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Abstract
With the advent of Industry 4.0 and the impending shift towards Industry 5.0, the integration of human–robot collaboration 
(HRC) into production systems has become increasingly widespread. This paradigm shift leverages collaborative robots, 
or cobots, to mitigate physical and mental strain on human workers, thereby increasing productivity and improving overall 
quality performance. This paper investigates the interplay of productivity and quality factors with assembly complexity in 
both manual and collaborative assembly systems. The focus is placed on a product family of electronic boards, with varying 
levels of assembly complexity, to provide a comprehensive comparison between manual assembly and two different col-
laborative assembly scenarios. Key performance metrics such as assembly time and total defects are evaluated. This case 
study, rooted in the electronics industry, seeks to provide a valuable perspective on how assembly complexity influences 
productivity and quality in product family assembly systems. The results of this study aim to contribute to the growing body 
of knowledge on the implementation of HRC in manufacturing, facilitate informed decision-making and encourage further 
advances in this rapidly evolving field.

Keywords Assembly complexity · Product family · Process performance · Assembly system · Electronic board · Human–
robot collaboration (HRC)

1 Introduction

In recent years, the field of robotics has undergone a radical 
transformation with the emergence of human–robot collabo-
ration (HRC). Collaborative robots (also known as cobots) 
have the ability to work alongside human operators without 
the need for fences or barriers, thus performing tasks that 
complement human skills and reduce physical effort [1, 2]. 
This collaboration allows the effective use of human dexter-
ity, adaptability and problem-solving skills, combined with 
the precision, speed and repeatability of robots [3].

In the manufacturing sector, HRC has revolutionised the 
assembly process by combining the unique capabilities of 
humans and robots. Assembly processes, which are a critical 
task of manufacturing operations, have traditionally relied 
on human workers to perform complex tasks. However, 

limitations inherent in human capabilities, such as physi-
cal fatigue, cognitive limitations and repetitive task stress, 
have prompted the search for alternative solutions to opti-
mise the assembly workflow [4]. Coupled with the continued 
refinement of robotics and artificial intelligence, HRC has 
opened up new ways to improve the efficiency, productivity 
and quality of assembly operations [3].

Another key aspect driving the adoption of HRCs in assem-
bly processes is mass customisation within the framework of 
Industry 4.0 [5]. In today’s market, customers are increasingly 
demanding customised products. This trend shifts the produc-
tion paradigm from mass production to mass customization, 
in which companies must be able to meet different customer 
demands with a flexible production system [6]. In this intri-
cate framework demanding flexibility and precision, mass cus-
tomisation strategies have been found to greatly benefit from 
product family approaches, which cater effectively to the bur-
geoning customer demands. The principle underpinning this 
approach involves the creation of a product platform composed 
of compatible modular components. These modules can be 
configured to generate a multitude of diverse products, each 
designed for different purposes yet sharing certain common 
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characteristics [7]. However, such an approach leads to greater 
complexity in the production system and in the products them-
selves. In this new manufacturing paradigm, where flexibility 
and precision are required, the symbiosis between human and 
robot offers a promising solution to meet these challenges [8].

This paper aims to explore and analyse the various aspects 
of the use of HRC in assembly processes, making a com-
parison with purely manual assembly. It examines several 
problems in today’s manufacturing, including the benefits of 
human–robot collaboration, the challenges of system integra-
tion and the impact on productivity and assembly quality of 
such integration. The aim is to investigate whether the assem-
bly complexity and the nature of the assembly process have an 
impact on the performance of the process itself. In detail, the 
following Research Questions (RQs) are addressed:

• RQ1: Does the productivity and quality of the assem-
bly process depend on the assembly complexity and the 
product characteristics within a product family?

• RQ2: Are there statistically significant differences in pro-
cess productivity and quality between different assembly 
systems (a manual system, a cobot-assisted system and 
a cobot system with camera assistance) when applied to 
various products within a product family?

To answer these questions, three different experimental 
campaigns for the assembly of electronic boards were car-
ried out. The first experiment consisted of a fully manual 
assembly of electronic boards, while the other two experi-
ments involved a collaborative robot to support the operator 
during the assembly. The study of electronic board assembly 
is motivated by its widespread use in HRC industry appli-
cations [9]. Furthermore, electronic boards allow different 
products to be assembled from the same components, thus 
emulating the growing demand for customised products in 
today’s market.

The remainder of the paper is organized into six sections. 
Section 2 introduces the main application of HRC in assem-
bly processes. Section 3 summarizes the main definitions of 
assembly complexity and defines the methodology proposed 
to assess the assembly complexity of electronic boards. Sec-
tion 4 illustrates a case study concerning the practical appli-
cation of the proposed methodology in manual and collabo-
rative assembly processes. Section 5 presents the research 
methods, while Section. 6 discusses the experimental results. 
Finally, Section. 7 concludes the paper.

2  HRC and assembly processes

The manufacturing industry is witnessing a notable tran-
sition in automation and robotics, moving away from tra-
ditional mass production models and embracing the era 

of mass customization. This shift has prompted extensive 
research and development efforts to address the challenges 
posed by unstructured industrial environments [6, 10]. As 
a result, traditional manufacturing approaches are being 
reimagined to ensure seamless integration between human 
workers and intelligent machines like cobots. This necessi-
tates the development of novel methodologies and technolo-
gies that facilitate efficient collaboration, enhance produc-
tivity and enable swift adaptation to changing production 
demands.

The shift from mass production to mass customisation 
mainly influenced the assembly and disassembly processes 
[11]. This can be attributed in part to the fact that the assem-
bly process, unlike an automated process, allows for cus-
tomisation of products. Particularly, an assembly process 
can be defined as a series of sequential activities involving 
the joining of geometrically defined parts, components and 
software to create functional products [12]. This process 
has distinct characteristics compared to traditional manu-
facturing, such as a large number of parts, numerous vari-
ations, frequent production interruptions and shorter cycle 
times. Accordingly, given the human cognitive ability and 
flexibility to adapt to different situations, assembly systems 
have traditionally relied on human labour and have remained 
separate from traditional automation [13].

Nevertheless, on-going developments in automation and 
collaborative robotics, as well as the incorporation of arti-
ficial intelligence and machine learning, present significant 
opportunities to improve assembly processes. The goal is 
to develop intelligent systems that can easily interact with 
human operators and understand, adapt and respond to 
changing assembly needs. The integration between humans 
and robots in assembly processes can lead to three main 
advantages [13, 14]:

• Increased efficiency: Collaborative robots are excellent 
at performing time-consuming and repetitive tasks, free-
ing human workers from tedious tasks. Cobots greatly 
improve assembly line productivity by automating these 
processes, reducing cycle times and increasing through-
put.

• Improved quality: The accuracy and consistency of 
collaborative robots help assembly operations produce 
higher-quality products. The possibility of errors and 
rework is reduced by cobots’ ability to maintain high 
levels of precision during component insertion, tighten-
ing and other critical assembly operations.

