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SHAPE-DRIVEN INTERPOLATION WITH DISCONTINUOUS KERNELS:
ERROR ANALYSIS, EDGE EXTRACTION AND APPLICATIONS IN MPI

S. DE MARCHI∗, W. ERB† , F. MARCHETTI‡ , E. PERRACCHIONE§ , AND M. ROSSINI¶

Abstract. Accurate interpolation and approximation techniques for functions with discontinuities are key
tools in many applications as, for instance, medical imaging. In this paper, we study an RBF type method for
scattered data interpolation that incorporates discontinuities via a variable scaling function. For the construction
of the discontinuous basis of kernel functions, information on the edges of the interpolated function is necessary.
We characterize the native space spanned by these kernel functions and study error bounds in terms of the fill
distance of the node set. To extract the location of the discontinuities, we use a segmentation method based on
a classification algorithm from machine learning. The conducted numerical experiments confirm the theoretically
derived convergence rates in case that the discontinuities are a priori known. Further, an application to interpolation
in magnetic particle imaging shows that the presented method is very promising.

Key words. Meshless approximation of discontinuous functions; radial basis function (RBF) interpolation;
variably scaled discontinuous kernels (VSDKs); Gibbs phenomenon; segmentation and classification with kernel
machines, Magnetic Particle Imaging (MPI)

AMS subject classifications. 41A05, 41A25, A1A30, 65D05

1. Introduction. Data interpolation is an essential tool in medical imaging. It is required
for geometric alignment, registration of images, to enhance the quality on display devices, or to
reconstruct the image from a compressed amount of data [7, 26, 40]. Interpolation techniques are
needed in the generation of images as well as in post-processing steps. In medical inverse problems
as computerized tomography (CT) and magnetic resonance imaging (MRI), interpolation is used
in the reconstruction process in order to fit the discrete Radon data into the back projection step.
In single-photon emission computed tomography (SPECT) regridding the projection data improves
the reconstruction quality while reducing acquisition times [39]. In Magnetic Particle Imaging
(MPI), the number of calibration measurements can be reduced by interpolation methods [23].

In a general interpolation framework, we are given a finite number of data values sampled from
an unknown function f on a node set X ∈ Ω, Ω ⊆ Rd. The goal of every interpolation scheme is to
recover, in a faithful way, the function f on the entire domain Ω or on a set of evaluation points.
The choice of the interpolation model plays a crucial role for the quality of the reconstruction. If the
function f belongs to the interpolation space itself, f can be recovered exactly. On the other hand,
if the basis of the interpolation space does not reflect the properties of f , artifacts will usually
appear in the reconstruction. In two-dimensional images such artifacts occur for instance if the
function f describing the image has sharp edges, i.e. discontinuities across curves in the domain Ω.
In this case, smooth interpolants get highly oscillatory near the discontinuity points.

This is a typical example of the so-called Gibbs phenomenon. This phenomenon was originally
formulated in terms of overshoots that arise when univariate functions with jump discontinuities
are approximated by truncated Fourier expansions, see [42]. Similar artifacts arise also in higher
dimensional Fourier expansions and when interpolation operators are used. In medical imaging like
CT and MRI, such effects are also known as ringing or truncation artifacts [9].
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The Gibbs phenomenon is also a well-known issue for other basis systems like wavelets or splines,
see [20] for a general overview. Further, it appears also in the context of radial basis function (RBF)
interpolation [17]. The effects of the phenomenon can usually be softened by applying additional
smoothing filters to the interpolant. For RBF methods, one can for instance use linear RBFs in
regions around discontinuities [21]. Furthermore, post-processing techniques, such as Gegenbauer
reconstruction procedure [19] or digital total variation [32], are available.

Main contributions. In this work, we provide a shape-driven method to interpolate scattered
data sampled from discontinuous functions. Novel in our approach is that the interpolation space
is modelled according to edges (known or estimated) of the function. In order to do so we consider
variably scaled kernels (VSKs) [4, 31] and their discontinuous extension [11]. Starting from a
classical kernel K, we define a basis that reflects discontinuities in the data. These basis functions,
referred to as variably scaled discontinuous kernels (VSDKs), strictly depend on the given data.
In this way, they intrinsically provide an effective tool capable to interpolate functions with given
discontinuities in a faithful way and to avoid overshoots near the edges.

If the edges of the function f are explicitly known, we show that the proposed interpolation
model outperforms the classical RBF interpolation and avoids Gibbs artifacts. From the theoret-
ical point of view, we provide two main results. If the kernel K is algebraically decaying in the
Fourier domain, we characterize the native space of the VSDK as a piecewise Sobolev space. This
description allows us to derive in a second step convergence rates of the discontinuous interpolation
scheme in terms of a fill distance for the node set in the domain Ω. The VSDK convergence rates
are significantly better than the convergence rates for standard RBF interpolation. Numerical ex-
periments confirm the theoretical results and point out that even better rates are possible if the
kernel K involved in the definition of the VSDK is analytic.

In applied problems, as medical imaging, the edges of f are usually not a priori known. In
this case, we need reliable edge detection or image segmentation algorithms that estimate edges
(position of jumps) from the given data. For this reason, we encode in the interpolation method an
additional segmentation process based on a classification algorithm that provides the edges via a
kernel machine. As labels for the classification algorithm we can use thresholds based on function
values or on RBF coefficients [30]. The main advantage of this type of edge extraction process is
that it works directly for scattered data, in contrast to other edge detection schemes such as Canny
or Sobel detectors that usually require an underlying grid (cf. [8, 35]).

