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Abstract

The main goal of the present paper is to extend the interpolation
via the so-called mapped bases without resampling to any basis and
dimension. So far indeed, we investigated the univariate case, its ex-
tension to rational polynomial interpolation and its natural application
to numerical integration.

The concept of mapped bases has been widely studied, but all the
proposed methods show convergence provided that the function is re-
sampled at the mapped nodes. In applications, this is often physically
unfeasible. Thus, we propose an effective method for interpolating
via mapped bases in the multivariate setting. We might refer to the
method as Fake Nodes Approach (FNA). Our theoretical results are
confirmed by various numerical experiments devoted to point out the
robustness of the proposed scheme.

1 Introduction
Multivariate (scattered) data approximation problems come out in various
applications and, in this sense, are one of the most attractive research topics
in applied mathematics, numerical analysis, engineering, data science and
in all those fields that need to treat (big) data. Many methods have already
been proven to be effective numerical tools, such as multivariate splines,
Radial Basis Functions (RBFs) and in some sense also finite elements [11,
14, 18, 43, 45]. More precisely, multivariate splines are popular tools in
computer aided geometric design and geometric modelling, indeed they also
offer the possibility of approximating closed surfaces defined by scattered
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data and they can be seen as the limit of subdivision schemes, see e.g.
[37, 38]. Concerning finite elements, the Finite Element Method (FEM) and
all its recent generalizations, such as virtual elements [8], can be considered
as the reference tools for people working on numerical methods for PDEs
and for all the researchers that need to discretize real-life models. The
main drawback of FEM lies in the construction and refinement of usually
costly meshes. Alternatives schemes that in the last decades attracted people
working on PDEs and in approximation theory are meshless methods, see
e.g. [5, 44]. They are based on RBF approximation and lead to intuitive
discretization schemes which are also easy-to-implement. The RBF methods
only depend on the distances among the scattered nodes and therefore the
so-constructed basis is data-dependent, see e.g. [27]. This is one of the key
feature that makes the difference with respect to multivariate polynomial
approximation of total degree (see e.g. [17]). The drawbacks of not being
data-dependent, give rise to the problem of finding unisolvent sets of points
for polynomial approximants and, for stability reasons, to the problem of
looking for nearly-optimal interpolation. Both problems are not trivial and
not completely solved in the multivariate setting. As a confirm, many recent
papers focus on identifying data sets that make the interpolation problem
well-posed, refer e.g. to [9, 24, 25].

In this work we investigate the so-called Fake Nodes Approach (FNA).
Firstly introduced for univariate polynomial and rational polynomial inter-
polation (cf. [6, 23]), it is here extended to the multivariate setting. The
FNA is based on the idea of mapping bases, which corresponds to mapping
both the interpolation and the evaluation points. Such concept is not new
and has been, also recently, studied by various authors, see e.g. [1, 4, 34].
In those papers the mapping approach leads to resampling the function on
different node sets, ensuring faster convergence and/or higher stability in
the reconstruction process. Practically, the so-constructed mapped points
take advantage of mitigating oscillations that might appear in the recon-
struction process, such as the well-known Runge and Gibbs phenomena (cf.
[30, 31, 42]). The main difference with our approach is that there is no need
to resample the function and, at the same time, we are able to take into
account the behaviour of the function itself. This is meaningful especially
for applications, where usually the measurements are provided at grid data.
Moreover, obtaining measurements at other locations is usually costly or not
even possible in real-life scenarios.

Concerning the problem of mitigating the Gibbs phenomenon (see e.g.
[31] for a general overview), we point out that several schemes have al-
ready been studied. For instance, the application of subdivision schemes
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is discussed in [2] while, in the context of meshfree methods, the so-called
Variably Scaled Discontinuous Kernels (VSDKs) are a well-established and
recent tool for mitigating the Gibbs effect (see [10, 21, 22, 40, 41]). One of
the results of this paper is that the FNA shows many similarities with the
VSDKs, with the flexibility of working with any generic basis.

We now need to fix some notation. We denote by Pn the space of the
univariate polynomials (spanned by any basis), by Pdn the space of the d-
variate polynomials of total degree ≤ n and by⊗d

i=1 Pn the space of d-tensor
product polynomials of degree ≤ n. As already mentioned, aside the Gibbs
phenomenon, in multivariate polynomial approximation we also face two
other important aspects: finding unisolvent sets of points and stabilizing the
approximation process. Both are challenging problems. Indeed, concerning
unisolvent sets for polynomial approximation of total degree, the recent
research orbits around the properties of the family of Lissajous points (cf.
[24, 25]), which unfortunately are not unisolvent for polynomial interpolation
of total degree. A special family of degenerate Lissajous points in the square
[−1, 1]2 are the Padua points which form a set of explicitly known unisolvent
quasi-optimal points for polynomial interpolation of total degree, given as
the union of Chebyshev grids (cf. [9, 29]). The stability indicator represented
by the Lebesgue constant characterizes them by a logarithmic growth [13,
19, 36]. Therefore, in the two dimensional case, it seems plausible that if we
are able to map the given nodes to the Padua points, as a kind of benefit,
aside unisolvency, we may also mitigate the Runge effect. A different idea
could be the one of mapping the interpolation points on Chebyshev grids,
which can be defined in any dimension.

