithms have instead been
analyzed in Thi-Thao-Phuong et al. (2022).

In this work, we propose a novel approach where we perform a classical semi-discretization in time
using a general implicit θ -method (Hairer et al., 2002), and we optimize the convergence rate of a
nonoverlapping Schwarz method to solve the local subproblems at each time step. For the optimization of
the Schwarz method, we rely on Fourier analysis to derive the convergence factor of the iterative domain
decomposition method in the frequency domain, and we study a min-max problem to characterize the
optimized Robin parameters. Since the min-max problem differs from others in the existing literature,
we develop a new theoretical argument that can be applied to min-max problems sharing the same
structure. Numerical results performed with physically relevant parameters show that the optimized
Schwarz method is robust and requires very few iterations to convergence at each time step, so that
the method we propose is a valid alternative to noniterative time-marching schemes.

The rest of the manuscript is organized as follows. Section 2 formulates the problem, describes the
semi-discretization in time and introduces the optimized Schwarz method. Section 3 performs a Fourier
analysis and derives the optimized parameters by solving the min-max problem. Section 4 presents
extensive numerical tests to assess the performance of the proposed algorithm.

2. Setting and formulation of the optimized Schwarz method

Let Ω ⊂ RD (D = 2, 3) be an open bounded domain formed by a fluid region Ωf and a porous-medium
region Ωp with Lipschitz continuous boundaries ∂Ωf and ∂Ωp. The two regions are nonoverlapping and

separated by an interface Γ , i.e., Ω = Ω f ∪ Ωp, Ωf ∩ Ωp = ∅ and Ω f ∩ Ωp = Γ , as illustrated in
Fig. 1. Let np and nf be the unit normal vectors pointing outwards of ∂Ωp and ∂Ωf , respectively, with
nf = −np on Γ . We assume that nf and np are regular enough, and we indicate n = nf for simplicity.
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OPTIMIZED SCHWARZ METHODS FOR THE TIME-DEPENDENT STOKES-DARCY COUPLING 2253

Fig. 1. Schematic representation of a 2D section of the computational domain.

In Ωf and for time t ∈ (0, T], we consider an incompressible fluid with constant viscosity and density
described by the dimensionless time-dependent Stokes equations,

∂tuf − ∇ ·
(

2μf ∇suf − pf I
)

= ff in �f , (2.1a)

∇ · uf = 0 in Ωf , (2.1b)

where μf = Re−1, Re being the Reynolds number, uf and pf are the fluid velocity and pressure, I and

∇suf = 1
2 (∇uf + (∇uf )

T) are the identity and the strain rate tensor, and ff is an external force. In the
porous medium domain Ωp and for t ∈ (0, T], we consider the dimensionless time-dependent Darcy
model (see, e.g., Cao et al., 2010; Moraiti, 2012; Rybak & Magiera, 2014):

Sp ∂t pp − ∇ · (ηp∇pp) = fp in Ωp, (2.2)

where pp is the fluid pressure in the porous medium, ηp is the permeability tensor, Sp is the specific mass
storativity coefficient, and fp is an external force.

The two models are coupled through the classical Beavers–Joseph–Saffman conditions, which
describe the filtration across the interface Γ (Beavers & Joseph, 1967; Saffman, 1971; Jäger & Mikelić,
1996; Rybak & Magiera, 2014):

uf · n = −(ηp∇pp) · n at Γ , (2.3a)

−n ·
(

2μf ∇suf − pf I
)

· n = pp at Γ , (2.3b)

−
((

2μf ∇suf − pf I
)

· n
)

τ
= ξf (uf )τ at Γ , (2.3c)

where ξf = αBJμf /
√

τ · ηp · τ and αBJ is a dimensionless constant which depends on the geometric
structure of the porous medium. The notation (v)τ indicates the tangential component of any vector v at
Γ , i.e., (v)τ = v − (v · n) n at Γ . As boundary conditions, we impose pp = 0 on Γ D

p , up · np = 0 on Γ N
p ,

and uf = 0 on ∂Ωf \ Γ as in Discacciati & Gerardo-Giorda (2018) (see Fig. 1 for the notation), and as
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2254 M. DISCACCIATI AND T. VANZAN

initial conditions we set

uf = u0
f in Ωf and pp = p0

p in Ωp at t = 0, (2.4)

with u0
f and p0

p given functions.
We define the spaces

Vf :=
{

v ∈ H1(Ωf ) : v = 0 on ∂Ωf \ Γ
}

, Qf := L2(Ωf ),

Qp :=
{

q ∈ H1(Ωp) : q = 0 on Γ D
p

}
,

and let (·, ·)D be the L2 scalar product in a domain D for scalar, vector, or tensor functions, while 〈·, ·〉Γ
is the scalar product in H1/2(Γ ). Then, we introduce the bilinear forms

af : Vf × Vf → R, af (v, w) =
(

2μf ∇sv, ∇sw
)

Ωf
+ ξf 〈(v)τ , (w)τ 〉Γ ,

bf : Vf × Qf → R, bf (v, q) = −(∇ · v, q)Ωf
,

ap : Qp × Qp → R, ap(p, q) =
(
ηp ∇p, ∇q

)
Ωp

.

The weak formulation of problem (2.1)–(2.3) can be written as follows: for all t ∈ (0, T], find
uf (t) ∈ Vf , pf (t) ∈ Qf , and pp(t) ∈ Qp such that

(∂tuf , vf )Ωf
+ af (uf , vf ) + bf (vf , pf ) + 〈pp, vf · n〉Γ = (ff , v)Ωf

∀vf ∈ Vf , (2.5a)

bf (uf , qf ) = 0 ∀qf ∈ Qf , (2.5b)

(Sp ∂t pp, qp)Ωp
+ ap(pp, qp) − 〈uf · n, qp〉Γ = (fp, q)Ωp

∀qp ∈ Qp, (2.5c)

with initial conditions (2.4). For all t ∈ (0, T], the weak formulation (2.5) admits a unique solution
(uf (t), pf (t), pp(t)) ∈ Vf × Qf × Qp which depends continuously on the data (see, e.g., Discacciati,
2004a). We remark that the scalar product 〈·, ·〉Γ can be used both in (2.5) and in the definition of the
bilinear form af due to the regularity assumption on n at Γ .

2.1 Optimized Schwarz method

To formulate the optimized Schwarz method for the time-dependent Stokes–Darcy problem, we intro-
duce a linear combination of the interface conditions (2.3a) and (2.3b) with coefficients (−αf , 1) and
(αp, 1), αf , αp being positive real parameters. This leads to the Robin transmission conditions

− n ·
(

2μf ∇suf − pf I
)

· n − αf uf · n = pp + αf ηp∇pp · n at Γ , (2.6)
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OPTIMIZED SCHWARZ METHODS FOR THE TIME-DEPENDENT STOKES-DARCY COUPLING 2255

and

pp − αp ηp∇pp · n = −n ·
(

2μf ∇suf − pf I
)

· n + αpuf · n at Γ . (2.7)

The coefficients αf and αp must be suitably chosen in order to optimize the convergence rate of the
iterative algorithm that we formulate hereafter using the Robin–Robin transmission conditions (2.6)
and (2.7).