Outline. In Section 2, we recall the basic notions on kernel based interpolation. Then, in
Section 3 we present the theoretical findings on the characterization of the VSDK native spaces (if
the discontinuities are known) and Sobolev-type error estimates of the corresponding interpolation
scheme. In Section 4, numerical experiments confirm the theoretical convergence rates and reveal
that if the edges are known, the VSDK interpolant outperforms the classical RBF interpolation.
Beside these experiments, we show how the interpolant behaves with respect to perturbations of the
scaling function that models the discontinuities. We review image segmentation via classification
and machine learning tools in Section 5 and summarize our new approach. In Section 6, the novel
VSDK interpolation technique incorporating the segmentation algorithm is applied to Magnetic
Particle Imaging. Conclusions are drawn in Section 7.

2. Preliminaries on kernel based interpolation and variably scaled kernels. Kernel
based methods are powerful tools for scattered data interpolation. In the following, we give a brief
overview over the basic terminology. For the theoretical background and more details on kernel
methods, we refer the reader to [6, 16, 41].
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2.1. Kernel based interpolation. For a given set of scattered nodes X = {x1, . . . ,xN} ⊆ Ω,
Ω ⊆ Rd, and values fi ∈ R, i ∈ {1, . . . , N}, we want to find a function Pf : Ω→ R that satisfies the
interpolation conditions

(2.1) Pf (xi) = fi, i ∈ {1, . . . , N}.

We express the interpolant Pf in terms of a kernel K : Rd × Rd → R, i.e.,

(2.2) Pf (x) =

N∑
k=1

ckK (x,xk) , x ∈ Ω.

If the kernel K is symmetric and strictly positive definite, the matrix A = (Aij) with the entries
Aij = K (xi,xj), 1 ≤ i, j ≤ N , is positive definite for all possible sets of nodes. In this case, the
coefficients ck are uniquely determined by the interpolation conditions in (2.1) and can be obtained
by solving the linear system Ac = f , where c = (c1, . . . , cN )

ᵀ
, and f = (f1, . . . , fN )

ᵀ
.

Moreover, there exists a so-called native space for the kernel K, that is a Hilbert space NK(Ω)
with inner product (·, ·)NK(Ω) in which the kernel K is reproducing, i.e., for any f ∈ NK(Ω) we
have the identity

f(x) = (f,K(·, x))NK(Ω), x ∈ Ω.

Following [41], we introduce the native space by defining the space

HK(Ω) = span {K(·,y), y ∈ Ω}

equipped with the bilinear form

(2.3) (f, g)HK(Ω) =

N∑
i=1

M∑
j=1

aibjK(xi,yj),

where f, g ∈ HK(Ω) with f(x) =
∑N
i=1 aiK(x,xi) and g(x) =

∑M
j=1 bjK(x,yj). The space

(f, g)HK(Ω) equipped with (f, g)HK(Ω) is an inner product space with reproducing kernel K (see

[41, Theorem 10.7]). The native space NK(Ω) of the kernel K is then defined as the completion
of HK(Ω) with respect to the norm || · ||HK(Ω) =

√
(·, ·)HK(Ω). In particular for all f ∈ HK(Ω) we

have ||f ||NK(Ω) = ||f ||HK(Ω).

2.2. Variably scaled kernels. Variaby scaled kernels (VSKs) were introduced in [4]. They
depend on a scaling function ψ : Rd → R.

Definition 2.1. Let K : Rd+1 × Rd+1 → R be a continuous strictly positive definite kernel.
Given a scaling function ψ : Rd → R, a variably scaled kernel Kψ on Rd × Rd is defined as

(2.4) Kψ(x,y) := K((x, ψ(x)), (y, ψ(y)),

for x,y ∈ Rd.

The so given VSK Kψ is strictly positive definite on Rd. Suitable choices of the scaling function
ψ allow to improve stability and recovery quality of the kernel based interpolation, as well as to
preserve shape properties of the original function, see e.g. the examples in [4], [11] and [31].
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In this paper we consider radial kernels K : Rd × Rd → R, i.e.,

(2.5) K(x,y) = φ(||x− y||2), x,y ∈ Ω,

with a continuous scalar function φ : [0,∞) → R. The function φ is called radial basis function
(RBF). In this case a VSK has the form

(2.6) Kψ(x,y) = φ

(√
||x− y||22 + |ψ(x)− ψ(y)|2

)
.

2.3. Variably scaled kernels with discontinuities. Our goal is to introduce interpolation
spaces based on discontinuous basis functions on Ω. For the definition of these spaces, we use a
piecewise continuous scaling function ψ. The associated VSK Kψ(x,y) is then also only piecewise
continuous and denoted as variably scaled discontinuous kernel (VSDK).

We consider the following setting:

Assumption 2.2. We assume that:
(i) The bounded set Ω ⊂ Rd is the union of n pairwise disjoint sets Ωi, i ∈ {1, . . . , n}.

(ii) The subsets Ωi satisfy an interior cone condition and have a Lipschitz boundary.
(iii) Let Σ = {α1, . . . , αn}, αi ∈ R. The function ψ : Ω → Σ is piecewise constant so that

ψ(x) = αi for all x ∈ Ωi. In particular, the discontinuities of ψ appear only at the
boundaries of the subsets Ωi. We assume that αi 6= αj if Ωi and Ωj are neighboring sets.

The kernel function Kψ(x,y) based on a piecewise constant scaling function ψ is well defined
for all x,y ∈ Ω. If x and y are contained in the same subset Ωi ⊂ Ω then Kψ(x,y) = K(x,y). We
denote the graph of the function ψ with respect to the domain Ω by

Gψ(Ω) = {(x, ψ(x)) | x ∈ Ω} ⊂ Ω× Σ.

