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Abstract: The fluctuation relation stands as a fundamental result in nonequilibrium statistical physics.
Its derivation, particularly in the stationary state, places stringent conditions on the physical systems
of interest. On the other hand, numerical analyses usually do not directly reveal any specific
connection with such physical properties. This study proposes an investigation of such a connection
with the fundamental ingredients of the derivation of the fluctuation relation for the dissipation,
which includes the decay of correlations, in the case of heat transport in one-dimensional systems.
The role of the heat baths in connection with the system’s inherent properties is then highlighted. A
crucial discovery of our research is that different lattice models obeying the steady-state fluctuation
relation may do so through fundamentally different mechanisms, characterizing their intrinsic nature.
Systems with normal heat conduction, such as the lattice ϕ4 model, comply with the theorem after
surpassing a certain observational time window, irrespective of lattice size. In contrast, systems
characterized by anomalous heat conduction, such as Fermi–Pasta–Ulam–Tsingou-β and harmonic
oscillator chains, require extended observation periods for theoretical alignment, particularly as the
lattice size increases. In these systems, the heat bath’s fluctuations significantly influence the entire
lattice, linking the system’s fluctuations with those of the bath. Here, the current autocorrelation
function allows us to discern the varying conditions under which different systems satisfy with the
fluctuation relation. Our findings significantly expand the understanding of the stationary fluctuation
relation and its broader implications in the field of nonequilibrium phenomena.

Keywords: fluctuation relation; heat bath; correlation

1. Introduction

The 1990s witnessed the advent of fluctuation relations by authors like Evans, Gallavotti,
Jarzynski and Crooks, revolutionizing statistical physics and nonequilibrium thermo-
dynamics [1–6]. These relations extended the second law of thermodynamics into a
statistical–physical framework, embracing both increases and decreases in entropy. Their
ratios of positive and negative entropy events are shown to rise exponentially with larger
measurement times and system sizes, seamlessly bridging micro and macro thermodynamic
theories and earmarking the fluctuation relation as a pivotal development in nonequilib-
rium statistical physics. Transient fluctuation relations for time-reversible dynamics are
exact for systems of any size, near and far from equilibrium, and over any observation
time [4,5,7–9]. On the other hand, steady-state fluctuation relations, apparently similar or
directly derivable from transient relations, are only asymptotically valid hence not exact,
and require proper conditions to be verified concerning the time correlation function of the
dissipation [8,10,11]. We will see, however, that exact relations can be verified at any finite
time, when the proper correlation functions can be evaluated, cf. [8,12].

Nonequilibrium steady-state heat flow fluctuations are very convenient for testing
the fluctuation relations. Under the local equilibrium hypothesis, local entropy generation
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links directly to heat flow, connecting to the system’s total entropy change. Lepri, Livi
and Politi’s 1998 application of fluctuation relations for the dissipation function [13] to
nonequilibrium steady-state heat flow fluctuations, validated by numerical simulations
in the Fermi–Pasta–Ulam–Tsingou(FPUT)−β lattice model, laid the groundwork for fur-
ther exploration [14]. Subsequent studies by Van Zon, Cohen, Jarzynski and Dhar et al.
expanded this theorem’s applicability, to a variety of systems, including the harmonic
oscillator chain [10,15–18]. These findings, however, raise a key question: does compliance
reflect the system’s dynamical characteristics or the influence of the heat bath? Furthermore,
the need for larger time windows in larger systems seems to contradict the expectation that
larger systems should more readily adhere to thermodynamic laws.

Our research addresses these complexities by examining three distinct one-dimensional
lattice models: the harmonic oscillator chain, FPUT-β and the ϕ4 lattice model, each rep-
resenting a unique thermal conduction class. The harmonic oscillator chain lacks chaotic
motion, exhibiting a system-size proportional thermal conductivity, κ∼N. The FPUT-β
and ϕ4 lattice models, with chaotic motion, show divergent and size-independent thermal
conductivity, respectively [19–24]. This divergence in heat conduction behaviors presents a
compelling study contrast.

We demonstrate that, for a fixed system size, each model satisfies the steady-state
fluctuation relations for the dissipation function within sufficiently large observational
time windows [25], albeit through differing mechanisms. In lattices with anomalous heat
conduction, compliance stems from the heat baths at the chain ends, where bath fluctuations
permeate the entire chain given adequate time. Conversely, in lattices with normal heat
conduction, bath fluctuations diminish rapidly, and theorem compliance is dictated by the
system’s statistical physical behavior. Notably, when the observation time is scaled with the
characteristic correlation time, a universal, size-independent fluctuation relation emerges.
This discovery underscores the correlation’s disappearance as indicative of steady-state
fluctuation relations satisfaction, and enabling predictions of fluctuation relations in longer
chains based on shorter ones.