Upon setting

λf (t) = pp + αf ηp∇pp · n and λp(t) = −n ·
(

2μf ∇suf − pf I
)

· n + αp uf · n,

the Robin interface conditions (2.6) and (2.7) can be used to equivalently reformulate problem (2.5) as
follows: for all t ∈ (0, T], find uf (t) ∈ Vf , pf (t) ∈ Qf , and pp(t) ∈ Qp such that

(∂tuf , vf )Ωf
+ af (uf , vf ) + bf (vf , pf ) + αf 〈uf · n, vf · n〉Γ = (ff , v)Ωf

− 〈λf , vf · n〉Γ , (2.8a)

bf (uf , qf ) = 0, (2.8b)

(Sp ∂t pp, qp)Ωp
+ ap(pp, qp) + 1

αp
〈pp, qp〉Γ = (fp, q)Ωp

+ 1

αp
〈λp, qp〉Γ , (2.8c)

for all vf ∈ Vf , qf ∈ Qf , and qp ∈ Qp.
For the time discretization of problem (2.8), we split the interval [0, T] into equal subintervals

[tn−1, tn] such that [0, T] = ∪N
n=1[tn−1, tn], with t0 = 0, tN = T and Δt = tn − tn−1, and we consider

the θ -method (see, e.g., Turek, 1996; Hairer et al., 2002; John et al., 2006) with θ ∈ (0, 1]. We are
particularly interested in the cases θ = 1 and θ = 1

2 , which correspond to the implicit Euler method and
to the Crank–Nicolson method.

For simplicity of notation, let us define the bilinear forms

ãf : Vf × Vf → R, ãf (v, w) = (v, w)Ωf
+ θ Δt

(
af (v, w) + αf 〈v · n, w · n〉Γ

)
,

ãp : Qp × Qp → R, ãp(p, q) = (Sp p, q)Ωp
+ θ Δt

(
ap(p, q) + 1

αp
〈p, q〉Γ

)
,

and the functionals Fn
f : Vf → R and Fn

p : Qp → R

Fn
f (v) = Δt

(
θ

(
fn
f , v

)
Ωf

+ (1 − θ)
(

fn−1
f , v

)
Ωf

)
+

(
un−1

f , v
)

Ωf

− (1 − θ)Δt
(

af

(
un−1

f , v
)

+ αf

〈
un−1

f · n, v · n
〉
+

〈
λn−1

f , vf · n
〉)

,

Fn
p(q) = Δt

(
θ

(
f n
p , q

)
Ωp

+ (1 − θ)
(

f n−1
p , q

)
Ωp

)
+

(
Sp pn−1

p , q
)

Ωp

−(1 − θ)Δt
(

ap

(
pn−1

p , q
)

+ 1
αp

〈
pn−1

p , q
〉
Γ

− 1
αp

〈
λn−1

p , qp

〉)
.
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2256 M. DISCACCIATI AND T. VANZAN

Then, starting from the initial condition (2.4), for n = 1, . . . , N, we compute (un
f , pn

f , pn
p) ∈ Vf ×

Qf × Qp solution of

ã
(

un
f , vn

f

)
+ Δt bf

(
vf , pn

f

)
= Fn

f (vf ) − θ Δt
〈
λn

f , vf · n
〉
Γ

∀vf ∈ Vf , (2.9a)

bf

(
un

f , qf

)
= 0 ∀qf ∈ Qf , (2.9b)

ãp

(
pn

p, qp

)
= Fn

p(qp) + θ Δt

αp

〈
λn

p, qp

〉
Γ

∀qp ∈ Qp, (2.9c)

where

λn
f = pn

p + αf ηp∇pn
p · n, λn

p = −n ·
(

2μf ∇sun
f − pn

f I
)

· n + αp un
f · n.

At each time level n ≥ 1, system (2.9) is still fully coupled. To decouple the Stokes and the Darcy
equations, we consider the optimized Schwarz iterative scheme, which starts from the initial guess λ

n,0
f ,

and, for m ≥ 1 until convergence, it computes

ã
(

un,m
f , vn

f

)
+ Δt bf

(
vf , pn,m

f

)
= Fn

f (vf ) − θ Δt
〈
λ

n,m−1
f , vf · n

〉
Γ

∀vf ∈ Vf , (2.10a)

bf

(
un,m

f , qf

)
= 0 ∀qf ∈ Qf , (2.10b)

ãp

(
pn,m

p , qp

)
= Fn

p(qp) + θ Δt

αp

〈
λn,m

p , qp

〉
Γ

∀qp ∈ Qp, (2.10c)

where

λ
n,m
f = pn,m

p + αf ηp∇pn,m
p · n, λn,m

p = −n ·
(

2μf ∇sun,m
f − pn,m

f I
)

· n + αp un,m
f · n.

Standard calculations (see, e.g., Discacciati & Gerardo-Giorda, 2018; Gander & Vanzan, 2020a)
show that, for an initial guess λn,0

p and m ≥ 1,

λ
n,m
f =

(
1 + αf

αp

)
pn,m

p − αf

αp
λn,m−1

p , (2.11a)

λn,m
p = (αf + αp) un,m

f · n + λ
n,m
f . (2.11b)

Notice that a parallel version of the optimized Schwarz scheme can be obtained by taking λn,m−1
p in

(2.10c) and λ
n,m−1
f in (2.11b).

We conclude this section by showing that the iteration scheme (2.10) can be reformulated only
in terms of the interface functions λ

n,m
f and λn,m

p at Γ . To this aim, in the domain Ωf , we define the
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OPTIMIZED SCHWARZ METHODS FOR THE TIME-DEPENDENT STOKES-DARCY COUPLING 2257

continuous trace operator τf : Vf ×Qf → H
1
2 (Γ ) as τf ((v, p)) = (v ·n)|Γ , and the continuous extension

operator Ef : H− 1
2 (Γ ) × V−1

f → Vf × Qf as Ef (λ,Ff ) = (v, p), where (v, p) is the solution of

ãf (v, w) + Δt bf (v, p) = Ff (w) − θ Δt 〈λ, w · n〉Γ ∀w ∈ Vf ,

bf (v, q) = 0 ∀q ∈ Qf .

Similarly in the domain Ωp, we define the continuous trace operator τp : Qp → H
1
2 (Γ ) as τp(q) = q|Γ ,

and the continuous extension operator Ep : H− 1
2 (Γ ) × Q−1

p → Qp as Ep(λ,Fp) = p, where p is the
solution of

ãp(p, q) = Fp(q) + θ Δt

αp
〈λ, q〉 ∀q ∈ Qp.

Then, relations (2.11) can be equivalently reformulated as

λ
n,m
f =

(
1 + αf

αp

)
τp

(
Ep

(
λn,m−1

p , Fn
p

))
− αf

αp
λn,m−1

p , (2.12a)

λn,m
p = (αf + αp) τf

(
Ef

(
λ

n,m
f , Fn

f

))
+ λ

n,m
f . (2.12b)

Now define the linear continuous operators

Gf : H− 1
2 (Γ ) → H

1
2 (Γ ), Gf (λ) := τf

(
Ef (λ, 0)

)
,

Gp : H− 1
2 (Γ ) → H

1
2 (Γ ), Gp(λ) := τp

(
Ep(λ, 0)

)
.