To summarize, in the present work, theoretical studies, with a particu-
lar focus on the Lebesgue constant, and various numerical experiments are
devoted to show the efficacy, the easy implementation and hence the appli-
cability of the FNA to many bases.

The guidelines of the paper are as follows. In Section 2 we review the
basics of multivariate interpolation and approximation schemes. The fake
nodes and their theoretical properties are presented in Section 3. Sections 4
and 5 focus on two specific maps and on the expansion of the approximant
for kernel and polynomial bases. Numerical tests are presented in Section
6. The last section deals with conclusions and work in progress.
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2 Preliminaries
As observed in the Introduction, there are many real-life applications where
we face the scattered data interpolation problem defined below.

Problem 2.1 (Multivariate scattered data interpolation) Let us con-
sider a set of pairwise distinct data points XN = {xi, i = 1, . . . , N} ⊆ Ω,
Ω ⊆ Rd. Let FN = {f(xi), i = 1, . . . , N} be the associated function values,
sampled from a function f : Ω −→ R at XN . Then, the problem consists
in finding a function Pf ∈ BN , with BN a given finite dimensional function
space, so that

Pf (xi) = f(xi), i = 1, . . . , N.

A common choice is to assume

Pf ∈ BN := span{B1, . . . , BN},

where Bi : Ω −→ R, i = 1, . . . , N , are the basis functions. We may also
consider the so-called cardinal functions ui ∈ BN , which are obtained by
solving the linear system

Au(x) = b(x), (1)

where Aij = Bi(xj), i, j = 1, . . . , N , u(x) = (u1(x), . . . , uN (x))ᵀ and the
right hand side is given by b(x) = (B1(x), . . . , BN (x))ᵀ. It then turns out,
e.g. by Cramer’s rule, that ui(xj) = δij , i, j = 1, . . . , N. Hence, for x ∈ Ω,
given the column vector of the cardinal functions u(x) and the one of the
function values f = (f(x1), . . . , f(xN ))ᵀ, we can write the interpolant in
cardinal form as

Pf (x) = fᵀ u(x), x ∈ Ω. (2)

The cardinal form allows to introduce the Lebesgue constant ΛN (Ω), which
depends on the domain where we pick the points and on the function space
(cf. [7, 13])

ΛN (Ω) = sup
x∈Ω

N∑
i=1
|ui(x)|. (3)

As a note, we remind that the Lebesgue constant is the key ingredient for
the stability analysis of the interpolation process. The well-posedness of the
scattered data problem can be analysed by resorting to the linear system

Aα = f , (4)
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where A and f are defined above and α = (α1, . . . , αN )ᵀ is the vector of
the unknown coefficients. By solving it we recover the classical form of the
interpolant:

Pf (x) = αᵀb(x), x ∈ Ω. (5)

Definition 2.1 (Well-posedness) The problem defined in (4) is well-posed
if and only if the matrix A is non-singular.

Unfortunately, this is not always trivial, as for polynomial approximants.
Indeed, while in the univariate setting we can interpolate N distinct data
with a polynomial of degree ≤ N−1, in the multivariate setting the existence
and uniqueness of the solution of the scattered data interpolation problem
is not always verified. To understand this, we need two more ingredients:
Haar systems and unisolvent sets (for more details see the following books
[17, 43]).

Definition 2.2 (Haar system) The finite-dimensional linear space BN ⊆
C(Ω), with basis {Bi}Ni=1, is a Haar space on Ω if

detA 6= 0,

for any set of distinct data points XN = {xi, i = 1, . . . , N} ⊆ Ω. The set
{Bi}Ni=1 is called a Haar system.

In the multivariate case, there exist only trivial Haar spaces. This is a
consequence of the following Haar-Mairhuber-Curtis theorem that can be
found in [28, Theorem 1.2, p.10]. It was proved originally by Haar in 1909
[32] and later independently by Mairhuber in 1956 [35] and Curtis in 1959
[16].

Theorem 2.1 (Haar-Mairhuber-Curtis) Suppose that Ω ⊆ Rd, d ≥ 2,
contains an interior point. Then there exist no Haar spaces of continuous
functions except for trivial ones, i.e. spaces spanned by a single function.

According to Definition 2.2, assuming that {Bi}Ni=1 is a Haar system on
Ω is equivalent to state that it is a unisolvent set of functions on Ω. The
notion of unisolvency for sets of points is different and sounds as follows.

Definition 2.3 (Unisolvency) A finite set of point XN ⊆ Ω is unisolvent
for BN if all the elements of BN are completely determined by their values
at XN .
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While in general we do not dispose of non-trivial unisolvent bases in the
multivariate setting, it is possible to consider multidimensional unisolvent
sets of points. For example, the Padua points form a unisolvent set for
bivariate polynomial interpolation of total degree.

