
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (XXXVI cycle)

Crowd Monitoring and City Sensing
Techniques Supported by Next
Generation Mobile Networks

Riccardo Rusca

Supervisor:
Prof. Claudio Ettore Casetti

Doctoral Examination Committee:
Prof. Floriano De Rango, Università della Calabria
Prof. Guido Marchetto, Politecnico di Torino
Prof. Marco Di Felice, Università degli studi di Bologna
Prof. Paolo Giaccone, Politecnico di Torino
Prof. Pietro Manzoni, Universidad Politecnica de Valencia

Politecnico di Torino

2024

Declaration

I affirm that the contents and structure of this thesis represent my unique creation
and do not infringe upon the rights of any third parties, including those pertaining to
the confidentiality of personal information.

Riccardo Rusca
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I dedicate this Ph.D. thesis with heartfelt gratitude to my parents, whose unwavering
support and encouragement have been my pillars of strength throughout this journey.

To Martina, my girlfriend, your love, patience, and understanding have been a
constant support for me.

I extend my sincere appreciation to my esteemed advisors, Claudio Casetti and
Paolo Giaccone, whose guidance, expertise, and mentorship have shaped my

academic and research endeavors. I am grateful to Francesco Restuccia for inviting
me to spend some time in Portland, Maine, USA, which provided me with a unique
opportunity to expand my knowledge and collaborate with passionate researchers.

I also express my thanks to all the people with whom I had the privilege of
collaborating during my Ph.D. Your contributions and collaborative spirit have

enriched my academic experience, and I am truly grateful for the collective efforts
that have made this research possible.

Abstract

In an era of rapid technological advancement and global challenges, the paradigm of
overseeing crowds, ensuring safety, and safeguarding privacy undergoes profound
transformation. The COVID-19 pandemic has prompted us to reconsider how we
manage large gatherings while respecting personal freedoms and privacy. As we
transition beyond the pandemic, it is crucial to strike a balance between enhancing
safety measures at events and safeguarding privacy rights.

Traditional crowd surveillance methods often struggle to capture the nuanced
dynamics of crowd behavior and movement patterns. With ongoing health concerns,
there is a growing need for advanced monitoring systems that provide timely insights
and allow for proactive measures. Additionally, the advent of smart cities and new
technologies like V2X communication and artificial intelligence presents ethical,
legal, and technical challenges, particularly regarding personal data protection. Reg-
ulatory efforts like the General Data Protection Regulation (GDPR) [39] aim to
address these challenges by establishing clear guidelines for data security and the
responsible use of personal information in monitoring initiatives.

This thesis dives deep the intersection of crowd monitoring, public safety, data pri-
vacy, and machine learning, accentuated by the challenges and implications ushered
in by the post-COVID-19 landscape. A crucial investigation into the complexities of
802.11 Probe Request messages and MAC address randomization unveils nuanced
behavioral patterns and privacy concerns, notably concerning MAC addresses. Lever-
aging this understanding, innovative methodologies are devised to replicate authentic
device behaviors, facilitating the generation of realistic data traces able to boost
the development of machine learning algorithms for improved people counting, all
while reinforcing user privacy through specialized data structures and sophisticated
anonymization methods.

As we advance into an era where artificial intelligence and data privacy take
center stage, this thesis delves into the transformative concept of federated learning.
Embracing the privacy-centric design inherent in federated learning—where clients
independently train machine learning models and share only model’s parameters
over the network—this ensure robust data protection while also optimizing training
efficiency and accelerating convergence rates. Within the realm of vehicular applica-
tions, this research shows how federated learning can harness collective intelligence
to fine-tune trajectory prediction models. This approach not only delivers scalability
and responsiveness but also fortifies privacy safeguards, showcasing the potential of
collaborative methodologies in enhancing urban mobility solutions.

This collaborative spirit extends to the development of a innovative data-driven
framework tailored for Radio Frequency (RF) mobility scenario generation. By
integrating real-world mobility traces with advanced channel modeling techniques,
this framework establishes a robust foundation for crafting realistic V2X scenarios
for channel emulators, fostering innovation in urban mobility solutions.

As technological advancements continue to reshape our world, striking a harmo-
nious balance between public safety, crowd monitoring, and data privacy remains
paramount. This research underscores the significance of adapting innovative method-
ologies and collaborative approaches, such as artificial intelligence, machine learning,
federated learning and advanced RF mobility scenario frameworks, to navigate the
complexities of modern urban environments effectively. By prioritizing both safety
and privacy, we lay the groundwork for more resilient, secure, and inclusive com-
munities, ensuring that technological progress aligns with the values and rights of
individuals.

v

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Publications . 3

1.2 Main contributions . 5

1.3 Outline . 7

2 WiFi Probe Request for Crowd Monitoring 9

2.1 Research motivation and State of the Art 9

2.2 Main contributions . 12

2.3 IEEE 802.11 connection procedure 13

2.3.1 Interaction between device and access point 13

2.3.2 IEEE 802.11 Probe Request frame 15

2.3.3 IEEE 802.11 Probe Response frame 17

2.4 MAC address and privacy . 18

2.4.1 MAC address . 19

2.4.2 MAC address randomization 21

2.5 Methodology . 23

2.5.1 Hardware description . 24

Contents

2.5.2 Testing location . 26

2.5.3 Testing methodology . 27

2.5.4 Data analysis . 29

2.5.5 Experiment extension . 30

2.6 Results . 31

2.6.1 Experimental results . 32

2.6.2 Analysis and comparison between different devices 38

2.6.3 Results comparison between different years and OS version 46

2.6.4 Experimental findings . 49

2.6.5 Limitations . 50

2.7 Conclusions and future works . 51

3 Probe Request Generator and Privacy-Aware People Flow Monitoring
through Bloom Filters 52

3.1 Research motivation and State of the Art 53

3.2 Main contributions . 54

3.3 Anonymization techniques for storing MAC addresses 55

3.3.1 GDPR . 56

3.3.2 Hash function . 57

3.3.3 Salted hash . 60

3.3.4 Truncated hash . 61

3.3.5 Bloom filter . 62

3.4 Probe request generator . 65

3.4.1 Back-end data . 65

3.4.2 Finite-State machine . 68

3.4.3 Event-driven generator . 72

3.4.4 Messages collision avoidance 74

vii

Contents

3.4.5 Probe request packet generation 74

3.4.6 Validation . 76

3.5 Bloom filters for flow analysis . 80

3.5.1 Bloom filter sizing . 80

3.5.2 Bloom filter privacy properties 84

3.5.3 Anonymization noise . 86

3.5.4 Multiple anonymity . 87

3.5.5 Counting elements stored in a Bloom filter 88

3.5.6 Intersection of different Bloom filters 90

3.6 Conclusions and future works . 93

4 People counting and crowd monitoring in real use cases 95

4.1 Research motivation . 95

4.2 Main contributions . 97

4.3 WiFi probe request sniffers . 98

4.3.1 Meshlium scanner by Libelium 99

4.3.2 Raspberry Pi . 100

4.3.3 Meshlium vs Raspberry Pi 101

4.4 WiFi probe requests people counting algorithms 102

4.4.1 Naive algorithms . 103

4.4.2 De-randomization algorithms 104

4.5 Real-time presence sensing on a 5G infrastructure 107

4.5.1 Implemented architecture 108

4.5.2 Mobility framework . 109

4.5.3 Results . 110

4.6 Passive crowd monitoring inside a bus 112

4.6.1 Capturing framework . 112

viii

Contents

4.6.2 Validation and parameter tuning 115

4.6.3 Performance evaluation . 115

4.7 Machine learning-driven privacy-preserving framework for crowd
management . 118

4.7.1 DBSCAN clustering method 118

4.7.2 DBSCAN clustering algorithm 119

4.7.3 Counting pipeline . 121

4.7.4 Counting results . 123

4.8 Conclusions and future works . 126

5 Federated Learning Empowered Vehicular Networks 128

5.1 Research motivation and State of the Art 129

5.2 Main contributions . 131

5.3 Federated Learning . 132

5.3.1 Centralized vs. Decentralized 133

5.3.2 Synchronous vs. Asynchronous 134

5.3.3 Federated learning frameworks and implementations 135

5.4 Methodology . 136

5.4.1 Implemented architecture 136

5.4.2 Urban Environment simulation 138

5.4.3 Federated learning framework 141

5.5 Results . 143

5.5.1 Trajectory dataset and LSTM algorithm 144

5.5.2 Federated learning framework setup 145

5.5.3 Numerical results . 148

5.6 Conclusions and future works . 152

6 Radio Frequency mobility scenario for wireless channel emulators 154

ix

Contents

6.1 Research motivation and State of the Art 155

6.2 Main contributions . 156

6.3 Wireless channel emulators . 157

6.4 Methodology . 160

6.4.1 Framework . 160

6.5 V2X scenario in Colosseum . 166

6.5.1 Vehicular dataset . 167

6.5.2 Scenario creation . 170

6.5.3 Scenario validation . 173

6.6 Conclusions and future works . 176

7 Conclusions 177

List of acronyms 180

Bibliography 185

x

List of Figures

2.1 Comprehensive overview of the IEEE 802.11 Network Discovery
and Association procedures between an access point and a smart
device. 14