The structure of this paper is organized as follows. The next section presents an
introduction to the fluctuation relation for dissipation function. We derive the steady-state
fluctuation relation from the transient fluctuation relation, building on the foundational
work of Evans and Searles [9]. This derivation particularly emphasizes the connection
between the fluctuation relation and the decay of correlations caused by dissipation [8].
In Section 3, we introduce the models that will be examined in our study. Section 4 is
dedicated to reporting our principal findings. It shows that there is indeed a variety of
possible behaviors determining the decay of correlation, revealing the physical mechanisms
leading to the satisfy of the steady fluctuation at different levels. Finally, Section 5 provides
a comprehensive summary of our work.

2. Steady-State Fluctuation Relation

The authors of Ref. [1] considered the Gaussian iso-energetic SLLOD model of a
shearing fluid, for N particles in d dimensions, cf. Appendix A, and proposed and tested
the following fluctuation relation:

µi
µi∗

=
exp

[
−∑+

n λi,nτ
]

exp
[
−∑+

n λi∗ ,nτ
] = exp[Ndταi,τ ] (1)

inspired by the theory of Anosov dynamical systems, cf. Appendix B, which they adapted
to the time-reversal invariant SLLOD equations of motion. In this formula, i, i∗ represent
conjugate phase space trajectory segments of length τ, λi,n is the n-th finite-time Lyapunov
exponent computed along the segment i in a time τ, and αi,τ ∝ −∑n λi,n is proportional to
the average energy dissipation rate, along one trajectory segment of duration τ. Then, µi is
the steady-state probability of trajectory segments of length τ yielding the same αi,τ , and µi∗

is the probability of segments yielding the opposite value, −αi,τ . The result, according to
the theory of large deviations, is then verified by taking larger and larger averaging times τ.
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In local thermodynamic equilibrium, Equation (1) quantifies the second law for reversible
dynamics, which is what made it initially very popular. Consequently, in near equilib-
rium situations it yields linear response with Onsager and Green–Kubo relations [26,27].
Moreover, its derivation from pure dynamics makes the fluctuation relation suitable to
go beyond the local thermodynamic equilibrium regime, and of particular interest in the
field of small and low-dimensional systems. In that realm, unlike the macroscopic one,
fluctuations are observable and comparable to observed average signals. The work on
steady-state fluctuations led to the transient fluctuation relation, derived in 1994 by Evans
and Searles [9], and that opened the way to a different understanding of the steady-state
one, not based on the Anosov assumption [26], cf. Appendix C. Here, we concisely illustrate
this approach, which explains our findings.

One fundamental property of the molecular dynamics systems for which the fluctua-
tion relations have been derived is that they are dissipative, which allows systems to reach
steady states, but time-reversal invariant. This can be abstractly described as follows. Let
M be the phase space and St : M → M evolution in M, so that StΓ is the phase Γ reaches
at time t. In the cases of our interest, St yields the solution of the equations of motion
Γ̇ = G(Γ). For instance, given the one-dimensional harmonic oscillator equations:

q̇ = p , ṗ = −q (2)

one has Γ = (q, p), and:

StΓ = St(q, p) = (q cos t + p sin t,−q sin t + p cos t). (3)

The dynamics are called dissipative if the time average of the divergence of the vector field

Λ = div G (4)

is negative. When this is the case, the system is not Hamiltonian. In particular, negative
Λ means that phase space volumes contract. However, time reversibility may still hold.
Indeed, it suffices that the equations of motion are invariant under the inversion of time
t 7→ −t, combined with the transformation

i(q, p) = (q,−p) so that i2 = Identity, (5)

where Γ = (q, p) is the collection of positions and momenta of the particles of the system
of interest, cf. Appendix B. This also implies that the trajectories stemming from the initial
conditions Γ and Γ̃ = iStΓ trace back each other in configuration space for a time t, and lead
to the following general definition. Then, the dynamics are called time-reversal invariants
if there exists one transformation i : M → M whose double application is the identity,
such that

iStΓ = S−tiΓ for all Γ ∈ M. (6)

Such a general definition is motivated by the fact that S−tΓ = iStiΓ, i.e., that the reversal op-
eration generates the backward evolution, and it was implicit in Ref. [1], because the SLLOD
equations are not invariant under the time-reversal operation defined by Equation (5), but
they are under, e.g., the following mapping:

i(x, y, z, px, py, pz) = (x,−y, z,−px, py,−pz). (7)

Let f (0) be an initial probability distribution on M, and define the dissipation function as:

Ω(0) = −G · ∂Γ ln f (0) − Λ. (8)

Its name is justified by the fact that Ω(0) represents indeed the dissipated power, if f (0) is
the equilibrium (non-driven) distribution that obeys the same constraints of the driven
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dynamics [8]. That is the case for the situation investigated in Ref. [1], which is shown in
Appendix A. Finally, we denote by

Ot,t+τ(Γ) =
∫ t+τ

t
dsO(SsΓ) (9)

the time integral between the times t and t + τ of any observable O, computed along the
trajectory starting at Γ. Consequently, we can write:

Ω(0)
t,t+τ(Γ) =

∫ t+τ

t
Ω(0)(SsΓ)ds = ln

f (0)(StΓ)
f (0)(St+τΓ)

−
∫ t+τ

t
Λ(SsΓ)ds. (10)

The quantity Ot,t+τ(Γ) divided by τ gives the corresponding time average Ot,t+τ(Γ). With
such definitions, the derivation of the transient fluctuation relation is just a few lines.