Thanks to the linearity of the extension operators Ef and Ep, and setting

χn
f =

(
1 + αf

αp

)
τp(Ep(0, Fn

p)), χn
p = (αf + αp) τf

(
Ef

(
0, Fn

f

))
,

equation (2.12) can be equivalently written as

(
λ

n,m
f

λn,m
p

)
=

(
0 − αf

αp
I +

(
1 + αf

αp

)
Gp(·)

(αf + αp)Gf (·) + I 0

) (
λ

n,m−1
f

λn,m
p

)
+

(
χn

f
χn

p

)
. (2.13)

This corresponds to a Gauss–Seidel step for the linear interface system(
I

αf
αp

I −
(

1 + αf
αp

)
Gp(·)

−(αf + αp)Gf (·) − I I

) (
λn

f
λn

p

)
=

(
χn

f
χn

p

)
, (2.14)
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2258 M. DISCACCIATI AND T. VANZAN

which can be more effectively solved using a suitable Krylov method (e.g., GMRES, Saad & Schultz,
1986) as we will do in Section 4. Notice that a sufficient condition for (2.14) to be solvable is that the
stationary iteration (2.13) converges.

3. Analysis of the optimized Schwarz method

In this section, we analyse the optimized Schwarz method (2.10) with the aim of characterizing values of
the parameters αf and αp to accelerate the convergence of the method. The expression of the convergence
rate is obtained in Section 3.1, while the optimization of the parameters is carried out in Section 3.2 under
the simplifying hypothesis that the Beavers–Joseph–Saffman interface condition (2.3c) is replaced by
the zero tangential velocity condition (uf )τ = 0 at Γ . For the sake of simplicity, we restrict to a two-
dimensional domain Ω . The three-dimensional case can be analyzed with the same methodology, but at
the cost of more tedious calculations.

3.1 Characterization of the convergence rate

Since the problem is linear, for the analysis of the optimized Schwarz method (2.10) we directly consider
the error equation obtained by setting ff = 0 and fp = 0. More precisely, at time step n ≥ 1, for m ≥ 1
until convergence, we consider

1. the Stokes problem: find un,m
f , pn,m

f such that

un,m
f

Δt
− θ ∇ ·

(
2μf ∇sun,m

f

)
+ ∇pn,m

f = 0 in Ωf , (3.1a)

∇ · un,m
f = 0 in Ωf , (3.1b)

−
((

2μf ∇sun,m
f − pn,m

f I
)

· n
)

τ
= ξf

(
un,m

f

)
τ

at Γ , (3.1c)

− n ·
(

2μf ∇sun,m
f − pn,m

f I
)

· n − αf un,m
f · n = pn,m−1

p + αf ηp∇pn,m−1
p · n at Γ , (3.1d)

2. the Darcy problem: find pn,m
p such that

Sp

Δt
pn,m

p − θ ∇ ·
(
ηp∇pn,m

p

)
= 0 in Ωp, (3.2a)

pn,m
p − αp ηp∇pn,m

p · n = −n ·
(

2μf ∇sun,m
f − pn,m

f I
)

· n + αp un,m
f · n at Γ . (3.2b)

We introduce the setting considered, e.g., in Section 3.2 of Discacciati & Gerardo-Giorda (2018). Let
Ωf be the half plane Ωf = {(x, y) ∈ R2 : x < 0}, Ωp be the complementary half plane Ωp = {(x, y) ∈
R2 : x > 0}, and Γ = {(x, y) ∈ R2 : x = 0}, so that n = (1, 0), τ = (0, 1). Finally, let μf be constant

in Ωf , ηp = diag(η1, η2) with η1 and η2 constant, and let uf (x, y) = (u1(x, y), u2(x, y))T .
Using this setting and omitting the upper index n for simplicity of notation, the algorithm (3.1)–(3.2)

becomes: for m ≥ 1 until convergence, solve
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OPTIMIZED SCHWARZ METHODS FOR THE TIME-DEPENDENT STOKES-DARCY COUPLING 2259

1. the Stokes problem

1

Δt

(
um

1
um

2

)
− θ μf

⎛⎝ (
∂xx + ∂yy

)
um

1(
∂xx + ∂yy

)
um

2

⎞⎠ +
(

∂xpm
f

∂ypm
f

)
= 0 in (−∞, 0) × R, (3.3a)

∂xum
1 + ∂yum

2 = 0 in (−∞, 0) × R, (3.3b)

−μf (∂xu2 + ∂yu1) = ξf um
2 at {0} × R, (3.3c)

(
−2μf ∂xum

1 + pm
f

)
− αf um

1 = pm−1
p − αf

(
−η1 ∂xpm−1

p

)
at {0} × R; (3.3d)

2. the Darcy problem

Sp

Δt
pm

p − θ (∂x(η1 ∂x) + ∂y(η2 ∂y)) pm
p = 0 in (0, ∞) × R, (3.4a)

pm
p + αp

(
−η1 ∂xpm

p

)
=

(
−2μf ∂xum

1 + pm
f

)
+ αp um

1 at {0} × R. (3.4b)

For the convergence analysis, similarly to Discacciati & Gerardo-Giorda (2018), we apply the Fourier
transform in the direction tangential to the interface. In this case, for w(x, y) ∈ L2(R2), the Fourier
transform is defined as

w(x, y) �→ ŵ(x, k) =
∫
R

e −iky w(x, y) dy,

where k ∈ R is the frequency variable.
The following results holds.

Proposition 3.1 The convergence factor of the iterative method (3.3a)–(3.4b) does not depend on the
iteration m and it can be characterized for every k �= 0 as |ρ(k, αf , αp)| with

ρ(k, αf , αp) = G(k) − αf

G(k) + αp
· H(k) − αp

H(k) + αf
, (3.5)

where

G(k) = η−1
p

(
k2 + Sp

η2 θ Δt

)− 1
2

, (3.6)

H(k) =
2μf

(
k2 + 1

μf θ Δt

) 1
2 −

(
2μf k2 Δt + 1

)
F(k)

1 − |k| ΔtF(k)
, (3.7)
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and

F(k) =
μf k2 +

(
μf

(
k2 + 1

μf θ Δt

) 1
2 + ξf

) (
k2 + 1

μf θ Δt

) 1
2

k2Δt (2μf |k| + ξf )
, (3.8)

where ηp = √
η1η2.

Proof. Following analogous steps as in the proof of Proposition 3.1 of Discacciati & Gerardo-Giorda
(2018), the Stokes pressure in the frequency space can be written as

p̂m
f (x, k) = Pm(k) e |k|x. (3.9)

The Fourier transform of the first component of the Stokes momentum equation (3.3a) becomes

ûm
1

Δt
− θ μf ∂xxûm

1 + θ μf k2ûm
1 + ∂xp̂m

f = 0,

or, equivalently,

∂xxûm
1 −

(
k2 + 1

μf θ Δt

)
ûm

1 = |k|
μf θ

Pm(k) e |k|x.

The general solution of this equation is

ûm
1 (x, k) = Am(k) e

(
k2+ 1

μf θ Δt

)1/2
x − |k| Δt Pm(k) e|k|x. (3.10)

The Fourier transform of the second component of the Stokes momentum equation (3.3a) becomes

ûm
2

Δt
− θ μf ∂xxûm

2 + θ μf k2ûm
2 + ik p̂m

f = 0,

or, equivalently,

∂xxûm
2 −

(
k2 + 1

μf θ Δt

)
ûm

2 = ik

μf θ
Pm(k) e |k|x.

The general solution of this equation is

ûm
2 (x, k) = Bm(k) e

(
k2+ 1

μf θ Δt

)1/2

x − ik Δt Pm(k) e|k|x. (3.11)

In (3.9), (3.10) and (3.11), Am(k), Bm(k) and Pm(k) are arbitrary functions of k only.
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Substituting (3.10) and (3.11) into the Fourier transform of the Stokes continuity equation (3.3b):

∂xûm
1 + ikûm

2 = 0,

we can find the relationship

Bm(k) = i

k
Am(k)

(
k2 + 1

μf θ Δt

)1/2

. (3.12)

Moreover, the Fourier transform of the Beavers–Joseph–Saffman condition (3.3c) is

− μf

(
∂xûm

2 + ik ûm
1

) = ξf ûm
2 .

