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ABSTRACT: Background: Real-world monitoring
using wearable sensors has enormous potential for
assessing disease severity and symptoms among per-
sons with Parkinson’s disease (PD). Many distinct fea-
tures can be extracted, reflecting multiple mobility
domains. However, it is unclear which digital measures
are related to PD severity and are sensitive to disease
progression.
Objectives: The aim was to identify real-world mobility
measures that reflect PD severity and show discriminant
ability and sensitivity to disease progression, compared
to the Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) scale.
Methods: Multicenter real-world continuous (24/7) digital
mobility data from 587 persons with PD and 68 matched
healthy controls were collected using an accelerometer
adhered to the lower back. Machine learning feature
selection and regression algorithms evaluated associations
of the digital measures using the MDS-UPDRS (I–III). Binary
logistic regression assessed discriminatory value using
controls, and longitudinal observational data from a sub-
group (n = 33) evaluated sensitivity to change over time.
Results: Digital measures were only moderately corre-
lated with the MDS-UPDRS (part II-r = 0.60 and parts I

and III-r = 0.50). Most associated measures reflected
activity quantity and distribution patterns. A model with
14 digital measures accurately distinguished recently
diagnosed persons with PD from healthy controls
(81.1%, area under the curve: 0.87); digital measures
showed larger effect sizes (Cohen’s d: [0.19–0.66]), for
change over time than any of the MDS-UPDRS parts
(Cohen’s d: [0.04–0.12]).
Conclusions: Real-world mobility measures are moder-
ately associated with clinical assessments, suggesting
that they capture different aspects of motor capacity and
function. Digital mobility measures are sensitive to early-
stage disease and to disease progression, to a larger
degree than conventional clinical assessments, demon-
strating their utility, primarily for clinical trials but ulti-
mately also for clinical care. © 2023 The Authors.
Movement Disorders published by Wiley Periodicals LLC
on behalf of International Parkinson and Movement Dis-
order Society.

Key Words: digital mobility measures; Parkinson’s dis-
ease; wearable sensors; disease progression

Recent years have seen an increase in the use of digi-
tal technology in the health arena. Dedicated wearable
devices and more ubiquitous smartwatches and
smartphones can generate objective, ecologically rele-
vant, information-rich continuous data streams that
can provide insights into patient-relevant disease symp-
toms, unencumbered by recall bias.1 In addition, digital
measures can assess real-world behavior and provide
means to detect intermittent, episodic events and
disease-related signs that cannot otherwise be objec-
tively assessed in a clinic visit (eg, sleep efficiency),2,3

reflecting tremendous potential.
The most widely deployed use of digital technologies

is in Parkinson’s disease (PD).4 This is perhaps not sur-
prising, as most digital technologies include accelerome-
ters and gyroscopes, enabling the direct assessment of
movement and motor function, which are prominent
disease signs in PD. However, the early adoption of
technology in the field of PD also relates to the
limitations of the current clinical assessment.5 The
traditional clinical endpoint of the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS)6,7 is widely used and has reliable
clinometric characteristics,8 but its utility is limited by
the need for specific training and expertise, infrequent
assessments conducted in the clinic, within-rater and
across-center variability,2,9 and intra- and inter-day
symptom fluctuations.10 Moreover, the MDS-UPDRS

has low sensitivity to change over time, especially in
early PD.11

Digital technologies were initially applied to mimic
conventional PD assessments, like the MDS-UPDRS,
Part III.12,13 However, recently, regulatory bodies indi-
cated that this approach is not satisfactory, as only digi-
tizing an existing clinical assessment will not add to the
understanding of meaningful aspects relevant to
patients’ ability to function in daily life.9 Moreover,
such an approach overlooks the opportunity presented
by digital technology to capture patient-relevant symp-
toms and behaviors that are not necessarily a mirror
image of the MDS-UPDRS. For example, everyday
mobility or movement during sleep can be captured in
a continuous and passive manner, without the engage-
ment of the patient, potentially reflecting a more holis-
tic assessment.14 However, despite emerging interest,
these technologies have yet to be transitioned from
exploratory outcomes to well-accepted, widely used
measures for clinical practice and clinical trials.15,16