2.2 Architecture of the IEEE 802.11 Probe Request frame. Reproduced
from [41]. 15

2.3 Architecture of the IEEE 802.11 Probe Response frame. Reproduced
from [41]. 18

2.4 Architecture of 48-bit MAC address with highlighted the local/global
and unicast/multicast bits. 19

2.5 Sniffer sensor for capturing 802.11 Probe Request messages. 24

2.6 Sniffer wireless network interface configuration. 25

2.7 Location of the test, performed in March 2022. 27

2.8 Example of TShark output file (.pcap) on Wireshark. 28

2.9 Location of the test, performed in March 2023. 30

2.10 Comprehensive analysis of probe request packets sent from an Apple
iPhone 11 for different usage phases and for different connection
states. 33

2.11 Comprehensive analysis of vendor-related data and probe requests
packets burst characterization sent from an Apple iPhone 11, high-
lighting the bursts and the vendor field as a function of time, for
different usage phases and for different connection states. 36

xi

List of Figures

2.12 Comprehensive analysis of RSSI power field for an Apple iPhone
11 as a function of time, for different usage phases and for different
connection states. 37

2.13 Comprehensive analysis of probe request packets sent from an Apple
iPhone 6 for different usage phases and for different connection states. 39

2.14 Comprehensive analysis of vendor-related data and probe requests
packets burst characterization sent from an Apple iPhone 6, high-
lighting the bursts and the vendor field as a function of time, for
different usage phases and for different connection states. 40

2.15 Comprehensive analysis of RSSI power field for an Apple iPhone
6 as a function of time, for different usage phases and for different
connection states. 41

2.16 Comprehensive analysis of probe request packets sent from an Apple
iPhone 11, during 2023 experiments, for different usage phases and
for different connection states. 47

2.17 Comprehensive analysis of vendor-related data and probe requests
packets burst characterization sent from an Apple iPhone 11, dur-
ing 2023 experiments, highlighting the bursts and the vendor field
as a function of time, for different usage phases and for different
connection states. 48

2.18 Comprehensive analysis of RSSI power field for an Apple iPhone 11,
during 2023 experiments, as a function of time, for different usage
phases and for different connection states. 49

3.1 Hash function algorithm. 58

3.2 Salted hash function. 61

3.3 Truncated hash function. 62

3.4 Bloom filter algorithm. 63

3.5 Event-driven finite-state machine diagram. 69

3.6 Example of statistics given in output from the probe request generator. 71

3.7 Probability transition values diagram for the device’s state. 73

xii

List of Figures

3.8 False positive probability with different values of k. 82

3.9 False positive probability vs. number of inserted MAC addresses
into a Bloom filter. 83

3.10 False positive probability vs. number of inserted MAC addresses
into different Bloom filters. Each Bloom filter is configured with
m = 10,000 and a different values of k. 83

3.11 Elements v1,v2,v3 belonging to the hiding set of a 10-bit BF, storing
x1,x2,x3. Arrows indicate the bits that are set to one according to
the two hash functions H1 and H2. 84

3.12 γ-deniability value vs. number of inserted MAC addresses into a
Bloom filter. 87

3.13 γ-deniability value vs. number of inserted MAC addresses into a
Bloom filter, for different values of K. 88

3.14 Accuracy evaluation of (3.12) when comparing number of elements
inserted in the Bloom filter and counted ones. 89

3.15 Comparison of flow monitoring accuracy between (3.12) denoted as
c1 and (3.13) denoted as c2. 92

3.16 Comparison of flow monitoring relative errors between c1 and c2. . 93

4.1 Meshlium scanner by Libelium [59]. 99

4.2 Raspberry Pi 4B [74]. 100

4.3 Example of clustering. 105

4.4 WiFi scanner coverage map in the innovation mile in Turin. 108

4.5 Edge cloud architecture in the 5G EVE Eu project. 109

4.6 Heatmap illustrating hourly log-scale detection frequencies for March
2020, 2021, and 2022. 111

4.7 Count of unique MAC addresses identified by each scanner through-
out March for 2020, 2021, and 2022. 112

4.8 Sniffer solution featuring a Raspberry Pi 3B, a USB WiFi dongle,
and a USB LTE modem. 113

xiii

List of Figures

4.9 Mean relative error comparison for two metrics: power filter and
MAC occurrence filter. 116

4.10 Performance evaluation with manual counting for two days. 117

4.11 Counting pipeline. 122

4.12 Comparison between ground truth and results obtained from our
framework and an implementation of iABACUS one, for Dataset G. 125

5.1 Federated learning architecture overview. 132

5.2 Comparison between centralized and decentralized federated learning.134

5.3 Implemented architecture. 137

5.4 Considered area in Turin. 139

5.5 Considered area in Turin with seven eNBs. 140

5.6 Urban mobility simulation output file. 141

5.7 Federated learning schema. 142

5.8 Frame of the video footage took by a drone in Cyprus. 145

5.9 Experimental setup scheme. 148

5.10 Comparison of replacement rates in synthetic and real-world scenar-
ios across three distinct client selections. 149

5.11 Comparison of training times in synthetic and real-world scenarios
across three distinct client selections. 150

5.12 Comparison of FL cycle counts in synthetic and real-world scenarios
needed to reach a set threshold across three distinct client selections. 151

5.13 Comparison of FL round counts in synthetic and real-world scenarios
to attain a specified threshold across three distinct client selections. . 151

6.1 Overview of the proposed framework for generating and validating
RF mobility scenarios. 160

6.2 Visualization of vehicles on a map for a specific timestamp, mark-
ing with green dots if the vehicle is inside the coverage area (blue
borders) and red dots if outside. 162

xiv

List of Figures

6.3 Visualization of the ray-tracing output, depicting the receiver with
a blue point and the transmitter with a red point. Each ray repre-
sents reflections and diffractions of the signal, with varying colors
indicating different power levels. 163

6.4 A sample of the data available within the open dataset [75] leveraged
for the creation of our V2X scenario. 167

6.5 SAMARCANDA traces with 1 km2 square area in blue. Reproduced
from [75]. 169

6.6 Ray-tracing output for a specific timestamp between vehicle 9 and
the antenna. 172

6.7 Visualization of the K-means algorithm applied to a collection of
rays from the ray-tracing process. 173

6.8 Comparison between RTT and distance from the base station. Data
refer to vehicle 9 of SAMARCANDA [75]. 174

6.9 Comparison between SNR and the distance from the base station.
Data refer to vehicle 9 of SAMARCANDA [75]. The blue line
represents the average SNR over 5 different experiments, with the
99% confidence intervals represented by orange dotted lines. 175

xv

List of Tables

2.1 Device list, tested in 2022. 26

2.2 Device list, tested in 2023. 31

2.3 Smartphones behaviour comparison. 43

2.4 Smartphones behaviour comparison. 44

2.5 Tablet and laptops behaviour comparison. 45

3.1 Devices tested for our probe request generator database. 67

3.2 Locked phase results for an Apple iPhone 11 (mean, coefficient of
variation). 78

3.3 Awake phase results for an Apple iPhone 11 (mean, coefficient of
variation). 78

3.4 Active phase results for an Apple iPhone 11 (mean, coefficient of
variation). 79

3.5 Definitions and notations for Bloom filters. 80

4.1 Comparison between Meshlium by Libelium and Raspberry Pi 4B. . 101

4.2 Crowd monitoring results. 124

5.1 Simulation outcomes varying with different sizes of vehicle trajectories.148

6.1 MATLAB simulation parameters. 171

xvi

Chapter 1

Introduction

In an age marked by rapid technological advancements and unprecedented global
challenges, the landscape of crowd monitoring, public safety, and data privacy has
undergone significant transformations. In the wake of the COVID-19 pandemic,
the world has been profoundly reshaped by social distancing measures, relegating
the once-thriving realm of public gatherings to the distant past. As we navigate the
post-pandemic landscape, restrictions on the size of gatherings continue to loom,
necessitating a vigilant approach to crowd control. Nevertheless, the prospect of
large-scale public events making a triumphant return in the post-COVID era is on
the horizon. This resurgence brings both excitement and formidable challenges to
the forefront.