Moreover, as a consequence of Theorem 2.1, any set of distinct nodes
is unisolvent for data-dependent kernel bases. Therefore, to guarantee the
uniqueness of the interpolant in BN , when possible, we consider sets of nodes
that are unisolvent with respect to the chosen basis {Bi}Ni=1.

Remark 2.1 (Least squares) If the set of nodes is not unisolvent, we
may relax the interpolation conditions and thus approximate the function
f in the least squares sense, i.e. f is approximated in the space BM :=
span{B1, . . . , BM}, with M ≤ N .

Unless otherwise noted, in what follows we refer to the interpolation
problem.

3 The Fake Node Approach (FNA)
Let S : Ω −→ Rd be an injective map. The main idea behind the FNA, is
to construct an interpolant Rf ∈ BSN := span{BS

1 , . . . , B
S
N} of the function

f , so that

Rf (x) =
N∑
i=1

αSi B
S
i (x) =

N∑
i=1

αSi Bi(S(x)) = Pg(S(x)), x ∈ Ω . (6)

The function g has the property that g|S(XN ) = f|XN , that is it assumes
the same values of f at the mapped interpolation points S(XN ), cf. [6, 23].
Thus, the construction of the interpolant Rf ∈ BSN is equivalent to building a
classical interpolant Pg ∈ BN at the fake or mapped nodes S(XN ). In what
follows we will use the term fake nodes, thinking to this mapping process.

Provided that we have a unisolvent set of points for the given basis, Rf
can be constructed by solving the linear system

ASαS = f , (7)

where αS = (αS1 , . . . , αSN )ᵀ, f as previously defined, and

AS =

B
S
1 (x1) . . . BS

1 (xN )
... . . . ...

BS
N (x1) . . . BS

N (xN )

 .
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Concerning the cardinal form of the mapped interpolant we state the
following proposition.

Proposition 3.1 (Cardinal form) Let XN = {xi, i = 1, . . . , N} ⊆ Ω
be a set of pairwise distinct data points and let ui ∈ BN , i = 1, . . . , N be
the basis functions. Let S : Ω −→ Rd be an injective map. The functions
{u1, . . . , uN} are cardinal on S(Ω) for the fake nodes S(XN ) if and only if
the mapped functions {u1 ◦ S, . . . , uN ◦ S} are cardinal for the original set
of nodes XN .

The proof is trivial and comes out by imposing the cardinality conditions to
the functions uSi .

Hence we can write the interpolant at the fake nodes in cardinal form
as:

RSf (x) = fᵀuS(x), x ∈ Ω , (8)

where uS(x) = (uS1 (x), . . . , uSN (x))ᵀ.
A practical way for computing the cardinal form of the interpolant based

on the fake nodes easily follows from its determinant form (cf. [33], [12,
Theorem 3, p. 3] and [15, Exercise 15, p.64]).

Proposition 3.2 (Determinantal form) Given a (finite) unisolvent set
of nodes XN ⊆ Ω for the space BN and the associated function values FN .
Let f and b(x) be as in (2) and (5), respectively. For x ∈ Ω, the interpolant
Pf is given by

Pf (x) = − 1
det(A) det


0 bᵀ(x)

f A

 ,
where the matrix A is such that Aij = Bi(xj).

Proof: Similarly to [33], we can consider the function

q(x) = det


0 bᵀ(x)

f A

 ∈ BN .
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so that

q(xi) = det


−f(xi) 0

f A

 = −f(xi)det(A), i = 1, . . . N.

If follows that the function

Q(x) = − 1
det(A)q(x),

belongs as well to BN and satisfies Q(xi) = f(xi), i = 1, . . . , N . The thesis
follows from the uniqueness of the interpolant.

For the computation of the interpolant at the fake nodes in its cardinal
form, by using the previous result we get the following proposition.

Proposition 3.3 (Determinantal form for cardinal basis) Let XN ⊆
Ω be a unisolvent set of nodes for the space BN and let FN be the associated
function values. Let S : Ω −→ Rd be an injective map and uS(x) be the
vector of the mapped cardinal functions on x ∈ Ω. The interpolant RSf
becomes

RSf (x) = −detUSN , ∀x ∈ Ω, (9)
with

USN =


0 (uS(x))ᵀ

f IN

 ,
and where IN denotes the N ×N identity matrix.

The proof of this statement directly follows from Proposition 3.2 by observ-
ing that A reduces to IN using the cardinal functions. Here we provide an
alternative proof by induction.

Proof: For N = 1 and x ∈ Ω, we have that

RSf (x) = −detUS1 = −det
(

0 uS1 (x)
f(x1) 1

)
= f(x1)uS1 (x).

We suppose that the assertion holds true for N − 1. Since

RSf (x) = −detUSN = −
[
(−1)N+2(−1)N+1f(xN )uSN (x)detIN + (−1)2N+2detUSN−1

]
,
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by induction we get

RSf (x) = −
(
f(xN )uSN (x)− detUN−1

)
=
(
f(xN )uSN (x) + f(xN−1)uSN−1(x) + · · ·+ f(x1)uS1 (x)

)
,

which also shows the equivalence between (8) and (9).