Perhaps the most significant challenge relates to the
need to establish validity compared to a “gold stan-
dard.” Comparison to established performance metrics
becomes extremely challenging when using novel digital
mobility measures, where gold standards do not exist
yet.1 The International Classification of Functioning
Disability and Health model suggests that assessments
performed in the clinic, which reflect functional
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capacity, and assessments performed during daily activ-
ities, which are more indicative of the performance of
the individual, differ.17,18 In this regard, the relation-
ship between the traditional assessment of PD symp-
toms with the MDS-UPDRS and measures obtained
using digital technology during habitual daily living
should not be expected to be strong. To date, there is
limited evidence on these relationships from real-world
studies.19,20 Importantly, the association between digi-
tal measures and patient-related outcomes (eg, parts I
and II of the MDS-UPDRS) is unclear. Finally, many
distinct measures can be extracted from mobility sen-
sors that reflect multiple mobility domains (eg, physical
activity, gait, and nocturnal movement).2,21,22 How-
ever, it is not yet established which features are most
related to PD severity, which are sensitive to the pres-
ence of the earliest phases of the disease, and how they
change over time. Such information is essential to move
the field forward toward clinical and regulatory
acceptance of digital measures, their implementation as
endpoints in clinical trials, and incorporation into day-
to-day clinical practice.
In the current work, we addressed these gaps by

(1) identifying real-world, digital mobility measures
that are most reflective of PD severity as measured
using the MDS-UPDRS; (2) evaluating the association
between digital mobility measures and the three compo-
nents of the MDS-UPDRS clinical rating scale;
(3) assessing the sensitivity of the digital mobility mea-
sures to the presence of early disease, as compared to
healthy controls (HC); and (4) evaluating whether digi-
tal measures can capture disease progression.

Patients and Methods
Participants

We leveraged data collected using wearable sensors
from 587 PD patients and 68 HCs. The data were
obtained from six studies at four different clinical sites:
V-TIME23 (n = 132), Beat-PD2 (n = 213 PD patients
and 68 HCs), ONPar (n = 72),20 tDCS24 (N = 58),
DOD (N = 56),25 and DeFOG (N = 56).26 Participants
were included if they were diagnosed with PD by a
movement disorders specialist, using the MDS clinical
diagnostic criteria for PD27; were mobile without physi-
cal assistance from another person; and were willing to
wear a small light-weight device for 1 week. Partici-
pants were excluded if they had other neurological,
orthopedic, or psychiatric disorders. Data from HCs
were included based on age and gender matched to the
early PD subgroup (disease duration <2 years) with
similar exclusion criteria. All studies were approved by
local ethics committees, and participants provided
informed written consent before participation.

Study Procedures
Participants underwent a neurological evaluation

using the MDS-UPDRS8 during an in-clinic morning
visit. Patients using levodopa (L-dopa) were assessed in
the on medication state, �1 hour after medication. Par-
ticipants were fitted with a small body-fixed, water-
proof device (Axivity Ltd., York, UK; either AX3 or
AX6 models, size: �23.0 � 32.5 � 7.6 mm; weight:
�11 g; sampling rate: 100 Hz) secured to their lower
back (lumbar vertebrae 4–5) with medical-grade tape
for 7 days.28 Accelerometer data were passively col-
lected continuously (24/7) and saved on the device.
Then, the participants returned the device to the clinical
site via courier or self-addressed envelopes.

Daily-Living Feature Extraction
Daily-living measures were classified into three

domains: nocturnal behavior (NB, n = 24 features), activ-
ity quantity and distribution patterns (AQDP, n = 106
features), and gait quality (GQ, n = 301). For NB, the
night period was segmented based on lumbar angle esti-
mation.2 This enabled the calculation of features describ-
ing sleep quality, quantity, and movement patterns such
as the number of trunk rotations per night, trunk rotation
smoothness in different axes, and SleepEfficiency.2

Physical AQDPs were quantified based on the signal
vector magnitude20; a general measure of overall physi-
cal activity and intensity, defined as moderate-to-vigor-
ous physical activity and low-intensity physical
activity29; and daily amount of activity. Mobility was
further segmented into types of activities (ie, walking
and lying30) and their distributions throughout and
across the day.22,29

GQ measures were extracted from continuous seg-
mented walking periods of ≥30 seconds. Spectral analy-
sis of these bouts produced frequency domain
measures, for example, amplitude, dispersion, and
smoothness.31,32 Step velocity; length and duration;
and their variance, regularity, and symmetry were
extracted.28,32 Mean, standard deviation (SD), 10th (ie,
typically the “worst” value) and 90th (ie, typically the
“best” value) percentiles, skewness, and kurtosis were
also included. Altogether, 431 measures collected pas-
sively in the real world were included in the analysis
(Supplementary Material S1).