• Flexibility and safety: The collaborative configuration 
allows human dexterity and adaptability to be combined 
with the precision and repeatability of cobots. This col-
laboration is made possible by the use of advanced sen-
sors and algorithms to detect and respond to human pres-
ence, enabling cobots to work safely alongside human 
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operators. This feature eliminates the need for physical 
barriers, making cobots a more flexible alternative for 
assembly operations.

This collaborative configuration is commonly observed 
in manufacturing environments. One example is the automo-
tive sector [15, 16], where cobots are used to assist human 
operators with tasks such as tightening bolts, installing seals, 
fitting bearings and lifting heavy loads. Another important 
application is in the electronics industry (which will be dis-
cussed in this paper), where cobots assist operators in assem-
bling electronic circuit boards [17]. In both industrial sec-
tors, the use of cobots has led to improvements in efficiency, 
quality and safety, while reducing the risk of repetitive strain 
injuries for human operators.

However, the HRC working environment is dynamic and 
complex. These systems must be able to grow and adapt 
to different configurations as they are designed to deliver a 
wide range of products. In this context, intelligent job alloca-
tion becomes crucial, requiring complex design to meet the 
requirements of intelligent production systems. Innovative 
approaches to human–machine collaboration are required 
due to the dynamic nature of product requirements and the 
ever-changing socio-economic environment. Industry and 
researchers are being forced to explore new approaches 
to meet these changing needs and effectively address the 
complexities of collaborative assembly in the age of smart 
manufacturing [4].

3  Assembly complexity of electronic boards

Recent research has shown that assembly complexity plays 
a fundamental role in the performance of operators and 
assembly processes [18, 19]. Assembly complexity has been 
shown to affect key performance indicators such as assem-
bly time, quality defects and production costs. The implica-
tions of these findings are far-reaching. Complex tasks or 
processes tend to have longer assembly times because they 
require additional steps or complex procedures and increase 
the likelihood of quality defects [20]. In addition, increased 
assembly complexity can lead to higher production costs 
due to the need for specialised resources, advanced equip-
ment or additional labour [21, 22]. It is therefore essential 
to recognise and manage assembly complexity effectively 
to optimise operator and production process performance.

In order to analyse how assembly complexity affects 
the productivity and quality of a process, the assembly of 
ARDUINO electronic boards was considered in this study. 
These boards allow the utilization of similar components 
for assembling high personalized products characterized by 
varying degrees of assembly complexity, all while ensuring 
real-time monitoring of proper assembly and functionality.

3.1  Assembly complexity modelling

As stated above, modelling the assembly complexity is 
crucial for studying the productivity and quality of the 
process. Several articles and reviews already exist address-
ing methods to assess and manage assembly complexity 
in manufacturing [21, 23–25]. In this paper, the assembly 
complexity model based on Huckel’s molecular theory 
is used to assess the assembly complexity of electronic 
boards [26]. By dividing assembly complexity into the 
definition of different factors, Hückel’s theory simplifies 
the modelling of assembly complexity. This model can 
determine the assembly complexity of any network-based 
engineering system, taking into account three key factors: 
the complexity of the individual components ( C1 ); the 
pairwise interaction between the connected components 
( C2 ); the overall topology of the system ( C3 ). By combin-
ing these three factors, it is possible to quantify the overall 
assembly complexity (denoted by C ) with the following 
expression:

C1 refers to the intricacy of managing and interacting with 
each individual component in isolated conditions. It meas-
ures the complexity associated with handling the product 
component. C1 can be calculated as:

where N is the total number of product components, and hm 
is the handling complexity of component m . The handling 
complexity hm can be calculated using the Lucas method 
[27], a method rooted in the principles of design for assem-
bly (DFA). Using a point scale, the Lucas method provides 
a relative measure of assembly difficulty that results in a 
normalized handling complexity index. This index consid-
ers a range of factors such as the size, weight, handling dif-
ficulty and orientation (alpha and beta symmetry) of each 
individual component (see Table 1).

The Lucas method assigns a distinct handling complexity 
index to each component, as it will be illustrated in Sec-
tion. 3.2 for the electronic boards. The higher the value of 
hm , the more challenging it becomes to handle and position 
the component on the board. These values are determined as:

where hi∈{A,B,C,D}
m

 is the handling difficulty of i th attribute, 
NB is the number of applicable handling difficulties related 
to attribute B, and hmax is the theoretical maximum value for 
the handling index (i.e., 6.9, according to Table 1).

(1)C = C1 + C2 ∙ C3

(2)C1 =

N
∑

m=1

hm

(3)hm =
hA
m
+
∑NB

1
hB
m
+ hC

m
+ hD

m

hmax
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C2 is the complexity of connections and liaisons between 
parts. According to Eq. (4), C2 is calculated as the sum of 
the complexities of the pairwise connections present in the 
product structure:

where lmn is the complexity in achieving a connection 
between components m and n , and imn is the ( m, n) th entry 
of the binary adjacency matrix (AM) of the product. The 
complexity lmn is calculated with the Lucas method [27], 
by using the difficulty of connection attributes in Table 2.

The Lucas method provides a standardised assembly 
index that takes into account various physical attributes 
that contribute to assembly complexity. These attributes 
include factors such as component positioning and fasten-
ing, assembly direction, visibility, alignment and resistance 
to insertion. The index penalises those physical attributes 
that directly affect the difficulty of the assembly process. 
Accordingly, lmn is obtained as follows:

where cj∈{E,F,G,H,I,J,K}

d
 is the handling difficulty of j th attrib-

ute, and cmax is the theoretical maximum value for the con-
nection index (i.e., 13.1, according to Table 2).

In Eq. (4), imn is defined by using the symmetric binary 
adjacent matrix (AM) of the product. Each entry in the AM 

(4)C2 =
∑N−1

m=1

∑N

n=m+1
lmn ∙ imn

(5)lmn =
cE
d
+ cF

d
+ cG

d
+ cH

d
+ cI

d
+ cJ

d
+ cK

d

cmax

matrix indicates the presence of an assembly connection 
between two components. Accordingly, imn can assume two 
different values:

Finally, topological complexity C3 , i.e., the complexity of 
product architectural pattern, is defined as:

where EAM is the matrix energy of AM, i.e. the sum of the 
singular values �q of AM [28]. Since the adjacency matrix 
AM is a symmetric matrix of size N × N with all diagonal 
elements equal to zero, the singular values correspond to the 
absolute eigenvalues of the adjacency matrix. The EAM value 
increases when the system moves from centralised to more 
distributed architectures.