The COVID-19 pandemic serves as a strong reminder of the critical role that
crowd monitoring plays in safeguarding public health and ensuring societal resilience.
As nations addressed the rapid virus spread, it became evident that traditional crowd
monitoring methods had their limitations. Basic headcounts and manual surveillance
techniques proved inadequate for capturing the nuanced dynamics of crowd behavior,
mobility patterns, and density variations. Consequently, there emerged an urgent need
for advanced monitoring systems capable of providing real-time insights, facilitating
informed decision-making, and enabling proactive interventions to mitigate health
risks and contain the spread of infectious diseases.

However, as organizations and governments raced to deploy sophisticated crowd
monitoring technologies, a confluence of ethical, legal, and technical challenges
emerged. Foremost among these challenges is the tension between the imperatives of

1

Introduction

public safety and the fundamental right to privacy. The proliferation of surveillance
technologies, data collection mechanisms, and tracking algorithms has raised pro-
found concerns about individual autonomy, data sovereignty, and civil liberties. In
response to these concerns, regulatory frameworks like the General Data Protection
Regulation (GDPR) [39] have been implemented to safeguard individual rights,
impose stringent data protection standards, and regulate the use of personal data in
crowd monitoring applications.

In the context of smart cities, the convergence of people counting, traffic con-
gestion management, public transportation enhancement, pedestrian safety, and
vehicle-to-everything (V2X) communication heralds a transformative era of urban
mobility and efficiency. As cities grapple with burgeoning populations, increasing
vehicular traffic, and evolving mobility patterns, the need for advanced trajectory
prediction systems becomes paramount. These systems play a pivotal role in opti-
mizing traffic flow, enhancing public transportation services, mitigating congestion,
and ensuring pedestrian safety. By leveraging real-time data from various sources,
including vehicular sensors, pedestrian detectors, public transportation networks, and
smart infrastructure, trajectory prediction algorithms can anticipate movement pat-
terns, identify potential bottlenecks, and facilitate proactive interventions to optimize
urban mobility and enhance public safety.

However, developing robust trajectory prediction systems poses significant com-
putational, logistical, and ethical challenges. Traditional centralized approaches often
encounter scalability limitations, data privacy concerns, and regulatory constraints,
particularly in open, distributed environments characterized by diverse stakeholders,
heterogeneous data sources, and stringent privacy requirements.

In this context, federated learning emerges as a compelling solution to reconcile
the competing imperatives of scalability, privacy, and regulatory compliance. By
decentralizing the model training process across a network of interconnected devices,
vehicles, and infrastructure elements, federated learning enables collaborative learn-
ing without compromising sensitive data. In the context of V2X communication,
this approach allows vehicles, pedestrians, and smart infrastructure to collaboratively
refine trajectory prediction models, thereby enhancing the accuracy, reliability, and
responsiveness of urban mobility systems. Moreover, by preserving data privacy
and adhering to regulatory requirements, federated learning fosters public trust,

2

Introduction

encourages stakeholder collaboration, and promotes responsible innovation in the
pursuit of smarter, safer, and more sustainable cities.

Furthermore, the efficacy and reliability of smart city systems are contingent upon
the ability to emulate real-world environments accurately. In this context, large-scale
channel emulators play a pivotal role, enabling researchers to create reproducible
test scenarios, evaluate system performance, and validate algorithms under diverse
Radio Frequency (RF) conditions. By simulating the propagation, interference,
and attenuation of wireless signals, channel emulators facilitate the development of
robust, resilient, and scalable monitoring solutions capable of operating effectively
in complex and dynamic environments.

This thesis endeavors to explore, analyze, and innovate at the nexus of crowd
monitoring, public safety, data privacy, and machine learning. By conducting a
comprehensive review of existing technologies, regulatory frameworks, and ethical
considerations, this research aims to identify gaps, address challenges, and propose
novel methodologies, algorithms, and frameworks that advance the state of the art
in this critical domain. Through rigorous empirical analysis, theoretical insights,
and practical applications, this thesis seeks to contribute to the development of more
secure, equitable, and resilient societies, ultimately enhancing the safety, well-being,
and privacy of individuals around the globe.

1.1 Publications

All the contributions of the three main topics are the following:

Crowd monitoring and people counting leveraging WiFi probe requests

• [82] Riccardo Rusca, Claudio Casetti, and Paolo Giaccone. IoT for real time
presence sensing on the 5G EVE infrastructure. In 2021 19th Mediterranean
Communication and Computer Networking Conference (MedComNet), Ibiza,
Spain, pages 1-8. IEEE, 2021.
Available at https://ieeexplore.ieee.org/document/9501245

• [43] Kalkidan Gebru, Marco Rapelli, Riccardo Rusca, Claudio Casetti, Carla
Fabiana Chiasserini, and Paolo Giaccone. Edge-based passive crowd monitor-
ing through WiFi Beacons. Computer Communications, Volume 192, 2022,

3

https://ieeexplore.ieee.org/document/9501245

Introduction

Pages 163-170.
Available at
https://www.sciencedirect.com/science/article/abs/pii/S0140366422001980

• [85] Riccardo Rusca, Filippo Sansoldo, Claudio Casetti, and Paolo Giaccone.
What WiFi probe requests can tell you. In IEEE Consumer Communications
& Networking Conference (CCNC), Las Vegas, NV, USA, pages 1086–1091.
IEEE, 2023.
Available at https://ieeexplore.ieee.org/document/10060447

• [83] Riccardo Rusca, Alex Carluccio, Diego Gasco, and Paolo Giaccone.
Privacy-Aware Crowd Monitoring and WiFi Traffic Emulation for Effective
Crisis Management. In 2023 International Conference on Information and
Communication Technologies for Disaster Management (ICT-DM), Cosenza,
Italy, pages 1–6. IEEE, 2023.
Available at https://ieeexplore.ieee.org/document/10286944

• [86] Riccardo Rusca, Alex Carluccio, Claudio Casetti, and Paolo Giaccone.
Privacy-preserving WiFi-based Crowd Monitoring. Transactions on Emerging
Telecommunications Technologies, 2023.
Available at https://onlinelibrary.wiley.com/doi/10.1002/ett.4956

Federated Learning in vehicular networks

• [49] Giuseppe La Bruna, Carlos Risma Carletti, Riccardo Rusca, Claudio
Casetti, Carla Fabiana Chiasserini, Marina Giordanino, and Roberto Tola.
Edge-assisted federated learning in vehicular networks. In 2022 18th Interna-
tional Conference on Mobility, Sensing and Networking (MSN), Guangzhou,
China, pages 163–170. IEEE, 2022.
Available at https://ieeexplore.ieee.org/document/10076689

Radio Frequency mobility scenario for channel emulators

• [84] Riccardo Rusca, Francesco Raviglione, Claudio Casetti, Paolo Giaccone,
and Francesco Restuccia. Mobile RF Scenario Design for Massive-Scale Wire-
less Channel Emulators. In 2023 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden,

4

https://www.sciencedirect.com/science/article/abs/pii/S0140366422001980
https://ieeexplore.ieee.org/document/10060447
https://ieeexplore.ieee.org/document/10286944
https://onlinelibrary.wiley.com/doi/10.1002/ett.4956
https://ieeexplore.ieee.org/document/10076689

Introduction

pages 675–680. IEEE, 2023.
Available at https://ieeexplore.ieee.org/document/10188319

1.2 Main contributions

This Section summarizes the main contributions of this thesis:

• Chapter 2. Introduction to the 802.11 Probe Request and Probe Response
management frames, alongside a detailed explanation of MAC addresses
and the concept of MAC address randomization. Additionally, it offers an
overview on how the MAC address randomization is implemented across
modern operating systems.

• Chapter 2. Description of the methodology employed to conduct a thor-
ough analysis of probe request messages across a variety of devices spanning
different operating systems, types, and ages. Parameters such as packet fre-
quency, MAC address type (randomized, non-randomized, global, local), burst
frequency, inter-packet time, SSID field, VHT capabilities, and others were ex-
tracted from captures. These parameters were meticulously compared among
the devices to identify correlations and behaviors.