Preprocessing, Categorization, and
Feature Selection

Values were z scored, and missing values were
imputed using the K-nearest neighbor method. Outliers
were considered according to Tukey’s rule. Samples
were removed if over 15% of their measures were out-
liers (Supplementary Material section 1).
To identify which real-world mobility measures are

most reflective of PD severity as assessed using the MDS-
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UPDRS, we used mutual information,33 a nonparametric
supervised estimation of the relation between the labels
(MDS-UPDRS parts) and digital mobility measures. To
minimize random effects, this process was repeated in a
K = 100-fold validation with a random partition seed
for each MDS-UPDRS part resulting in a cumulative
score. See also Supplementary Material.

Regression Model Training and Selection
Several machine learning models evaluated the associ-

ation between digital mobility measures and the MDS-
UPDRS. Data were split into a training set (80%) and a
test set (20%). Model selection and training were per-
formed using a fivefold cross-validation process with
Pearson’s R2 as the performance metric. Hyper-
parameter tuning was done using Grid Search
(Supplementary Material Table S2a). The process of
model selection was repeated again using five-fold
nested cross-validation to evaluate selection stability
and uncertainty. Mean absolute error and Pearson’s R2

assessed correlations between the metrics and MDS-
UPDRS parts. The model was blind to the test set dur-
ing model evaluation and training. Model intrinsic fea-
ture importance attributes were also explored
(Supplementary Material Table S2c).

Sensitivity to Disease and Disease Progression
Forward selection binary logistic regression models

explored accuracy in discriminating between recently
diagnosed patients with PD (disease duration ≤2 years
and Hoehn & Yahr stage ≤2) and age- and sex-
matched controls. Receiver operating characteristic cur-
ves were created for each model.
Sensitivity to change over time was evaluated using

data from a subgroup of participants (BeaT-PD,
n = 33) who were assessed �12 months apart, over
4 years. For this analysis, we used data collected at
baseline versus year 1 (visit 1) and also compared visit
3 (month �36) and visit 4 (month �48) to show
change within 1 year as the disease advances and not
progression over time in this small sample. Differences
between time points were assessed for the 40 most
salient features, as identified earlier. Effect sizes
(Cohen’s d) were calculated for measures showing sig-
nificant change over time.
We further explored the effect sizes of features that

were not correlated with the MDS-UPDRS but showed
significant change over time. This analysis investigated
whether digital measures could be uniquely sensitive to
progression, reflecting a different construct than the clini-
cal assessment. Their inclusion was also explored in the
models comparing recently diagnosed patients with con-
trols. In exploratory analysis, we estimated the sample
size needed for clinical trials from the mean � SD of the
measure with the highest effect size.

Results

The PD cohort included a diverse representative
patient population; mostly men (60.6%) between 36 and
86 years, with disease duration between 0.5 and
37 years since diagnosis (Table 1). Most patients had
mild to moderate disease severity (�73% Hoehn &
Yahr stages I and II); 85.3% were on antiparkinsonian
medications, and 28.1% showed cognitive impairments
(Montreal Cognitive Assessment <24). Patient character-
istics were similar between sites for each corresponding
study (P > 0.132) (Supplementary Material Table S1D).
A total of 614 of 655 (94%) of the study participants

completed 7 days of collection, and 98% completed
≥3 days. Mean gait speed of the PD cohort, as mea-
sured in the clinic, was 1.06 � 0.60 m/s. The typical
(median across all bouts) gait speed as measured in the
real world was 0.99 � 0.16 m/s; real-world best (90th)
and worst (10th) percentiles were 1.18 � 0.25 and
0.82 � 16 m/s, respectively.