3.2  Complexity of electronic boards assembly

An experimental campaign was conducted to assemble 
a product family composed of six different variants of 
electronic boards using the ARDUINO UNO starter kit 
(ARDUINO®). Fig.  1 shows the six electronic boards 
assembled during the experiments. The aim of the experi-
ment was to study the complexity of assembly and how 
it affects assembly time and the quality of the assembled 

(6)imn =

{

1, if there is a connection between m and n

0, otherwise

(7)C3 =
EAM

N
=

∑N

q=1
�q

N

Table 1  Difficulty of component handling attributes.  Adapted from Chan and Salustri [27]

Attribute i Description hm

A. Size and weight (one of the following) Very small—requires handling aids 1.5
Easy—requires one hand only 1
Large and/or heavy—requires more than one hand or aid 1.5
Large and/or heavy—requires hoist or more than one person 2

B. Handling difficulty (all that apply) Delicate 0.4
Flexible 0.6
Sticky 0.5
Tangible 0.8
Severely nest 0.7
Sharp/abrasive 0.3
Untouchable 0.5
Gripping problem/slippery 0.2
Automatic handling—no difficulty 0

C. Alpha symmetry (one of the following) Symmetrical—no orientation required 0
Easy to orient—end to end 0.1
Difficult to orient—end to end 0.5

D. Beta symmetry (one of the following) Rotational orientation is not required 0
Easy to orient—end to end 0.2
Difficult to orient—end to end 0.4
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products. In particular, using electronic boards as an assem-
bly product has two main advantages: firstly, they allow a 
high degree of customization of products using the same 
starting components; secondly, they are widely used in HRC 
[17]. As shown in Fig. 1, the ARDUINO boards consist of 

three main parts: (i) the components that are assembled (e.g. 
wires, pushbuttons, resistors), (ii) the microcontroller that 
enables the circuit’s functionality and (iii) the breadboard 
where the circuits are built. This particular type of bread-
board has rows and columns of holes that conduct electricity, 

Table 2  Difficulty of 
component connection 
attributes.  Adapted from Chan 
and Salustri [27]

Attribute j Description cd

E. Component placing (one of the following) Self-holding 1
Holding down required 2

F. Component fastening (one of the following) Self-securing 1.3
Screwing 4
Riveting 4
Bending 4
Mechanical deformation 4
Soldering or welding 6
Adhesive 5

G. Direction (one of the following) Straight line from above 0
Straight line not from above 0.1
Not straight line and/or bending is required 1.6

H. Insertion (one of the following) Single 0
Multiple 0.7
Simultaneous multiple insertions 1.2

I. Restricted vision (one of the following) Visible 0
Not visible 1

J. Difficult to align (one of the following) No 0
Yes 0.7

K. Resistance to insertion (one of the following) No 0
Yes 0.6

Fig. 1  Example of the six assembled electronic boards a product 1 (P1); b product 2 (P2); c product 3 (P3); d product 4 (P4); e product 5 (P5); f 
product 6 (P6)
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enabling the components to be connected without solder-
ing. Each of the six selected products (P1-P6) required a 
different number and type of components to connect to the 
breadboard (see Table 3).

The assembly complexity of the six selected electronic 
boards was assessed according to the method described in 
Section. 3.1. Table 4 shows the values calculated for the 
six selected boards (P1-P6), which were selected to cover 
a wide range of assembly complexity. Notably, despite the 
number of parts of product P5 being higher than the number 
of parts of product P6, the total assembly complexity ( C ) 
of P6 is higher than that of P5. This is due to the different 
combinations of complexity components ( C1 , C2 , C3 ), which 
consider not only the number of components, but also their 
nature and connections.

Table 5 reports the handling complexity ( hm ) and the 
connection complexity ( lmn ) of each product component of 
the six electronic boards. Each component has a different 
value of hm and can assume different values of lmn . Thus, 
if a product is composed of several components with high 
handling complexity and high connection complexity, it 
is more complex to assemble. The different values of lmn 
depend on the connection between the parts and the bread-
board. For example, the connection complexity of long 
wires to the breadboard ranges from 3.7 to 6.3, depending 
on how the component is inserted into the breadboard and 
on the other components that are already connected. The 

intermediate connection complexity value of 5.3 is given if 
the wire needs to be bent to make the connection, while 6.3 
is assigned if the connection is made with reduced visibility 
(as per Table 2). It is important to note that each component 
is always connected to the breadboard in the specific case 
of electronic boards (thus, n is always the breadboard (see 
Eq. (4) and (6))

Table 3  Characteristics of the 
six assembled electronic boards 
(P1-P6)

Component P1 P2 P3 P4 P5 P6

Breadboard 1 1 1 1 1 1
Long wires - 1 2 8 9 13
Short wires 1 3 5 3 6 4
Resistors 1 1 4 6 2 2
Pushbuttons - 2 4 - 2 1
LED 1 1 - 1 - -
Photoresist - - - 3 - -
Potentiometer - - - - 1 1
Piezo - - 1 - - -
LCD - - - - - 1
Battery snap - - - - 1 -
DC Motor - - - - 1 -
H-bridge - - - - 1 -
No. of parts 4 9 17 22 24 23

Table 4  Assembly complexity 
of the six assembled electronic 
boards (P1-P6)

Complexity P1 P2 P3 P4 P5 P6

C1 1.64 3.12 5.35 6.59 7.49 6.97
C2 2.90 5.89 10.03 13.39 15.83 18.24
C3 0.75 0.57 0.45 0.40 0.37 0.39
C 3.80 6.50 9.83 11.95 13.37 14.12

Table 5  Components handling complexity ( hm ) and connection com-
plexity of each component with the breadboard ( lmn ) in the six elec-
tronic board variants (P1–P6)

Component hm lmn

Breadboard (BB) 1.7 -
Long wires (LW) 1.8 3.7, 5.3, 6.3
Short wires (SW) 2.3 3.7, 5.3
Resistors (R) 1.8 3.8
Pushbuttons (PB) 1.9 4.2
LED (L) 1.9 4.2
Phototransistor (F) 1.9 4.2
Potentiometer (PT) 1.7 5.8
Piezo (PZ) 1.7 3.7
LCD (LCD) 3.0 6.4
Battery snap (BS) 1.8 3.7
DC Motor (M) 1.8 3.7
H-bridge (HB) 1.9 4.2
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In this first experiment, cognitive effort was not taken into 
account because the aim was to analyse how different assem-
bly configurations of different types of the same product 
family affected process performance. The aim was therefore 
to investigate how the complexity of an assembled product 
(linked to the nature of the product itself) affected the pro-
cess. Future work plans to integrate cognitive effort of the 
operator for a broader comparison of different assemblies, 
using parameters such as electrothermal activity and heart 
rate variability [29].

4  Assembly systems

In order to answer the research questions (RQ1 and RQ2), 
three different experimental campaigns for the assembly of 
electronic boards were carried out. The first campaign was 
a fully manual assembly of the boards, where the operator 
was responsible for the entire assembly process (see Sec-
tion. 4.1). In the other two campaigns, a cobot assisted the 
operator during the entire assembly process, based on their 
actual application in companies using cobots in assembly. In 
the first collaborative experiment, the cobot only had logisti-
cal functions to pick up the parts at predefined positions (see 
Section. 4.2), while in the second collaborative experiment, 
the cobot also recognized the parts to be picked up using a 
camera (see Section. 4.3). During the experiments, informa-
tion on assembly times and defects was collected. The aim 
was to investigate the relationship between time and defects 
and board assembly complexity, and whether these relation-
ships were affected by the assembly system.