• Chapter 3. Introduction to the fundamental functions and data structures
crucial for maintaining data privacy when storing sensitive information. It
covers a range of techniques including various hash functions employing
diverse hashing algorithms, salted hashing, truncated hashing, and Bloom
filters.

• Chapter 3. Design and specification of a novel probe request generator,
capable of swiftly creating realistic probe request traces while maintaining
accuracy. With the ability to emulate hundreds of devices within seconds, this
generator offers flexibility through customizable input parameters, allowing
users to specify the number and types of devices to emulate, as well as the
preferred time window. In addition to providing the .pcap trace, the output
includes invaluable ground truth data, indicating the number of devices that
have transmitted at least one probe request, along with other useful statistics.

5

https://ieeexplore.ieee.org/document/10188319

Introduction

• Chapter 3. Introduction of the concept of γ-deniability and γ-K-anonymity
applied to Bloom filters, alongside the novel concept of anonymization noise.
These concepts are pivotal for achieving GDPR compliance when transmitting
and storing sensitive information such as MAC addresses.

• Chapter 4. Comprehensive overview of different WiFi probe request sniffers
with different sniffing software. Additionally, it introduces a spectrum of
people counting algorithms ranging from naive solutions to more complex
ML-driven algorithms.

• Chapter 4. Design, development and outcomes of various real-world use
cases focused on people counting and crowd monitoring. The first scenario
encompasses an outdoor setting along the so-called innovation mile in the
city of Turin. Through the deployment of multiple sniffers, the project col-
lected over 100 million detection events, representing more than 51 million
distinct anonymized MAC addresses. In contrast, the second scenario in-
volves an indoor environment, specifically targeting passenger counts onboard
buses. During this second scenario we started to apply more sophisticated
algorithms for people counting due to the evolving landscape of MAC address
randomization implementation on newer devices.

• Chapter 4. Introduction of a ML-driven privacy-preserving framework tai-
lored for crowd monitoring applications. Leveraging insights gleaned from our
probe request generator and extensive knowledge of probe request behavior,
this framework integrates a novel clustering algorithm developed and validated
specifically for this purpose. Additionally, the framework incorporates Bloom
filter structures fortified with anonymization noise, ensuring robust privacy
protection while storing MAC addresses. Furthermore, it facilitates the anal-
ysis of people flows through straightforward operations such as intersecting
multiple Bloom filters.

• Chapter 5. Introduction overview of federated learning, elucidating its core
principles and methodologies. It delves into the various topologies and archi-
tectures prevalent in federated learning, with a particular focus on centralized
and decentralized models. Furthermore, it explores the distinctions between
synchronous and asynchronous architectures, highlighting their respective
advantages and trade-offs.

6

Introduction

• Chapter 5. Design and specification of a innovative application of federated
leaning in a vehicular context. The proposed framework involves collaborative
training of LSTM models for trajectory prediction using data gathered from
different vehicles. Federated learning is employed in both real-world and
synthetic scenarios, with the former leveraging actual mobility traces captured
around the innovation mile in Turin.

• Chapter 6. Introduction of wireless channel emulators and description of all
their key characteristics. Furthermore, it introduces all the main platforms
available for wireless channel emulation.

• Chapter 6. Design, development and testing of a novel framework dedicated to
crafting radio frequency mobility scenarios for wireless channel emulators. It
outlines each step of the process, starting from data collection to the generation
of the final matrix output. Following this methodology, we developed a
mobility scenario using real-world traces collected in the city of Pinerolo, Italy.
To validate the effectiveness and accuracy of our framework and 5G scenario,
we conducted rigorous testing using the Colosseum [24] emulator, renowned
as the world’s largest wireless channel emulator.

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents a detailed analysis of 802.11 Probe Request messages,
encompassing their behavioral patterns, associated parameters across device
types, and influencing sending factors. Additionally, it delves into the intrica-
cies of MAC address randomization, highlighting its implementation, changing
frequency and implications for privacy and security. Furthermore, Chapter 2
explores correlation analysis among probe request parameters, unveiling un-
derlying patterns and dependencies in device communication behavior.

• Chapter 3 introduces a groundbreaking probe request generator designed to
replicate authentic behaviors of multiple tested devices, enabling the creation
of realistic .pcap traces paired with accurate ground truth data. Additionally,
Chapter 3 unveils a novel application of what we called anonymization noise in

7

Introduction

Bloom filters, ensuring 1-deniability for stored MAC addresses, thus enhancing
privacy and deniability probabilities.

• Chapter 4 delves into different crowd monitoring applications, showcasing a
solution for people counting in Turin’s “innovation mile” through extensive
data analysis of over 100 million probe requests. Additionally, Chapter 4
explores innovative methods for passive crowd monitoring inside buses, par-
ticularly valuable during the COVID-19 pandemic. Furthermore, it introduces
a machine learning-driven privacy-preserving framework that addresses MAC
address randomization challenges, incorporating anonymization noise within
a Bloom filter data structure to ensure enhanced user privacy in crowd man-
agement applications.

• Chapter 5 presents a pioneering application of federated learning within
a vehicular context, where vehicles collaboratively train an LSTM model
for trajectory prediction. Additionally, Chapter 5 showcases the practical
implementation of this approach by applying federated learning algorithms to
real-world mobility traces from Turin’s “innovation mile”, demonstrating its
effectiveness when compared to a more static scenario.

• Chapter 6 unveils a novel data-driven framework for radio frequency mobility
scenario creation, leveraging real-world mobility traces. Moreover, Chapter 6
highlights the application of this innovative framework in crafting a compre-
hensive V2X scenario for Colosseum [24], integrating real-world mobility
traces and utilizing advanced ray-tracing algorithms for accurate channel path
loss calculations.

• Chapter 7 presents the conclusions and the future research directions.

8

Chapter 2

WiFi Probe Request for Crowd
Monitoring

Controlling and analyzing large crowds of people has always been important, albeit
not always the central focus of research. However, when the COVID-19 pandemic
emerged in March 2020, everything changed dramatically. Public and private spaces
swiftly implemented stringent requirements regarding maximum occupancy limits,
making it imperative to accurately determine the number of people within specific
areas and identify gatherings. In this context, one of the primary techniques that
have proven invaluable is the analysis of WiFi Probe Request (PR) messages. This
Chapter delves into a comprehensive exploration of probe request messages, their
behavior, and the key challenges associated with utilizing this technique for crowd
monitoring in various environments. In an era where maintaining social distancing
and monitoring crowd sizes have become paramount, understanding the intricacies
of WiFi probe request messages is instrumental in effectively managing and ensuring
public safety.

2.1 Research motivation and State of the Art

In recent years, the significance of crowd estimation has come into sharp focus in
the realm of crisis management. Accurate people counting and crowd monitoring
have emerged as critical components in crisis management and disaster response
scenarios. These capabilities are essential for enabling informed decision-making

9

WiFi Probe Request for Crowd Monitoring

and upholding public safety. Indeed, possessing the ability to gauge the number
of individuals within a specific environment and understand their movement pat-
terns holds tremendous potential for enhancing situational management. However,
the challenge of accurately counting and tracking people in large gatherings or
chaotic situations has perennially posed difficulties. Traditional methods, including
surveillance cameras, LiDAR and infrared systems, as well as WiFi and Bluetooth
fingerprints, have been widely employed in attempting to address this challenge.

In [34], the authors delve into the challenge of people counting within multi-
camera surveillance systems. Their proposed method combines partial body detection
and person re-identification to achieve precise headcounts in overlapping areas.
Similarly, in [62], another group of researchers presents a system for detecting
and tallying individuals, employing computer vision techniques, with a particular
focus on overhead view-based detection. Both of these prior studies showcased
commendable outcomes. However, it is important to acknowledge that techniques
relying on video cameras come with their share of issues. Firstly, they entail high
hardware costs due to the considerable computational resources demanded. Secondly,
outdoor scenarios pose significant challenges, mainly because of fluctuating lighting
conditions and the presence of dense crowds. Lastly, the storage and retention of
face detection data raise privacy concerns, adding another layer of complexity to the
utilization of video-based methods.

Additionally, recent research efforts [44] and [28] have explored the utilization
of LiDAR sensors. The proposed systems use a LiDAR sensor to capture coarse
human shapes by concatenating multiple two-dimensional range scans. Both the
frameworks are designed to work under dynamically illuminated conditions solving
the problem of detecting object in indoor and (limited) outdoor scenarios. In contrast
to video camera techniques, LiDAR solutions do indeed offer a notable advantage by
mitigating privacy concerns. However, they still confront challenges associated with
high hardware costs and the need for adaptability across a wide range of applications
and environments.