First, one notices that the corresponding Liouville equation in Eulerian form is ex-
pressed by:

∂t f (Γ) = −∂Γ · ( f (Γ)G(Γ)) ≡ Ω(Γ) f (Γ) (11)

and in Eulerian form by:
d f
dt

= −Λ f . (12)

Therefore, given the initial distribution f (0), which in general is not invariant for the driven
dynamics, one obtains [28]:

f (t)(Γ) = exp{−Λ−t,0(Γ)} f (0)(S−tΓ) = exp
{

Ω(0)
−t,0(Γ)

}
f (0)(Γ) (13)

for the distribution at time t. Then, one introduces the intervals of values around A and −A,

BA,δ = (A − δ, A + δ) and B−A,δ = (−A − δ,−A + δ) (14)

with small δ > 0, and observes that:

{Γ : Ω(0)
0,τ(Γ) ∈ B−A,δ} = iSτ{Γ : Ω(0)

0,τ(Γ) ∈ BA,δ}, (15)

which is to say that all initial conditions Γ̃ that yield the time average Ω(0)
0,τ(Γ̃) = −A are

obtained from those Γ that yield Ω(0)
0,τ(Γ) = A, evolving them for a time τ and applying the

reversal operation i. Denote by µ(0)
(

Ω(0)
0,τ ∈ BA,δ

)
the probability computed with respect

to the initial distribution f (0) that the average of Ω(0) takes values near A. Then, the ratio
of initial probabilities to find values A and −A is expressed by:

µ(0)
(

Ω(0)
0,τ ∈ BA,δ

)
µ(0)

(
Ω(0)

0,τ ∈ B−A,δ

) =

∫
BA,δ

f (0)(Γ)dΓ∫
B−A,δ

f (0)(Γ)dΓ
(16)

and introduce the coordinate transformation Γ = iSτX, with Jacobian

J0,τ(X) =

∣∣∣∣ dΓ
dX

∣∣∣∣ = exp{Λ0,τ(X)}, (17)

which leads to:∫
B−A,δ

f (0)(Γ)dΓ =
∫
BA,δ

f (0)(iSτX) eΛ0,τ(X)dX =∫
BA,δ

f (0)(X) e−Ω(0)
0,τ (X)dX = e−[A+ϵ(A,δ,τ)]τ

∫
BA,δ

f (0)(X)dX
(18)
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if f (0) is even under the application of i, i.e., f (0)(iΓ) = f (0)(Γ), as appropriate for an
equilibrium distribution. The transient fluctuation relation immediately follows:

µ(0)(Ω(0)
0,τ ∈ BA,δ)

µ(0)(Ω(0)
0,τ ∈ B−A,δ)

= exp{τ[A + ϵ(A, δ, τ)]} , where ϵ(A, δ, τ) ≤ δ (19)

with an error ϵ that is not larger than δ, although it depends on all parameters of the theory.
Therefore, ϵ can be made as small as one wants, by taking δ as correspondingly small. This
also means:

µ(0)
(

Ω(0)
0,τ ∈ BA,δ

)
µ(0)

(
Ω(0)

0,τ ∈ B−A,δ

) =
〈

exp
(
−τ Ω(0)

)〉−1

Ω(0)∈BA,δ
(20)

where the right-hand side means the inverse of the average of the exponential of Ω(0)

integrated from time 0 to time τ, over the trajectories that yield a value close to A, with a
difference not larger than δ. Indeed,

∫
B−A,δ

f (0)(Γ)dΓ∫
BA,δ

f (0)(Γ)dΓ
=

∫
BA,δ

f (0)(X) e−Ω(0)
0,τ (X)dX∫

BA,δ
f (0)(Γ)dΓ

(21)

is the conditional average of exp(−Ω(0)
0,τ) over the trajectories whose initial conditions lie in

B−A,δ, which is to say the average with respect to the distribution

f (0)B−A,δ
(Γ) =


1∫

BA,δ
f (0)(Γ)dΓ

f (0)(Γ) if Γ ∈ BA,δ

0 if Γ /∈ BA,δ,

(22)

which assigns zero probability to the sets outside B−A,δ.
The transient fluctuation relation is very robust because it is based on minimal assump-

tions: time reversibility and conservation of probability in phase space. It is an identity
that holds exact for all τ > 0, for an ensemble of experiments all starting in the initial state
characterized by f (0), analogously to other fluctuations such as the Jarzynski equality.