Each of the three experimental campaigns involved six 
expert operators, different for each experiment, for a total of 
18 operators. Before the assembly trials, the operators were 
given preliminary training to ensure a consistent level of 
skill among the participants and reduce the impact of vary-
ing skill levels on the results. The training aimed to famil-
iarise the operators with the assembly process and equip-
ment. To avoid unwanted learning effects, the six operators 
assembled the six boards in a random order according to an 
experimental design.

The assembly process consisted of two distinct phases: an 
assembly phase and a quality control phase. In the assem-
bly phase, each electronic board was assembled manually or 
with the cobot support, according to the selected assembly 
strategy. In this first phase, information on assembly time 
and in-process defects, i.e. defects occurring during the 
assembly process [30], was collected. On the other hand, 
during the quality control phase, an operator experienced 
in performing quality control checked and detected any 
remaining defects in the electronic boards. The expert was 
the same for all three experimental campaigns. During the 
quality control phase, data on quality control time and offline 

defects, i.e. defects detected during the control phase [30], 
were collected.

The sequence of the assembly operations was the same 
for all three assembly systems and was predefined according 
to the circuit theory [31]. In particular, for the circuit to work 
properly, there should be an uninterrupted path between the 
power source and the lowest energy point (ground). In addi-
tion, the current will always follow the path of least resist-
ance to ground when presented with multiple options since 
components within the circuit dissipate electrical energy 
by converting it into different forms, such as light, heat 
and sound. During the three experimental campaigns, the 
operators were provided with a PC containing the circuit 
diagram of the boards to be assembled, in order to facilitate 
the implementation of the predefined assembly sequence.

4.1  Manual assembly system

In the manual assembly experiment, the six operators manu-
ally assembled the six electronic boards. The electronic parts 
were arranged in the ARDUINO UNO starter kit box accord-
ing to their type (e.g. long wires, short wires, resistors), and 
the operators searched for and selected the correct part to 
assemble. Following the predefined assembly strategy, the 
operators took each part out of the box and assembled it on 
the breadboard (see Fig. 2a). Thus, in manual assembly, the 
operator was responsible for all operations, from selecting 
the parts from the box to the overall assembly. As a result, 
the operator’s cognitive load in manual assembly was sig-
nificantly higher than in the other two assembly systems. 
Figure 2b shows the workstation of the manual experiments.

4.2  HRC assembly system

In the first collaborative assembly (labelled as HRC assem-
bly), a UR3e cobot by Universal Robots™ was used to 
assemble the six electronic boards. In the HRC assembly, 
the human operator was relieved of the task of selecting and 
picking the correct parts, now done by the cobot. To enable 
the assembly process, the OnRobot™ RG6 gripper available 
at Mind4Lab (Manufacturing for Industry 4.0 Laboratory) 
of Department of Management and Production Engineering 
of the Politecnico di Torino was used. This type of gripper 
is often used for handling larger loads. However, its adapt-
ability allows it to be used for handling small components, 
such as those found in electronic devices. In future applica-
tions (see Section. 7), it is planned to use an ad hoc grip-
per for such electronic components (e.g., the OnRobot™ 
2FG7 parallel gripper) in order to reduce the cobot’s spatial 
occupation within the workstation and increase its speed of 
movement.

Table  6 provides a comprehensive overview of the 
cobot and gripper parameters used during the collaborative 
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assembly. Specifically, the collaborative robot uses two dif-
ferent types of motions: MoveJ and MoveL. The MoveJ 
movement involves the simultaneous positioning of each 
joint, resulting in a curved trajectory for the tool. MoveL, 
on the other hand, allows the tool to move linearly between 
waypoints. For both types of motion, the critical parameters 
for identification are the speed and the maximum accelera-
tion of the joint. For the gripper, the main parameters are the 
distance between the fingers when the gripper is open and 
the gripping force when the gripper is closed.

During the assembly phase (see Fig. 3a), the cobot sup-
plied the necessary components to the operator, who assem-
bled the boards in the predetermined order. In particular, 
the operator controlled the logistics activities by activating 

the cobot with a button located near the workstation. Then, 
the cobot took the parts positioned in a foam support placed 
on the workstation and handed them to the operator, who 
connected the supplied part to the breadboard. Obviously, 
in the absence of a camera, the parts were placed on the 
foam support in a specific position on the workstation, which 
was declared to the cobot programming software prior to 
the experiment. It is important to note that the work-related 
performance measure is based on assembly time only, which 
does not include the time spent positioning the parts in the 
workstation. This exclusion is further supported by the 
empirical observation that the time required to set up the 
workstation and arrange the parts in the three assembly sys-
tems (manual, HRC, and smart HRC) is comparable (around 
two minutes for each). Figure 3b shows the collaborative 
workstation used during the experiment.

4.3  Smart HRC assembly system

In the Smart HRC assembly (labelled as S-HRC assembly), 
the cobot was equipped with the OnRobot™ Eyes camera. 
OnRobot™ Eyes is an integrated vision system that enables 
part recognition by the collaborative system. The camera can 
be positioned on the cobot arm or outside the cobot. How-
ever, to accommodate the limited space at the workstation, 

Fig. 2  a Schematic of the 
manual assembly process; b 
Manual assembly workstation

Table 6  Cobot and gripper parameters

Parameters Cobot Gripper

MoveJ speed (°/s) 200 -
MoveJ acc. (°/s2) 200 -
MoveL speed (mm/s) 200 -
MoveL acc. (mm/s2) 200 -
Distance (mm) - 25
Force (N) - 80

Fig. 3  a Schematic of the HRC 
assembly process; b HRC 
assembly workstation
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the camera was positioned outside the cobot (see Fig. 4b). 
The speeds and movements of the cobot’s joints are the same 
used in the experiment without the camera (see Table 6). 
However, due to the limited space available in the work-
station, the cobot operated at 50% of its maximum speed 
to avoid accidental collisions between the cobot and the 
camera. In fact, especially when picking up parts further 
away from the storage area, the excessive speed of the cobot 
when returning to the storage area could cause a collision 
between the joints closer to the base of the cobot and the 
external camera. The limitations are due to the fact that the 
workstation, originally designed for different tasks, has been 
adapted for the current application. Future tests will include 
a bespoke redesign for the board assembly process and the 
use of a more specific gripper (see Section. 7).

To ensure accurate part recognition, the OnRobot™ Eyes 
system required an initial camera calibration phase. This 
involved setting the exposure level, white balance and light 
intensity emitted by the camera (lighting system allowing 
the camera to operate independently of the external lighting 
conditions). For the experiments, the default values speci-
fied in the OnRobot™ Eyes manual were used as calibration 
settings, i.e. exposure level 14%, white balance 20% and 
light 50%.

After the calibration phase, the camera was programmed 
to detect the parts using the Eyes Locate function. This func-
tion allowed the part detection area to be defined and the 
detection modes to be selected. Two modes were used in 
the case study: location by outline and location by colour 
and size. The location by outline mode was used to detect 
large components such as the breadboard, LCD, battery snap 
and DC motor. This mode relied on shape recognition to 
accurately identify the parts. On the other hand, the location 
by colour and size mode, which relies on colour and size 
attributes, was used for all other small components.

