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We consider point particles moving inside spherical urns connected by cylindrical channels whose axes both
lie along the horizontal direction. The microscopic dynamics differ from that of standard 3D billiards because
of a kind of Maxwell’s demon that mimics clogging in one of the two channels, when the number of particles
flowing through it exceeds a fixed threshold. Nonequilibrium phase transitions, measured by an order parameter,
arise. The coexistence of different phases and their stability, as well as the linear relationship between driving
forces and currents, typical of the linear regime of irreversible thermodynamics, are obtained analytically within
the proposed kinetic theory framework, and are confirmed with remarkable accuracy by numerical simulations.
This purely deterministic dynamical system describes a kind of experimentally realizable Maxwell’s demon, that
may unveil strategies to obtain mass separation and stationary currents in a conservative particle model.

DOI: 10.1103/PhysRevResearch.5.043063

I. INTRODUCTION

The study of the microscopic origin of nonequilibrium
phase transitions is part of a prominent research endeavour
[1,2], whose applications embrace various fields including,
for instance, biology, crowd dynamics, and neuronal firing
[3–7]. Given the complexity and variety of possible scenarios,
exactly solvable models as well as experimental and numer-
ical validations play an essential role in identifying general
key ingredients underlying such nonequilibrium phenom-
ena. Moreover, certain long considered gedanken experiments
have recently been concretely realized, thanks to modern
technology. In particular, Maxwell’s demons have been im-
plemented in classical systems using colloidal particles [8],
a single-electron box [9], electrons in small transistors [10],
a photodetector [11], DNA hairpin pulling experiments [12],
cells [13], rotaxane molecules [14] as well as in stochastic
quantum systems [15], superconducting circuit quantum elec-
trodynamical systems [16], and optical lattices with ultracold
atoms [17]. Of course, no violation of the second law of
thermodynamics is implied. The implementation of the de-
mon requires an external machinery that dissipates energy,
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or processes information, in such a way that the entropy of
the universe substantially increases, while useful work is per-
formed, e.g., by living organisms. Our paper links Maxwell’s
demons with the asymmetric diffusion of a single species
of hard particles generated by the shape of the pores of a
membrane separating two halves of a box [18]. The two ends
of the pores have different cross section, and clogging of the
particles entering their large side leads to an inhomogeneous
(quasi)stationary density of matter. We propose a theoretical
model for a variation of this experiment, in which particles can
accumulate in one of the two halves of the container, giving
rise to self sustained stationary currents. Since we consider
point particles that do not interact with each other, we use a
new kind of Maxwell’s demon to implement the clogging phe-
nomenon. We then develop a mathematical treatment based on
a suitable stochastic process and on kinetic theory, accurately
reproducing the results of direct and extensive numerical sim-
ulations. Experimental implications are discussed at the end
of the paper.

II. THE 3D PARTICLE SYSTEM

Our model consists of N point particles moving with fixed
speed v inside a bounded region � ⊂ R3 constituted by two
spherical urns of radius r, named urn 1 and urn 2, respectively
located on the left and on the right of Fig. 1. These are
connected by one central active and two peripheric passive
coaxial cylindrical channels. Periodic boundary conditions are
imposed, creating a closed loop. The widths and lengths of the
channels are denoted, respectively, by wa, �a (active channel)
and by wp, �p (passive channel).
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FIG. 1. A container � made of two 3D spherical urns and two
coaxial cylindrical channels house N noninteracting particles. These
move on straight lines from collision to collision with the walls of �,
where they are elastically reflected. Periodic boundary conditions
are imposed to form a circuit with the passive channel. Inside the
active channel, a Maxwell’s demon pushes particles back, when their
number in a gate exceeds a given threshold.

The active channel is made of two identical gates, each
connected to one urn, in which a mechanism called bounce
back [19–21] operates as follows: Whenever the number of
particles in a gate that are moving from the adjacent urn
towards the more distant urn exceeds a fixed threshold �,
the horizontal component of the velocity of such particles is
inverted. This mechanism represents an externally tuned feed-
back control, introducing a short-range impulsive interaction
among particles, that causes clogging. It amounts to a kind of
Maxwell’s demon operating symmetrically on the gates of the
active channel.

Away from the gates, particles do not interact with one an-
other, and move with fixed velocity v, except at collision with
the boundary ∂� of the container, where they are elastically
reflected; i.e., their velocity changes to v′ = v − 2(v · n)n,
where n denotes the outward normal to ∂� at the collision
point, while their speeds v = |v| = |v′| remain unaltered. Re-
markably, the motion of a particle in one urn lies on a plane
determined by its initial condition, while it draws a helix
within the cylindrical channels, cf. Fig. 2 for a specific tra-
jectory of a particle.

This dynamics is formally time reversible and conserva-
tive, although implementation requires an external energy
consuming device, to count the particles in the active channel,

FIG. 2. Trajectory of a single particle in the absence of the
bounce-back mechanism, for r = v = 1, �a = 1, wa = 0.15, and
wp = 0.

and to activate the bounce back. Nevertheless, the geometry
of � combined with the bounce-back mechanism leads to
a nonequilibrium phase transition in this model, in which
different phases arise and can coexist. For sufficiently large
N , and depending on the other parameters of the model, one
observes: (a) an equilibrium phase, with particles evenly dis-
tributed in the two urns, and no net mass transport; (b) various
stationary phases with inhomogeneous mass distributions, and
a net particle current in the passive channel.