Concerning the Lebesgue constant associated to RSf , we state the follow-
ing result.

Proposition 3.4 (Equivalence of the Lebesgue constant) Let S : Ω −→
Rd be an injective map. Let XN ⊆ Ω be a unisolvent set of nodes for the
space BN , and uSi ∈ BSN , i = 1, . . . , N , be the associated cardinal functions.
Then, the Lebesgue constant ΛS(Ω) associated to the mapped nodes is

ΛS(Ω) = Λ(S(Ω)).

Proof: By definition of ΛS(Ω), for x ∈ Ω we trivially have that:

ΛS(Ω) = sup
x∈Ω

N∑
i=1
|uSi (x)| = sup

x∈Ω

N∑
i=1
|ui(S(x))| = sup

y∈S(Ω)

N∑
i=1
|ui(y)| = Λ(S(Ω)).

Remark 3.1 The proposition states that the interpolation at the mapped
basis BSN inherits the Lebesgue constant of the fake nodes S(XN ) over the
‘standard’ basis BN .

The Lebesgue constant, as well-known, represents the stability constant
of the interpolation process. For analyzing the stability, we thus study an
interpolant of perturbed data f̃(xi) sampled at xi, i = 1, . . . , N , i.e. data
affected by measurement errors.

Proposition 3.5 (Stability) Let S : Ω −→ Rd be an injective map and
XN ⊆ Ω be a unisolvent set of nodes for the space BN . Let f be the associated
vector of function values and f̃ be the vector of perturbed values. Let RSf
and RS

f̃
be the interpolant of the function values f and f̃ respectively. Then,

||RSf −RSf̃ ||∞,Ω ≤ ΛS(Ω) ‖f − f̃‖∞,XN .
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Proof: Taking into account that g|S(XN ) = f|XN and thus also g̃|S(XN ) =
f̃|XN , we deduce that

||RSf −RSf̃ ||∞,Ω = ||Pg − Pg̃||∞,S(Ω) = sup
x∈S(Ω)

∣∣∣∣ N∑
i=1

(gi(xi)− g̃i(xi)) ui(x)
∣∣∣∣ =

= sup
x∈Ω

∣∣∣∣ N∑
i=1

(gi(S(xi))− g̃i(S(xi))) ui(S(x))
∣∣∣∣ ≤

≤ sup
x∈Ω

N∑
i=1
|ui(S(x))| |gi(S(xi))− g̃i(S(xi))| ≤

≤ sup
x∈Ω

N∑
i=1
|ui(S(x))| max

i=1,...,N
|gi(S(xi))− g̃i(S(xi))| =

= Λ(S(Ω)) max
i=1,...,N

∣∣∣f(xi)− f̃i(xi)
∣∣∣

= ΛS(Ω) ‖f − f̃‖∞,XN .

Consistently with Remark 3.1, the FNA approach also inherits the error
of the classical approach, as shown in the following proposition.

Proposition 3.6 (Error bound inheritance) Letting S, XN , f and RSf ,
as above. Then, for any given function norm, we have

||RSf − f ||Ω = ||Pg − g||S(Ω),

where g|S(XN ) = f|XN .

Proof: From (6) we know that RSf = Pg ◦S. Choosing g such that g ◦S = f
on Ω (this function exists since the map S is injective), we get

||RSf − f ||Ω = ||Pg ◦ S − g ◦ S||Ω = ||Pg − g||S(Ω).

We conclude the section by showing a pseudo-code for the FNA, which
works for every choice of the map S and of the chosen basis (see Algorithm 1).
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Algorithm 1 Fake nodes interpolation.

Inputs:
XN = {xi, i = 1, . . . , N} ⊆ Ω ⊂ Rd: interpolation nodes;
f = (f(x1), . . . , f(xN ))ᵀ: column vector of the function values at XN ;
BN = {Bi, i = 1, . . . , N}: basis functions;
Xe
M = {xei , i = 1, . . . ,M} ⊆ Ω ⊂ Rd: evaluation nodes;

S : Ω −→ Rd: the injective map.
Core

1. Set the interpolation matrix ASij = Bi(S(xj)), i, j = 1, . . . , N .
2. Set the evaluation matrix ESij = Bi(S(xej)), i = 1, . . . , N ,
j = 1, . . . ,M .
3. Compute the coefficient vector αS by solving ASαS = f .
4. Compute the interpolant at Xe

M : RS
f = ESαS .

Output: RS
f = (RSf (xe1), . . . , RSf (xeM ))ᵀ.

Remark 3.2 The computational cost of the Algorithm 1 is basically O(N3)
floating point operations, which is the same computational cost of the clas-
sical interpolation algorithm obtainable from Algorithm 1 by using as S the
identity map. Indeed, the additional cost is linear and comes from the func-
tion evaluations, giving a cost of O(N +M) floating point operations.

In what follows, we focus on two specific maps, by extending to the multi-
dimensional setting the S-Runge and S-Gibbs algorithms introduced in [23].