Authors of [36] and [68] take a different approach by investigating the utilization
of Passive Infrared (PIR) sensors. These low-cost infrared sensors are employed to
detect the presence and movement of individuals within different areas of a building
while preserving privacy. In the first paper PIR sensors are used in combination
with a multi-camera surveillance systems in order to classify different types of

10

WiFi Probe Request for Crowd Monitoring

human motion, specifically entry/exit motions and ordinary activities. While, in the
second paper, the sensors capture thermal images and temperature gradients, and
the collected data undergoes processing through a specialized pattern recognition
algorithm. This algorithm generates outputs based on detected behaviors, such
as entry, exit, or occupancy, offering a discreet yet effective means of monitoring
spaces. One significant limitation of PIR sensors is their relatively small coverage
area. These sensors are typically designed for smaller spaces, making them less
suitable for monitoring larger or expansive environments. Managing and analyzing
this data can pose challenges, especially when real-time or near-real-time monitoring
is required.

Conversely, the studies presented in [77, 25, 63] investigate the use of WiFi
probe request messages as an effective approach for crowd monitoring across diverse
scenarios. This method involves collecting WiFi fingerprints from mobile devices
and offers a promising avenue for crowd analysis. These research endeavors aim to
analyze the MAC addresses and other parameters embedded within the PR messages.
However, it is worth noting that most of the previously proposed techniques are
no longer applicable due to the evolving nature of the information contained in
probe requests. This transformation stems from both the passage of time and the
deliberate customization of these values by major smart device manufacturers, aimed
at bolstering user privacy. As for the other techniques discussed earlier, the WiFi
probe request technique stands out as a completely passive approach from the user’s
perspective. What distinguishes it even further is its versatility, as it can be deployed
in virtually any kind of environment and is not susceptible to weather and light
conditions. The coverage of this solution primarily depends on the type of antenna
used for capturing network data, with the potential to span from approximately
80 meters up to over 300 meters or more when using directional antennas. While
the WiFi probe request technique offers several advantages, it is essential to note
that it may not be entirely privacy-compliant by default. However, as detailed in
Chapter 3, specific ad-hoc techniques can be implemented to ensure full compliance
with regulations such as GDPR [39]. These measures can help strike a balance
between effective crowd monitoring and safeguarding individuals’ privacy rights,
making this technique a promising option for various applications and settings.

11

WiFi Probe Request for Crowd Monitoring

2.2 Main contributions

The current study, whose contribution can be found in [85], delves into a compre-
hensive examination of several aspects related to probe request messages. Firstly,
it seeks to understand the frequency with which wireless devices transmit network
probe requests, including their burst patterns and the content they carry. Additionally,
the study investigates how user interactions with smartphones or other smart devices
influence the device’s behavior when sending probe requests. It is worth noting that
prior attempts to address the “talkativeness” of mobile devices, as explored in [40],
were conducted in a different technological landscape. Since then, there have been
substantial advancements in technology, operating systems, and the redesign of smart
devices. Furthermore, these previous analyses were limited to a small sample of
smartphones, without consideration for tablets or laptops.

Our work makes significant contributions to the current literature in the following
key areas:

• Comprehensive Analysis of Probe Request Messages: We provide an in-
depth examination of probe request messages behavior, including insights into
the frequency of bursts, the number of packets per burst, and the key parameters
associated with various types of devices (such as smartphones, tablets, and
laptops). We also consider factors like the device’s vendor, operating system
version, and user-specific interaction patterns.

• MAC Address Randomization Analysis: We conduct a thorough investiga-
tion into MAC address randomization, offering insights into how it is imple-
mented and how frequently MAC addresses are randomized. This analysis
sheds light on the privacy and security aspects of wireless device communica-
tion.

• Correlation Analysis of Probe Request Parameters: We explore the cor-
relation between different parameters within a single device’s probe request
messages. This aspect of our study helps uncover patterns and dependencies
in the data, contributing to a deeper understanding of device behavior and
communication patterns.

In the upcoming Sections, we will conduct a literature review analysis to explore
the concepts of probe requests and probe responses. Following that, we will delve

12

WiFi Probe Request for Crowd Monitoring

into the subject of MAC address randomization. Subsequently, we will provide a
comprehensive and detailed description of the methodology employed for analyzing
the behavior of probe request messages. Finally, we will present the results obtained
from our analysis and we will conclude this Chapter with our final remarks.

2.3 IEEE 802.11 connection procedure

In this Section, we will provide a comprehensive description of the procedure
involved in establishing a connection between a WiFi Access Point (AP) and a
device. We will focus our attention on the IEEE 802.11 Probe Request and Probe
Response frames, conducting a thorough analysis of these frames by describing all
the key fields within their headers and payloads.

2.3.1 Interaction between device and access point

When a WiFi-enabled device is not currently connected to a network, it typically
employs one of two primary methods to discover available networks:

• Passive Scanning: Involves devices continuously listening for beacons sent
by Access Points (APs) to identify known networks.

• Active Scanning: Involves devices actively seeking out APs by transmitting
a specific type of management frames known as probe requests on IEEE
802.11b/g/n channels.

While passive scanning is a valid approach, it is not particularly efficient. Conse-
quently, proactive scanning, which involves active scanning through probe requests,
has become the preferred and more efficient method in contemporary WiFi network
discovery.

Figure 2.1 illustrates the entire procedure, from network discovery to the associa-
tion process. In the initial scanning phase, the device can operate in either passive
or active scanning mode. In passive mode, it listens for beacons broadcasted by
access points to announce themselves. In active mode, the device sends probe request
messages either in broadcast or occasionally in unicast. When a probe request is

13

WiFi Probe Request for Crowd Monitoring

Fig. 2.1 Comprehensive overview of the IEEE 802.11 Network Discovery and Association
procedures between an access point and a smart device.

sent, a probe timer is initialized. If no response is received, the device switches to
the next channel frequency and repeats the discovery process. However, if a probe
response is received, the device initiates the authentication process. This involves
exchanging authentication frames with the access point to verify the device’s IEEE
802.11 capabilities and ensure its compatibility with the network. Upon receiv-
ing an authentication frame, the access point sends an acknowledgment and then
an Authentication Response. If the IEEE 802.11 Authentication phase concludes
successfully, indicating a “Success” result, the device proceeds to the Association
phase. Here, the device aims to join the network and acquire an Association ID.
Once the Association request is acknowledged, the access point carefully examines
each field of the request, ensuring they align with its own IEEE 802.11 parameters.
If everything matches, the device and the access point commence either the 4-way

14

WiFi Probe Request for Crowd Monitoring

handshake or the EAP authentication process, depending on the specific network
configuration and security protocols in use.

2.3.2 IEEE 802.11 Probe Request frame

The IEEE 802.11 standard enables smart devices such as smartphones, laptops,
tablets, smartwatches, and more to efficiently communicate with nearby access
points to expedite the process of connecting to WiFi networks. These communication
messages are periodically sent by devices for two primary purposes: to search for
known APs to connect to and to seek out APs with stronger signal strength and
better performance, even if they are already connected to a WiFi network. These
messages are typically organized into groups, referred to as bursts, consisting of one,
two, three, or four packets. They are transmitted across a total of 13 channels, which
adhere to the IEEE 802.11 standard. These channels allow nearby access points to
both receive these messages and respond with probe response frames.

Through the analysis of these probe responses, the device can assess the available
networks in its vicinity and determine the optimal access point to connect to, taking
into account factors such as signal quality and security. It is important to note that
there are scenarios in which the client device may not receive any response, such as
when there are no APs nearby or when the APs are in passive mode. For reference,
Figure 2.2 provides an example of a probe request frame, according to the IEEE
802.11ac standard [42].

A list of the main fields that can be found in the probe request frames is the
following:

• Frame Control: It is the initial element of the header and contains information
such as the protocol version used, the type and sub-type of the message (i.e.,
type 0 and sub-type 4 refer to probe request frames).

Fig. 2.2 Architecture of the IEEE 802.11 Probe Request frame. Reproduced from [41].

15

WiFi Probe Request for Crowd Monitoring

• Duration: It indicates how long the frame and its acknowledgment frame are
going to occupy the channel. Due to the fact that the AP does not respond to
the sender with a dedicated acknowledgment frame but rather with a separate
message (i.e., the probe response frame), the length of the duration value in a
probe request is always zero.