To derive the steady-state fluctuation relation, we can now start from Equation (19).
First, we move from the probability µ(0) to the statistic resulting at time t, under the
assumption that probability is conserved and moves around the phase space together with
the phases StΓ. This means that the probability of a set E ⊂ M at time t, µ(t)(E) say, equals
the probability at time 0 of the set of points that reach E at time t, S−tE, which can be
written as

µ(t)(E) = µ(0)(S−tE). (23)

We will then try to extrapolate the result to the steady state, by letting t grow without
bounds. With minimal algebra, Equation (21) yields another exact relation:

1
τ ln

µ(t)
(

Ω(0)
0,τ∈BA,δ

)
µ(t)

(
Ω(0)

0,τ∈B−A,δ

) = − 1
τ ln

〈
e−Ω(0)

0,t · e−Ω(0)
t,t+τ · e−Ω(0)

t+τ,2t+τ

〉(0)

Ω(0)
t,t+τ∈BA,δ

= A + ϵ(δ, t, A, τ)− 1
τ ln

〈
e−Ω(0)

0,t · e−Ω(0)
t+τ,2t+τ

〉(0)

Ω(0)
t,t+τ∈BA,δ

.
(24)

Here, the second line yields the expression of the fluctuation relation, in the t → ∞
limit, if such a limit exists, and the conditional average behaves properly when τ becomes
large. Therefore, although it is derived from an exact transient relation that practically
always holds, the steady-state fluctuation relation does not always makes sense, and when
it does it does not necessarily correspond to the exponential unbalance of probabilities
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expressed by the original relation (1). Indeed, the t → ∞ of the conditional average may
diverge, or it may yield a non-negligible contribution, even in the τ → ∞ limit. When this
term constitutes a correction that vanishes as O(1/τ), we have a situation analogous to the
one discussed within the Anosov formalism. In all circumstances, it is a relation that only
becomes exact when τ grows, unlike the transient fluctuation relation, which is exact for all
τ. Another difference between the transient and the steady-state relations is that the second
applies also to the fluctuations along a single trajectory, and does not need an ensemble.

Remark 1. The last term of Equation (24) must vanish when the limit τ → ∞ is taken after the
limit t → ∞. This is not only a sufficient condition but it is also necessary, because Equation (24)
is an exact relation. This says that correlations of the dissipation function with respect to the
initial distribution follow a given rule, when reversible dynamical systems verify the steady-state
fluctuation relation. This behavior of the correlations of the dissipation function constitutes the
mechanism implying the validity of the steady-state fluctuation relation. The relation is violated
under different conditions [8].

To understand the significance of the last term in Equation (24), consider the case in
which the correlations with respect to the initial distribution µ(0) decay instantaneously.
Considering that the conditional average then turns equal to the full average, and that the
transient fluctuation relation, with some manipulation, also yields [8]:〈

e−Ω(0)
0,t

〉(0)
= 1 (25)

one obtains:〈
e−Ω(0)

0,t · e−Ω(0)
t+τ,2t+τ

〉(0)

Ω(0)
t,t+τ∈BA,δ

=

〈
e−Ω(0)

0,t · e−Ω(0)
t+τ,2t+τ

〉(0)

=

〈
e−Ω(0)

0,t ·
(

e−Ω(0)
0,t ◦ St+τ

)〉(0)
=

〈
e−Ω(0)

0,t

〉(0)〈
e−Ω(0)

0,t

〉(t+τ)

= 1,

where ⟨⟩(t+τ) represents the full phase space average with respect to µ(t+τ), cf. [8]. This
implies that the steady state is verified at an arbitrarily short τ. If the decay of correlations
is not immediate with a growing τ, the final result will depend on how they depend on τ.
An investigation of these issues was performed in Ref. [29] for color diffusion molecular
dynamics. In that case, it was found that the correlations decay, hence the steady-state
fluctuation relation is verified. Below, we will see that there is indeed a variety of possible
behaviors, determined by the physical mechanisms at work.

Ref. [25] considered the classical many-body system that is in contact with two thermal
reservoirs maintained at different temperatures, and proposed the equivalence between
thermodynamic entropy and the dissipation equation:

kBΩ = Σtherm = (
jR
TR

− jL
TL

) +
jL − jR

T0
+ O(

d3

dx3 ), (26)

where jR and jL are the instantaneous heat flow between systems and the heat baths,
respectively. Here, T0 = 1/2(TR + TL).

Based on this equivalence relationship, the above steady-state fluctuation relation for
the dissipation function can be extended to the steady-state fluctuation relation of heat
flow. At the same time, by integrating the local entropy generation, we can obtain the total
entropy generation of the system when the time interval is t as follows:

kBΩ(0)
t,t+τ =

∫ t+τ

t
Σthermdt ≈ J(

1
TR

− 1
TL

). (27)
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When the time interval for observation is τ, the cumulative heat flow of the system is
J =

∫
τ jdt. When the system is in a steady state, the local heat flow is on time average

equal everywhere, so ⟨JR⟩ = ⟨JL⟩ = ⟨J⟩. From this, we obtain the steady-state fluctuation
relation of heat flow [13,30,31]:

lim
τ→∞

ln
Pτ(J)

Pτ(−J)
= J(

1
TR

− 1
TL

), (28)

where Pτ(J) is the probability that the cumulative heat flow with the time interval τ takes
values near J.