Using (3.10) and (3.11) at {0} × R, and the relationship (3.12), we find

Pm(k) = Am(k)F(k) (3.13)

with F(k) defined as in (3.8).
Taking now the Fourier transform of the Darcy equation (3.4a), we find

Sp

Δt
p̂m

p − θ η1∂xxp̂m
p + θ η2 k2p̂m

p = 0,

or, equivalently,

∂xxp̂m
p − η2

η1

(
k2 + Sp

η2 θ Δt

)
p̂m

p = 0,

whose general solution is

p̂m
p (x, k) = Φm(k) e

−
(

η2
η1

(
k2+ Sp

η2 θ Δt

))1/2
x
. (3.14)

The Fourier transforms of the interface conditions (3.3d) and (3.4b) become

(
−2μf ∂xûm

1 + p̂m
f

)
− αf ûm

1 = p̂m−1
p − αf

(
−η1 ∂xp̂m−1

p

)
, (3.15)

p̂m
p + αp

(
−η1 ∂xp̂m

p

)
=

(
−2μf ∂xûm

1 + p̂m
f

)
+ αp ûm

1 . (3.16)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/4/2251/7237438 by guest on 20 Septem
ber 2024



2262 M. DISCACCIATI AND T. VANZAN

Using the expressions (3.9)–(3.11), (3.14) at {0} × R and the relationships (3.12) and (3.13), from
(3.15) and (3.16) we obtain, respectively,

⎛⎝−
⎛⎝αf + 2μf

(
k2 + 1

μf θ Δt

) 1
2
⎞⎠ +

(
2μf k2Δt + αf |k|Δt + 1

)
F(k)

⎞⎠ Am(k)

=
⎛⎝1 − αf ηp

(
k2 + Sp

η2 θ Δt

) 1
2

⎞⎠ Φm−1(k), (3.17)

⎛⎝1 + αp ηp

(
k2 + Sp

η2 θ Δt

) 1
2

⎞⎠ Φm(k)

=
⎛⎝⎛⎝αp − 2μf

(
k2 + 1

μf θ Δt

) 1
2
⎞⎠ +

(
2μf k2Δt − αp|k|Δt + 1

)
F(k)

⎞⎠ Am(k). (3.18)

The convergence factor (3.5) can now be directly obtained from (3.17) and (3.18), using the
definitions (3.6) and (3.7).

A direct calculation shows that 1 − |k| ΔtF(k) < 0 for all k �= 0, so that H(k) is well defined. �

Remark 3.2 Proposition 3.1 explicitly excludes the frequency k = 0. In fact, in this case, the only
admissible Stokes pressure p̂m

f (x, k) would be the zero function since it must satisfy the homogeneous

Laplace equation −∂xxp̂m
f = 0 in the infinite half plane Ωf , and decay at infinity in order to be L2

integrable. The velocities would become ûm
1 (x, k) = Am(k) e

√
1

μf θΔt x
, and ûm

2 (x, k) = Bm(k) e

√
1

μf θΔt x
.

Inserting these expressions into the divergence-free constraint and into the Beavers–Joseph–Saffman
condition finally leads to ûm

1 (x, k) = ûm
2 (x, k) = 0. The frequency k = 0 must be accounted for if one

considers periodic boundary conditions in a bounded domain in the y-direction as in Gander & Vanzan
(2020a). In such a case, due to boundedness of the domain, one obtains ûm

1 = ûm
2 = 0, p̂m

f (x, k) = Pm ∈

R, and p̂m
p (x, k) = Φm(k) e

−
√

Sp
θη1Δt x

. Inserting these expressions into the transmission conditions, we

obtain ρ(k = 0, αf , αp) =
1−αf ηp

√
Sp

θη2Δt

1+αpηp

√
Sp

θη2Δt

.

Now, our goal is to characterize optimal parameters αf and αp that minimize the convergence factor
(3.5). To this aim, we study the min-max problem

min
αf ,αp∈R+ max

[kmin,kmax]
|ρ(k, αf , αp)|, (3.19)

where [kmin, kmax] is the range of frequencies of interest for the problem, and they are usually
approximated by kmin = π

|Γ | and kmax = π
h , where h is the mesh size (Gander, 2006).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/44/4/2251/7237438 by guest on 20 Septem
ber 2024



OPTIMIZED SCHWARZ METHODS FOR THE TIME-DEPENDENT STOKES-DARCY COUPLING 2263

3.2 Optimization of the convergence factor in a simplified setting

The solution of the min-max problem (3.19) is quite challenging, and it significantly differs from several
min-max problems studied in the literature (see Gander, 2006; Gander et al., 2007; Gander & Vanzan,
2019, 2020b, and references therein). Moreover, the expression of F(k) is quite complex and it prevents
the use of direct calculations. Therefore, in order to make the min-max problem (3.19) feasible of a
theoretical study, we make two simplifications. First, we replace the Beavers–Joseph–Saffman condition
(2.3c) by the zero tangential interface velocity

(uf )τ = 0 on Γ , (3.20)

which corresponds to the limit ξf → ∞ in (2.3c). This simplification was considered also, e.g., in
D’Angelo & Zunino (2011) in the context of modelling blood perfusion, and it is motivated by the fact
that the fluid velocity significantly decreases in the neighborhood of the porous medium where, in the
first approximation, the flow is as if the porous medium was impervious (see, e.g., Ene & Sanchez-
Palencia, 1975; Levy & Sanchez-Palencia, 1975; Layton et al., 2003). Although this approximation is
used to estimate optimal parameters αf and αp, numerical results in Section 4 show that such coefficients
provide a robust method also for the Beavers–Joseph–Saffman condition (2.3c). Considering (3.20),
we find

lim
ξf →∞F(k) =

(
k2 + 1

μf θ Δt

) 1
2

k2 Δt
.

Using this limit in (3.7), we obtain the simplified expression

H(k) =
(

k2 + 1
μf θ Δt

) 1
2

|k| Δt

((
k2 + 1

μf θ Δt

) 1
2 − |k|

) . (3.21)

Second, instead of minimizing over two free parameters αf , αp, we would like to set αf = G(s) and
αp = H(s), for a s ∈ R+ following Gander & Vanzan (2017, 2019). In this way, the minimization
problem (3.19) becomes

min
s∈R+ max

[kmin,kmax]
|ρ(k, s)|

with

ρ(k, s) = G(k) − G(s)

G(k) + H(s)
· H(k) − H(s)

H(k) + G(s)
.

The motivation for this parametrization is that, if the functions G(·) and H(·) are strictly monotonic,
the convergence factor has only one zero for k > 0 located at k = s. Then, analyzing the derivative of
ρ(k, s) with respect to s, one can conclude that the optimal parameter, say sopt, is the one leading to an
equioscillation between the convergence factor at kmin and kmax, i.e., |ρ(kmin, sopt)| = |ρ(kmax, sopt)|,
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2264 M. DISCACCIATI AND T. VANZAN

Fig. 2. Sketch of the graph of the function H(k).

so that αf = G(sopt) and αp = H(sopt). The key point of this strategy is that both G(·) and H(·) must be
strictly monotonic, so that the convergence factor has as many zeros as the parameters to optimize.