• MAC (Media Access Control) Address: This address serves as a unique
identifier assigned to a Network Interface Controller (NIC) and consists of six
bytes. It distinguishes a device on the network and is assigned by the vendor,
ensuring global uniqueness. In the probe request frame, we can find the Desti-
nation Address (DA) and the Source Address (SA). The Destination Address
typically takes the form of a broadcast MAC address (i.e., FF:FF:FF:FF:FF:FF)
since probe requests are commonly broadcasted. On the other hand, the source
address is the MAC address of the WiFi card in the smart device responsible
for transmitting the probe request.

• Sequence Number (Seq-ctl): Each packet sent over a network connection
is assigned a unique sequence number. This value, present in the packet
header, facilitates proper packet ordering and reconstruction at the receiving
end. Probe request messages use 12-bit sequence numbers, allowing for values
ranging from 0 to 4095.

• SSID (Service Set Identifier): An alphanumeric string that functions as the
name of a wireless network. SSIDs are used to identify and differentiate
wireless networks within an area. When devices scan for available networks,
they can detect and display the SSIDs of nearby networks. Clients announce
their knowledge of specific SSIDs to attempt connections to particular wireless
networks.

• VHT (Very High Throughput) Capabilities: This field pertains to the capa-
bilities of a WiFi device that supports the IEEE 802.11ac standard, commonly
referred to as WiFi 5. It conveys information about the device’s support for
various features, including supported channel widths, spatial streams, and
modulation schemes. These capabilities enable higher data rates and improved
throughput in wireless communications. Throughput, in this context, refers to
the quantity of data effectively transmitted across a network within a specific
time frame.

16

WiFi Probe Request for Crowd Monitoring

• HT (High Throughput) Capabilities: These capabilities relate to WiFi
devices that adhere to the IEEE 802.11n standard, often referred to as WiFi 4.
This field provides information about channel bonding, MIMO (Multiple-Input
Multiple-Output) configurations, and supported data rates. Such capabilities
enhance data transmission speed and overall network performance.

• Extended Capabilities: In the context of a WiFi probe request, this field
encompasses additional features and capabilities supported by the WiFi device,
surpassing the basic functionalities outlined in the VHT and HT fields. Ex-
tended capabilities offer insights into advanced features, such as beamforming,
spatial reuse, or proprietary extensions specific to particular vendors. They
allow devices to communicate their enhanced functionalities to others within
the network.

• WPS (WiFi Protected Setup): A network security standard designed to
simplify the process of connecting devices to a WiFi network securely. WPS
enables users to establish a secure connection via methods like PIN entry,
push-button configuration, or NFC (Near Field Communication). The WPS
field in a probe request message indicates whether the device supports WiFi
Protected Setup and provides information about the supported methods for
establishing a secure connection.

• UUID-E (Universally Unique Identifier-Extended): This field serves to
distinguish between different devices. It contains a unique identifier allocated
to the device, facilitating its recognition and differentiation from other devices
by fellow devices or network systems. The UUID-E may be generated by the
device itself or assigned by a network administrator.

• FCS (Frame Check Sequence): This field functions as a checksum, verifying
that the preceding part of the frame has been received accurately on the
receiver’s end.

2.3.3 IEEE 802.11 Probe Response frame

When a compatible network is discovered by a probe request, it responds with a
probe response frame. This frame carries all the essential parameters found in a
Beacon frame, allowing smart devices to match these parameters and initiate the

17

WiFi Probe Request for Crowd Monitoring

Fig. 2.3 Architecture of the IEEE 802.11 Probe Response frame. Reproduced from [41].

authentication process on the wireless network. In more comprehensive terms, the
probe response frame contains a wealth of information about the network. This
information encompasses details like the network’s SSID, security protocols (such
as WPA2 or WPA3), encryption settings, channel specifics, supported data rates, and
other pertinent information. All of these details are provided to the requesting client.

It is important to note that probe response messages are always sent in unicast,
addressing the specific client device that initiated the probe request. Figure 2.3
provides an example of a probe response frame, according to the IEEE 802.11ac
standard [42].

2.4 MAC address and privacy

In this Section, we will delve into the significance of MAC (Media Access Control)
addresses, their importance in networking, and why major smart device vendors
have begun implementing techniques to protect user privacy associated with these
addresses.

18

WiFi Probe Request for Crowd Monitoring

2.4.1 MAC address

A MAC address is a unique identifier assigned to every Network Interface Card (NIC)
or network adapter in a computing device. It is a 48-bit (6-byte) value that serves as
a hardware-level identifier for devices within a local network. MAC addresses are
typically assigned by the manufacturer and remain constant throughout the device’s
lifetime.

As depicted in Figure 2.4, the MAC address can be visually dissected into two
distinct sections. The initial portion houses the Organizationally Unique Identifier
(OUI) [45], while the latter part houses the NIC specifier. This division serves
to uniquely identify the manufacturer or organization responsible for the device’s
network interface, followed by a specific identifier for the device itself.

Moreover, MAC addresses are divided into two categories based on the value
of the second-least-significant bit of the first byte in the address, known as the
U/L (Universally/Locally Administered) bit or GA/LA (Globally Assigned/Locally

Fig. 2.4 Architecture of 48-bit MAC address with highlighted the local/global and unicast/-
multicast bits.

19

WiFi Probe Request for Crowd Monitoring

Assigned) bit. This bit plays a crucial role in determining the uniqueness and origin
of MAC addresses:

• Globally Administered (GA) Addresses: MAC addresses with the U/L bit
set to 0 are considered globally administered. These addresses are assigned
by the IEEE (Institute of Electrical and Electronics Engineers) to device
manufacturers. GA addresses are meant to be globally unique and ensure that
two devices from different manufacturers have not the same MAC address.
The first three bytes of a GA MAC address are the OUI assigned to the
manufacturer.

• Locally Administered (LAA) Addresses: MAC addresses with the U/L bit
set to 1 are locally administered. These addresses can be configured by the
device owner or administrator. LAA addresses are typically used when privacy
is a concern or when users want to assign their own unique MAC addresses to
their devices. They are not guaranteed to be globally unique.

MAC addresses play several critical roles in networking:

• Device Identification: MAC addresses are used to uniquely identify devices
on a local network. This is essential for routing data packets to the correct
destination.

• Address Resolution: Devices use the Address Resolution Protocol (ARP)
to map IP addresses to MAC addresses, enabling efficient data transmission
within a network.

• Network Security: MAC filtering is a security measure used in some networks
to control device access based on MAC addresses.

While MAC addresses are essential for network functionality, they can raise
privacy concerns, particularly in the context of smart devices, because they can be
used for tracking purposes, profiling and location inference. Moreover, the GDPR
(General Data Protection Regulation) [39] in May 2018 through the document in [10]
stated that the MAC addresses are classified as a personal data and for this reason,
they must be subject to privacy protection mechanism.

20

WiFi Probe Request for Crowd Monitoring

2.4.2 MAC address randomization

Major smart device vendors have indeed recognized the privacy concerns associated
with MAC addresses and have taken steps to address these issues while still ensuring
network functionality. One prominent technique employed to enhance privacy is
known as MAC address randomization. This technique leverages specific bits in the
MAC address to create randomized addresses, making it more difficult for external
parties to track and identify users.

There are two primary modalities of MAC address randomization, each focusing
on different aspects of the address:

• Complete Randomization: In the case of complete randomization, all six
octets (48 bits) of the MAC address are randomized. This means that the entire
MAC address, including the Organizationally Unique Identifier (OUI) portion,
is replaced with a randomly generated value for each network connection. As
a result, the new MAC address bears no resemblance to the device’s original
hardware address. Complete randomization provides the highest level of
privacy because it completely severs the link between the device and its unique
identifier.

• Partial Randomization: In this modality, the original OUI of the MAC
address may be retained, or it can be substituted with a Company Identifier
(CID). However, the remaining three octets of the address are randomized
for each network connection. This approach balances privacy with some
level of network stability. Retaining the OUI or CID allows networks and
services to recognize the device manufacturer, which can be useful for network
management and device compatibility while still providing a degree of privacy
by randomizing the least significant part of the address.