Leveraging the capabilities of the OnRobot™ Eyes sys-
tem, the cobot was able to effectively detect and identify 
different parts during the assembly process. The combi-
nation of external camera placement, camera calibration 
and the specific detection modes employed facilitated 
efficient and accurate part recognition, contributing to 
the overall success of the collaborative assembly task. In 
addition, this configuration allows the human operator 
to concentrate more on the assembly operations, freeing 
him/her from the task of picking up parts. This reduces 
the cognitive load on the human operator, who tends to 
make fewer mistakes because fewer tasks have to be per-
formed [32]. 

As with the HRC assembly, the operator was in control 
of the process. By pressing a button near the workstation, 
the operator activated the cobot and the camera for the rec-
ognition phase. During this phase, the collaborative system 
retrieved the components positioned in the foam support 
placed on the workstation according to the camera’s instruc-
tions. Using the Eyes Get Workpiece and Eyes Pick func-
tions, the camera communicated the spatial coordinates of 
the identified workpieces to the cobot. Working at speeds 
reduced to 50% and according to the parameters shown in 
Table 6, the cobot picked up the workpieces identified by 
the camera and transported them to the human operator for 
assembly. In particular, when faced with two identical parts, 
the cobot consistently prioritised the selection of the left 
most part, given its closer proximity to the assembly station. 
After receiving the part, the operator proceeded to assem-
ble the board following the predefined assembly order. This 
process, schematized in Fig. 4a, continued until the board 
assembly was complete. This systematic approach ensures a 
consistent workflow and facilitates the seamless integration 
of the cobot’s capabilities with the human operator’s role in 
the assembly process.

Fig. 4  a Schematic of the 
S-HRC assembly process; b 
Smart HRC assembly worksta-
tion
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5  Research method

As mentioned above, data on productivity and quality of the 
process and product were collected during the three experi-
mental campaigns. The main goal was to investigate the rela-
tionship between productivity and quality and the assembly 
complexity of the six electronic boards. The performance 
measures for this study were carefully selected considering 
their alignment with the study objectives and a comprehen-
sive literature review. Although numerous metrics exist for 
evaluating collaborative systems’ performance, the chosen 
measures of assembly time and total assembly defects were 
considered the most appropriate for this study due to their 
widespread use in the manufacturing industry.

Regarding process productivity, information on assem-
bly time and quality control time was collected during each 
experimental campaign. However, quality control time was 
not further investigated in each assembly system after test-
ing for non-significance at the 95% confidence level using a 
one-way ANOVA (p value greater than the significance level 
of 0.05). Instead, the assembly time increased more than lin-
early with the assembly complexity. In particular, according 
to residual analysis, the most suitable model to represent this 
relationship was the power law model, as follows:

where AT  is the assembly time, C is the assembly complex-
ity evaluated according to Eq. (1), and � and � are the nonlin-
ear regression coefficients. This suggests that the cognitive 
effort and deliberation time required for assembly operations 
increases significantly as assembly complexity increases.

Concerning the defects, for each product variant assem-
bled in each assembly system, the total number of defects 
divided into in-process defects and offline defects was 
recorded (see Table 7). During the process, the assembly 
operators and the quality control operator indicate the num-
ber of defects found in each category for each assembled 
board.

A “wrong part” means inserting the wrong part on the 
board. An example is using a short wire instead of a long 
wire or using a 10 kΩ resistor instead of a 1 MΩ resistor. 
The “wrong position” defect refers to the incorrect position-
ing of the component on the breadboard. In this case, the 
part picked up is correct, but its position on the board is 
incorrect. “Part not taken” refers to the failure of the cobot 
to pick up the part required for assembly in collaborative 
assemblies. A “slipped part” occurs when the cobot picks up 
the correct part, but it slips during transport to the operator. 
A “defective part” occurs when the robot or operator dam-
ages the part during pick up. Finally, an “incorrectly inserted 
part” is defined as a correct part that is inserted in the correct 
position, but not inserted properly to allow current to flow 

(8)AT = � ∙ C�

through the circuit. Obviously, Part not taken and Slipped 
part, which are cobot errors, refer only to the assembly phase 
of collaborative experiments.

The process defectiveness was analysed in terms of total 
defects (i.e. the sum of in-process and offline defects), as 
they are representative of the overall quality of the assembly 
process. In particular, to study the relationship between total 
defects and assembly complexity, the Poisson regression 
model was used, as the total defects are count data [33]. The 
logarithm and square root link functions were considered, 
and different models were compared up to the third order of 
the predictor (i.e. assembly complexity C ). The selection of 
the best model was made based on Akaike’s corrected infor-
mation criterion (AICc) and Bayesian information criterion 
(BIC), goodness-of-fit tests (Deviance and Pearson tests) and 
deviance residual plots [33, 34]. According to the results, 
the most appropriate Poisson model was the one using the 
square root link function, represented as:

where TD is the total number of defects, C is assembly com-
plexity evaluated according to Eq. (1), and � is the regression 
coefficient.

6  Results and discussions

6.1  Experimental results

According to the models presented in Section.  5, the 
results of the analysis are reported in Tables 8 and 9. 
Table 8 refers to productivity data, i.e. assembly time data, 
whereas Table 9 refers to quality data, i.e. total defects 
data. For both tables, the data are reported separately for 
each assembly system (i.e. manual, HRC and S-HRC) and 
in the order used during the experiments, i.e. a random 
order (Obs). The experimental values (Value) and the fit-
ted values (Fit) are also provided. The experimental values 
are those actually collected during the different tests. The 
fitted values are point estimates of the mean response for 
given values of the predictors, calculated by entering the 

(9)TD = � ∙ C2

Table 7  Classification of in-process and offline defects

Type of defects Category

Wrong part Offline
Wrong position Offline
Part not taken In-process
Slipped part In-process
Defective part Offline
Incorrectly inserted part Offline
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specific values for each observation in the data set into the 
regression model equation. The fitted values in Table 8 
were obtained according to Eq. (8), while the fitted values 
in Table 9 were obtained according to Eq. (9). For each 
fitted value, the corresponding 95% confidence intervals 
are reported. The regression coefficients with their 95% 
CIs are reported in Table 10 (see Section. 6.2).

According to the model in Eqs. (8) and (9) and the data 
in Tables 8 and 9, research question RQ1 (reported in Sec-
tion. 1) can be answered with the following finding:

• F1: The assembly complexity and the characteristics of 
a product within a product family affect the productivity 
and the quality of assembly processes.