For the problem at hand, this approach is not viable. The function k �→ G(k) in (3.6) is strictly
positive and decreasing ∀k > 0, but the map k �→ H(k) in (3.21) is strictly positive, decreasing for k < k̂
and increasing for k > k̂, where

k̂ =
√

2

2

√√
5 − 1

μf θ Δt
, (3.22)

with limk→+∞ H(k) = +∞ and limk→0+ H(k) = +∞. Hence, upon setting αf = G(s) and αp = H(s),
the convergence factor would have two zeros for k > 0, one at k = s (for which both G(k) − G(s) = 0
and H(k) − H(s) = 0) and another one at the unique point, say k�(s), such that H(k�(s)) = H(s); see
Fig. 2. Only for s = k̂, one has k�(̂k) = k̂.

Therefore, the additional difficulty of performing symbolic calculations with the expressions of G
and H suggests us to simplify the problem by setting αp = H(̂k) =: l (i.e., we set αp equal to the value of

H(·) at the minimum k̂) while leaving αf = G(s) with s ∈ R+. In this way, the expression of ρ(k, αf , αp)

in (3.5) becomes

ρ(k, s) = G(k) − G(s)

H(k) + G(s)
· H(k) − l

G(k) + l
, (3.23)

with two zeros, one fixed at k = k̂, the other at k = s, which remains the only one zero that depends on
the parameter s.

Thus, instead of (3.19), we consider the min-max problem

min
s∈R+ max

k∈[kmin,kmax]
|ρ(k, s)| (3.24)

with ρ(k, s) defined in (3.23), and where l = H(̂k) while k̂ is defined in (3.22).

Remark 3.3 Setting αp = l does not necessarily lead to less efficient transmission conditions than
choosing αp = H(s) and then optimizing also αp. In fact, despite in the latter case one apparently
optimizes both αp and αf , these parameters are actually constrained to move on the one dimensional
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curve Σ := {
(x, y) ∈ R+ : (x, y) = (G(s),H(s)), s ∈ R+}

and ρ(k, s) has a single zero at k = s. In
our setting instead, ρ(k, s) has two zeros, one located at at k̂ which is fixed and depends exclusively on
the physical and discretization parameters μf , θ and Δt. The second zero is located at k = s, and it is
optimized taking into account the position of the first one.

The following theorem characterizes the optimal solution of (3.24) according to the position of k̂
with respect to [kmin, kmax].

Theorem 3.4 The solution of the min-max problem (3.24) can be characterized as indicated in the cases
below.

• Case k̂ ∈ [kmin, kmax].

– The solution of (3.24) is the unique s�
1 such that |ρ(kmin, s�

1)| = |ρ(kmax, s�
1)| =: M, if

|ρ(̃k(s�
1), s�

1)| ≤ M, where k̃ is the unique local maximum of |ρ(k, s)| in [kmin, kmax].

– If |ρ(̃k(s�
1), s�

1)| > M and s�
1 < k̂, the optimal solution is the unique value s�

2 in the interval
s�

1 < s < k̂ such that |ρ(kmin, s�
2)| = |ρ(̃k, s�

2)|.
– If |ρ(̃k(s�

1), s�
1)| > M and s�

1 > k̂, the optimal solution is the unique value s�
3 in the interval

k̂ < s < s�
1 such that |ρ(kmax, s�

3)| = |ρ(̃k, s�
3)|.

• Case k̂ > kmax.

– The solution of (3.24) is the unique s�
1 such that |ρ(kmin, s�

1)| = |ρ(kmax, s�
1)|, if k̃(s�

1) >

kmax.

– If k̃(s�
1) < kmax, the optimal solution is the unique value s�

4 such that |ρ(kmin, s�
4)| =

|ρ(̃k, s�
4)|.

• Case k̂ < kmin.

– The solution of (3.24) is the unique s�
1 such that |ρ(kmin, s�

1)| = |ρ(kmax, s�
1)|, if k̃(s�

1) <

kmin.

– If k̃(s�
1) > kmin, the optimal solution is the unique s�

5 such that |ρ(̃k, s�
5)| = |ρ(kmax, s�

5)|.

Proof. Let us start with a preliminary analysis of H(·) and ρ(·, ·). As observed above, H(k) is a strictly
decreasing function for k < k̂, strictly increasing for k > k̂, and with minimum at k = k̂. Thus, (H(k)− l)
is nonnegative for every k, and ρ(k, s) has two zeros, the one first at k = s and the second one fixed at
k = k̂. Further, ρ(k, s) is positive for k < s and negative for k > s.

The sign of the partial derivative with respect to s is equal to

sign

(
∂|ρ(k, s)|

∂s

)
= sign(ρ(k, s)) sign

(G′(s)(l − H(k))(H(k) + G(k))

(G(k) + l)(H(k) + G(s))2

)
.

Being the second term on the right-hand side always positive since (l − H(k)) < 0 and G is strictly
decreasing, there holds

sign

(
∂|ρ(k, s)|

∂s

)
= sign(ρ(k, s)) = sign(s − k).
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Fig. 3. The three panels support the proof of Theorem 3.4. The black arrows show how |ρ(k, s)| behaves in the three local maxima
as s increases. In the left panel, equioscillating between |ρ(kmin, s)| and |ρ(kmax, s)| leads to an optimal solution. In the central
panel, s�1 is not optimal, as decreasing s would decrease |ρ| at both kmin and k̃ and increase it at kmax until |ρ(̃k, s)| = |ρ(kmax, s)|.

We conclude that the optimal s must be greater than kmin, since otherwise we would have

sign
(

∂|ρ(k,s)|
∂s

)
< 0 for every k ∈ [

kmin, kmax
]
, hence we could not be at the optimum, since increasing

s would decrease |ρ(k, s)| for all k ∈ [kmin, kmax]. For analogous reasons, the optimal s must be less
than kmax, so that we can restrict the range of s to the interval

[
kmin, kmax

]
. Studying the derivative with

respect to k, one notices that |ρ(k, s)| is decreasing for k ≤ min{s, k̂} and increasing for k ≥ max{s, k̂}.
Between the two zeros, it has a unique local maximum in k̃(s).

Let us now suppose that k̂ ∈ [
kmin, kmax

]
. Since s ∈ [

kmin, kmax
]
, the local maximum k̃(s) surely

lies in
[
kmin, kmax

]
. The min-max problem (3.24) then simplifies to

min
s∈R+ max

k∈[kmin,kmax]
|ρ(k, s)| = min

s∈[kmin,kmax]
max

{∣∣ρ(kmin, s)
∣∣, ρ(̃k(s), s)

∣∣, ∣∣ρ(
kmax, s

)∣∣} .

We now study how
∣∣ρ(

kmin, s
)∣∣ and

∣∣ρ(
kmax, s

)∣∣ depend on s. For all s ∈ (
kmin, kmax

]
, there holds

sign

(
∂|ρ(k, s)|

∂s
|k=kmin

)
= sign

(
s − kmin

)
> 0, sign

(
∂|ρ(k, s)|

∂s
|k=kmax

)
= sign

(
s − kmax

)
< 0.