The algorithms used for MAC address randomization are typically proprietary
and specific to each device manufacturer. Notably, Apple led the way in implement-
ing MAC address randomization in 2014 for smartphones running iOS 8, setting
a significant precedent in the industry [56]. Following Apple’s initiative, Linux
introduced MAC address randomization in the same year with Linux Kernel 3.18,
and Android followed suit the subsequent year with the release of Android 6.0 [57].
Despite the widespread support for MAC address randomization across various oper-
ating systems, it is important to note that many devices, particularly those using the

21

WiFi Probe Request for Crowd Monitoring

Android operating system, do not have MAC randomization enabled by default [65].
This means that users often need to manually enable this feature if they wish to take
advantage of the enhanced privacy protections it offers.

In the remaining part of this Section, we will conduct an analysis of the pri-
mary Operating Systems (OS) with regards to the implementation of MAC address
randomization.

Android implementation

Starting with Android 6.0, the option for MAC address randomization was intro-
duced [57]. However, this feature was not enabled by default and was left to the
discretion of manufacturers to implement. With the release of Android 8.0, Android
devices began using randomized MAC addresses for probing new networks when
not connected to any network. In Android 9, a developer option (disabled by de-
fault) allowed users to enable randomized MAC addresses when connecting to WiFi
networks. From Android 10 onwards, MAC randomization is enabled by default in
client mode [70]. It is important to note that the implementation of MAC address
randomization on Android devices can vary depending on the manufacturer, despite
Android’s open-source nature.

iOS implementation

Apple adopted random MAC addresses starting with iOS 8, and it is now the default
behavior for all devices, although users have the option to deactivate it [57]. In
iOS 14 and later, devices use a unique random MAC address per network when
connecting to WiFi. Users have control over this feature through device settings, and
under certain conditions, the device may revert to its actual MAC address [46].

Windows implementation

MAC address randomization was introduced with Windows 10, contingent upon
hardware and driver support. Similar to Android and iOS, Windows assigns a
distinct random address to each network it connects to, following a specific algorithm
outlined in [57].

22

WiFi Probe Request for Crowd Monitoring

Linux implementation

Linux introduced support for MAC address randomization during network scans in
kernel version 3.18. During each scan iteration, the MAC address is randomized.
On the software side, randomization is facilitated by wpa_supplicant, a widely-used
WiFi software on Linux, with support introduced in 2015 (v2.4).

While MAC address randomization techniques are beneficial for mitigating the
transmission of potentially sensitive information over the channel, it is important to
note that they do not provide complete elimination of this risk. Numerous flaws and
vulnerabilities in these implementations have been demonstrated in [101, 56]. These
weaknesses can involve exploiting other elements present in the probe request frame
or the timing of these frames, thereby enabling device tracking even when MAC
addresses are randomized. In response to the development of MAC address ran-
domization algorithms, countermeasures in the form of de-randomization processes
have been devised to negate the effects of randomization. Chapter 4 will provide
an overview of various de-randomization techniques documented in the literature.
Additionally, it will introduce our own approach, which utilizes a Machine Learning
(ML) algorithm to effectively address the challenges posed by randomization.

2.5 Methodology

In this Section, our focus is on the hardware and methodology employed for conduct-
ing the experiments and the subsequent data analysis. In detail, Section 2.5.1 outlines
the hardware used for the experiments, including the sniffer and the devices under
test. Section 2.5.2 provides an introduction to the location where the experiments
were conducted. Section 2.5.3 elaborates on the steps followed for each device to
ensure consistent and replicable results across all devices. In Section 2.5.4, we delve
into the analysis process, describing how the captured files were analyzed, the ap-
plied filters, and the key parameters of the probe request messages that received our
primary focus, Lastly, in Section 2.5.5 we describe an extension of our experiments,
pointing out the newer test location and the newer set of devices under analysis.

23

WiFi Probe Request for Crowd Monitoring

2.5.1 Hardware description

In this Section we present an overview of the hardware utilized, which includes the
sniffer and the devices under test.

Sniffer device

The tests were conducted using a custom ad-hoc sniffer, purpose-built by the Dropper
company [6], using off-the-shelf components. This sniffer, showed in Figure 2.5
consists of a Raspberry Pi model Zero 2 (Figure 2.5a) integrated with an external
wireless interface (Atheros AR927 chipset) connected via a micro USB cable. Ad-
ditionally, it includes a cellular connection interface (SIM7000E NB-IoT HAT) for
SSH communication with a control center laptop. The fully assembled sensor is
illustrated in Figure 2.5b. The Raspberry Pi runs Raspbian GNU/Linux 11 (bullseye)
as its operating system, and the capture software used is TShark version 3.4.10,
which captures data packets from a live network, applies capture filters (e.g., for
probe requests), and stores data in .pcap files.

Figure 2.6 shows the wireless network interface of the sensor. Unfortunately, we
are unable to use the built-in WiFi interface of the Raspberry Pi since it does not
support monitor mode. Consequently, the wlan0 interface (the Raspberry’s integrated
wireless interface) is disabled for our purposes. Instead, we have configured the
wlan1 interface (the external wireless interface) to operate in monitor mode, and it
is responsible for packet capture. Notably, the monitor mode interface is fixed to a

(a) Raspberry Pi, model Zero 2 (b) Final assembly

Fig. 2.5 Sniffer sensor for capturing 802.11 Probe Request messages.

24

WiFi Probe Request for Crowd Monitoring

Fig. 2.6 Sniffer wireless network interface configuration.

single 2.4 GHz band channel, specifically channel 1 (2.412 GHz). This choice of a
single channel was made due to the availability of antennas and sensors.

Tested devices

The selection of devices under test was meticulously carried out, taking into account
various factors to ensure maximum diversity in terms of manufacturer, OS version,
release year, and representation of typical devices used today. Table 2.1 provides an
overview of each device, including information on the vendor, model, release year,
and the OS version it was running. The inclusion of both tablets and laptops was
driven by the need to discern potential differences in probe request transmission and
randomization algorithms across these device types.

Our objective was to create a comprehensive understanding of MAC address ran-
domization, encompassing as many scenarios as possible and considering potential
implementation changes over the years. Furthermore, this study aimed to shed light
on the intricate relationship between hardware and MAC address randomization,
emphasizing how randomization patterns could evolve with changes in hardware
configurations.

It is worth noting that, for completeness, the private Wi-Fi address option was
enabled on the iPhone devices, as per the default settings.

25

WiFi Probe Request for Crowd Monitoring

Type Vendor Model OS Year

SmartPhone OnePlus Nord 5G Android 11.0 2021

SmartPhone Samsung Note 20 Ultra Android 12.0 2020

SmartPhone Apple iPhone 11 iOS 15.0.1 2019

SmartPhone Xiaomi Redmi Note 8T Android 10.0 2019

SmartPhone Huawei P9 Lite Android 7.0 2016

SmartPhone Apple iPhone 6 iOS 12.5.5 2014

Tablet Apple iPad 8 iPadOS 14.8.1 2020

Laptop Lenovo ThinkPad X13 Gen1 Windows 11 2021

Laptop Apple MacBookAir M1 macOS 12.1 2020

Table 2.1 Device list, tested in 2022.

2.5.2 Testing location

The ideal setting for conducting these tests would have been an anechoic chamber.
However, due to the high costs associated with building and maintaining such
facilities, not all universities have access to them. Consequently, we decided to carry
out our experiments in a remote area, away from any potential interference.

Our chosen location for the experiments was La Mandria Regional Park, situated
on the outskirts of Turin, Italy, surrounding the famous Royal Palace of Venaria
Reale. It is the perfect spot to execute tests in a controlled environment, thanks to its
vast open spaces, and the low turnout of people. The timing of the experiments, on a
cold morning in early March 2022, further reduced the likelihood of encountering
other individuals in the area.

Figure 2.7 provides two perspectives of the selected location within the park. In
the area there are 3 gazebos, used respectively as (1) control center, (2) location of a

26

WiFi Probe Request for Crowd Monitoring

(a) Google Maps screenshot of the location (b) Test day

Fig. 2.7 Location of the test, performed in March 2022.

device creating a hotspot for some test, and (3) location of the sniffer. The distance
between (1) and (3) is about 90m, while gazebo (2) is located halfway between the
other two.

2.5.3 Testing methodology

At the beginning of the experiment, we conducted two capture sessions: the first with
all the tested devices running, serving as a check to confirm that both the sniffer and
TShark were functioning correctly; the second one, lasting for 10 minutes, took place
after turning off all the devices. Its purpose was to verify that the wireless channel
remained free of any transmissions from nearby devices, ensuring no interference
with the data we intended to capture. As anticipated, the remote location guaranteed
a lack of interference.