4 S-Gibbs
Assumption 4.1 (For S-Gibbs) We assume that Ω is the union of p pair-
wise disjoint sets Ωk, k = 1, . . . , p, and that f is piecewise continuous. In
particular, the discontinuities of f appear only at the boundaries of the sub-
sets ∂Ωk, k = 1, . . . , p.

As an example see the domain in Figure 1 (left).
Under such assumptions, we consider the function S

S(x) = x+ ai, (10)

for x ∈ Ωi and ai = ai diag(Id), ai ∈ R, i = 1, . . . , p. The latter should
be chosen so that we obtain p disjoint sets, according to the discontinuities
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Figure 1: Left: example of possible domain Ω under Assumption 4.1. Right:
the mapped domain via the S-Gibbs map S.

of f . We call this map the S-Gibbs map. For the previous example, the
corresponding S-Gibbs map provides the result shows in Figure 1 (right).

Before discussing some numerical tests, we wish to briefly recall the
basics of kernel-based approximation and more specifically of the so-called
Variably Scaled Discontinuous Kernels (VSDKs), which offer an alternative
to multivariate polynomial approximation.

4.1 On the approximation by kernels: a brief introduction

The method described in the previous section works with any basis. In
particular, for kernels (refer e.g. to [14]), it shows strong similarities with
the so-called VSDKs [10, 21, 22]. Indeed, using kernel-based interpolants, we
consider Pf ∈ span{κ(·,x1), . . . , κ(·,xN )}, where κ : Ω×Ω −→ R consists of
a (strictly) positive definite radial kernel. Since it is radial with respect to
the Euclidean norm ‖·‖, we can associate to the kernel a univariate function
φ : [0,∞) −→ R so that:

κ(x,y) = φ (r) , where r = ‖x− y‖ .

The distance r can be rescaled via the so-called shape parameter γ ∈ R, γ >
0, so that we may consider φ(γr) as the radial basis function.

Some well-known examples of RBFs, which include functions of different
regularities both globally defined and compactly supported, are displayed in
the Table 1.

To determine the kernel-based interpolant, we then reduce to solving a
system of the form (4), with A = φ(D), where the distance matrix D is given
by

Dij = ||xi − xj ||, i, j = 1, . . . , N.

12



φG (γr) = e−(γr)2
, Gaussian C∞

φM,0 (γr) = e−γr, Matérn C0

φM,2 (γr) = e−γr(1 + γr), Matérn C2

φW,0(γr) = (1− γr)2
+ , Wendland C0

φW,2(γr) = (1− γr)4
+ (4γr + 1) Wendland C2

Table 1: Most popular radial basis functions; (·)+ denotes the truncated
power function.

When using the S-Gibbs map (10), the kernel matrix is denoted by AS =
φ(DS), where the entries of DS are defined as

DS
ij = ||S(xi)− S(xj)||, i, j = 1, . . . , N.

Hence, the kernel-based interpolant based on the fake nodes RSf : Ω −→ R
is defined by solving (4) with kernel matrix AS = φ(DS).

4.2 VSDKs for the Gibbs phenomenon

Variably Scaled Kernels, shortly VSKs, have been introduced in [10]. More
precisely, given x,y ∈ Rd and a scale function ψ : Rd −→ R, the idea is to
consider the kernel

κψ(x,y) := κ ((x, ψ(x)), (y, ψ(y))) ,

where κ is a kernel on Rd+1 × Rd+1. This process produces an augmented
set of nodes X̃N = {x̃i = (xi, ψ(xi)), i = 1, . . . , N} ⊆ Ω × R. Hence, the
function is interpolated by means of standard kernels on the space Rd+1 ×
Rd+1. In other words, the VSDK approximant Vf : Ω −→ R is constructed
by solving a system of the form (4) whose kernel matrix is defined as Aψ =
φ(Dψ), where

Dψ
ij = ||x̃i − x̃j ||, i, j = 1, . . . , N.

To mitigate the Gibbs phenomenon, the VSDKs have been introduced
in [22] and their convergence properties discussed in [21]. Under the As-
sumption 4.1, in [22], the idea consists in selecting the scale function ψ as
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piecewise constant, i.e. as ψ(x) = bi, bi ∈ R, for x ∈ Ωi. Being the RBF
interpolation methods dependent on the distance among the nodes, we ob-
serve that the "VSDKs are similar to the FNA", in the sense that Aψ ≈ AS .
Indeed, we observe that both VSDKs and FNA preserve the distances be-
tween points that lie on the same subdomain Ωk ⊂ Ω, while they increase
the distances between points lying on different subregions in Ω. To point
out this this, in Figure 2 we show the effect of applying the fake nodes and
the VSDKs on 12 nodes, assuming a discontinuity at the point x = 0.5.

Figure 2: Top left: fake nodes mapped via S. Top right: nodes for the
VSDK setting in R2. Bottom: original set of equispaced nodes.

To further point out the similarity between VSDKs and FNA, we recall
some fundamental results. We denote by Nκ the native space associate to a
given kernel κ (cf. e.g. [45]). An error bound for kernel-based interpolants
in terms of the so-called fill distance

h = sup
x∈Ω

(
min

xk∈XN
‖x− xk‖

)
,

is given by
|f(x)− Pf (x)| ≤ Chβ||f ||Nκ , x ∈ Ω.