Mathematically, we found that the threshold � and two
dimensionless parameters defined by Eqs. (2) and (3) quan-
titatively describe the corresponding phase diagram. The first
is related to the ratio of the effective widths of the active and
of the passive channels, i.e., of the fraction of the width of
channels that can be crossed by particles coming from the
nearest urn, while the second encodes relevant geometrical as
well as kinetic length and time scales. These effective widths
are determined by properly averaging over all possible lengths
of the segments corresponding to the intersection of a generic
plane of motion of a particle with the circular cross section of
a cylindrical channel. Accounting for effective widths makes
it possible to reduce the 3D billiard dynamics of the particles
in the urns to a 2D problem, in which all particles in the
urns reside on the same plane of motion and have access to
the two channels equipped with the effective widths w̃a and
w̃p. Note that the underlying 3D dynamics of the original
model is instead preserved in the channels, where the helical
trajectory of a particle typically changes the plane of motion
when the particle returns to an urn. This way, one can estimate
the probability pa (pp) that a single particle enters the active
(passive) channel in a fixed time interval δ > 0. Kinetic theory
arguments yield (Fig. 8 below)

pa

δ
= w̃av

π Ãu
, (1)

where Ãu is the near-circular cross-sectional area of a single
urn (radius r) adjacent to channels of effective width w̃p and
w̃a (see Appendix B for details). To first order in the ratio
wa/2r < 1 the latter quantity evaluates to w̃a � πw2

a/4ŵ,
with ŵ = max(wa,wp) � r. Expressions analogous to Eq. (1)
and w̃a hold for pp and w̃p. The first macroscopic parameter
is the ratio of probabilities pp and pa, which, in the limit of
small channel cross sections, equals the square of the ratio of
wp to wa, viz.,

C ≡ pp

pa
= w̃p

w̃a
�

(
wp

wa

)2

. (2)

Profiting, again, from the reduction of the billiard dynamics
in the urns to a 2D problem, it is then straightforward to
calculate the typical time τa a particle takes to cross one gate
of the active channel, which is expressed by τa = �aπ/4v

(Appendix C). Also, letting Ni, with i = 1, 2, denote the
steady-state number of particles in the ith urn, by using Eq. (1)
and the expression of τa the typical number of particles that in
a time τa enter the ith gate is given by λi = �aw̃aNi/4Ãu. The
second macroscopic parameter of our theory is the mean of λ1

and λ2, i.e.,

λ ≡ λ1 + λ2

2
≈ �aw̃a

Ãu

N

8
, (3)
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FIG. 3. Plots of η, Eq. (5), (solid line), and ∂η/∂λ2 (dashed line)
at fixed N = 2000 and for fixed geometrical parameters, as functions
of the normalized variable λ2/λ and for different values of � in [(a)–
(f)], with r = v = 1, �a = 1.5, wa = 0.15, wp = 0.05, hence λ ≈ 14
and C = 1/9. Zeroes of the black curve identify stationary states.
Stable states, in the various panels, are identified by red circles.

the approximation being more accurate if a larger fraction of
particles resides in the urns, i.e., when N1 + N2 is closer to N .

III. STEADY-STATE CURRENTS AND STABILITY
CRITERIA

The stationary current per particle, which flows through
the passive channel, can be estimated by exploiting the 2D
analogy of the particle dynamics in the urns, which is achieved
by replacing wp with w̃p. Applying the approach developed
in [20] yields the expression J p = (w̃pv/π Ãu)(N2 − N1)/N ,
which is positive if particles move, on average, from urn 2 to
urn 1. An expression for the stationary current flowing through
the active channel is inherited from the above expression of
J p by properly accounting for the reflections caused by the
feedback mechanism. Following again the derivation outlined
in Ref. [20], in the limit N � 1 one finds

Ja = w̃av

π Ãu

[
N1�(�,λ1) − N2�(�,λ2)

N �(�, 0)

]
, (4)

where Euler’s upper incomplete gamma function is defined
by �(y, x) = ∫ ∞

x t y−1e−t dt for y > 0 and Ja is positive if
particles move, on average, from urn 1 to urn 2. Note
that J p(N2 − N1) � 0, i.e., particles in the passive channel
move, on average, in the direction opposite to the station-
ary density gradient, as expected. The product Ni�(�,λi )
is instead monotonically decreasing with Ni, which implies
Ja(N2 − N1) � 0. Thus Ja generates a kind of electromotive
force for the current J p, preserving the density gradient. In
a steady state, the currents J p and Ja are equal. Introducing
η ≡ τa(Ja − J p)N , the condition of stationarity translates into
(Fig. 3)

η = λ1

[
�(�,λ1)

�(�, 0)
+ C

]
− λ2

[
�(�,λ2)

�(�, 0)
+ C

]
= 0, (5)

The mass spread χ ≡ |N2 − N1|/N = |λ − λ2|/λ is an or-
der parameter for our system. A linear relation links it to the

0 5 10 15 20 25 30
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0.5

1

1.5

2

FIG. 4. Critical line in the (C, λ) plane, corresponding to the
graph of the function C(λ − 1, λ) (black solid line), along with so-
lutions of the interface equation (7) evaluated for different values of
� (colored solid lines). The bullets correspond to analytical solutions
of the same equation for C = 0.

absolute value of the steady-state current J = Ja = J p,

∣∣J∣∣ = pp

δ
χ = v w̃p

π Ãu
χ, (6)

which resembles the linear laws of irreversible thermodynam-
ics [22], if χ plays the role of a thermodynamic force and the
model parameters are fixed.