Features Associated with the
MDS-UPDRS Scores

Because saturation in scoring was observed, 40 fea-
tures were used. Figure 1 summarizes the 15 (from 40)
measures that were most strongly associated with
MDS-UPDRS, parts I, II, and III (for a full list, see Sup-
plementary Material S2–S4). The dominant categories
in the top 15 features for MDS-UPDRS-I were NB and
GQ. For MDS-UPDRS-II, it was GQ, and for MDS-
UPDRS-III, AQDP was the most prominent domain.

Machine Learning Regression Models for
Estimating Disease Symptoms

The most frequently chosen and accurate models using
cross-validation for MDS-UPDRS I and II were Random
Forest with an average Pearson’s correlation coefficient
of r = 0.50 for part I and r = 0.60 for part II. Bayesian
Ridge was the most accurate model for MDS-UPDRS-III
(r = 0.50). The mean absolute error ranged between
4 and 5 points for MDS-UPDRS, parts I and II, and �8
points for MDS-UPDRS, part III (Table 2; Supplementary
Material Table S2.d). Models using only age and gender
revealed much lower scores (Supplementary Material
Table S2b). Nested cross-validation analysis yielded simi-
lar results (Supplementary Material Table S2e).

Sensitivity to Disease and Disease Progression
Characteristics of 64 recently diagnosed persons with

PD and 68 HCs included in this analysis are presented
in Table 1. A simple model containing age and sex dif-
ferentiated between HCs and PD patients with an accu-
racy of 58.6%, an area under the curve (AUC) of 0.56,
and Nagelkerke R2 of 0.03 (Fig. 2, model 1). Seven of
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the 40 MDS-UPDRS-III-associated measures were suffi-
cient to successfully differentiate between the groups
with an accuracy of 71.2%, an AUC of 0.79, and
Nagelkerke R2 of 0.34 (Fig. 2, model 2). Model
3 includes seven measures from our exploratory analy-
sis (see later and Supplementary Material S7) showing
an accuracy of 65.90%, an AUC of 0.70, and
Nagelkerke R2 of 0.12. Combining measures from

models 2 and 3 (14 features) improved the accuracy to
81.10%, the AUC to 0.87, and Nagelkerke R2 to 0.51
(model 4). Using only the four highest-contributing
measures in this model (see Supplementary Material 7)
resulted in an accuracy of 77.30%, an AUC of 0.83,
and Nagelkerke R2 of 0.42 (model 5).
Longitudinal data from 33 patients with PD (see

Table 1) were used to assess sensitivity to progression

FIG. 1. Selected features and category domains. Bubbles represent the features grouped by domain for each of the first three parts of the MDS-UPDRS
(Movement Disorder Society-Unified Parkinson’s Disease Rating Scale). The size of the bubble represents the number of features. AP, anteroposterior
axis; AQDP, activity quantity and distribution patterns; CV, coefficient of variance; Freq, frequency; GQ, gait quality; ML, mediolateral axis; NB, noctur-
nal behavior; Prc, percentile; SVM, signal vector magnitude; TLA, total log activity; V, vertical axis. Explanations and details on each of the features are
presented in the Supplementary Material.