Thus, |ρ(kmin, s)| is a strictly increasing function of s that satisfies
∣∣ρ(

kmin, kmin
)∣∣ = 0 and∣∣ρ(

kmin, kmax
)∣∣ > 0. Similarly, |ρ(kmax, s)| is strictly decreasing, with |ρ(kmax, kmin)| > 0 and

|ρ(kmax, kmax)| = 0. By continuity there exists a unique s�
1 such that |ρ(kmin, s�

1)| = |ρ(kmax, s�
1)| =:

M. Now, if |ρ(̃k(s�
1), s�

1)| ≤ M, we have found the optimum, since perturbing s would increase either
|ρ(kmin, s)|, or |ρ(kmax, s)|, and thus the maximum of |ρ(k, s)|, see left panel of Fig. 3. Suppose instead
that |ρ(̃k(s�

1), s�
1)| > M. In this case, the optimal solution is obtained by equioscillating |ρ(̃k(s), s)| either

with |ρ(kmin, s)| or |ρ(kmax, s)|, since they are respectively strictly increasing and strictly decreasing
with respect to s (central panel of Fig. 3). Further, the total derivative of |ρ(̃k(s), s)| with respect to s is

d|ρ(̃k(s), s)|
ds

= sign(s − k)

(
∂|ρ(k, s)|

∂k
|k=̃k(s) · k̃′(s) + ∂ρ(̃k(s), s)

∂s

)
= sign(s − k)

∂ρ(̃k(s), s)

∂s
,
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whose sign is

sign

(
d|ρ(̃k(s), s)|

ds

)
= sign(s − k).

If s�
1 < k̂ and |ρ(̃k(s�

1), s�
1)| > M, decreasing s in the range [kmin, s�

1] would not improve the maximum of
the convergence factor as |ρ(̃k(s), s)| increases. On the other hand, increasing s in the range [s�

1, k̂] would
increase |ρ(kmin, s)| and decrease both |ρ(̃k, s)| and |ρ(kmax, s)|. There exists surely s�

2 ∈ [s�
1, k̂] for

which |ρ(̃k(s�
2), s�

2)| = |ρ(kmin, s�
2)| since |ρ(̃k(̂k), k̂)| = 0. The optimal solution is then s�

2 as increasing
further s would increase |ρ(kmin, s)| as well. Similarly, one shows that if s�

1 > k̂, the optimal solution is
given by s�

3 ∈ [̂k, s�
1] such that |ρ(̃k(s), s)| = |ρ(kmax, s)| (right panel of Fig. 3). This ends the proof of

the first claim.
Next, suppose that k̂ > kmax, so that the local maximum k̃(s) is not necessarily in [kmin, kmax]. Let

us define s�
4 ∈ [kmin, kmax] be the unique solution of |ρ(kmin, s)| = |ρ(kmax, s)|. If k̃(s�

4) > kmax, then
s�

4 is the optimal solution as varying s would increase either |ρ(kmin, s)| or |ρ(kmax, s)|. In contrast, if
k̃(s�

4) < kmax, then |ρ(̃k(s�
4), s�

4)| > |ρ(kmin, s�
4)| and it is convenient to increase s until |ρ(̃k(s), s)| =

|ρ(kmin, s)|. The case k̂ < kmin is treated similarly. �

Remark 3.5 Theorem 3.4 considers three cases depending on the relative position of k̂ with respect
to [kmin, kmax]. This can be easily determined and it depends on few physical, geometrical and
discretization parameters. Using the standard ansatzes kmin = π

|Γ | and kmax = π
h (Gander, 2006),

from (3.22) we get

k̂ < kmin if μf θΔt >
(
√

5−1)|Γ |2
2π2 ,

kmin ≤ k̂ ≤ kmax if (
√

5−1)h2

2π2 ≤ μf θΔt ≤ (
√

5−1)|Γ |2
2π2 ,

k̂ > kmax if μf θΔt <
(
√

5−1)h2

2π2 .

Notice that k̂ < kmin poses a tight constraint on the value of Δt, which is not likely to be satisfied in
practice. The other two cases are more realistic, and the specific regime depends on the choice of Δt and
h which is dictated by the finite element spaces and the time integration scheme used.

To conclude this section, we study how the optimized contraction factor behaves as h → 0.
Unfortunately, asymptotic expansions do not lead to simplified formulae neither for the optimized
parameter nor for the optimized convergence factor. Thus, we report a numerical study in Table 1.
We consider physical relevant values for the parameters (see Section 4.1) and two fixed values for the
time discretization. We remark that Theorem 3.4 leads to an optimized Schwarz method which exhibits
a mesh-independent convergence, since the convergence factor converges to a finite quantity strictly
smaller than 1, as h → 0. This remarkable property of optimized Schwarz method has already been
proven for the coupling of heterogeneous second-order PDEs, Gander & Vanzan (2019), but does not
hold in general when coupling equations described by the same differential operator. The numerical
experiments reported in the next section confirm this property on a wide range of test cases.

4. Numerical results

In this section, we discuss numerical results to test the proposed framework. Subsection 4.1 introduces
the physical relevant parameters used in the simulations. Subsection 4.2 validates the Fourier analysis
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2268 M. DISCACCIATI AND T. VANZAN

Table 1 Behaviour of the optimized parameter and convergence factor as h → 0. Parameters: ηp =
4 × 10−6, Sp = 4 × 10−15, Re = 1, θ = 0.5, kmin = π , kmax = π

h . Top table: Δt = 0.01. Bottom table:

Δt = 10−4

h s� αf αp maxk∈[kmin,kmax] |ρ(k, s�)|
10−2 2.5 × 102 9.8 × 102 4.7 × 101 0.08
10−3 1.6 × 103 1.5 × 102 4.7 × 101 0.56
10−4 5.0 × 103 4.9 × 101 4.7 × 101 0.75
10−6 6.7 × 103 3.7 × 101 4.7 × 101 0.78
10−8 6.7 × 103 3.7 × 101 4.7 × 101 0.78

h s� αf αp maxk∈[kmin,kmax] |ρ(k, s�)|
10−2 1.3 × 101 1.8 × 104 4.7 × 102 0.18
10−3 3.9 × 102 6.2 × 102 4.7 × 102 0.83
10−4 5.8 × 103 4.2 × 102 4.7 × 102 0.86
10−6 6.1 × 103 4.2 × 102 4.7 × 102 0.86
10−8 6.1 × 103 4.2 × 102 4.7 × 102 0.86

by considering the Stokes–Darcy coupling on a bounded domain with periodic boundary conditions and
with zero tangential velocity, so to mimic the hypothesis of Section 3. Next, in subsection 4.3 we violate
the assumptions of the Fourier analysis by considering nonperiodic boundary conditions, together with
the Beavers–Joseph–Saffman boundary condition. Finally in subsection 4.4, we present the convergence
of the Robin–Robin method for a realistic application.

4.1 Choice of physically relevant parameters

For the numerical tests we consider an incompressible fluid with kinematic viscosity ν = 10−6 m2/s
(water) at Reynolds 0.1 ≤ Re ≤ 5, and we choose the characteristic dimension of the domain Ωf to

be Xf = 0.05 m. For Darcy’s problem, the dimensionless coefficient Sp is obtained as Sp = ν2 S0
g

Re2

X2
f

,

where g = 9.8 m × s−2 is the magnitude of the gravity acceleration, and S0 is the specific storage whose
value ranges, e.g., in the interval 10−5 m−1 ≤ S0 ≤ 10−3 m−1 (Moraiti, 2012). The porous medium is
characterized by constant intrinsic permeability K in the range 10−11 m2 ≤ K ≤ 10−8 m2 (Bear, 1979),
so that ηp = K

X2
f

Re is also constant with η1 = η2. Using the indicated values, we identify four test cases

(A)–(D) with parameters of physical relevance that we will use for our numerical experiments. The test
cases are reported in Table 2 with values of the dimensionless quantities rounded to 2 decimal places.