Equation (5) shows that the equilibrium state χ = 0, i.e.,
λ2 = λ, is always a solution. Further solutions arise, for
certain values of the parameters, when η changes sign in
intervals not containing λ. This amounts to nonequilibrium
steady states with standing currents, if the passive channel has
a nonvanishing effective width w̃p > 0. In fact, one obtains
χ > 0. In the cases in which η vanishes more than once for
λ2 ∈ [λ, 2λ], one may ask which of the steady states of the
model is stable. Given the smoothness of η, a state is linearly
unstable (stable) if (∂η/∂λ2) is positive (negative). The stable
steady states predicted by the theory are identified by red
circles in Fig. 3. The points at which the derivative vanishes
delimit their domain of stability, analogously to the spinodal
curve of equilibrium statistical mechanics. This interface is
obtained for C = C(�,λ), where

C(�,λ) ≡ λ�e−λ

�(�, 0)
− �(�,λ)

�(�, 0)
. (7)

For fixed �, the graph of C starts at the value −1 for λ = 0,
it increases up to λ = � + 1, and then decreases, asymp-
totically approaching zero. This implies that the interface
equation has a single solution for C = 0, two solutions for
C ∈ (0,C∗), and no solutions for C > C∗, with C∗ denoting a
critical value of the parameter C. Thus, the condition for the
existence of an interface reads C � C(�,� + 1), see Fig. 4.
The “critical curve”, in the parameter space spanned by the
triple (�,λ,C) is identified by the two equations �∗=λ∗−1
and C∗ = C(�∗, λ∗), while its projection on the (C, λ) space
is shown in Fig. 4 along with several solutions of Eq. (7) eval-
uated at different values of �. A further theoretical line, called
coexistence line, marks instead the presence of stationary
nonequilibrium states. Such line, which shares some analogies
with the binodal curves in the equilibrium theory of phase
transitions, corresponds to the locus of points where both η

and (∂η/∂λ2) simultaneously vanish for some λ2 ∈ (λ, 2λ].
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In the (λ,�) space, with C ∈ (0,C∗), our theory thus predicts
a region of coexistence of equilibrium and nonequilibrium
phases, in nice agreement with the results of the numerical
simulations illustrated below.

IV. DYNAMICAL SIMULATIONS AND PHASE DIAGRAMS

Let us now present the results of an extensive set of nu-
merical simulations of the 3D particle dynamics and compare
them with the theoretical predictions.

Before the comparison can be made, one must consider that
our probabilistic treatment of J p and Ja excludes the particles
trapped in one urn or never entering one of the two channels.
As a matter of fact, in one urn, each particle moves in a plane
determined by the initial conditions. If this plane does not
intersect the opening of the wider channel, it does not intersect
the opening of the narrower channel either, and the particle is
trapped within that urn for all time. A particle may also travel
between the two urns through only one of the two channels,
avoiding the other one. Our theory only describes the set of
particles that explore both urns and channels. The remaining
particles, on the other hand, are uninteresting from the point
of view of steady-state currents, and can be neglected.

To simulate only particles that visit all urns and channels,
the initial datum has been carefully selected. To this end
consider the angular velocity L(t ) = r(t ) × v(t ) of a particle
with respect to the center of the urn at which it resides initially,
where r(t ) denotes the relative position vector of the particle
at time t , and v(t ) its velocity. During collisions of this particle
along its trajectory through the whole system, L(t ) tends to
change its length and direction, except during its temporary
residence within its initial urn. The horizontal component
Lx(t ), however, is a conserved quantity, not only trivially in-
side urns, but also within the cylindrical channels. Therefore,
for a particle initially in one urn to visit both channels in the
course of time, the initial position r(0) and velocity v(0) must
fulfill the following two geometrical inequalities at startup
(derivation available in Appendix A):

|Lx(0)| � v

2
min(wa,wp) and

|Lx(0)|
|L(0)| � 1

2r
max(wa,wp).

(8)
In our simulations, the initial configuration of the particle

system was prepared by initially placing (1 − χ (0))N/2 par-
ticles in the urn 2 and the remaining ones in the urn 1. We
assigned an initial position and velocity (with fixed speed v)
to each particle using the following two-step procedure. One
draws, first, the position x and velocity v of a particle from
the uniform distributions in the physical and velocity space,
respectively. Next, the random selection is accepted only if
both inequalities in Eq. (8) hold; if not, the random drawing is
reiterated until fulfillment of the two inequalities in Eq. (8).