This upper bound holds for C2β(Ω × Ω) kernels. Concerning the constant
C, we refer the reader to [27, Theorem 14.4, p. 120] for further details. For
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our purposes, we need to focus on the fill-distance defined by the FNA and
VSDKs. Thanks to [21, Theorem 3.4], for the VSDKs the following error
bound holds

|f(x)− Vf (x)| ≤ CV hβV ||f ||Nκψ , x ∈ Ω,

where hV is the fill-distance of the data set under the effect of the VSK
setting, i.e. the fill-distance of the set {(x, ψ(x)), x ∈ Ω}. Moreover,
concerning the FNA approach, thanks to Proposition 3.6 we have that

|f(x)−RSf (x)| ≤ CShβS ||f ||Nκ , x ∈ Ω,

where hS is the fill-distance of the fake data set. Indeed, under our as-
sumptions on the maps S and ψ, we obtain hS ≈ hV (see also Figure 2), we
deduce that the kernel-based FNA and the VSDKs provide almost analogous
approximations.

Remark 4.1 (Trade-off) Aside the relation between accuracy and fill-distance,
another important aspect of the FNA is that, as the VSDKs, it can be eventu-
ally used to overcome the usual instability of interpolation procedures. Such
instability is typically due to the ill-conditioning of the interpolation matrix.
Indeed, for a given set of nodes XN , the stability is related to the separation
distance

q = 1
2 min

xi,xj∈XN

i 6=j

‖xi − xj‖2.

In particular, one can numerically observe that the ill-conditioning increases
as the separation distance and the smallest singular value of the interpolation
matrix decrease; refer e.g. to [27]. This suggests to select the map S so
that the separation distance on the mapped set of nodes qS is so that qS �
q. Unfortunately, this may not be effective enough. Indeed, the separation
distance grows as the fill distance and therefore, being the latter an accuracy
indicator, we face a conflict between accuracy and numerical stability [10].

5 S-Runge
In this section, we focus on polynomial interpolation, since it is known to
be heavily affected by the Runge phenomenon. The main idea relies on
mapping nodes via a function S such that ΛS(Ω) ≤ Λ(Ω). This is possible
thanks to the fact that we inherit the Lebesgue constant on the mapped
nodes; see Proposition 3.4. Moreover, since the Lebesgue constant is known
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to be a stability indicator and referring to Remark 4.1, a smaller ΛS(Ω) lead
to a possible more stable, i.e. safe, approximations.

In what follows, we present two different methods to deal with the Runge
phenomenon in the multidimensional setting. While the former is built upon
recursive one-dimensional reconstructions and it can be extended to any
dimensions, with the latter we restrict to the two-dimensional case and we
take advantage of the quasi-optimality of the Padua points.

5.1 The lines approach

In case of univariate polynomial interpolation, we know that the Chebyshev-
Lobatto (CL) nodes represent an optimal choice for stability, meaning that
their Lebesgue constant grows logarithmically. Therefore, given a set of
equispaced nodes on [a, b] ⊆ R, the "fake CL nodes" are obtained by mapping
them to [−1, 1] using the S-map

S(x) = − cos
(
x− a
b− a

π

)
, x ∈ [a, b]. (11)

When dealing with multidimensional equispaced grid data, we can extend
this idea by considering tensor-product CL grids. Let

Ω =
d⊗
j=1

[aj , bj ] ⊆ Rd,

with aj < bj . On [aj , bj ] we take the vector of Nj ∈ N equispaced nodes

t(j) := (t(j)1 , . . . , t
(j)
Nj

),

where t(j)1 = aj , t(j)Nj = bj and

t
(j)
i = aj + i− 1

Nj − 1(bj − aj), i = 2, . . . , Nj − 1.

Let N = ∏d
j=1Nj . For the FNA, we associate to

XN =
d⊗
j=1

t(j) ⊂ Ω,

the usual set of function values FN . By using (11), we obtain the vectors of
nodes

S(t(j)) =
(
S(t(j)1 ), . . . , S(t(j)Nj )

)
, j = 1, . . . , d.
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Then, we simply construct the tensor product interpolant at the correspond-
ing Chebyshev grid (see e.g. [3, 18])

S(XN ) =
d⊗
j=1

S(t(j)).

In Figure 3, we show an example of a two-dimensional equispaced grid
mapped on a tensor-product CL grid.

Figure 3: From a 13× 13 equispaced grid (left) we obtain a tensor-product
CL grid (right) by applying the univariate map S in all directions.