Defining

F(J) =
limτ→∞ ln Pτ(J)

Pt(−J)(
1

TR
− 1

TL

) , (29)

our target is to verify whether the fluctuations satisfy

F(J) = J. (30)

3. Models

We study one-dimensional lattice models described by Hamiltonian,

H = ∑[
p2

i
2m

+ V(qi − qi−1) + U(qi)], (31)

with N particles, where qi and pi are the displacement and momentum of the ith particle
from the equilibrium position, respectively. For simplicity, the mass of particles take unit
value. The terms V(qi − qi−1) and U(qi) are the nearest neighbor interaction potential and
on-site potential, respectively. Fixed boundary conditions are applied to the first and last
particles, which are connected by two Langevin heat reservoirs with different temperatures,
as illustrated in Figure 1.

Figure 1. One-dimensional lattice model of Langevin heat reservoirs with different temperatures
connected at both ends.

We investigate the fluctuation behavior of heat flow for three representative lattice
models, namely harmonic oscillator model,

V(x) =
1
2

x2; U(x) = 0, (32)

the FPUT-β model,

V(x) =
1
2

x2 +
1
4

x4; U(x) = 0, (33)
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and the ϕ4 lattice model,

V(x) =
1
2

x2; U(x) =
1
4

x4. (34)

The local heat flow at the ith particle is defined as [30,31]:

ji(t) =
1
2

api( fi + fi+1), (35)

where fi = −(V
′
(qi − qi−1) + U

′
(qi)) represents the force exerted on the ith particle. The

lattice space, a, takes the unit in our simulation. We average the local heat flow of N
particles to obtain the global heat flow, jg(t), as

jg(t) =
1
N ∑

i
ji(t). (36)

4. Results

In Figure 2, we present the distribution of heat-flow fluctuation for the three models
with N = 128 and τ = 100. Throughout our simulation in this paper, we fix the average
temperature, T, of two heat baths as 0.5 and the temperature difference, ∆T, as 0.1. We
note that they exhibit Gaussian-like distribution for all three models, with no significant
difference. Gaussian-like distributions of heat-flow fluctuation have been observed in [13],
and their reason has been discussed theoretically [32,33].

-9 0 9 18
10-7

10-5

10-3

10-1

-9 0 9 18
10-7

10-5

10-3

10-1

-3.8 0.0 3.8 7.6
10-7

10-5

10-3

10-1

P(
J)

J

harmonic FPUT- 4

(a) (b) (c)

J J

Figure 2. Heat flow distribution across three models. System parameters: consistent across all models.
The average temperature at both ends of the heat reservoir T = 0.5, and the temperature difference
∆T = 0.1. The trajectory segment of length τ is 100. (a) The harmonic oscillator model. (b) The
FPUT-β model. (c) The ϕ4 model.

Figure 3 shows F(J) vs. J as a function of τ for several lattice sizes for the three models.
It can be observed that, at short time intervals, the prediction of the steady-state fluctuation
relation is violated, although F(J) and J shows a linear dependence. When τ is large
enough, the prediction is always approached for all three models.

However, there are significant disparities. In the case of the harmonic oscillator
model and the FPUT-β model, we require increasingly larger values of τ to align with
the theoretical predictions as the chain’s length grows. Notably, for a given length, the
time window required is greater for the former than for the latter, as illustrated in the
first two lines of Figure 3. This is in line with the integrability of the purely harmonic
chains, which are at the opposite end of thermodynamics. It is important to highlight that
testing the theorem becomes quite challenging for lengthy chains, given the infrequent
occurrence of negative heat flow events. Consequently, one must allow the system to
evolve for an extended period to obtain an effective distribution function. Indeed, when
dealing with the harmonic model, this task is nearly beyond the computational capacity
for N > 1000. As a result, direct observation of results converging to the theoretical
prediction becomes infeasible. From a theoretical standpoint, even though these models
can eventually fit the prediction, our analysis reveals that they defeat conventional wisdom.
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According to this, which larger systems adhere better to the standard statistical descriptions
characterizing thermodynamic systems? This, perhaps perplexing, point will be clarified
by the analysis of the other models. What is more, we observe a counterintuitive trend in
this context, which may be related to the growth fluctuation magnitude with N.
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Figure 3. Global flow fluctuation analysis over increasing time intervals in diverse models. System
parameters: consistent across all models. The average temperature at both ends of the heat reservoir
T = 0.5, and the temperature difference ∆T = 0.1. The time intervals and particle numbers are
annotated in the plots. The first row depicts the F(J) curves for harmonic oscillator models. The
second row depicts the F(J) curves for FPUT-β models. The last row depicts the F(J) curves for ϕ4

models. The results of molecular dynamics simulation are solid points, and the curve predicted by
the fluctuation relation is an orange dashed line.

For the ϕ4 model, once the size of the chain exceeds a threshold, τ = 200 in this case,
the dependence of F(J) to J for a given τ becomes identical, as shown in the last line of
Figure 3. As a result, for this model, the steady-state fluctuation relation can be generally
satisfied for relatively long chains (with about N > 200) and relatively large τ (with about
τ > 200). In practical applications involving real-world materials and measurable time
scales, one can conclude that the ϕ4 model consistently satisfies the theorem.