Figure 5 shows the density plots in the two urns and both
channels for different values of the parameter �, while the
other parameters of the model are kept fixed. We recall that
each particle moves on a fixed plane of motion in an urn;
moreover the plane on which the particle resides generally
changes anytime the particles access the same urn from one of
the channels. Thus, for the sake of visualization, the various
planes of motion related to the particle dynamics inside a
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FIG. 5. Steady-state density profiles in the x-radial plane, using
the parameters explored in Fig. 3, with �p = 0.1, for (a) � = 4,
(b) � = 6, (c) � = 14, and (d) � = 20.

given urn, have been all conveniently merged into a single
plane orthogonal to the x axis. We observe that the various
panels in Fig. 5 nicely match with the theoretical predictions
illustrated in Fig. 3: homogeneous and inhomogeneous states
are detected by the numerical simulations by varying the pa-
rameter �. Figure 5 also shows that the assumption regarding
the uniformity of the single-particle density is only partially
justified. At the center of each 2D circular urn, in Fig. 5,
lies in fact a lighter gray-shaded concentric circle, whose size
depends on the initial datum, which is traditionally called
caustic in billiard dynamics. Indeed, single particles have
dense trajectories in the circular urns, save for a concentric
circle whose radius equals the sine of the angle formed by
the velocity of the particle with the normal to the circle at the
collision point on the boundary.

The behavior of single realizations of the dynamics is il-
lustrated in Fig. 6, which highlights the role of the parameter
� in inducing the phase transition, at a fixed N . Specifically,
Fig. 6(a) shows that both the theoretically predicted homo-
geneous and inhomogeneous steady states of Fig. 3 can be
attained by tuning the threshold �, while leaving the number
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FIG. 6. (a) Dynamical behavior of χ (t ) as a function of time for
various � at N = 2000 and same geometry as in Fig. 3, supple-
mented by �a = 1.5, �p = 0.1 and χ (0) = 1. (b) N = 2000, � = 6,
same geometry as in Fig. 3. The dashed black horizontal line marks
the theoretical value.

of particles N and the other geometrical and kinetic param-
eters of the model (codified by the parameters λ and C)
unchanged. Figure 6(b) shows various realizations of the dy-
namics starting from different values of χ (0), in a region of
the parameter space where a unique (inhomogeneous) steady
state is predicted by the theory. Our simulations hence provide
numerical evidence that, away from the coexistence region,
the same stationary state is reached regardless of the initial
datum.

The phase diagrams resulting from our numerical simula-
tions with N particles are portrayed in Fig. 7, which shows
the phase diagram of the model and also evidences the excel-
lent agreement between theoretical predictions and numerical
results. Firstly, the simulations confirm the presence of two
different branches of the interface, corresponding to solu-
tions of Eq. (7), represented by the black-white long dashed
lines. They identify the locus of points where the stability
of the equilibrium states is broken. The existence of the two
branches is in accord with the theory leading to Eq. (7)
with C ∈ (0,C∗). The white dotted lines, in Figs. 7(b) and
7(c), denote the coexistence line corresponding to the points
where nonequilibrium states appear. Remarkably, our theory
confirms the coexistence of equilibrium and nonequilibrium
states, within the region delimited by the dotted and the
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FIG. 7. Phase portrait of the 3D urn system in the (�, λ) plane,
where � is integer valued. (a) Stationary values of the mass spread χ

for a system with a single channel (C = 0); (b) χ for a system with
two channels, and (c) the net current per particle J as functions of
the parameters λ and � for N = 2000 and C = 1/9 in (b) and (c).
The initial condition corresponds to χ (0) = 1. The long dashed
black-white line is the solution of the interface equation (7) (as-
suming continuous �), while the dotted line marks the onset of
nonequilibrium states. The dotted line and the dashed line meeting
on the left delimit the coexistence region. Panel (d) shows χ (χ (0) =
1) − χ (χ (0) = 0).

dashed lines. Inside such coexistence region, the long-time
behavior of the system depends sensibly on the initial config-
uration of the particles. This is highlighted in Fig. 7(d), which
shows the difference χ (χ (0) = 1) − χ (χ (0) = 0) between
the values of the order parameter χ computed from initial
data corresponding to χ (0) = 1 and to χ (0) = 0, respec-
tively. The nonzero values within the coexistence region in
Fig. 7(d) confirms the presence of a metastable region and the
breaking of the ergodic properties of the dynamics. It is also
worth noticing that the direction of stationary currents, which
arise for spontaneous symmetry breakings, cannot be foreseen
a priori, since that direction is selected by fluctuations in the
equilibrium state. The periodic motion of the particles within
the system, which originates from the boundary conditions
imposed at the endpoints of the passive channel, is also rem-
iniscent of classical time crystals, whose existence was first
conceived in [23].