To have a more compact notation for the elements of the graph Gψ(Ω), we use the shortcuts
x̃ = (x, ψ(x)) and ỹ = (y, ψ(y)). In the same way as in (2.2), we can define an interpolant for the
nodes X̃ = {x̃1, . . . , x̃N} on the graph Gψ(Ω). Using the kernel K on Gψ(Ω) ⊂ Ω× Σ ⊂ Rd+1, we
obtain an interpolant of the form

(2.7) Pf (x̃) =

N∑
k=1

ckK(x̃, x̃k).

Based on this interpolant on Gψ(Ω), we define the VSDK interpolant Vf on Ω as

(2.8) Vf (x) = Pf (x̃) =

N∑
k=1

ckKψ(x,xk), x ∈ Ω.

The coefficients c1, . . . , cN of the VSDK interpolant Vf (x) in (2.8) are obtained by solving the
linear system of equations

(2.9)

K(x̃1, x̃1) · · · K(x̃1, x̃N )
...

...
K(x̃N , x̃1) · · · K(x̃N , x̃N )


 c1

...
cN

 =

 f1

...
fN

 .
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In fact, the so obtained coefficients are precisely the coefficients for the interpolant (2.7) for the
node points X̃ on the graph Gψ(Ω). Since the kernel K : Gψ(Ω)×Gψ(Ω) → R is strictly positive
definite, the system (2.9) admits a unique solution. For the kernel K : Gψ(Ω) × Gψ(Ω) → R and
the discontinuous kernel Kψ : Ω× Ω→ R we can further define the two inner product spaces

HK(Gψ(Ω)) = span {K(·, ỹ), ỹ ∈ Gψ(Ω)} ,
HKψ (Ω) = span {Kψ(·,y), y ∈ Ω} ,

with the inner products given as in (2.3). For both spaces, we can take the completion and obtain
in this way the native spaces NK(Gψ(Ω)) and NKψ (Ω), respectively. We have the following relation
between the two native spaces.

Proposition 2.3. The native spaces NK(Gψ(Ω)) and NKψ (Ω) are isometrically isomorphic.

In the same way as in [4, Theorem 2], Proposition 2.3 follows from the fact that the two
inner product spaces HK(Gψ(Ω)) and HKψ (Ω) are isometric. Then, the same holds true for their
respective completion.

3. Approximation with discontinuous kernels.

3.1. Characterization of the native space for VSDKs. Based on the decomposition of
the domain Ω described in Assumption 2.2 we define for s ≥ 0 and 1 ≤ p ≤ ∞ the following spaces
of piecewise smooth functions on Ω:

WPsp(Ω) :=
{
f : Ω→ R | fΩi ∈Ws

p(Ωi), i ∈ {1, . . . , n}
}
.

Here, fΩi denotes the restriction of f to the subregion Ωi and Ws
p(Ωi) denote the standard Sobolev

spaces on Ωi. As norm on WPsp(Ω) we set

‖f‖pWPsp(Ω) =

n∑
i=1

‖fΩi‖
p
Ws
p(Ωi)

.

The piecewise Sobolev space WPsp(Ω) and the corresponding norm strongly depend on the chosen
decomposition of the domain Ω. However, for any decomposition of Ω in Assumption 2.2, the
standard Sobolev space Ws

p(Ω) is contained in WPsp(Ω). In the following, we assume that the radial
kernel K defining the VSDK Kψ has a particular Fourier decay:

(3.1) φ̂(‖ · ‖)(ω) ∼ (1 + ‖ω‖22)−s−
1
2 , s >

d− 1

2
.

In order to characterize the native space NKψ (Ω), we need some additional results regarding
the continuity of trace and extension operators. For the reader’s convenience, we list some relevant
results from the literature.

Lemma 3.1. We have the following relations for extension and trace operators in the native
spaces (a) and in the Sobolev spaces (b):

(a) ([41, Theorem 10.46 & Theorem 10.47] or [33, Section 9]) Every f ∈ NK(Gψ(Ω)) has a
natural extension Ef ∈ NK(Rd+1). Further,

‖Ef‖NK(Rd+1) = ‖f‖NK(Gψ(Ω)).

For every g ∈ NK(Rd+1), the trace TGψ(Ω)g is contained in NK(Gψ(Ω)). Further,

‖TGψ(Ω)g‖NK(Gψ(Ω)) ≤ ‖g‖NK(Rd+1).
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b) ([1, Theorem 7.39]) Let s > 1
2 . For every g ∈Ws

2(Rd+1) the trace TGψ(Ω)g is contained in

W
s−1/2
2 (Gψ(Ω)) and the trace operator TGψ(Ω) : Ws

2(Rd+1)→W
s−1/2
2 (Gψ(Ω)) is bounded.

Further, there exists a bounded extension operator E : W
s−1/2
2 (Gψ(Ω)) → Ws

2(Rd+1) such

that TGψ(Ω)Ef = f for all f ∈W
s−1/2
2 (Gψ(Ω)).

We are now ready to prove the following theorem.

Theorem 3.2. Let Assumption 2.2 hold true, and assume that the continuous strictly positive
definite kernel K : Rd+1×Rd+1 → R based on the radial basis function φ satisfies the decay condition
(3.1). Then, for the discontinuous kernel Kψ, we have

NKψ (Ω) = WPs2(Ω),

with the norms of the two Hilbert spaces being equivalent.

Proof. We consider the following forward and backward chain of Hilbert space operators:

NKψ (Ω)
P5

�
Q1

NK(Gψ(Ω))
P4

�
Q2

NK(Rd+1)
P3

�
Q3

W
s+1/2
2 (Rd+1)

P2

�
Q4

Ws
2(Gψ(Ω))

P1

�
Q5

WPs2(Ω).