This finding is valid for all three assembly systems, both 
in terms of assembly times and total defects. In fact, accord-
ing to Eq. (8), assembly times (associated to process pro-
ductivity) increase following a power trend when increasing 
assembly complexity. This implies that an increase in assem-
bly complexity leads to a more than proportional increase 

Table 8  Assembly time (AT) 
results of the three experimental 
campaigns

Manual HRC S-HRC

Obs C Value Fit 95% CI Value Fit 95% CI Value Fit 95% CI

1 11.95 11.42 10.09 (8.97, 11.21) 12.12 10.37 (9.36, 11.38) 8.65 10.30 (9.78, 10.83)
2 14.12 13.50 12.84 (11.16, 14.52) 14.17 13.98 (12.44, 15.52) 16.03 12.99 (12.21, 13.78)
3 3.80 1.38 1.92 (0.66, 3.19) 2.80 1.34 (0.44, 2.24) 1.53 2.10 (1.49, 2.72)
4 13.37 9.92 11.87 (10.48, 13.26) 11.13 12.68 (11.45, 13.90) 11.07 12.04 (11.39, 12.69)
5 9.83 9.83 7.61 (6.34, 8.88) 6.57 7.31 (6.09, 8.54) 7.85 7.86 (7.27, 8.44)
6 6.50 3.35 4.18 (2.64, 5.73) 2.97 3.50 (2.17, 4.83) 3.73 4.43 (3.71, 5.16)
7 13.37 9.98 11.87 (10.48, 13.26) 13.10 12.68 (11.45, 13.90) 9.50 12.04 (11.39, 12.69)
8 11.95 10.02 10.09 (8.97, 11.21) 9.00 10.37 (9.36, 11.38) 7.75 10.30 (9.78, 10.83)
9 9.83 4.68 7.61 (6.34, 8.88) 6.50 7.31 (6.09, 8.54) 8.58 7.86 (7.27, 8.44)
10 14.12 8.95 12.84 (11.16, 14.52) 14.25 13.98 (12.44, 15.52) 11.70 12.99 (12.21, 13.78)
11 6.50 2.60 4.18 (2.64, 5.73) 3.30 3.50 (2.17, 4.83) 3.73 4.43 (3.71, 5.16)
12 3.80 0.95 1.92 (0.66, 3.19) 1.32 1.34 (0.44, 2.24) 1.58 2.10 (1.49, 2.72)
13 9.83 12.62 7.61 (6.33, 8.88) 10.20 7.31 (6.09, 8.54) 8.65 7.86 (7.27, 8.44)
14 14.12 19.58 12.84 (11.16, 14.52) 17.48 13.98 (12.44, 15.52) 13.50 12.99 (12.21, 13.78)
15 3.80 2.08 1.92 (0.66, 3.19) 1.37 1.34 (0.44, 2.24) 1.65 2.10 (1.49, 2.72)
16 11.95 9.33 10.09 (8.97, 11.21) 10.03 10.37 (9.36, 11.38) 8.75 10.30 (9.78, 10.83)
17 6.50 4.22 4.18 (2.64, 5.73) 4.98 3.50 (2.17, 4.83) 5.88 4.43 (3.71, 5.16)
18 13.37 11.48 11.87 (10.48, 13.26) 13.15 12.68 (11.45, 13.90) 10.93 12.04 (11.39, 12.69)
19 6.50 6.40 4.18 (2.64, 5.73) 3.37 3.50 (2.17, 4.83) 4.48 4.43 (3.71, 5.16)
20 11.95 10.32 10.09 (8.97, 11.21) 8.85 10.37 (9.36, 11.38) 9.23 10.30 (9.78, 10.83)
21 3.80 2.42 1.92 (0.66, 3.19) 1.57 1.34 (0.44, 2.24) 1.98 2.10 (1.49, 2.72)
22 9.83 5.92 7.61 (6.34, 8.88) 6.57 7.31 (6.09, 8.54) 8.87 7.86 (7.27, 8.44)
23 14.12 11.95 12.84 (11.16, 14.52) 11.83 13.99 (12.44, 15.52) 16.02 12.99 (12.21, 13.78)
24 13.37 9.45 11.87 (10.48, 13.26) 9.28 12.68 (11.45, 13.90) 12.23 12.04 (11.39, 12.69)
25 3.80 1.47 1.92 (0.66, 3.19) 1.75 1.34 (0.44, 2.24) 1.88 2.10 (1.49, 2.72)
26 9.83 5.43 7.61 (6.34, 8.88) 5.83 7.31 (6.09, 8.54) 9.98 7.86 (7.27, 8.44)
27 13.37 7.43 11.87 (10.48, 13.26) 8.85 12.68 (11.45, 13.90) 14.70 12.04 (11.39, 12.69)
28 14.12 9.53 12.84 (11.16, 14.52) 10.43 13.98 (12.44, 15.52) 12.18 12.99 (12.21, 13.78)
29 11.95 7.23 10.09 (8.97, 11.21) 5.78 10.37 (9.36, 11.38) 11.23 10.30 (9.78, 10.83)
30 6.50 4.22 4.18 (2.64, 5.73) 1.98 3.50 (2.17, 4.83) 5.03 4.43 (3.71, 5.16)
31 14.12 22.77 12.84 (11.16, 14.52) 23.73 13.98 (12.44, 15.52) 12.00 12.99 (12.21, 13.78)
32 6.50 5.17 4.18 (2.64, 5.73) 6.97 3.50 (2.17, 4.83) 4.40 4.43 (3.71, 5.16)
33 13.37 10.53 11.87 (10.48, 13.26) 14.80 12.68 (11.45, 13.90) 12.00 12.04 (11.39, 12.69)
34 9.83 9.08 7.61 (6.34, 8.88) 8.22 7.31 (6.09, 8.54) 8.60 7.86 (7.27, 8.44)
35 3.80 2.42 1.92 (0.66, 3.19) 2.53 1.34 (0.44, 2.24) 2.02 2.10 (1.49, 2.72)
36 11.95 13.40 10.09 (8.97, 11.21) 11.35 10.37 (9.36, 11.38) 9.97 10.30 (9.78, 10.83)
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in assembly time. On the other hand, according to Eq. (9), 
the relationship between defects (associated to process qual-
ity) and assembly complexity is modelled using a Poisson 

model with square root link function. Thus, also total 
defects increase more than linearly with increasing assem-
bly complexity. These results show that increased assembly 