V. CONCLUSIONS

In conclusion, we have proposed a kind of 3D Maxwell’s
demon, that can be experimentally interpreted in various
ways; for instance, in terms of cold atoms, or of ratchet sys-
tems, in which nonequilibrium perturbations produce spatial
asymmetries, despite being unbiased. Also, analogously to our
findings, collective effects may arise as spontaneous symme-
try breaking in symmetric nonequilibrium ratchet systems, cf.
[24]. Our model may be especially intended as a variation of
the experiment of [18], in which a second channel closing the
box in a circuit is introduced, and the demon plays the role

043063-5
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of the membrane geometry. In our case, the moving particles
are points, therefore clogging is obtained via the bounce-back
mechanism, which is per se reversible. Moreover, our particles
do not dissipate energy, exactly like the particles in the sim-
ulations of [18]. In the experiment, the dissipated energy is
restored by vibrating the box. This way, a direct link between
our model and a simple variation of the experiment of [18]
is evidenced. One relevant difference is that the half box in
which particles accumulate is macroscopically predictable in
[18], as it is determined by the shape of the membrane. Our
model is, instead, formally conservative and fully reversible. It
produces nonequilibrium phase transitions, coexistence of dif-
ferent phases, and steady-state currents in a circuit, thanks to
a spontaneous symmetry breaking nucleated by microscopic
fluctuations. Therefore, the urn in which particles accumulate
cannot be predicted on the macroscopic scale. Apart from this,
the existence and stability of the different phases are fully
analytically described by the theory, and illustrated in Figs. 3,
4, and 7.

Experimentally, our predictions may be tested in various
ways. We point out that Fig. 5 reproduces the experimental
set-up shown in Fig. 3 of [18], where no passive channel is
present. In [18] the authors claim that the experimentally ob-
served nonequilibrium states are induced by the interaction of
the particles with each other and the walls of the asymmetric
pores of the membrane. In our model, such short-range in-
teractions are accounted for via the bounce-back mechanism,
whose effects can be tracked analytically. We also remark that
Maxwell’s demon, codified by the bounce-back mechanism,
can be experimentally realized in both classical and quantum
systems, using modern technologies. For instance, in the case
of cold atoms [25,26] particles could be counted by shining a
laser at the gates of the active channel, which would operate
a shutter when their number is above a threshold. Interesting
applications are also provided by mobile robots [27–33], that
could be counted through a photoelectric cell. Applications of
our model to systems like those of [34] are possible as well.

ACKNOWLEDGMENT

This work has been performed under the auspices of Ital-
ian National Group of Mathematical Physics (GNFM) of the
Istituto Nazionale di Alta Matematica (INdAM).

APPENDIX A: DERIVATION OF INEQUALITIES (8),
INITIAL CONDITIONS

We start by proving that the horizontal x component of the
angular velocity vector L(t ) = r(t ) × v(t ) of a particle, whose
position vector with respect to the origin, and velocity vector
are denoted by r(t ) and v(t ), is a conserved quantity. i.e., Lx

does not change in the course of time, it remains unaffected
during collisions with urns and channels, and during free flight
between collisions. As the origin of the coordinate systems
serves the point centered between the two active gates (Fig. 1),
on the centerline of the cylindrical, active channel.

To prove this, it is sufficient to uniquely decompose r(t )
into two parts. One that is parallel to the surface normal of the
system during a collision, and otherwise arbitrary, and another
one that is parallel to the horizontal x axis. Let x̂ denote the

unit vector pointing in positive direction of the x axis. One
possible decomposition is

r(t ) = ζ (t )x̂ + R(t ), (A1)

where ζ (t ) coincides either with the horizontal coordinate of
an urn center if the particle resides in that urn, or with the
horizontal coordinate x(t ) of the particle itself if the latter
resides in a channel. This construction ensures that during a
collision at r(tc), at some collision time tc, the vector R(tc)
is parallel to the surface normal n at the collision point. To
be more specific, R(tc) = rn for a collision with an urn, and
R(tc) = (wc/2)n for a collision with channel c ∈ {a, p}, so
that we can write R(tc) = ξ (tc)n.

During free flight, r(t ) proceeds in direction of v(t ), so
that L(t ) remains unchanged. During an elastic collision,
the particle’s velocity changes instantaneously by an amount
�v = −2v0 · nn, where v0 stands for the velocity prior colli-
sion. The corresponding instantaneous change of the angular
velocity vector is therefore

�L = r(tc) × �v0 = (ζ (tc)x̂ + ξ (tc)n) × (−2v0 · nn)

= −2ζ (tc)(v0 · n)(x̂ × n) (A2)

This completes the proof, as the x component of x̂ × n is zero
for any n. To summarize, Lx(t ) is given by Lx(0) as prepared
at startup t = 0, while the other two components of L(t ) are
not conserved, as described by Eq. (A2).

To make sure that a particle, initially residing at some point
r(0) with velocity v(0) somewhere inside the system, can
reach both channels and urns in the course of time, its current
or future plane of motion inside an urn must intersect at least
with the larger of the two channels, the particle must be able
to enter the channels, and it must have |vx(0)| �= 0, in case it is
initially located in a channel. If these conditions are not met,
the particle will stay in a region (urn or channel) for the rest of
time. These considerations will give rise to the two nontrivial
inequalities (8) as follows.

(i) The largest possible |Lx(t )| that can be achieved inside a
channel c ∈ {a, p} is, e.g., realized when vz(t ) = v and y(t ) =
wc/2. This means that a particle can possibly be located at
time t in channel c only if |Lx(t )| � wcv/2. Because Lx is
a conserved quantity, and because we require the particle be
able to be located in both channels in the course of time, the
inequality reads

|Lx(0)| � v

2
min(wa,wp). (A3)

For the ease of presentation, within the main text we con-
sidered particles to be originally located in urns only, and
redefined L(t ) = R(t ) × v(t ), which does not affect the value
of Lx. This completes the proof of the first inequality (8).