In the backward direction, the operators P1, . . . , P5 are given as

P1 : P1f = f̃ , with f̃(x̃) = f(x), for all x ∈ Ω,

P2 : P2f = Ef, (Extension in the sense of Lemma 3.1 (b))

P3 : P3f = f,

P4 : P4f = TGψ(Ω)f, (Trace in the sense of Lemma 3.1 (a))

P5 : P5f̃ = f, with f(x) = f̃(x̃), for all x ∈ Ω.

In the forward chain, the operators Q1, . . . , Q5 are similarly defined as

Q1 : Q1f = f̃ , with f̃(x̃) = f(x), for all x ∈ Ω,

Q2 : Q2f = Ef, (Extension in the sense of Lemma 3.1 (a))

Q3 : Q3f = f,

Q4 : Q4f = TGψ(Ω)f, (Trace in the sense of Lemma 3.1 (b))

Q5 : Q5f̃ = f, with f(x) = f̃(x̃), for all x ∈ Ω.

All these 10 operators are well defined and continuous: P5 and Q1 are isometries by Proposition
2.3. P2, Q2 as well as P4, Q4 are continuous by Lemma 3.1. Since K satisfies the condition (3.1),
the native space NK(Rd+1) is equivalent to the Sobolev space Ws

2(Rd+1) (see [41, Corollary 10.48]).
Therefore also the identity mappings P3 and Q3 are continuous. Finally, the Sobolev norm for a
function f̃ on the graph Gψ(Ω) is a reformulation of the norm of f ∈WPs2(Ω). Therefore also the
operators P1 and Q5 are isometries.

We can conclude that the concatenations P5P4P3P2P1 and Q5Q4Q3Q2Q1 are continuous oper-
ators. Since P5P4P3P2P1 is the inverse to Q5Q4Q3Q2Q1, these two operators therefore provide an
isomorphism between the Hilbert spaces NKψ (Ω) and WPs2(Ω).

3.2. Error estimates for VSDK interpolation. We state first of all a well-known Sobolev
sampling inequality for functions vanishing on the subsets X ∩Ωi which was developed in [28]. For
this we introduce the following regional fill distance hi on the subset Ωi:

hi = sup
x∈Ωi

inf
xi∈X∩Ωi

‖x− xi‖2.
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Proposition 3.3 (Theorem 2.12 in [28] or Proposition 9 in [15]). Let s > 0, as well as
1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Further, let m ∈ N0 such that bsc > m + d/p (for p = 1 also equality
is possible) and u be a function that vanishes on X ∩ Ωi. Then, there is a h0 > 0 such that for
hi ≤ h0 and for the subregions Ωi satisfying Assumption 2.2 (ii) we have the Sobolev inequality

‖u‖Wm
q (Ωi) ≤ Cih

s−m−d(1/p−1/q)+
i ‖u‖Ws

p(Ωi).

The constant Ci > 0 is independent of hi.

The Sobolev sampling inequalities given in Proposition 3.3 allow us to extract the correct power
of the fill distance from the smoothness of the underlying error function. Based on these inequalities,
a similar analysis can be conducted also on manifolds, see [15]. Further sampling inequalities that
can be used as a substitute for Proposition 3.3 can, for instance, be found in [29, Theorem 2.1.1].

We define now the global fill distance

h = max
i∈{1,...,n}

hi,

and get as a consequence of the regional sampling inequalities in Proposition 3.3 the following
Sobolev error estimate:

Theorem 3.4. Let Assumption 2.2 be satisfied. Further, let s > 0, 1 ≤ q ≤ ∞ and m ∈ N0

such that bsc > m + d
2 . Additionally, suppose that the RBF φ satisfies the Fourier decay (3.1).

Then, for f ∈WPs2(Ω), we obtain for all h ≤ h0 the error estimate

‖f − Vf‖WPmq (Ω) ≤ Chs−m−d(1/2−1/q)+‖f‖WPs2(Ω).

The constant C > 0 is independent of h.

Proof. By assumption, the function f is an element of WPs2(Ω). Further, the native space
characterization in Theorem 3.2 guarantees that also the VSDK interpolant Vf is an element of
WPs2(Ω). Therefore, we can apply Proposition 3.3 with p = 2 to every subset Ωi and obtain

‖f − Vf‖Wm
q (Ωi) ≤ Cih

s−m−d(1/2−1/q)+
i ‖f − Vf‖Ws

2(Ωi), i ∈ {1, . . . , n},

with hi ≤ h0. Now, using the definition of the piecewise Sobolev space WPmq (Ω), we can synthesize
these estimates to obtain

(3.2) ‖f − Vf‖WPmq (Ω) ≤ Chs−m−d(1/2−1/q)+‖f − Vf‖WPs2(Ω),

where C = max1≤i≤n Ci and h = max1≤i≤n hi. Since WPs2(Ω) is equivalent to the native space
NKψ (Ω) we can use the fact that the interpolant Vf is a projection into a subspace of NKψ (Ω).
This helps us to finalize our bound:

‖f − Vf‖WPs2
≤ C ′‖f − Vf‖NKψ (Ω) ≤ C ′‖f‖NKψ (Ω) ≤ C ′′‖f‖WPs2(Ω),

with two constants C ′, C ′′ describing the upper and lower bound for the equivalence of the two
Hilbert space norms.

Remark 3.5. The error estimates in Theorem 3.4 provide a theoretical explanation why VSDK
interpolation is superior to RBF interpolation in the spaces WPs2(Ω). In these spaces the con-
vergence of the interpolant Vf towards f ∈ WPs2(Ω) depends only on the smoothness s of f in
the interior of the subsets Ωi ⊂ Ω and not on the discontinuities at the boundaries of Ωi. If s
is sufficiently large, the corresponding fast convergence of the interpolation scheme prevents the
emergence of Gibbs artifacts in the interpolant Vf .
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4. Numerical experiments.