5.2 The fake Padua approach

Here, we consider polynomial interpolation of total degree on [−1, 1]2 (any
two-dimensional finite rectangular domain could be considered as well). We
recall that the basis for bivariate polynomials of total degree n has cardi-
nality

N =
(
n+ 2

2

)
= (n+ 1)(n+ 2)

2 ,

and consequently Pf ∈ Pdn.
Let us consider the sets of nodes

XN =
{(2(i− 1)

n
− 1, 2(j − 1)

n+ 1 − 1
)
,
i = 1, . . . , n+ 1
j = 1, . . . , n+ 2 ,

i+ j ≡ 0
(mod 2)

}
,

(12)
extracted from an equispaced (n + 1) × (n + 2) grid on [−1, 1]2. The set
of the so-called Padua points is known to be quasi-optimal for bivariate
interpolation of total degree on the square. Therefore the FNA should map
the given nodes eventually to the Padua points. There are four families of
Padua points (obtained by counterclockwise rotations of degrees kπ/2, k =
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1, 2, 3 of the first family). For the sake of simplicity, we consider the first
family, which is defined as follows:

PadN =
{
ϕ

(
kπ

n(n+ 1)

)
, k = 0, . . . , n(n+ 1)

}
,

where
ϕ(t) = (− cos((n+ 1)t),− cos(nt)) , t ∈ [0, π].

is the generating curve, a closed parametric curve in Ω, that is a special case
of Lissajous curves, see [9, 20, 25]. We observe that the cardinality of PadN
is exactly (

n+ 1
2

)
.

To our aims, the fundamental property of the set PadN is that its
Lebesgue constant is of minimal growth, since it has been proven to be
O((logn)2) (cf. [9]). We propose to use the FNA with the map S :
[−1, 1]2 −→ [−1, 1]2 defined as

S(x) =
(
− cos

(
π
eᵀ1x+ 1

2

)
,− cos

(
π
eᵀ2x+ 1

2

))
.

where x = (x1, x2) and ei, i = 1, 2, are the unit vectors of R2.
In fact, it is easy to prove that the fake nodes S(XN ) are exactly the

Padua points of the first kind, PadN . Having the map S, we can construct
the interpolant at the fake nodes S(XN ) as described in (6). In Figure 4, we
display the sets of interpolation nodes that are involved in the fake Padua
approach.

Finally, we observe that if we use the condition i + j ≡ 1 (mod 2) in
(12), the Padua points of the second family will result. To obtain the π/2-
counterclockwise rotation of the Padua points it is sufficient to swap the two
coordinates in (12).

6 Numerical Experiments
In the following experiments we point out three important aspects of the
fake nodes method. Precisely:

1. The versatility of the FNA with respect to different basis functions.
In doing this, we focus on discontinuous test functions and therefore
we test the S-Gibbs map.
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Figure 4: Here n = 10 (so that the cardinality is N = 66). On the left the
set X66 (represented by blue dots) is extracted from a 11 × 12 equispaced
grid (represented by both blue dots and red stars). The set X66 (centre) is
then mapped on the set of Padua points Pad66 via the mapping S (right).

2. The applicability of the FNA to medical imaging. We test this via
polynomial least squares.

3. The ability to mitigate the Runge effect. Also in this case we drive
our attention towards polynomial bases.

The implementation of the following experiments is provided as free and
open-source Python software available at https://github.com/pog87/
FakeNodes2D.

6.1 Versatility in reducing the Gibbs effect

In this subsection, our main scope consists in numerically showing the flex-
ibility of the FNA, meaning that it can be applied to all basis functions,
in the treatment of the Gibbs phenomenon by means of the S-Gibbs map.
Indeed, this resampling-free method can be applied to any interpolation or
approximation procedure.

We test three approximation techniques, i.e. three different basis func-
tions:

• Nearest-Neighbor (NN) interpolation: for each evaluation point, the
algorithm returns the function value associated to the nearest node,
yielding a piecewise-constant interpolant. It is discontinuous for its
nature and thus it is not affected by the Gibbs phenomenon. As a
consequence, it is a challenging test for the fake nodes tool. For its
implementation, we use the Python function griddata of the package
scipy.

19

https://github.com/pog87/FakeNodes2D
https://github.com/pog87/FakeNodes2D


• Polynomials: since for a general set of scattered data we might not
have unisolvent sets, we focus on polynomial least squares and we fix
the degree equal to 4. For the implementation (see e.g. [25, 26, 39])
we refer the reader to the Matlab packages available at the CAA re-
search group homepage https://www.math.unipd.it/~marcov/CAA.
html and to the the GitHub repositories by Wolfgang Erb and Marco
Vianello available at https://github.com/WolfgangErb and https:
//github.com/marcovianello, respectively.

• Kernels: in what follows, for computing the kernel-based interpolant,
we fix the Matérn C0 kernel. The shape parameter is set as γ = 0.5.

To test the efficacy of the S-Gibbs map, we take the following test func-
tion

f(x) =
{

sin(x1 + x2
2), if ‖x‖2 < 0.4,

1, if ‖x‖2 ≥ 0.4,

with x = (x1, x2), we sample it at N = {9, 81, 289, 1089, 4225} grid data
on [−1, 1]2. The accuracy of the three interpolation techniques listed above
is tested by evaluating the Mean Square Error (MSE) on a grid of 402

evaluation points. The results are reported in Figure 5. We can note that
the FNA sensibly reduces the error with respect to the standard approach.

Figure 5: The MSE by varying N with polynomials (left), kernels (middle)
and NN (right). The green stars represent the standard bases, while the
results for mapped bases are plotted with the dotted red line.