(ii) The second inequality (8) is automatically fulfilled if a
particle is initially located in a channel, so that we are left to
prove it for the case of a particle that is initially located in an
urn. A particle leaves an urn in the course of time, with a few
exception of measure zero, if its plane of motion intersects
with the smaller of the two channels. Inside an urn, a particle
moves within a plane with constant normal vector � that is
perpendicular to both R(t ) = r(t ) − ζ (t )x̂ and v(t ), i.e., it
is given by �(t ) = (R(t ) × v(t ))/|R(t ) × v(t )|. During free
flight, and during a collision with the urn, �� = 0, because
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FIG. 8. Exact numerical results (symbols) in the absence of the bounce-back mechanism for r = v = 1, �a = 1, �p = 0.1, various wa and
wp. Symbols with identical color have identical wp, but different wa. (a) pa/vδ vs Ca/4Vu shows that (B2) does not hold. (b) pa/vδ vs w̃/π Ãu

confirms the coefficient κ = 1/π , as well as the expressions for w̃c and pa/vδ, (B13), (B14), and (B15). (c) C = pp/pa vs wp/wa is seen to be
in agreement with C = Cp/Ca = (wp/wa )2, (B16), and thus also in agreement with C = w̃p/w̃a.

R(tc) × n = 0. Moreover, this plane of motion contains the
center of the urn, for which R = 0. This implies that the plane
of motion intersects channel c, if the plane normal encloses
an angle with the x axis that exceeds a certain threshold, more
precisely, if |�(0) · x̂| = |�x| � wc/2xc. Because we need to
only make sure that a particle does not stay in its initial urn
forever, we end up with

|�x(0)| � max(wa,wp)

2r
. (A4)

Within the main text, for the ease of presentation, we assumed
that particles are initially in urns, and defined L to be given by
L(t ) = R(t ) × v(t ) so that L(t ) = L(t )�(t ). This completes
the proof of the second inequality (8).

Note that �x as opposed to Lx is not a conserved quan-
tity but fortunately, inequality (A4) remains valid if �x(0)
is replaced by �x(t ), and if it was valid at startup, because
particles entering an urn from channel c automatically fulfill
|�x| � wc/2xc. To summarize, the two inequalities ensure that
a particle can reach both channels and urns in the course
of time, and is not trapped in any of the urns. Even if a
particle cannot leave its initial urn through the larger of the
two channels, the larger channel can be reached after traveling
through the other urn, and the inequality does not prevent this
particle to reach any radial position at the channel entry of the
smaller and larger channels. The more restrictive condition
|�x(0)| � min(wa,wp)/2r would ensure that a particle can
leave its original urn through the smaller channel, but there is
no need for such a more restrictive, and unnecessarily biasing,
inequality.

APPENDIX B: DERIVATION OF EQS. (1) AND (2),
PROBABILITIES pa, pp, AND EFFECTIVE CHANNEL

DIAMETERS w̃a, w̃p

Here we compute pa, namely the probability that a particle
in an urn enters the adjacent gate of the active channel in a
fixed time interval δ > 0. This quantity is essential to predict
the current J from the order parameter χ . The ratio C = pp/pa

of such probabilities for passive and active channels is fur-
thermore relevant as it captures the qualitative behavior of the
order parameter in the �–λ space. Two different routes are
illustrated in the remainder of this Appendix. The first one
(A) is based on naive standard kinetic theory arguments, but
misses some of the peculiar geometric aspects of the consid-
ered 3D model. These are instead captured in the corrected
derivation (B), which exploits effective cross sections and
volumes. The failure of the classical approach and suitability
of the refined approach is confirmed numerically by Fig. 8.

(A) Within the classical approach, we consider the case
of a particle entering the left gate from the adjacent urn 1
(main text Fig. 1). Note that for symmetry reasons (the
two urns are identical to one another, and so are the two
gates), an identical expression for pa is also obtained for
particles in the urn 2 entering the right gate. We denote
by U ⊂ � the region of the system corresponding to the
urn 1 and we introduce the set G = {x ∈ U | x ∈ [−�a/2 −
vxδ,−�a/2]}. Furthermore, we call S2 = {v ∈ R3| |v| = v}
the sphere of radius v, and denote by S2

+ the hemisphere
corresponding to velocity directions vx � 0. The probability
pa thus reads

pa =
∫

S2+
dv

∫
G

dx ρ(x, v), (B1)

where ρ(x, v) is the one-particle stationary probability
density. Equation (B1) expresses the fact that only the
particles residing in the interval [−�a/2 − vxδ,−�a/2]
inside the urn 1 and equipped with a horizontal component
of the velocity vx � 0 succeed to enter the adjacent gate
within a fixed time interval δ. Still within the classical
approach, we assume that the density ρ(x, v), with x ∈ U
and v ∈ S2, is uniform over the entire phase space,
namely we write ρ(x, v) = (4πv2Vu)−1, with Vu = ∫