Table 9  Total defects (TD) 
results of the three experimental 
campaigns

Manual HRC S-HRC

Obs C Value Fit 95% CI Value Fit 95% CI Value Fit 95% CI

1 11.95 6 4.45 (3.71, 5.26) 3 2.96 (2.36, 3.63) 5 8.18 (7.17, 9.27)
2 14.12 6 6.21 (5.17, 7.34) 7 4.14 (3.30, 5.07) 15 11.44 (10.01, 12.96)
3 3.80 2 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 0 0.83 (0.73, 0.94)
4 13.37 5 5.57 (4.64, 6.58) 5 3.71 (2.96, 4.55) 6 10.25 (8.95, 11.61)
5 9.83 9 3.01 (2.51, 3.56) 3 2.01 (1.60, 2.46) 0 5.54 (4.85, 6.28)
6 6.50 3 1.32 (1.10, 1.56) 1 0.88 (0.70, 1.08) 1 2.43 (2.12, 2.75)
7 13.37 3 5.57 (4.64, 6.58) 4 3.71 (2.96, 4.55) 10 10.25 (8.97, 11.61)
8 11.95 4 4.45 (3.71, 5.26) 3 2.96 (2.36, 3.63) 7 8.18 (7.17, 9.27)
9 9.83 0 3.01 (2.51, 3.56) 3 2.01 (1.60, 2.46) 7 5.54 (4.85, 6.28)
10 14.12 5 6.21 (5.17, 7.34) 5 4.14 (3.30, 5.07) 15 11.44 (10.01, 12.97)
11 6.50 1 1.32 (1.10, 1.56) 0 0.88 (0.70, 1.08) 1 2.43 (2.12, 2.75)
12 3.80 0 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 2 0.83 (0.73, 0.94)
13 9.83 2 3.01 (2.51, 3.56) 0 2.01 (1.60, 2.46) 9 5.54 (4.85, 6.28)
14 14.12 4 6.21 (5.17, 7.34) 6 4.14 (3.30, 5.07) 12 11.44 (10.01, 12.96)
15 3.80 0 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 0 0.83 (0.73, 0.94)
16 11.95 0 4.45 (3.71, 5.26) 3 2.96 (2.36, 3.63) 6 8.18 (7.17, 9.27)
17 6.50 0 1.32 (1.10, 1.56) 2 0.88 (0.70, 1.08) 3 2.43 (2.12, 2.75)
18 13.37 0 5.57 (4.64, 6.58) 3 3.71 (2.96, 4.55) 13 10.25 (8.97, 11.61)
19 6.50 0 1.32 (1.10, 1.56) 2 0.88 (0.70, 1.08) 8 2.43 (2.12, 2.75)
20 11.95 2 4.45 (3.71, 5.26) 3 2.96 (2.36, 3.63) 6 8.18 (7.17, 9.27)
21 3.80 0 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 2 0.83 (0.72, 0.94)
22 9.83 1 3.01 (2.51, 3.56) 0 2.00 (1.60, 2.46) 8 5.54 (4.85, 6.28)
23 14.12 11 6.21 (5.17, 7.34) 4 4.14 (3.30, 5.07) 12 11.44 (10.01, 12.96)
24 13.37 3 5.57 (4.64, 6.58) 6 3.71 (2.96, 4.55) 11 10.25 (8.97, 11.61)
25 3.80 0 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 0 0.83 (0.73, 0.94)
26 9.83 4 3.01 (2.51, 3.56) 2 2.00 (1.60, 2.46) 5 5.54 (4.85, 6.28)
27 13.37 5 5.57 (4.64, 6.58) 3 3.71 (2.96, 4.55) 20 10.25 (8.98, 11.61)
28 14.12 9 6.21 (5.17, 7.34) 5 4.14 (3.30, 5.07) 12 11.44 (10.01, 12.96)
29 11.95 11 4.45 (3.71, 5.26) 0 2.96 (2.36, 3.63) 4 8.18 (7.17, 9.27)
30 6.50 0 1.32 (1.10, 1.56) 1 0.88 (0.70, 1.08) 3 2.43 (2.12, 2.75)
31 14.12 13 6.21 (5.17, 7.34) 6 4.14 (3.30, 5.07) 7 11.44 (10.01, 12.96)
32 6.50 0 1.32 (1.10, 1.56) 0 0.88 (0.70, 1.08) 4 2.43 (2.12, 2.75)
33 13.37 8 5.57 (4.64, 6.58) 1 3.71 (2.96, 4.55) 6 10.25 (8.97, 11.61)
34 9.83 2 3.01 (2.51, 3.56) 1 2.00 (1.60, 2.46) 6 5.54 (4.85, 6.28)
35 3.80 0 0.45 (0.38, 0.53) 0 0.30 (0.24, 0.37) 0 0.83 (0.73, 0.94)
36 11.95 7 4.45 (3.71, 5.26) 2 2.96 (2.36, 3.63) 6 8.18 (7.17, 9.27)

Table 10  Main outputs from non-linear regression for assembly time vs assembly complexity and Poisson regression for total defects vs assem-
bly complexity

System � SE(�) � SE ( �) � SE(�) 95% CI ( �) 95% CI ( �) 95% CI ( �)

Manual 0.28 0.19 1.45 0.27 0.18 0.01 (0.05, 0.92) (0.97, 2.11) (0.16, 0.19)
HRC 0.12 0.09 1.79 0.27 0.14 0.01 (0.02, 0.45) (1.28, 2.49) (0.13, 0.15)
S-HRC 0.33 0.10 1.39 0.12 0.24 0.01 (0.17, 0.58) (1.16, 1.65) (0.22, 0.26)
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complexity leads to more defects, not just because of the 
higher number of components, but due to the intricate inter-
actions and precision required for connections. Each addi-
tional element introduces new potential for errors, extending 
assembly time and raising the defect rate. This finding aligns 
with previous studies in this domain, which was primarily 
conducted on distinct electromechanical products and work-
stations without a specific emphasis on product families [19, 
28]. Therefore, the uniqueness of the current study lies in 
its examination and quantification of assembly complexity’s 
influence on productivity and quality within the context of a 
product family, encompassing a range of products with vary-
ing degrees of complexity in different assembly processes.

6.2  Comparison between assembly systems

In order to answer the second research question (RQ2), the 
curves in Fig. 5 were plotted using the data from Tables 8 
and 9. Figure 5 shows the regression curves of assembly 
time (Fig. 5a) and total defects (Fig. 5b) versus assembly 
complexity for the three assembly systems. Each curve is 
presented with its respective 95% confidence intervals, indi-
cating that the regression lines closely follow the curvature 
of the points and that there are no systematic deviations from 
the fitted lines. It has to be noted that in Fig. 5, the 95% 
confidence intervals are limited to zero (for both assembly 
times and total defects) since time and defects cannot assume 
negative values.

Regarding assembly time, as mentioned in Section. 5, 
it increases more than linearly with assembly complexity 
for all three systems. This trend is modelled by the power 
law model defined in Eq. (8). Figure 5a shows the three 
curves, one for each system, which describe this relation-
ship between assembly time and assembly complexity. Since 
the 95% confidence intervals of the three regression curves 
overlap, no statistical differences between the three assembly 
systems in terms of assembly times at the 5% significance 
level are evidenced.

On the other hand, as far as total defects are concerned 
(see Fig. 5b), in all three assembly systems, the total assem-
bly defects follow the same trend as a function of assembly 

complexity, i.e. the Poisson model with a square root link 
function, according to Eq. (8). As shown in Fig. 5b, the 
95% confidence intervals of the three regression curves do 
not overlap. This implies that there is a difference in the 
estimated ranges of total defects produced by each of the 
three assembly systems (i.e. significant differences between 
manual and HRC, manual and S-HRC, HRC and S-HRC 
scenarios). Consequently, the lack of overlap between these 
intervals for the three systems indicates that the differences 
in mean total defects between the systems are statistically 
significant at the 5% significance level.