4.1. Experimental setup. In our main application in magnetic particle imaging we will use
samples along Lissajous trajectories as interpolation nodes. For this, we will introduce and use
these node sets already for the numerical experiments in this section. As test images we consider
the Shepp-Logan phantom and an additional simple geometric phantom. We give a brief description
of this experimental setup.

Fig. 1: The Shepp-Logan phantom (left), a geometric phantom (middle, left), as well as the Lissajous

nodes LS
(32,33)
2 (middle, right) and LS

(10,11)
2 (right).

4.1.1. Lissajous interpolation nodes. For a vector n = (n1, n2) ∈ N2 with relatively prime
frequencies n1, n2 and ε ∈ {1, 2}, the generating curves for the Lissajous nodes are given as

(4.1) γ(n)
ε (t) =

(
cos(n2t), cos

(
n1t− ε−1

2n2
π
))

.

The Lissajous curve γ
(n)
ε is 2π-periodic and contained in the square [−1, 1]2. If ε = 1, this curve is

degenerate, i.e. it is traversed twice in one period. Further, γ
(n)
1 with n = (n, n+1), n ∈ N, are the

generating curves of the Padua points [2, 13]. If ε = 2, then the curve is non-degenerate. If n1 +n2

is odd, the curve γ
(n)
2 (t) in (4.1) can be further simplified in terms of two sine functions and gives

a typical sampling trajectory encountered in magnetic particle imaging, see [12, 14, 24, 25]. Using

γ
(n)
ε as generating curves, we introduce the Lissajous nodes as the sampling points

(4.2) LS(n)
ε =

{
γnε

(
πk

εn1n2

)
, k = 0, ..., 2εn1n2 − 1

}
.

In our upcoming tests, we will use the points LS
(n)
2 , with n1, n2 relatively prime and n1 + n2 odd

as underlying interpolation nodes. These node sets were already used in [10, 14, 23] for applications

in MPI. The number of points is given by #LS
(n)
2 = 2n1n2 +n1 +n2, see [12, 14]. The fill distance

h
LS

(n)
2

= max
y∈[-1,1]2

min
x∈LS

(n)
2

‖x− y‖2

for the nodes LS
(n)
2 in the square [−1, 1]2 can be computed as

(4.3) h
LS

(n)
2

=
1

2
max


√
S2
n1

+

(
S2
2n1

+S2
2n2
−Sn1

S2n1

S2n2

)2

,

√
S2
n2

+

(
S2
2n1

+S2
2n2
−Sn2

S2n2

S2n1

)2
 ,
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by using the shortcut Sn = sin(π/n). This allows us to express the fill distance of LS
(n)
2 directly

in terms of the frequency parameters n1 and n2. Further, we have the estimates

1

2
max {Sn1

, Sn2
} ≤ h

LS
(n)
2
≤ max {S2n1

, S2n2
} ≤ max

{
π

2n1
,
π

2n2

}
.

For n = (32, 33) and n = (10, 11), the nodes LS
(n)
2 are illustrated in Figure 1 (right).

4.1.2. Shepp-Logan phantom. As a main test phantom with sharp edges, we use the Shepp-
Logan phantom fSL on Ω = [−1, 1]2 as introduced in [36]. The function fSL : [−1, 1]2 → [0, 1] is
defined as a composition of 10 step functions determined by elliptic equations. A discretization of
fSL on an equidistant M ×M grid, M = 150, is displayed in Figure 1 (left).

4.1.3. Geometric phantom. As a second phantom we use a geometric composition fG of an
ellipse E, a rectangle R and a bounded parabola P, discretized on a M ×M grid of size M = 150.
The function fG on Ω = [−1, 1]2 is given as fG = χE + 1.5χR + 2χP, where χE, χR and χP denote
the characteristic functions of E, R and P, respectively. The phantom fG is illustrated in Figure 1
(middle, left).

4.1.4. Kernels. For RBF interpolation in Rd, as well as for the VSDK interpolation scheme
which requires a kernel in Rd+1, we use the following RBFs (cf. [16]):

(i) The C0-Matérn function φMat,0(r) = e−r. The native space of the corresponding kernel is

exactly the Sobolev space Ws
2(Rd) with s = d+1

2 . We have W
d+1
2

2 (Rd) ⊂ C0(Rd).
(ii) The C2-Matérn function φMat,2(r) = (1 + r)e−r. The native space of φMat,2(‖x‖2) is the

Sobolev space Ws
2(Rd) with s = d+3

2 . Functions in W
d+3
2

2 (Rd) are contained in C2(Rd).
(iii) The C4-Matérn function φMat,4(r) = (3 + 3r + r2)e−r. The radial function φMat,4(‖x‖2)

generates the Sobolev space Ws
2(Rd) with s = d+5

2 . W
d+5
2

2 (Rd) is contained in C4(Rd).

(iv) The Gauss function φGauss(r) = e−r
2

. This is an analytic function. The native space for the
Gauss kernel is contained in every Sobolev space Ws

2(Rd), s ≥ 0.

With decreasing separation distance of the interpolation nodes, the calculation of the coefficients
in (2.9) can be badly conditioned when solving the linear system directly. This is particularly
the case when using the Gaussian as underlying kernel. In order to stabilize the calculation, we
regularized the system (2.9) by adding a small multiple λ > 0 of the identity to the interpolation
matrix (we chose λ = 10−12 in our calculations). Note however that in the literature there exist
more sophisticated ways to avoid this bad conditioning, see for instance [16, Chapters 11,12 & 13].