U dx
being the volume of one urn. To evaluate (B1), it then
proves useful to turn into spherical coordinates, and
rewrite the velocity as v = exvξ + eyv

√
1 − ξ 2 cos φ +

ezv
√

1 − ξ 2 sin φ with ξ ∈ [−1, 1] and φ ∈ [0, 2π ].
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Therefore (B1) evaluates to

pa = Ca
∫ 1

0 dξ
∫ vξδ

0 dx
∫ 2π

0 dφ

Vu
∫ 1
−1 dξ

∫ 2π

0 dφ
= Cavδ

∫ 1
0 ξdξ

Vu
∫ 1
−1 dξ

= Cav

4Vu
δ = πw2

av

16Vu
δ, (B2)

where Ca = πw2
a/4 is the geometric cross-section of the ac-

tive channel, and

Vu = 4πr3

3
− π

3

∑
c ∈{a,p}

(2r + xc)(r − xc)2, (B3)

the volume of a near-spherical urn, where x2
a = r2 − w2

a/4 and
x2

p = r2 − w2
p/4 denote the squares of the distances between

the center of an urn and the entrances of the active and the
passive channels, respectively. An expression identical to (B2)
can analogously be derived for pp, upon replacing Ca with Cp.
Hence, one finds

pp

pa
= Cp

Ca
�

(
wp

wa

)2

. (B4)

Despite (B2) misses some relevant geometrical aspects of the
3D dynamics of the model, which makes the above expression
for pa inapplicable to capture the behavior of the current J
even qualitatively, the final expression (B4) for the ratio turns
out being correct, as the following refined calculation shows.

(B) The refined approach is necessary, because particles in-
side urns travel on fixed planes, whose orientation is generally
determined by the angular momentum after the last collision
with a channel wall, or the its position and velocity at startup
t = 0, before having entered any channel. The above assump-
tion of a uniform ρ(x, v) is therefore completely inappropriate
to calculate pa and pp. Instead, the probability to enter a
channel is determined by the width of the channel as seen
within the cross section of the urn that carries the particle’s tra-
jectory. Because this width depends on the orientation of the
angular velocities within bounds to be discussed later below,
the channels will be characterized by their mean, effective
widths w̃a and w̃p. The urn’s quasicircular cross section in
a plane that contains the horizontal x axis equals the area of a
2D quasicircular urn and is given by

Au(r,wa,wp) = πr2 +
∑

c ∈{a,p}

wcxc

2
− r2 sin−1

(wc

2r

)
. (B5)

We wrote the structure of Au explicitly, because we will reuse
later the same expression to define an effective cross section

Ãu = Au(r, w̃a, w̃p), (B6)

which is expressed in terms of the effective channel diameters
w̃a and w̃p, defined below. Since particles are noninteracting
in the urns, and move along fixed planes of motion, the sought
expression of pa reduces to the expression obtained for a
2D system, provided effective channel diameters w̃a and w̃p

are used in place of their geometric counterparts. We point
out, in fact, that only those particles whose normal to the
plane of motion is perpendicular to the x axis have access
to the full channel diameters wa and wp to escape the urn.
On the contrary, particles whose plane of motion intersects

both channel entrances, typically exploit only a fraction of
the channel diameters. Then, let, as in the preceding section,
� = �xex + �yey + �zez denote the normalized vector normal
to the plane of motion of a particle inside an urn. To derive the
effective channel diameters we fix the initial conditions of the
particle velocities such that the support of the �x component
coincides with the interval |�x| � ŵ/2r [recall that we de-
fined ŵ = max(wa,wp)]. Furthermore, we here assume that,
in the steady state, �x = sin α is uniformly distributed over its
support.

Recalling that x2
c = r2 − w2

c/4, we have that 0 �
min(xa, xp) tan α � ŵ/2r, and hence

0 � tan2(α) = �2
x

1 − �2
x

� ŵ2

4r2 − ŵ2
. (B7)

We then denote by sc the lengths of the secants of the plane of
motion corresponding to α in the passive and in the active
channels, respectively. By purely geometric considerations
one finds

sc =
√

max
(
0,w2

c − 4r2�2
x

)
1 − �2

x

, (B8)

for |�x| ∈ [0, ŵ/2r] corresponding to sc ∈ [0,wc]. Note that
sc is an even function of �x, and is monotonically decreasing
in [0, ŵ/2r]. Equation (B8) confirms that sc equals zero on
the interval [wc/2r, ŵ/2r] for the thinner of the two channels.
We then denote by ψa(sa) and ψp(sp) the probability densities
of the lengths sa and sp on the cross-sections of the active and
passive channels, respectively. Exploiting the uniformity of �x

over its support, we write

1 = 2r

ŵ

∫ ŵ/2r

0
d�x = 2r

ŵ

∫ wc/2r

0
d�x + 2r

ŵ

∫ ŵ/2r

wc/2r
d�x

= ŵ − wc

ŵ
+ 2r

ŵ

∫ wc/2r

0
d�x, (B9)

and therefore find for the probability densities

1 =
∫ wc

0
ψc(sc) dsc = −2r

ŵ

∫ wc

0

(
d�x

dsc

)
dsc

+
∫ wc

0

ŵ − wc

ŵ
δ(sc) dsc, (B10)

where the required �x as function of sc is provided by Eq. (B8).
The Dirac δ distribution reflects the contribution to ψc(0) for
the smaller of the two channels. Comparing the integrands in
Eq. (B10) leads to