The same considerations can be inferred from a numeri-
cal point of view by analysing the data in Table 10, which 
presents the main results of the regression curves shown in 
Fig. 5. Table 10 reports the estimated regression parameters 
( � , �, � ), their standard error (SE(� ), SE(� ) and SE(�)), i.e. 
the variation in the estimated mean response for the predic-
tors, and the 95% confidence interval for each regression 
parameter. In particular, regarding assembly time, Table 10 
shows that the 95% confidence intervals for the � and � 
parameters of all three assembly systems models overlap. 
On the other hand, in terms of total defects, Table 10 shows 
that the three 95% confidence intervals of � do not overlap.

Thus, in responding to the second research question RQ2 
(reported in Section. 1), the following finding is obtained:

• F2: A statistically significant difference exists in the qual-
ity of the assembly process across various assembly sys-
tems when applied to different products within a product 
family. Conversely, such a difference is not observed in 
the productivity of the assembly process.

This new finding, which has not been analysed in previ-
ous studies, is quite interesting. In fact, the results show 
that the way in which parts are selected and transported 
by or to the operator, whether in manual or cobot-assisted 
systems, does not significantly affect assembly times. As a 
result, the analysis shows that there are no significant dif-
ferences in the assembly times associated with the manual, 
HRC and S-HRC systems at the 5% significance level. This 
result is particularly noteworthy given that the S-HRC 

Fig. 5  Comparison between 
Manual, HRC and S-HRC sys-
tems on (a) assembly time (AT) 
and (b) total defects (TD)
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system operates the cobot at a reduced speed of 50%. This 
underlines the promising potential of this intelligent sys-
tem; optimal usage could potentially translate to a substan-
tial reduction in assembly time. In the context of this case 
study, however, fully realising this potential would neces-
sitate alterations to the collaborative system’s workstation 
architecture or the adoption of a more refined camera for 
part recognition.

On the other hand, in terms of quality, the assembly sys-
tem influences the occurrence of total assembly defects. 
On closer inspection, and using a 5% significance level, the 
results show that the HRC system generates fewer errors 
than the manual system, which in turn produces fewer errors 
than the S-HRC system. Accordingly, in this specific case 
study, the HRC system outperforms in terms of quality as it 
effectively eliminates part selection errors, a common issue 
in manual assembly. Barring situations where the part is 
incorrectly picked or slips during transport to the operator, 
the cobot consistently delivers accurate selection. Contrary 
to expectations, the S-HRC assembly system exhibited the 
highest total defects. The primary factor contributing to this 
outcome is the restricted and the instability of the current 
camera vision system, which has proved inadequate in con-
sistently and accurately recognizing the parts to be assem-
bled. It is important to note that the parts comprising the 
breadboard are quite small, with diverse colours and sizes, 
which can exacerbate the challenge. The camera currently 
in use is low resolution and, coupled with the still-maturing 
system, leads to a high error rate in part recognition. The 
characteristics of the assembled parts—their minute size, 
different colours and sizes—present an intricate scenario 
for the vision system, causing it to struggle with part rec-
ognition accuracy. However, these findings should not be 
misinterpreted as inherent flaws within the S-HRC assembly 
system itself. Instead, they underscore the urgent need to 
enhance the vision system, particularly its ability to accu-
rately recognise a range of distinct parts. This could be 
achieved either by using a higher resolution camera or by 
refining the image processing algorithms. These improve-
ments could ultimately optimise both the productivity and 
quality of the S-HRC assembly system.

7  Conclusions

In recent decades, collaborative robots have gained popu-
larity in assembly processes due to their ability to work 
alongside human workers, improving efficiency and safety. 
This study has explored the effect of assembly complex-
ity on assembly time and total defects across three distinct 
assembly systems, specifically designed for electronic 
board assemblies within a product family. The Manual sys-
tem involved full manual assembly of the boards, while the 

human–robot collaboration (HRC) system utilised a cobot 
for the pick-and-place tasks. The Smart Human–Robot Col-
laboration (S-HRC) system expanded upon the HRC setup 
by incorporating a camera for part recognition. The aim is 
to address a range of issues related to modern manufactur-
ing, such as the benefits of human–robot collaboration, the 
difficulties of system integration and the impact of such inte-
gration on output and assembly quality.

Across all three experimental settings, a power-law trend 
was observed linking increased assembly complexity with 
extended assembly time. Interestingly, no significant differ-
ence in assembly time was found between the three systems 
at the 95% confidence level. When focusing on total defects, 
a super-linear increase with increasing assembly complexity 
was also observed. However, the three systems exhibited 
notable differences. Specifically, the HRC system outper-
formed, showing the highest quality output, followed by the 
manual system. The S-HRC system lagged behind, with a 
significantly higher total number of defects compared to the 
other two systems. The main factors contributing to this dis-
crepancy were the inadequate camera capability for accurate 
part recognition within the S-HRC system and the limited 
space within the workstation.

Addressing the research questions posed, the study 
findings confirmed that assembly complexity plays a sig-
nificant role in influencing both assembly time and total 
assembly defects (RQ1). Furthermore, the use of different 
assembly systems leads to significant differences (at the 5% 
significance level) only for total assembly defects, but not 
for assembly time (RQ2). It is important to note that these 
results are based on experiments with certain initial con-
straints. Hence, future research plans to venture into other 
facets of Human–Robot Collaboration, which includes cobot 
engagement in more complex tasks, with human interven-
tion directed towards support and critical decision-making. 
The use of machine learning algorithms to define real-time 
strategies (instead of pre-set ones) based on the parts avail-
able at the workstation is another future research prospect.

In conclusion, the S-HRC, despite its current limitations, 
shows promise as a solution to the assembly process within 
product families, particularly for components with a high 
number of customizable variants. Its vision system reduces 
the necessity for frequent workstation reconfiguration and 
lessens the time and effort spent on part selection compared 
to both the HRC and Manual systems. Even with a limited 
operating speed due to space limitations, the S-HRC system 
still yields assembly times statistically comparable to the 
other systems. However, the underdeveloped camera vision 
system, particularly its struggle to accurately recognize 
smaller parts such as cables, led to a higher defect rate.

Future research will prioritise the refinement of the 
vision system and the expansion of sample sizes to increase 
statistical robustness and improve the generalisability of 
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findings. At the same time, the quantification of cognitive 
effort expended by operators during various assembly tasks 
will be explored to provide a more nuanced understanding 
of assembly complexity. In addition, a critical objective on 
the horizon involves the development of bespoke worksta-
tions and gripping mechanisms tailored for electronic board 
assembly. This initiative is driven by the need to overcome 
existing spatial constraints and to optimise the assembly 
environment. By integrating customised physical inter-
faces, this strategy aims to streamline assembly operations, 
potentially reducing assembly times and defect generation. 
This multi-faceted approach, which blends technological 
upgrades with ergonomic innovations, will strengthen the 
overall effectiveness of the S-HRC system in the context 
of electronic board assembly, providing a comprehensive 
strategy for enhancing both human and system performance.
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