4.2. Experiment 1 - Convergence for a priori known discontinuities.

4.2.1. Description. For n ∈ {4, 8, 12, . . . , 40} we interpolate the Shepp-Logan phantom at

the Lissajous nodes LS
(n,n+1)
2 . We use the four kernels introduced in the previous Section 4.1 and

compute the RBF as well as the VSDK interpolant for all sets of Lissajous nodes. In a log-log
diagram we plot the fill distance h = h

LS
(n)
2

given in (4.3) against the L2-error between the original

Shepp-Logan function fSL and the interpolant. As an approximation of the continuous L2-error
we use the root-mean-square error on the finite discretization grid. As a scaling function for the
VSDK interpolant, we use ψ(x) = 0.5fSL(x), i.e. we use a scaling function with the correct a
priori information of the discontinuities. The two log-log diagrams are displayed in Figure 2. The
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Fig. 2: Convergence rates for interpolating the Shepp-Logan phantom on the nodes LS
(n)
2 using

VSDK schemes with a priori known scaling function ψ (left) and RBF schemes (right).

Kernel Smoothness s Slope VSDK convergence Slope RBF convergence
C0-Matérn 1.5 2.3609 0.29117
C2-Matérn 2.5 2.9918 0.26692
C4-Matérn 3.5 3.6521 0.25791
Gauss analytic 5.5690 0.30625

Table 1: The slopes of the convergence rates in Figure 3 for VSDK and RBF interpolation.

slopes for the regression lines are listed in Table 1. The RBF and the VSDK reconstruction for the

interpolation nodes LS
(40,41)
2 using the C2-Matérn kernel are shown in Figure 3.

4.2.2. Results and discussion. This first numerical experiment confirms the theoretical
error estimates given in Theorem 3.4 and shows that, if the discontinuities of a function are a priori
known, the interpolation model based on the discontinuous kernels is significantly better than RBF
interpolation.

The slope of the regression line for the RBF interpolation is for all four kernels between 0.25
and 0.31. This is in line with the low order smoothness of the Shepp-Logan phantom fLS which is
contained in the Sobolev space Ws

2([−1, 1]2) only for s < 1/2. On the other hand, with the choice
ψ = 0.5fLS, the Shepp-Logan phantom is contained in all piecewise Sobolev spaces WPs2([−1, 1]2),
s ≥ 0. Thus, as predicted in Theorem 3.4, the convergence rates are determined by the smoothness
s of the applied kernel. In particular, we obtain the diversified and faster convergence displayed
in Figure 2 (left) and Table 1. Note that for a better comparison between the two interpolation
schemes we used for both the global fill distance h

LS
(n)
2

given in (4.3), whereas in Theorem 3.4 the

fill distance h depends on the segmentation of the domain. In general, we have h
LS

(n)
2
≤ h.
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Fig. 3: Reconstruction of the Shepp-Logan phantom for given sampling data at the nodes LS
(40,41)
2

using the VSDK scheme (left) and the RBF interpolation (right). For both schemes, the C2-Matérn
kernel is used. In the VSDK scheme, the scaling function ψ is a priori known.

Fig. 4: Reconstruction of the geometric phantom by the VSDK scheme with differing scaling func-

tions. The set of interpolation nodes is LS
(10,11)
2 .

Fig. 5: The differences of the VSDK interpolants in Figure 4 to the original phantom.
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4.3. Experiment 2 - Perturbations of the scaling function.

4.3.1. Description. In the second computational experiment, we test the sensitivity of the
VSDK interpolation with respect to shifts of the scaling function ψ. For this experiment, we consider
the geometric phantom fG and interpolate it with differing scaling functions at the Lissajous nodes

LS
(10,11)
2 using the C0-Matérn kernel. The corresponding reconstructions are displayed in Figure

4. Starting from the correct scaling function (left), i.e. using ψ = fG, the rectangle in the scaling
function ψ is slowly shifted towards the center (in Figure 4, from left to right). The corresponding
interpolation errors with respect to the original function fG are shown in Figure 5.

4.3.2. Results and discussion. The outcome of the variably scaled kernel interpolation de-
pends sensitively on the choice of the scaling function ψ. All reconstructions in Figure 4 interpolate
the function values on the Lissajous nodes. If the scaling function is correctly chosen (left) or only
slightly shifted (middle, left), no artifacts are visible in the interpolation. However, the larger the
shift of the rectangle in the scaling function ψ gets, the stronger the artifacts are. In particular we
see that if the values of ψ do not correspond to the data values on the interpolation nodes, Gibbs
type artifacts appear. Therefore, if the VSDK interpolation scheme is applied in a setting in which
the edges are not known, a robust edge estimator is needed. In the next section, we will discuss
some possibilities for such an estimator.

5. Extracting edges from the given data. We use algorithms from machine learning to
obtain a segmentation of the domain Ω. In particular, we focus on the so-called Support Vector
Machines (SVMs) and refer to [34, 37] for a general overview. The main reason to use kernel
machines for segmentation is that they can be applied directly to scattered data. Note however
that the literature on segmentation of images and edge detection is very extensive and gives a lot of
further interesting possibilities to obtain a segmentation. We refer to [38] for a general introduction.

5.1. Segmentation of an image by classification algorithms. In order to obtain a clas-
sification of the entire domain Ω, we separate the data values (xi, fi) into n classes S1, . . . ,Sn such
that all nodes xi in one class Sj are precisely contained in Ωj , j ∈ {1, . . . , n}. We link every class
Sj to a value αj ∈ R and set the label zi = ψ(xi) = αj if (xi, fi) is contained in Sj . From the
labels Z = {z1, . . . , zN} of the points in X , we want to derive now a classification for every x ∈ Ω.