ψc(sc) = 2r

ŵ

(
4r2 − w2

c

)
sc(

4r2 − s2
c

)3/2√
w2

c − s2
c

+ ŵ − wc

ŵ
δ(sc). (B11)

With ψc at hand we can define and calculate the effective cross
sections

w̃c =
∫ wc

0
scψc(sc) dsc

= 4r2

ŵ
E

[(wc

2r

)2
]
−

(
4r2 − w2

c

)
wc

K

[(wc

2r

)2
]
,

=2r

{
2r

ŵ
E

[(wc

2r

)2
]
− 1 − (wc/2r)2

wc/2r
K

[(wc

2r

)2
]}

,

(B12)
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for c ∈ {a, p}, where E (m) is the complete elliptic integral,
and K (m) the complete elliptic integral of the first kind. Since
y ≡ wc/2r < 1, this exact result (B12) can be further evalu-
ated by Taylor expansion to yield

w̃c = wc

ŵ

[
2r

y
{E (y2) − (1 − y2)K (y2)}

]

= wc

ŵ

[π

2
ry + π

16
ry3 + O(y5)

]
= π

4

w2
c

ŵ
[1 + O(y2)]

(B13)

for c ∈ {a, p}. The leading term is capturing the exact result
up to high precision up to y ≈ 0.6; for larger wc > r, the exact
Eq. (B12) can be used. We thus end up, upon writing down the
result for both w̃a and w̃p separately, with

w̃a � π

4

w2
a

ŵ
, w̃p � π

4

w2
p

ŵ
, ŵ ≡ max(wa,wp) (B14)

for ŵ � r. The effective channel diameters are thus both
smaller than the geometrical diameters and the effective di-
ameter of the larger channel depends on the diameter of the
smaller one.

The next step requires to adapt (B1) to a 2D urn system
equipped with effective diameters w̃a and w̃p. It is thus enough
to replace the volume Vu by the area Ãu = Au(r, w̃a, w̃p), the
latter explicitly defined in (B5). With these replacements, (B1)
can now be used to calculate the correct expressions of pa and
pp for the 3D model. Since particles are independent in the
urns and each one moves on a specific plane of motion, the
evaluation of pa can be carried out by adopting the 2D set-up
considered in Refs. [19,20], by now using Ãu as the area of
the urn and w̃a as the effective width of the active channel.
We thus arrive at

pa =
w̃a

∫ π/2
−π/2

∫ vδ cos φ

0 dxdφ

Ãu
∫ π

−π
dφ

=
w̃avδ

∫ π/2
−π/2 cos(φ)dφ

Ãu
∫ π

−π
dφ

= w̃av

π Ãu
δ, (B15)

where φ denotes the angle enclosed by the velocity vector
with the unit vector pointing along the positive direction of the
(horizontal) x axis. This completes the derivation of Eq. (1) in
the main text. Note the qualitative difference between (B2)
and (B15). It is important to stress that both the channel

cross-section and the urn volume in (B15) have to be evaluated
using w̃a and w̃p given by (B14). Finally, the probability pp

referring to the passive channel can then be obtained from
(B15) upon replacing w̃a with w̃p. Remarkably, using (B14)
and (B15) we recover the earlier (B4), viz.,

C ≡ pp

pa
= w̃p

w̃a
�

(
wp

wa

)2

. (B16)

The latter result highlights that the ratio of effective and geo-
metric channel cross sections is basically identical for ŵ/r <

0.6. For larger channel diameters, the exact expressions for
w̃a and w̃p given by (B13) can be used. This completes the
derivation of Eq. (2) in the main text.

Figure 8(c) shows the excellent agreement between the
analytical expression of C given in (B16) with the numerical
evaluation of the same quantity through numerical simulations
of the particle dynamics. Figures 8(a) and 8(b) confirm that the
refined methodology (B) applies, while (A) fails.

APPENDIX C: DERIVATION OF τa

Another relevant ingredient of the theory is the typical time
spent by a particle to cross one gate, denoted by τa. Estimating
this quantity allows one to quantify the frequency of activation
of the bounce-back mechanism in each gate of the active
channel. To evaluate τa, we proceed by directly computing
the average time spent by a particle coming from an urn in
traversing one gate, until it reaches the center of the active
channel. One thus finds

τa = μ
�a

2v
, with μ ≡ v

∣∣〈v−1
x

〉
e

∣∣, (C1)

where 〈·〉e denotes a stationary average restricted to those
particles equipped with horizontal component of the veloc-
ity vx > 0 entering the left gate (x � 0) and vx < 0 entering
the right gate (x > 0). Namely, the average 〈·〉e is taken, in
each gate, over those particles, which entered a gate from
the nearest urn and are thus moving toward the other gate.
Then, relying again on the effective 2D nature of the particle
dynamics in the urns that can be characterized via the effective
channels widths w̃a and w̃p, one readily finds μ = π/2, i.e.,

τa = �aπ

4v
. (C2)
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