TABLE 2 ML regression model selected in the majority of repetitions

MDS-UPDRS part Chosen model R P-value Mean absolute error

MDS-UPDRS-I Random Forest 0.50 � 0.020 <0.001 4.09 � 0.02

MDS-UPDRS-II Random Forest 0.60 � 0.005 <0.001 4.92 � 0.04

MDS-UPDRS-III Bayesian Ridge 0.50 � 0.000 <0.001 8.15 � 0.04

Results reflect an average of model performance on the test set. Model selection and training were performed using a fivefold cross-validation process with Pearson’s R2 as the
performance metric.
Abbreviations: ML, machine learning; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating Scale.
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over time. Mean change in MDS-UPDRS-III was
0.39 � 5.37, with 25% of patients receiving L-dopa at
baseline and 50% at visit 1 (Supplementary Material S9).
Mean change in MDS-UPDRS-III between visits 3 and
4 was 3.70 � 9.02 (Supplementary Material S9).
Figure 2 shows that for all three parts of the MDS-
UPDRS, several digital mobility features showed greater
effect sizes than that of the corresponding MDS-UPDRS
score. The measures with the highest sensitivity to change
(between baseline and visit 1) relating to MDS-UPDRS-I
were MaxSedentaryBoutDuration (effect size = 0.33), a
measure reflecting the amount of sedentary behavior,
and NumberOfRotations (effect size = 0.19), reflecting
nocturnal movement. For features related to MDS-
UPDRS-II, only NumberOfRotations significantly wors-
ened over time (5.95 � 2.59 at baseline vs. 4.14 � 1.86
visit 1), reflecting an effect size of 0.19 versus 0.10 for the
clinical scale. For MDS-UPDRS-III, the most sensitive fea-
ture was NumberBoutsUnder60sec, a measure quantify-
ing walking capacity (effect size = 0.34 vs. 0.04 for MDS-
UPDRS-III).
In general, the effect sizes became larger

2.34 � 0.60 years later, for both the digital measures
and all parts of the MDS-UPDRS, yet remained higher
for digital measures (Fig. 3). With disease progression,

the ratio of different digital mobility domains with the
highest effect sizes changed. In early years, activity
quantity and nocturnal measures showed significant
sensitivity to change, whereas GQ measures did not.
This changed as the disease progressed, with GQ mea-
sures becoming more prominent (Fig. 3; Supplementary
Material 10a–f).
In the exploratory analysis, seven measures that were

not correlated with the MDS-UPDRS showed signifi-
cant change between baseline and visit 1. These seven
measures were related to within bout regularity of
movement across the week and activity at specific times
of the day, with effect sizes ranging between 0.52 and
0.36 reflecting even higher sensitivity compared to the
clinical scale (for a full list of features, see Supplemen-
tary Material S7).
As NumberOfRotations was associated with all three

parts of the MDS-UPDRS and showed greater effect
sizes than the clinical scale, we estimated the sample
size needed to show significant change over time. At
80% power, the digital measure required 83%, 82%,
and 95% fewer participants than parts I, II, and III,
respectively, at baseline versus visit 1 and 98%, 81%,
and 9.8% fewer at visit 3 versus 4. (Supplementary
Material Table S11).

FIG. 2. Models differentiating between recently diagnosed patients with PD (Parkinson’s disease) and healthy controls (HC). Model 1 included only age and
sex (accuracy: 58.6%, AUC [area under the curve]: 0.56, Nagelkerke R2= 0.03). Model 2 included 7 of the 40 features associated with MDS-UPDRS-III
([Movement Disorder Society-Unified Parkinson’s Disease Rating Scale], accuracy: 71.2%, AUC: 0.79, Nagelkerke R2= 0.34); model 3: the seven fea-
tures that were found to be sensitive to change in our exploratory analysis (accuracy: 65.90%, AUC: 0.70, Nagelkerke R2= 0.12); model 4: the com-
bined 14 features from models 2 and 3 (accuracy: 81.10%, AUC: 0.87, Nagelkerke R2= 0.51); model 5: the four highest-contributing features in model
3 (accuracy: 77.30%, AUC: 0.83, Nagelkerke R2= 0.42). The simple model 1 significantly differed from models 2, 4, and 5 (P<0.0001), whereas a trend
was observed between models 1 and 3 (P= 0.077). Nagelkerke R2 value was calculated to determine the goodness of fit of the logistic regression
models. Higher values indicate a stronger fit (Nagelkerke N.J.D., Biometrika 78: 691–692, 1991).
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Discussion

In this multicenter study, we utilized multiple
machine learning techniques to evaluate the association
between an array of real-world digital mobility mea-
sures and disease severity, as measured by the widely
used PD clinical rating scales, in a large cohort of
patients with PD. The analyses produced several impor-
tant insights: (1) digital mobility measures were only
moderately associated with the MDS-UPDRS; (2) differ-
ent digital mobility measures were associated with each
of the three parts of the MDS-UPDRS; (3) digital mobil-
ity measures were sensitive to early-stage disease, accu-
rately discriminating recently diagnosed patients with
PD from HCs; and (4) digital mobility measures were
more sensitive to change over time than each part of
the clinical rating scale.
Many studies have evaluated the use of digital tech-