4.2 Tests with periodic boundary conditions

Consider the domain Ω = (0, 1)×(−1, 1) decomposed into Ωf = (0, 1)2 and Ωp = (0, 1)×(−1, 0), with

Γ = (0, 1)×{0}. The discretization is based on a uniform mesh of squares of edge length hj = 0.1×21−j

j = 1, . . . , 4. Each square is then divided into two right triangles. We use Taylor–Hood finite elements for
Stokes and continuous Lagrangian P2 finite elements for Darcy’s pressure. For the time discretization we
use the Crank–Nicolson method (θ = 1

2 ). We impose homogeneous Dirichlet boundary conditions on the
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Table 2 Values of the dimensionless parameters defining four test cases (A)–(D)

Test (A) (B) (C) (D)

Re 0.1 1 0.1 5
Sp 4.08 × 10−16 4.08 × 10−15 4.08 × 10−18 1.02 × 10−14

ηp 4.00 × 10−10 4.00 × 10−7 4.00 × 10−9 2.00 × 10−7

ξf 1.58 × 10+5 1.58 × 10+3 5.00 × 10+4 1.00 × 10+3

Fig. 4. Number of iterations to reach a relative tolerance of 10−8.

horizontal edges of Ω and periodic boundary conditions on the vertical edges, which permit to mimic the
assumption on the unboundedness of the domain required by the Fourier analysis; see Gander & Vanzan
(2020a). In this setting, we consider the error equation (i.e., χn

f = 0, χn
p = 0 in (2.14)) and study the

convergence of the parallel version of the stationary iteration (2.13) to the zero solution starting from a
random initial guess. Theorem 3.4 does not cover the case under study as we need to include the zero
frequency k = 0. We thus compute the optimized value of s by solving numerically the min-max problem
mins∈R maxk∈{0}∪[kmin,kmax] |ρ(k, s)| using the Nelder–Mead algorithm (Lacis & Bagheri, 2017). To do
so, for a given s we evaluate |ρ(k, s)| on a discretized grid K of the set {0} ∪ [kmin, kmax] and then call
the optimization routine to minimize the function s → maxk∈K |ρ(k, s)|. Table 3 reports the values of
the optimal parameters αf , αp, and the number of iterations to reach a tolerance of 10−8 on the relative
error of the stationary iterations for different values of hj and for timesteps Δt1 = 0.05, Δt2 = 0.01,
Δt3 = 0.005 and Δt4 = 0.001. Notice that very large values of αf essentially transform the Robin–Robin
algorithm into a Dirichlet–Robin algorithm, in which the Stokes subdomain receives the Darcy velocity
as boundary conditions at the interface Γ .

Figure 4 reports the number of iterations to solve the coupled system (2.13) up to a relative tolerance
of 10−8 for tests (A), (B) and (C). The discretization parameters are h = 1/32, Δt = 0.01 and θ = 0.5.
Notice that the optimized parameter s� obtained by minimizing mins∈R maxk∈{0}∪[kmin,kmax] |ρ(k, s)|
always leads to an optimal numerical convergence, thus validating numerically Proposition 3.1.

4.3 Tests with analytic solution

Consider the domain Ωf = (0, 0.5)× (1, 1.5), Ωp = (0, 0.5)× (0.5, 1) with interface Γ = (0, 0.5)×{1},
and the time interval [0, 0.5]. The boundary conditions and forces ff and fp are chosen in such a way
that the exact solution of the problem is uf = (

√
μf ηp cos(t), αBJx cos(t)), pf = (2μf (x + y − 1) +
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Table 3 Optimal parameters αf , αp and number of stationary iterations to reach a tolerance of 10−8.
On the left Table Δt = 0.01, on the right Table h = 1/16

Test Mesh αf αp iter

(A) h1 2.50 × 10+9 1.49 × 10+2 4
h2 2.50 × 10+9 1.49 × 10+2 4
h3 2.50 × 10+9 1.49 × 10+2 6
h4 2.49 × 10+9 1.49 × 10+2 6

(B) h1 2.49 × 10+6 4.71 × 10+1 6
h2 2.47 × 10+6 4.70 × 10+1 8
h3 2.39 × 10+6 4.71 × 10+1 12
h4 2.02 × 10+6 4.71 × 10+1 20

(C) h1 2.50 × 10+8 1.49 × 10+2 6
h2 2.50 × 10+8 1.49 × 10+2 6
h3 2.49 × 10+8 1.49 × 10+2 6
h4 2.45 × 10+8 1.49 × 10+2 10

(D) h1 5.00 × 10+6 2.11 × 10+1 6
h2 5.00 × 10+6 2.11 × 10+1 6
h3 4.98 × 10+6 2.11 × 10+1 6
h4 4.91 × 10+6 2.11 × 10+1 10

Test Mesh αf αp iter
(A) Δt1 2.50 × 10+9 6.66 × 10+1 4

Δt2 2.50 × 10+9 1.49 × 10+2 4
Δt3 2.50 × 10+9 2.11 × 10+2 4
Δt4 2.50 × 10+9 4.71 × 10+2 4

(B) Δt1 2.48 × 10+6 2.11 × 10+1 8
Δt2 2.49 × 10+6 4.71 × 10+1 8
Δt3 2.49 × 10+6 6.66 × 10+1 8
Δt4 2.49 × 10+9 1.49 × 10+2 8

(C) Δt1 2.50 × 10+8 6.66 × 10+1 6
Δt2 2.50 × 10+8 1.49 × 10+2 6
Δt3 2.50 × 10+8 2.11 × 10+2 6
Δt4 2.50 × 10+8 4.71 × 10+2 6

(D) Δt1 5.00 × 10+6 9.42 × 10+0 6
Δt2 5.00 × 10+6 2.11 × 10+1 6
Δt3 5.00 × 10+6 2.98 × 10+1 6
Δt4 5.00 × 10+6 6.66 × 10+1 6

(3ηp)
−1) cos(t), pp = ((−αBJx(y − 1) + y3/3 − y2 + y)/ηp + 2μf x) cos(t). In this test case, the exact

solution satisfies the BJS condition (2.3c) at Γ instead of the simplified condition (3.20).
For the space discretisation we consider Q2 − Q1 elements for Stokes and Q2 elements for Darcy

on uniform, structured computational grids made by rectangles, while for the time discretisation we use
the backward Euler method (θ = 1).
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Table 4 Optimal parameters αf , αp and number of GMRES iterations for four computational meshes
and fixed Δt = 0.01

Test Mesh αf αp iter t1 iter tn

(A) h1 4.73 × 10+7 1.05 × 10+2 4 2
h2 2.38 × 10+7 1.05 × 10+2 4 2
h3 1.20 × 10+7 1.05 × 10+2 4 3
h4 5.99 × 10+6 1.05 × 10+2 4 4

(B) h1 4.60 × 10+4 3.33 × 10+1 5 4
h2 2.35 × 10+4 3.33 × 10+1 6 4
h3 1.20 × 10+4 3.33 × 10+1 6 4
h4 6.04 × 10+3 3.33 × 10+1 8 5

(C) h1 4.73 × 10+6 1.05 × 10+2 4 3
h2 2.38 × 10+6 1.05 × 10+2 4 4
h3 1.20 × 10+6 1.05 × 10+2 4 4
h4 6.00 × 10+5 1.05 × 10+2 6 4