To understand the mechanism, we calculated the correlation function C(t) = (⟨J(t)J(0)⟩−
⟨J(0)⟩2)/(

〈
J(0)2〉−⟨J(0)⟩2) of heat flow fluctuation of the three models under a nonequilibrium

steady state. We observe that, although C(t) decays to zero with the increase of time, the
behavior is different for each model. In the case of the harmonic model, C(t) decays
linearly with time, and the rate of decay decreases as a function of the chain’s length. In
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the FPUT-β model, the function of decay is no longer linear, but the rate of decay still
decreases with the increase of the chain length. In the ϕ4 model, however, C(t) decays very
rapidly compared with the other two models. Particularly, it becomes size-independent
when the chain length exceeds a threshold, N ∼ 256. We define tr =

∫
C(t)dt to measure

the cumulative correlation. Figure 4d shows tr as a function of N. It can be seen that,
when the system size is larger, tr scales as Nγ, with γ values of 1, 0.5 and 0 for the three
models, respectively. Interestingly, these scaling relations match those observed in their
thermal conductivity dependence on chain size, where κ ∼ N1, ∼ N0.5 and ∼ N0 for the
three models, respectively.
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Figure 4. The correlation time of the global heat flow of the three models with varied particles
numbers annotated in the plots. System parameters: consistent across all models. The average
temperature at both ends of the heat reservoir T = 0.5, and the temperature difference ∆T = 0.1.
(a–c) Display the correlation function, C(t), as a function of t for three different lattice models.
(d) Presents the correlation time, tr, as a function of N for all lattice models.

We argue that the behavior of C(t) is a result of the interplay between the heat baths
and the system’s dynamics. In the harmonic model, we know that C′(t) = 1 in the
absence of a heat bath, since it is an integrable model. In the present of heat baths, the
fluctuation from the heat baths propagates to the system at the speed of sound, which is a
unit with dimensionless parameters in this context. As these fluctuations are inherently
random, they are expected to induce the decrease of C(t). For a rough estimation, we
suppose that, once the fluctuations are transported, the correlation of that part of the chain
disappears, and the correlation vanishes after t = N. Therefore, C(t) ∼ C′(t)(1 − t/N).
Here, (1 − t/N) characterize the decrease of the region of the sum in the equation. Here,
we suppose that the fluctuation spread out with the sound velocity, and thus t = N.
As a consequence, tr ∼ N. This estimation aligns well with Figure 4a,d. The value of
tr defines the characteristic time that C(t) vanishes, since C(0) is normalized to unity.
Therefore, once the fluctuations spread throughout the system over a timescale of tr ∼ N,



Entropy 2024, 26, 156 11 of 16

the correlation vanishes, and the fluctuation relation applies in accordance with the theory
of the dissipation function [8,29,34? ].

In the FPUT-β model, it is widely recognized that the system exhibits chaotic mo-
tion, which can induce the decay of the correlation function. Nevertheless, the decay
follows a power-law behavior, with C′(t) ∼ t−0.5 , as evidenced by studies in the equi-
librium state [30,36–38]. Therefore, the behavior of C(t) results from both the effects of
the heat bath and the system itself, which can be estimated as C(t) ∼ C′(t)(1 − t/N).
This estimation yields tr ∼ N0.5. These results are consistent with Figure 4b,d. Due to
the non-vanishing correlation within the system, the heat baths continue to play a role
in eliminating the correlation, resulting in a timescale of tr ∼ N0.5 to ensure the system
satisfies the fluctuation relation.

In the ϕ4 model, the system is also chaotic but the fluctuation of heat flow decays
as C′(t) ∼ e−t. Even without attributing to the heat baths, C(t) decays to zero before
t = N. This explains the results of Figure 4c. Consequently, once the chain length exceeds a
threshold, the correlation vanishes after a critical time that is independent of the system
size, and, thus, the fluctuation relation applies hereafter.

The reason why the fluctuation relation is satisfied after the vanishing of the correlation
heat flow fluctuations is as follows. When there is no correlation between the fluctuations, the
distribution of fluctuations appears as a Gaussian distribution Pt(J) = ce(− (J−⟨j⟩t)2

2σ2 ), according

to the central limit theorem [32,33,39]. We then obtain ln Pt(J)
Pt(−J) = (J+⟨j⟩t)2−(J−⟨j⟩t)2

2σ2 = 2⟨j⟩tJ
σ2 .

With σ2 = 2⟨j⟩
( 1

TR
− 1

TL
)
t, we obtain ln Pt(J)

Pt(−J) = J( 1
TR

− 1
TL
), i.e., the steady-state fluctuation relation.