nologies for PD symptom monitoring,12,14,34 generating
some evidence for the feasibility and advantages of
objective and more frequent monitoring of disease bur-
den with potential as clinical decision-support
tools.19,35-37 Similar to previous studies,20,38 our results
show only moderate associations between digital

mobility outcomes and the current gold standard clini-
cal scale. This suggests that the metrics evaluate differ-
ent constructs; whereas MDS-UPDRS assesses disease
signs and symptoms, digital measures assess function,
inherently encompassing disease signs but in a behav-
ioral context.18 Previous work has shown that during
daily activities, gait speed of PD patients at home can
decrease by 30% compared to that measured in the
clinic.20,38 Movements during daily life are typically
self-initiated, embedded in a rich behavioral context,
whereas laboratory and clinic-based assessments are
usually initiated by an external signal or demand and
are executed in isolation.39 The context of the environ-
ment is also different, with the real world imposing
greater environmental complexity, whereas perfor-
mance during in-clinic assessments can be greatly
affected by factors such as anxiety or stress, which may
worsen or paradoxically improve certain signs.5,40 As a
result, variability in function could be large despite the
method of assessment.12 Moreover, in-clinic assessment
is often conducted during on medication. In contrast,
real-world digital measures, due to the wider time
frame of collection, also include motor fluctuations,
capturing on/off and in between. In this regard, the

FIG. 3. Effect sizes of features significantly sensitive to change over 1 year. Colors represent domains according to the domain categories; AQDP,
activity quantity and distribution patterns; GQ, gait quality; NB, nocturnal behavior. Left: the magnitude of change between baseline and visit 1; right:
the magnitude of change between visits 3 and 4 (2.34 � 0.60 years later, reflecting a progression in the disease). At baseline, the mean disease dura-
tion was 2.57 � 2.05. The mean change in MDS-UPDRS-III (Movement Disorder Society-Unified Parkinson’s Disease Rating Scale) was 0.39 � 5.37
points between baseline and visit 1 and 3.70 � 9.02 between visits 3 and 4. When adjusting for disease duration, the measures and the ranking of the
effect sizes were similar to those presented here, with a higher magnitude due to the reduced standard deviation.
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clinical and digital measures are not directly compara-
ble, representing “apples and oranges,” each important
to fully understand and quantify disease severity. Per-
haps it is time to consider digital mobility measures as
outcomes in their own regard, validating them against
meaningfulness to daily living, sensitivity to change
over time, and their potential response to therapeutic
interventions.
In recent work, patients with PD shared their per-

spective that slowness of movement was among their
most bothersome and important symptoms.40 Patients
reported that PD symptoms had the greatest impact on
sleep, job functioning, exercise, communication, rela-
tionships, and sense of being,41 aspects of daily living
that can be partially reflected in real-world function col-
lected via digital measures.42 Indeed our findings show
that the measures most strongly associated with disease
severity were not related to quality but rather to func-
tion coming from domains of sleep (NB) and activity
quantity and distribution. The number of rotations at
night is of particular interest. It was associated with all
three parts of the MDS-UPDRS, contributed to the dis-
crimination model between recently diagnosed patients
and HCs, and was sensitive to change over time. Sev-
eral studies have shown the utility of such a measure,2,3

which highlights the benefit of passive digital mobility
assessment as such measures cannot be captured using
conventional testing. Interestingly, a greater number of
measures reflecting GQ were more associated with
MDS-UPDRS, part II, than with part III. This perhaps
relates to the constructs of the clinical scales; part III is
heavily focused on tremor and rigidity, whereas part II
evaluates difficulties in daily living, including transfers
and dressing. It may be helpful to consider that the
number of features in the GQ domain is much larger
than that in the NB domain and the “curse of dimen-
sionality.” Nonetheless, if this imbalance was the only
determining factor, one would expect to see that many
gait features would have been selected and that a few
NBs would have been selected. The results suggest,
however, that the feature selection process successfully
identified the most relevant features and was not
unduly influenced by the number of features in each
domain.
Regulators in Europe have recently accepted stride

velocity 95th centile43 in Duchene muscular dystrophy
and moderate to vigorous physical activity in idiopathic
pulmonary fibrosis as endpoints for clinical trials.44 In
the present study, related digital mobility features were
observed as relevant. For example, walking bout dis-
tance 90th percentile, gait speed 90th percentile, and
step length coefficient of variance 10th percentile, mea-
sures that are derived from the distribution of an indi-
vidual’s walking quality across the week and reflect an
individual’s best gait performance, were among the
most prominent features associated with the MDS-