(D) h1 1.17 × 10+5 1.49 × 10+1 4 4
h2 4.69 × 10+4 1.49 × 10+1 4 4
h3 2.34 × 10+4 1.49 × 10+1 6 4
h4 1.19 × 10+4 1.49 × 10+1 6 4

First, we test the robustness of the method with respect to the mesh size. For this purpose, we consider
four computational meshes with sizes hj = 0.1 × 21−j, j = 1, . . . , 4, and Δt = 0.01. Then, we test the
behaviour of the method with respect to Δt. To this aim, we consider a computational grid with h = 0.02
and four timesteps Δt1 = 0.05, Δt2 = 0.01, Δt3 = 0.005 and Δt4 = 0.001 as in Section 4.2. In all
cases, we solve the interface system (2.14) using GMRES (Saad & Schultz, 1986) with tolerance 10−8

on the relative residual starting the iterations from λ0
f = 0 and λ0

p = 0 at the first time step, while at tn

(n ≥ 1) we set λ
n,0
f = λn−1

f and λn,0
p = λn−1

p . The optimal value of s in (3.24) is computed through a
numerical routine that implements the different cases of Theorem 3.4.

Tables 4 and 5 report the values of the optimal parameters αf and αp computed for the test cases
(A)–(D) and the various discretization parameters, together with the number of iterations needed to solve
(2.14) at t1 and the rounded average number of iterations performed at successive time steps tn (n > 1).
The results show that the method is robust with respect to both the discretization parameters h and Δt
and to the physical parameters that characterize the time-dependent Stokes–Darcy problem. As already
observed in Section 4.2, also in this case we notice that αf is always few orders of magnitude larger than
αp so that the iterative method behaves like a Dirichlet–Robin one.

4.4 Tests without analytic solution

Consider the dimensionless domain Ω = (0, 1) × (0, 1) with interface at y = 0.4 and Ωf the upper
subdomain, and the dimensionless time interval [0, tf ] with tf = 1. For Darcy’s problem, we impose
homogeneous Dirichlet boundary condition at the bottom boundary (0, 1) × {0} of the domain, and
homogeneous Neumann boundary conditions on the remaining external boundaries of Ωp. In Ωf , we
impose homogeneous Dirichlet boundary conditions on the external lateral boundaries, while we set
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Table 5 Optimal parameters αf , αp and number of GMRES iterations for four values of Δt and fixed
h = 0.02

Test Δt αf αp iter t1 iter tn

(A) Δt1 9.59 × 10+6 4.71 × 10+1 4 4
Δt2 9.57 × 10+6 1.05 × 10+2 4 3
Δt3 9.56 × 10+6 1.49 × 10+2 4 3
Δt4 9.51 × 10+6 3.33 × 10+2 4 2

(B) Δt1 9.61 × 10+3 1.49 × 10+1 6 5
Δt2 9.56 × 10+3 3.33 × 10+1 6 4
Δt3 9.52 × 10+3 4.71 × 10+1 7 4
Δt4 9.40 × 10+3 1.05 × 10+2 8 4

(C) Δt1 9.60 × 10+5 4.71 × 10+1 5 4
Δt2 9.58 × 10+5 1.05 × 10+2 5 4
Δt3 9.57 × 10+5 1.49 × 10+2 5 4
Δt4 9.51 × 10+5 3.33 × 10+2 6 3

(D) Δt1 1.90 × 10+4 6.66 × 10+0 6 4
Δt2 1.88 × 10+4 1.49 × 10+1 6 4
Δt3 1.87 × 10+4 2.11 × 10+1 6 4
Δt4 3.91 × 10+4 4.71 × 10+1 6 4

Fig. 5. Sample computational mesh corresponding to h = h1 (left) and representation of the streamlines of the computed solution
at t = 0.75 using mesh with h = h2.

uf = (u1, 0) on the top boundary (0, 1) × {1} with u1 = min(2Uf t/tf , Uf ) and dimensionless velocity
Uf = 1. The forces ff and fp are both zero. The physical parameters are chosen as in tests (A) and (D) of
Section 4.1, see Table 2, and the optimized parameters of the iterative methods are computed through a
numerical routine that implements the cases of Theorem 3.4.

For the discretization, we use Q3 −Q2 elements for Stokes and Q3 elements for Darcy with Gauss–
Lobatto nodes for the Q3 polynomials, and the Crank–Nicolson method

(
θ = 1

2

)
. The meshes are
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Table 6 Test of Section 4.4: optimal parameters αf , αp and number of GMRES iterations for three
non-uniform computational meshes and Δt = 0.05

Test Mesh No. unknowns at Γ αf αp iter t1 iter tn

(A) h1 86 2.28 × 10+7 3.33 × 10+1 12 9
h2 170 1.14 × 10+7 3.33 × 10+1 12 9
h3 338 5.71 × 10+6 3.33 × 10+1 14 10

(D) h1 86 4.43 × 10+4 4.71 8 7
h2 170 2.25 × 10+4 4.71 10 8
h3 338 1.13 × 10+4 4.71 12 9

Table 7 Test of Section 4.4: optimal parameters αf , αp and number of GMRES iterations for three
values of Δt and mesh with h2

Test Δt αf αp iter t1 iter tn

(A) Δt1 1.14 × 10+7 2.11 × 10+1 12 9
Δt2 1.14 × 10+7 2.98 × 10+1 12 9
Δt3 1.14 × 10+7 4.21 × 10+1 12 9

(D) Δt1 2.26 × 10+4 2.98 10 8
Δt2 2.25 × 10+4 4.21 10 8
Δt3 2.24 × 10+4 5.96 10 8

Fig. 6. Stokes pressure pf (left) and Darcy’s pressure pp (right) computed at t = 0.75 using mesh with h = h2.

non-uniform with smaller elements in the neighbourhood of the external boundary and of the interface.
An example is shown in Fig. 5 (left).

Tables 6 and 7 indicate the values of the optimal parameters αf and αp and the number of iterations

needed to solve (2.14) at t1 and the rounded average number of iterations performed at successive time
steps tn (n > 1). For the computation of the optimal parameters, an average value of h at the interface is
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used due to the nonuniformity of the mesh. In Table 6, we set Δt = 0.05 and we consider three values
of h: h1 ≈ 0.0714, h2 ≈ 0.0357, h3 ≈ 0.0179. In Table 7, we consider the mesh characterized by h2
and we consider three values of Δt: Δt1 = 0.125, Δt2 = 0.0625, Δt3 = 0.03125. As already observed
in Section 4.3, the method is robust with respect to both the discretization and the physical parameters
and the choice of the optimal parameters αf and αp indicate a behaviour analogous to a Dirichlet–Robin
algorithm.

Figure 5 (right) and Fig. 6 show the velocity and pressure computed at t = 0.75 using the mesh
characterized by size h2 and Δt = 0.05. (The velocity in Darcy’s domain has been postprocessed from
the pressure pp using the MATLAB command ‘gradient’.)

5. Conclusions

In this paper, we formulated and analyzed an optimized Schwarz method for the time-dependent Stokes–
Darcy problem. Since the convergence factor is different from other cases studied in the literature, we
proposed a novel approach to characterize the optimized parameters in the interface Robin conditions
in order to guarantee robustness of the iterative method with respect to physical and discretization
parameters. Numerical experiments carried out for various configurations of the problem showed the
effectiveness of the studied method.
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