Based on the foregoing analysis, we can re-scale F(J) to render it system-size inde-
pendent. Denote the slope of the F(J) curve in Figure 5 as k(N, τ). We re-scale τ with
respect to tr and plot k(N, τ/tr) as a function of τ/tr in Figure 5. It can be observed that
k(N, τ/tr) manifests as a system-size independent curve, k(t) = c1t−a + eb/t. As such, it
can be regarded as an extension of the fluctuation relation for an arbitrary τ. The limit of
k(N, τ/tr) approaching unity as τ tends to infinity indicates the satisfaction of the original
steady-state fluctuation relation. The universality of the harmonic oscillator model is exem-
plary, and the other two are also fundamentally consistent for larger sizes. Technically, one
can employ the universal curve to extrapolate the results obtained for a fixed chain length
to other sizes without the need for further calculations when the scalings apply.
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Figure 5. Scaling of heat flow fluctuation behavior in three model types over varied time intervals.
This figure presents the scaling of heat flow fluctuation behavior in three different types of models,
utilizing various time windows normalized by correlation time. System parameters: consistent across
all models. The average temperature at both ends of the heat reservoir T = 0.5, and the temperature
difference ∆T = 0.1. The number of particles are denoted in the plots. The results from molecular
dynamics simulations are depicted as point plots. An orange solid line represents the fitting curve.
(a) The harmonic oscillator model. (b) The FPUT-β model. (c) The ϕ4 model.
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The relationship of k(N, τ/tr) with τ arises from persistent correlations. Notably, the
global heat flow distribution retains its Gaussian character, even at smaller values of τ.
This phenomenon is explained by the process of calculating global heat flow: the averaging
of local heat flows from N particles, each exhibiting random heat flow characteristics.
Consequently, the global heat flow represents an aggregation of numerous small, random
variables, aligning with a Gaussian distribution, as dictated by the central limit theorem.
The variance of the instantaneous heat flow distribution, measured over a unit time, is
denoted as σ2

0 . Taking the harmonic chain as an example, and assuming a steady heat flow
correlation over an exceedingly brief τ (C(t) ≈ constant, while neglecting decay due to heat
baths), we find that the variance in heat flow fluctuations is represented by σ(τ)2 = τ2 · σ2

0 .

Hence, k(N, τ) approximates 4⟨j⟩τ
2σ(τ)2 ∝ τ−1, in agreement with the power law index (−0.96)

observed for a small τ in Figure 5a. The τ-dependence of k(N, τ/tr) in the other two models
similarly stems from the enduring correlations of heat flow fluctuations.

5. Conclusions

The realization of the steady-state fluctuation relation is attributed to the elimination
of heat flow fluctuation correlations. In systems characterized by anomalous heat conduc-
tion, such as the harmonic oscillator chain and the FPUT-β chain, these heat fluctuation
correlations exhibit persistence over extended durations. Thus, the theorem’s realization
is critically dependent on the influence of heat baths, which play a key role in dissipating
the system chain’s correlations. Although the heat baths’ fluctuations are initially uncor-
related, they facilitate the eventual vanishing of correlations within the system chain as
they propagate through it. Consequently, extending the observation interval, τ, becomes
necessary to validate the theorem’s applicability, especially when lengthening the chain
with heat baths at each end. In systems exhibiting normal heat conduction, like the ϕ4

lattice chain, the intrinsic heat flow correlation of the system reduces exponentially to zero,
thus fulfilling the fluctuation relation. Hence, in chains surpassing a critical length, the
theorem’s fulfillment is observable shortly after a minimal transitional phase.

Strictly speaking, satisfaction of the steady-state fluctuation relation is feasible only in
systems demonstrated to possess normal statistical properties. The theorem’s widespread
fulfillment is largely driven by the heat bath effect. This study thus provides an important
reminder on how to properly test the fluctuation relation.
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Appendix A. SLLOD Model

SLLOD is not an acronym, it is the mirror image of DOLLS. DOLLS is the name of
a nonequilibrium molecular dynamics algorithm [40]. SLLOD is another algorithm that
transposes certain terms of the DOLLS equations of motion [41–43], hence its name. The
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SLLOD algorithm is arguably the most popular interacting particles model of shearing
fluids [44]. Its equations of motion are expressed by:

q̇i =
pi

m
+ nxγ̇yi, ṗi = Fi − nxγ̇pyi − αIEpi , i = 1, . . . , N, (A1)

where N is the number of particles in a periodic cell of volume V; m is the mass of each
particle; γ̇ the shear rate; nx is the unit vector in the x-direction; Fi is the force on particle
i due to the other particles; qi = (xi, yi) is the position of particle i; pi = (pxi, pyi) is the
corresponding momentum; and αIE, also called ergostat, fixes

H0 =
N

∑
i=1

p2
i

2m
+ Φ(q), (A2)

which is the internal energy of the system, Φ(q) being the inter-particle potential. Here,
αIE is obtained from the Gauss principle of least constraint [45], and takes the form:

αIE = −
γ̇PxyV

N
∑

i=1
p2

i /m
= − Λ

Nd f
, (A3)

where V is the volume,

PxyV =
N

∑
i=1

[
pxi pyi

m
+ yiFxi

]
(A4)

is the off-diagonal part of the pressure tensor, Λ is the divergence of the equations of motion,
hence −Λ is the phase space volumes contraction rate, which does not vanish, signaling
that the dynamics are not Hamiltonian, and Nd f is the number of degrees of freedom. One
also has:

αIE =
Ḣad

0
N
∑

i=1
p2

i /m
=

Σ
Nd f

, (A5)

where, close to equilibrium, Σ is the entropy production rate. Finally, the dissipation
function, Ω, defined by Equation (8), is equal to −Λ if the initial distribution, f0, is uniform
in the phase space, as it should be in order to represent the equilibrium distribution. Indeed,
no shear yields αIE = 0, and the uniform distribution is preserved by the equilibrium
Hamiltonian dynamics.