UPDRS, demonstrating that such measures are also
valuable as capacity measures in PD. In addition, mod-
erate to vigorous activity was one of the top-ranked
measures associated with MDS-UPDRS, part III. One
can argue that the 90th percentile and vigorous activity
reflect capacity, and are more related to the clinical
scale, whereas typical activity may reflect function or
performance. Measures of reduced function, such as
sedentary time and walking bout distance 10th percen-
tile, were also found to be sensitive to change over time.
These capacity and function measures were obtained
passively in the home, unobtrusively capturing the best
and worst performances of the person. Understanding
the contribution of these measures in PD has great
value and potential as future endpoints. The ongoing
Mobilise-D project aims to obtain regulatory qualifica-
tion for digital mobility outcomes in PD and is well
positioned to build on the present work for that impor-
tant objective.45

For use as endpoints in clinical trials, digital mobility
measures should meet multiple requirements, such as
sensitivity to disease severity and sensitivity to change.
Our findings show that digital measures accurately dif-
ferentiate between recently diagnosed patients with PD
and HCs, reflecting the potential use as a screening tool
and perhaps an opportunity to also use digital mobility
measures in the prodromal stage. Our longitudinal data
showed that digital mobility measures are more sensi-
tive to change than the gold standard clinical scale
(Fig. 3). In mild to moderate disease, activity and NB
measures were most prominent, perhaps reflecting more
burden of nonmotor symptoms (ie, problems with sleep
and nocturia). In contrast, as the disease progressed,
motor symptoms from the GQ domain were more
prominent and notably were more sensitive to progres-
sion than the clinical scale.
Recently, Brzezicki et al compared standard clinical

rating scales and kinematic features of upper-extremity
bradykinesia and gait as assessed in a clinic using wear-
able devices in untreated, recently diagnosed patients
with PD assessed quarterly for 2 years.46 The study
showed that commencing antiparkinsonian medication
led to masking of progression signals in both clinical
and digital measures.46 Similarly, we also observed only
minimal change in MDS-UPDRS in the early years,
with 50% of our cohort on antiparkinsonian medica-
tion at follow-up. Contrarily, several digital mobility
measures still showed significant change. The discrep-
ancy between our findings and those of Brzezicki et al
may be attributed to the assessment protocol, con-
ducted in the real-world versus a clinic-based assess-
ment. It may be interesting in the future to combine
clinic-based and real-world-based measures to evaluate
their value. The minor change in the MDS-UPDRS-III
in medicated patients over 1 year that we observed is
similar to that found in the Parkinson’s Progression
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Markers Initiative47,48 and presents a challenge for clin-
ical trials. The ability to detect small changes with digi-
tal mobility measures within 1 year may directly lead to
a reduction in sample size needed and thus reduce time
and cost of clinical trials.
The present analyses have several limitations. The

wearable device used was placed on the lower back,
limiting our ability to also assess arm swing, tremor, or
dyskinesia, which are known to be impaired in different
stages of PD and may impact mobility. In the future, it
might be interesting to evaluate the benefit obtained by
instrumenting both the wrist and lower back, although
this may come with the trade-off of lower compliance
and poorer patient acceptance. Our longitudinal cohort
was relatively small. Future work such as in the Person-
alized Parkinson Project,49 Mobilise-D project,45 and
WatchPD50 will further explore these findings and the
prognostic value of digital mobility measures. We did
not assess patients off medication or compare naive
patients to those on medications or assess treatment
effects. These and other important questions should be
addressed in ongoing42,45,50 and future studies. None-
theless, this is one of the largest studies investigating
digital mobility technology in PD. Our findings demon-
strate the value of quantifying multiple domains of
mobility and reveal the ability of digital mobility mea-
sures to detect and track meaningful, relevant, sensitive
changes that can be used in both clinical trials and
clinical care.
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