We give a short description of SVM classification, a more precise introduction can be found,
for instance, in [34, 37]. To simplify the considerations, we assume that we only have two classes
with possible label values α1 = −1 and α2 = 1. In this case, a decision function z that allows us to
assign to every x an appropriate label is given by

z(x) = sign(h(x)),

where h = 0 describes a hyperplane separating the given measurements. The hyperplane is set up
with help of the so called kernel trick. By virtue of Mercer’s theorem [27], any kernel K can be
decomposed as

(5.1) K(x,y) = Θ(x)ᵀΘ(y) =

∞∑
j=1

Θj(x)Θj(y), x,y ∈ Ω,

where Θj are eigenfunctions of the integral operator g →
∫

Ω
K(x,y)g(y)dy. The kernel trick

consists in mapping the points xi via Θ into a (possible) infinite dimensional Hilbert space and to
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describe the separating hyperplane as

h(x) = Θ(x)ᵀw + b.

The weight w, i.e. the unit normal vector to the hyperplane, and the bias b can be determined by
maximizing the gap to both sides of this hyperplane. One standard way to obtain this hyperplane
is by solving the optimization problem

max
β

(
N∑
k=1

βk −
1

2

N∑
k=1

N∑
i=1

βkβizkziK(xk,xi)

)
,

subject to the constraints { ∑N
k=1 βkzk = 0,

0 ≤ βi ≤ C, i ∈ {1, . . . , N}.

Here, the box constraint C is simply a regularization parameter [16]. Based on the maximizer of
this problem, the decision function z of the SVM classifier is then given as

(5.2) z(x) = sign(h(x)) = sign

(
N∑
i=1

βiziK(x,xi) + b

)
.

The bias b can be determined as

b =

N∑
k=1

βkzkK(xk,xj),

where j denotes the index of a coefficient βj which is strictly between 0 and C.
The classification function z(x) in (5.2) gives now the desired segmentation of Ω: the two sets

Ω1 and Ω2 are defined such that for x ∈ Ωi we have z(x) = αi, i ∈ {1, 2}. The corresponding
discontinuous scaling function ψ on Ω is given as

(5.3) ψ(x) =

{
α1, if z(x) = α1,
α2, if z(x) = α2,

It is straightforward to extend this classification scheme if α1, α2 6= ±1. There are also several
strategies to extend this scheme to the case that the number of classes is n ≥ 2. In the literature,
this is known as Multiclass SVM classification. One usual approach here is to divide the single
multiclass problem into multiple binary SVM classification problems.

5.2. Strategies to set the labels for classification. In general, the choice of a labeling
strategy depends on the aimed at application. In the following, we specify a few simple heuristic
strategies to extract the labels Z from a given data set (X ,F).

5.2.1. Using thresholds on the data values. If the function f has discontinuities, these
are visible as deviations in the data set F . A very simple strategy is therefore to use thresholds for
the definition of the labels. If a0 < a1 < · · · < an and supp(F) is contained in the interval [a0, an)
we can define n classes S1, . . . ,Sn by assigning (xi, fi) to Sj if aj−1 ≤ fi < aj , j ∈ {1, . . . , n}.
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5.2.2. Using thresholds on interpolation coefficients. In [30], it is shown that variations
in the expansion coefficients of an RBF interpolation can be used to detect the edges of a function.
Thus, in the same way as in the previous strategy, thresholds on the absolute value of the RBF
coefficients can be applied to determine the aimed at labeling.

5.2.3. Automated strategies using k-means clustering. The given data (X ,F) can also
be segmented using an automated procedure using k-means clustering. If the size n of classes is
known, this method provides n pairwise disjoint classes S1, . . . ,Sn by minimizing the functional

n∑
j=1

∑
(x,h)∈Sj

|h− h̄j |.

The value h̄j denotes the mean of all function values h inside the class Sj . Note that in this case
the position x of the data is not used to determine the labels.

5.3. Algorithm for VSDK interpolation with unknown edges. In the following Algo-
rithm 5.1, we summarize the entire scheme for the computation of a shape-driven interpolant from
given function values on a node set X and unknown discontinuities. For the interpolation, the VSDK
scheme introduced in Section 2.3 is used. To estimate the edges of f , we use the segmentation and
labeling procedures described in Section 5.1 and Section 5.2.

Algorithm 5.1 Shape-driven interpolation with discontinuous kernels

INPUTS: Set of interpolation nodes

X = {xi, i = 1, . . . , N} ⊆ Ω,

a corresponding set of data values

F = {fi = f(xi), i = 1, . . . , N},
and the desired evaluation point(s) x ∈ Ω.

OUTPUTS: VSDK interpolant Vf (x),

Step 1: Extract the labels Z for X using F with a strategy of Section 5.2.

Step 2: Train the kernel machine in Section 5.1 with the points X and the labels

Z to obtain a prediction (5.3) for the scaling function ψ.

Step 3: Calculate the coefficients ci, i ∈ {1, . . . , N}, of the VSDK interpolation

by solving (2.9).

Step 4: Evaluate the interpolant Vf (x) in (2.8) at x ∈ Ω.

5.4. Numerical example.

5.4.1. Description. On the node set LS
(33,32)
2 , we interpolate the geometric phantom fG

using an ordinary RBF interpolation and the VSDK scheme from Algorithm 5.1. In both cases,
we use the C0-Matérn function as underlying kernel. The applied edge estimator in Algorithm
5.1 is based on the segmentation method of Section 5.1 and the automated labeling described in
Section 5.2.3. The resulting RBF interpolant and the error with respect to the original phantom
are displayed in Figure 6 (left). In Figure 6 (right) the outcome of Algorithm 5.1 and the respective
error with respect to fG are shown.
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Fig. 6: Comparison of RBF interpolation (left) with the VSDK scheme given in Algorithm 5.1

(right). The interpolation is performed on the nodes LS
(33,32)
2 . In the second and the fourth image

(from the left) the respective differences to the original phantom are displayed.