Appendix B. Time-Reversal Invariance

Time-independent Hamiltonian enjoys a symmetry that make the associated equations
of motion time-reversal invariance. By this, one commonly means that the transformation
of coordinates q = (x, y, z) and momenta p = (px, py, pz)

q → q , p → −p (A6)

preserves the Hamiltonian, and the transformation

t → −t , p → −p (A7)

preserves the equations of motion. For instance, consider the classical mechanics case for
N particles:

H =
N

∑
i=1

p2
i

2mi
+

1
2

1,N

∑
i ̸=j

U(|rij|) , with rij = qj − qi, (A8)
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which yields the following equations of motion:

ẋi =
piX

mi

ẏi =
piY
mi

żi =
piZ

mi

ṗiX = FiX

ṗiY = FiY

ṗiZ = FiZ

with i = 1, . . . , N (A9)

where

F ij
iX

= −
∂U(|rij|)

∂xi
=

xi − xj

rij

∂U(rij)

∂rij
, FiX = ∑

j ̸=i
F ij

iX
. (A10)

One immediately realizes that the transformation (q1, . . . qN, p1, . . . , pN, t) 7→ (q1, . . . qN,−p1, . . . ,−pN,−t)

leaves these equations of motion invariant. Then, let us denote by Γ = (q1, . . . qN , p1, . . . , pN) ∈
M the phase space points, by i the mapping that preserves the coordinates and inverts
the momenta:

i(q1, . . . qN , p1, . . . , pN) = (q1, . . . qN ,−p1, . . . ,−pN) (A11)

and by StΓ the solution of the equations of motion at time t, with initial condition Γ.
One realizes that the double application of i is the identity, i2Γ = Γ, and that iStΓ = S−ti Γ
for all times t and all phases Γ. For instance, consider a harmonic oscillator, i.e., one
particle tethered to a very massive wall that does not move. Its equations of motion
are q̇ = p , ṗ = −q, which yields StΓ = St(q, p) = (q cos t + p sin t,−q sin t + p cos t).
Applying the transformation i yields:

iStΓ = (q cos t + p sin t, q sin t − p cos t). (A12)

At the same time, the solution of the equations of motion at time −t, with initial condition
iΓ = (q,−p), is given by:

S−ti Γ = (q cos(−t) + (−p) sin(−t),−q sin(−t)− p cos(−t))

= (q cos t + p sin t, q sin t − p cos t), (A13)

which equals iStΓ. It also follows that S−tΓ = S−ti(iΓ) = iSt(iΓ), which is why i is called the
time reversal operator. Then, one can speak of time-reversal invariance of the dynamics St

whenever there exists one mapping i whose square is the identity, and iStΓ = S−ti Γ holds.

Appendix C. Anosov Systems

Anosov systems constitute a class of highly chaotic dynamics, mathematically defined
in rather abstract terms [46]. Their concrete applicability has to be assessed case by case,
and cannot be proven, in general, for systems of physical interest, such as the oscillator
chains considered in this paper. Nevertheless, assuming that a system is Anosov leads to
predictions, such as the FR, that can be confirmed even in non-Anosov systems [2]. This
situation is similar to that of ergodic systems. In the mathematical literature, ergodicity
corresponds to the dense exploration of phase space performed by a single trajectory,
which can hardly be associated with the validity of the ergodic hypothesis for systems of
many degrees of freedom. Nevertheless, the equality of phase space averages and time
averages for the observables of interest is one cornerstone of statistical physics. Neglecting
the unphysically long times required to explore a high-dimensional space, one finds that
dense exploration of the phase space is sufficient for such equality but not necessary [28,47].
Therefore, the physically relevant ergodicity can be verified in systems that are not strictly
mathematically ergodic. Analogously, neglecting a number of physical issues, the Anosov
condition is sufficient for the validity of the FR, but not necessary. The rather technical
definition of the Anosov condition is beyond the scope of the present paper, and can
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be found, e.g., in Ref. [46], but the main idea, known as uniform hyperbolicity, can be
illustrated through a simple example. Consider the Arnold cat map, expressed by:(

xn+1
yn+1

)
=

(
1 1
1 2

)(
xn
yn

)
mod 1 (A14)

on the phase space M = [0, 1]× [0, 1]. Its main characteristic is that at every x ∈ M there
are stable and unstable directions, along which distances between phase points respectively
decrease or increase exponentially in time, leading to an overall exponential expansion,
hence to positive Lyapunov exponents, i.e., to chaos. The contraction and expansion rates
are given by the eigenvalues of the matrix defining the map, λu,s =

(
3 ±

√
5
)

/2, and the
directions are given by the corresponding eigenvectors:

vu =

(
1

1
2

(
1 +

√
5
) ) =

(
1
ϕ

)
, vs =

(
1

1
2

(
1 −

√
5
) ) =

(
1

−ϕ−1

)
(A15)

where the superscript u stands for “unstable” and the superscript s stands for “stable”.
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