6.2 Applicability to medical imaging

As a second example for testing the S-Gibbs map, we take the Shepp-Logan
phantom, defined as the weighted sum of the characteristic functions of
a chosen number of ellipses, in order to mimic an X-ray Computed Axial
Tomography image of a human brain.
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Figure 6: Original Shepp-Logan (left), subsampled Shepp-Logan (128×128)
pixels (right).

This example stresses the importance of the FNA in the field of medical
imaging. The Shepp-Logan phantom is plotted in Figure 6 (left) and its size
is 256× 256. We then subsample it on N = {322, 482, 642, 962, 1282} pixels
(see e.g. Figure 6 right) and we evaluate the performances of the methods
in reconstructing the original phantom. A graphical example is plotted in
Figure 7, where we use the least squares polynomials of degree 4 with and
without the use of fake nodes. The MSE is depicted in Figure 8. Once more,
we can note the robustness of the presented approach in reducing the Gibbs
effect.

Figure 7: Left to right: standard polynomial reconstruction, fake polynomial
reconstruction on 128× 128 pixels.
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Figure 8: The MSE by varying N with polynomials for the Shepp-Logan
phantom. The green stars represent the standard bases, while the results
for mapped bases are plotted with the dotted red line.

6.3 Mitigating the Runge effect

In this subsection, we take the Runge-like function f : [−1, 1]d −→ R+,

f(x) = 1
1 + 5‖x‖22

.

• Consider d = 2. To test the lines approach, presented in Section 5.1,
we compare it with the standard tensor-product polynomial recon-
struction at equispaced grids and with the reconstruction obtained by
resampling at Chebyshev-Lobatto grids. In Figure 9, we display the
results considering a 13× 15 starting interpolation grid, while in Fig-
ure 10 we observe the asymptotic behavior of the considered methods
by means of an increasing sequence of n × n interpolation grids on
[−1, 1]2. In both cases, the reconstructions are evaluated on a 90× 90
equispaced grid.
]],

• Considering now the fake Padua approach (d = 2) of Section 5.2, we
test it with the bivariate polynomial reconstruction at n×(n+1) equi-
spaced grids and with the reconstruction at Padua points with resam-
pling. In Figure 11, we display the results considering a 10×11 starting
interpolation grid, while in Figure 12 we observe the asymptotic be-
havior of the considered methods by means of an increasing sequence
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Figure 9: Results of different interpolation schemes considering a 13 × 15
grid: the original function (top left), the tensor-product reconstruction at
the equispaced grid (top right), the reconstruction with resampling at the
CL grid (bottom left) and the fake lines approach at the equispaced grid
without resampling (bottom right).

of n× (n+ 1) interpolation grids. The equispaced (n+ 10)× (n+ 10)
grid was chosen as evaluation set.

• Our last test is with d = 3. Being the Padua points known only on the
square [−1, 1]2 while the lines approach is working in any dimension,
we compare the latter with the tensor-product polynomial approxima-
tion. For both the lines approach and the tensor-product approxima-
tion, we reconstruct the function on a grid of evaluation points of size
90× 90× 90. Precisely, in Figure 13 we show the asymptotic behavior
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Figure 10: The MSE by varying n in dimension d = 2. The green crosses
indicate the tensor-product reconstruction at the equispaced grid, the blue
stars the reconstruction with resampling at the CL grid, while the dotted
red line represents the FNA.

of both methods at increasing n3 interpolation grids. Once more, we
verify the efficacy of the FNA which is able to reduce oscillations of
the Runge effect, also in higher dimensions.

As we notice in Figures 10, 12 and 13, in all the three cases the FNA leads
to a smaller error than the corresponding one using classical approximation
over the same equispaced nodes. On the other hand, based on our exper-
iments, as the number of nodes increases, it is still preferable to consider
samples at Chebyshev-like grids, as the approximation error is smaller than
FNA approximation. This observation does not pull down the importance
of using the FNA since, in most applications, Chebyshev-sampled data are
not easy to get or not available at all.

7 Conclusions
We have introduced and discussed a new numerical scheme, termed Fake
Node Approach (FNA), that can be used for multivariate scattered data
interpolation problems. Its main advantages are: the capability to work with
different approximation spaces and its easy implementation. Moreover, it
allows to overcome some typical drawbacks of the reconstruction process, like
the appearance of non-physical oscillations when the considered functions
are characterized by steep gradients or discontinuities. All the numerical
tests provided in the paper and many others that we have not included for
the sake of brevity show the versatility, applicability and efficiency of the

24



Figure 11: Results of different interpolation schemes for n = 10: the original
function (top left), the multivariate polynomial reconstruction at the equi-
spaced grid (top right), the reconstruction with resampling at the Padua
points (bottom left) and the fake Padua approach at the equispaced grid
without resampling (bottom right).

new numerical scheme.
Work in progress consists in studying its efficacy in the context of collo-

cation schemes for solving PDEs and in investigating its applicability in the
framework of machine learning.
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Figure 12: The MSE by varying n in dimension d = 2. The green crosses
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