5.4.2. Results and discussion. In this example in which we don’t use the a priori knowledge
of the discontinuities, the VSDK scheme in combination with the edge estimator gives a higher re-
construction quality than an ordinary RBF interpolation. In particular, in the VSDK interpolation
the Gibbs phenomenon is not visible and the errors are more localized at the boundaries of the
geometric figures. For a more quantitative comparison, we compute the relative discrete L1-errors
of the two reconstructions. We obtain

‖fG − PfG‖1
‖fG‖1

≈ 0.1647,
‖fG − VfG‖1
‖fG‖1

≈ 0.1011,

i.e., the VSDK interpolant gives a slightly better result with respect to the L1-norm.
Again, we want to point out that in case that the discontinuities are not a priori given the output

of the VSDK interpolation strongly depends on the performance of the edge detector. If the edges
are detected in a reliable way, also the final VSDK interpolation has a good overall quality. For this
compare Figure 6 also with the reconstruction in Figure 4 (left) in which the scaling function with
the correct information of the edges was used. On the other hand, as discussed in Section 4.3, if
the scaling function ψ is badly chosen also the final reconstruction is seriously affected by artifacts.

6. Applications in Magnetic Particle Imaging. In the early 2000s, B. Gleich and J.
Weizenecker [18], invented at Philips Research in Hamburg a new quantitative imaging method
called Magnetic Particle Imaging (MPI). In this imaging technology, a tracer consisting of super-
paramagnetic iron oxide nanoparticles is injected and then detected through the superimposition
of different magnetic fields. In common MPI scanners, the acquisition of the signal is performed
following a generated field free point (FFP) along a chosen sampling trajectory. The determination
of the particle distribution given the measured voltages in the receive coils is an ill-posed inverse
problem that can be solved only with proper regularization techniques [24].

Commonly used trajectories in MPI are Lissajous curves [25]. To reduce the amount of cal-
ibration measurements, it is shown in [23] that the reconstruction can be restricted to particular

sampling points along the Lissajous curves, i.e., the Lissajous nodes LS
(n)
2 introduced in (4.2).

By using a polynomial interpolation method on the Lissajous nodes [12] the entire density of the
magnetic particles can then be restored. These sampling nodes and the corresponding polynomial
interpolation can be seen as an extension of a respective theory on the Padua points [2, 3].
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Fig. 7: Comparison of different interpolation methods in MPI. The reconstructed data on the

Lissajous nodes LS
(33,32)
2 (left) is first interpolated using the polynomial scheme derived in [12]

(middle left). Using a scaling function constructed upon a threshold strategy (middle right) the
second interpolation is performed by the VSDK scheme (right).

If the original particle density has sharp edges, the polynomial reconstruction scheme on the
Lissajous nodes is affected by the Gibbs phenomenon. As shown in [10], post-processing filters can
be used to reduce oscillations for polynomial reconstruction in MPI. In the following, we demonstrate
that the usage of the VSDK interpolation method in combination with the presented edge estimator
effectively avoids ringing artifacts in MPI and provides reconstructions with sharpened edges.

6.1. Description. As a test data set, we consider MPI measurements conducted in [23] on a
phantom consisting of three tubes filled with Resovist, a contrast agent consisting of superparamag-
netic iron oxide. By the proceeding described in [23] we then obtain a reconstruction of the particle

density on the Lissajous nodes LS
(33,32)
2 . This reduced reconstruction on the Lissajous nodes is

illustrated in Figure 7 (left). A computed polynomial interpolant of this data is shown in Figure 7
(middle, left). In this polynomial interpolant some ringing artifacts are visible. In order to obtain
the labeling for the classification algorithm, we use the simple thresholding strategy described in
Section 5.2.1 using 1/5 of the maximal signal strength as a threshold for a binary classification.
The scaling function ψ for the VSDK scheme is then obtained by using the classification algorithm
of Section 5.1 with a Gauss function for the kernel machine. The resulting scaling function is vi-
sualized in Figure 7 (middle, right). Using the C0-Matérn kernel for the VSDK interpolation, the
final interpolant for the given MPI data is shown in in Figure 7 (right).

6.2. Results and discussion. In the polynomial interpolation shown in Figure 7 (middle,
left) ringing artifacts are visible. These artifacts could be removed by using Algorithm 5.1 for the
MPI data instead. As an alternative to the applied manual thresholding strategy, it is also possible
to use the automated strategy given in Section 5.2.3 in which the k-means algorithms gives the
labeling of the data. This second strategy yields classification and reconstruction results that are
very close to the ones displayed for the manual strategy in Figure 7.

7. Conclusions. To reflect discontinuities of a function or an image in the interpolation of
scattered data we studied techniques based on the use of variably scaled discontinuous kernels.
We obtained a characterization and theoretical Sobolev type error estimates for the native spaces
generated by these discontinuous kernels. Numerical experiments confirmed the theoretical conver-
gence rates and investigated the behavior of the interpolants if the scaling function describing the
discontinuities is perturbed.
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Interpolation with discontinuous kernels can only be conducted if the discontinuities of the
function are known. If the discontinuities are not known, sophisticated methods are necessary to
approximate the edges from given scattered data. In this work, we used kernel machines, trained
with the given data, to obtain the edges and the segmentation of the image.

The results of the VSDK method applied to Magnetic Particle Imaging are promising and show
that the Gibbs phenomenon can be sensibly reduced. Work in progress consists in using kernel
machines also for regression with VSDKs. This might be of interest when approximating time
series with jumps.
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