For the TShark command, we used the configuration specified in Listing 2.1.
This setup included setting the capture interface to wlan1, applying a capture filter to
isolate probe requests, specifying the output format as .pcap, and designating the
output file name.

sudo tshark -i wlan1
-f ’subtype probe -req’
-w filename.pcap -F pcap -V

Listing 2.1 thsark command

27

WiFi Probe Request for Crowd Monitoring

Fig. 2.8 Example of TShark output file (.pcap) on Wireshark.

An illustrative instance of TShark’s output is depicted in Figure 2.8. By employ-
ing Wireshark [14], we can observe the packets within the generated .pcap file and
effectively explore their contents.

Each device experiment is subdivided into four distinct phases: Locked, Awake,
Active, and Changing AP. These experiments are conducted in two primary scenarios:
one where the device is not connected to any access point (AP), and the other where
it is connected to an AP created through a third smartphone, with an active hotspot
and the device’s WiFi interface disabled. The “Changing AP” phase represents the
period between the device’s disconnection from the first AP, referred to as ’OPEN’,
and its subsequent connection to a second AP, known as ’OPEN2’. Here is a detailed
description of each phase:

• Locked: In this phase, the device is locked with WiFi enabled. This phase
typically lasts between 3 to 8 minutes, depending on the time required to detect
a minimum number of probe request messages.

• Awake: During the Awake phase, the device’s screen is tapped at intervals of
approximately 30 seconds, with WiFi enabled.

• Active: In the Active phase, the device is unlocked, and the user actively
interacts with various apps and settings on the device.

28

WiFi Probe Request for Crowd Monitoring

• Changing AP: This phase occurs when the device is disconnected from the
initial AP and subsequently connected to a new one.

Tablets and PCs were tested under active usage conditions in both scenarios (i.e.,
connected and not connected to the AP).

2.5.4 Data analysis

We utilized the PyShark [48] Python library to process the captured data and generate
the results presented later in Section 2.6. PyShark serves as a wrapper for TShark,
enabling Python to parse packets using Wireshark’s built-in dissectors.

Our primary motivation was to develop a method for distinguishing a specific
device among others within the captured data. Inside the probe request messages,
certain fields can be used to uniquely identify a device, effectively creating a kind
of fingerprint. Notably, fields within the frame body, such as SSID, HT capabilities,
and extended capabilities, lend themselves to device identification. The SSID, in
particular, can be either a wildcard that allows the device to connect to any available
nearby access point (AP) or a specific network name. Additionally, we examined
the length of probe requests, specifically in terms of management frames within
IEEE 802.11, which includes only relevant fields while excluding the IEEE 802.11
MAC header fields. The core of our analysis began with packet filtering to isolate
the traffic relevant to controlling the sniffer’s behavior. We also applied the filter in
Listing 2.2, that is based on a minimum Received Signal Strength Indicator (RSSI)
to further ensure that we captured data only from devices within the experiment’s
capture range.

wlan_radio.signal_dbm > -70

Listing 2.2 Wireshark filter

Subsequently, our attention shifted to parsing each field within the packets and
constructing a data structure that facilitated the understanding of various metrics,
such as burst length, burst inter-arrival time, message length, and RSSI. Lastly, we
focused on examining additional parameters that appeared to characterize specific
devices, referred to as Information Elements (IEs), a concept also considered by the
authors of [63]. These parameters included HT capabilities, the desired AP’s SSID
for device connection, extended capabilities, and the vendor ID.

29

WiFi Probe Request for Crowd Monitoring

This approach allowed us to comprehensively analyze the probe request data and
extract valuable insights for device identification.

2.5.5 Experiment extension

To expand upon the investigations carried out at La Mandria Regional Park in 2022,
we replicated the experiments employing a mix of similar and diverse devices.
The primary objective was to widen the range of tested devices, thereby enriching
the dataset and fine-tuning the performance and capabilities of the probe request
generator discussed in Section 3.4.

In line with the considerations outlined in Section 2.5.2, our decision to conduct
these extended tests brought us to Parco della Pellerina, a large park in Turin. The
testing took place once more on a crisp morning in early March 2023. Figure 2.9
provides a visual representation of the specific area within Parco della Pellerina
where the sniffer was deployed, and various experiments were undertaken.

Throughout this experimental series, the devices subjected to testing are detailed
in Table 2.2. Each device is accompanied by a thorough overview, including essential

Fig. 2.9 Location of the test, performed in March 2023.

30

WiFi Probe Request for Crowd Monitoring

Type Vendor Model OS Year

SmartPhone Apple iPhone 14 Pro iOS 16.4 2022

SmartPhone Apple iPhone 13 Pro iOS 16.3 2021

SmartPhone Xiaomi Mi9 Lite Android 10.0 2020

SmartPhone Apple iPhone 11 iOS 16.3.1 2019

SmartPhone Apple iPhone 7 iOS 15.2 2016

Laptop Apple MacBookPro M1 macOS 11.6.2 2015

Table 2.2 Device list, tested in 2023.

information such as the vendor, model, release year, and the operating system version
utilized during the testing phase.

In contrast to the first testing cycle, the second set of experiments focused
exclusively on conducting tests when the devices were not connected to an access
point. Our emphasis was on the connection phase of the devices, a critical and
challenging aspect. This is particularly noteworthy because during this phase, devices
tend to consistently randomize their MAC addresses instead of maintaining a fixed
address as observed when they are associated with a WiFi network.

The testing methodology and data analysis procedures applied in this second
cycle remained consistent with those detailed in Sections 2.5.3 and 2.5.4.

2.6 Results

In this Section, we present the outcomes of our on-field experiments, offering a
comprehensive analysis of the data collected. Section 2.6.1 showcases the results
through a series of informative graphs, providing insights into the analyzed probe
requests emitted by the various devices, as detailed in Table 2.1. For a deeper
understanding of the diverse characteristics and features, Section 2.6.2 offers an
overview, comparing and contrasting the tested devices. Section 2.6.3 provides a

31

WiFi Probe Request for Crowd Monitoring

comprehensive comparison between the outcomes derived from the tests conducted
in 2023 and those conducted in 2022. Finally, in Sections 2.6.4 and 2.6.5, we
provide the key findings and takeaways derived from our experiments, and the main
limitations.

Prior to proceeding further, it is essential to note that all the raw data and
graphical representations for every device under consideration have been made
publicly accessible through a GitHub repository [81].

2.6.1 Experimental results

The .pcap files for each device were subjected to comprehensive analysis, result-
ing in the generation of three distinct types of graphs, akin to those presented in
Figures 2.10, 2.11, and 2.12. These figures respectively illustrate the analysis of
received packets, vendor-related data with burst analysis, as well as power-related
insights.

Figures 2.10 and 2.11 provide a detailed portrayal of the outcomes derived from
an analysis of probe requests captured from the Apple iPhone 11 at La Mandria
Regional Park in 2022. Each histogram within these figures corresponds to a 30-
second observation window. The graphs employ color-coded bands to demarcate
distinct test phases. Specifically, the yellow band denotes the Locked phase, the
green band signifies the Awake phase, and the purple band designates the Active
phase. Additionally, the pink band marks the instance when the device transitions to
a different access point (AP). A dotted vertical green line serves as a clear division,
indicating whether the device is connected to an AP (on the right) or not (on the left).

Analysis on received packets

In Figure 2.10, there are six distinct plots. Starting from the top, the first plot depicts
the number of packets received during various time intervals. As expected, the Active
phase displays a higher packet count than both the Locked and Awake phases. Even
when the device is connected to an AP, it continues to send probe requests, which
suggests that it persistently seeks a potentially better connection from another AP, but
as we can see the frequency of sending probe request decreases a lot. Furthermore, it
is worth highlighting the differences in probe request behavior during the various

32

WiFi Probe Request for Crowd Monitoring

Fig. 2.10 Comprehensive analysis of probe request packets sent from an Apple iPhone 11 for
different usage phases and for different connection states.

33

WiFi Probe Request for Crowd Monitoring

phases when the device is not connected to an access point. In the Locked phase,
probe requests are initially sent and then stop. However, during the Awake and
Active phases, probe requests occur more frequently, even though these phases are
shorter in duration compared to the initial Locked phase. This indicates increased
activity in sending probe requests during the later phases, possibly driven by the
device’s search for network access or performance enhancement.

The second plot showcases occurrences of original and randomly generated
source MAC addresses, offering insights into MAC address randomization behavior.
Remarkably, the iPhone 11 consistently employs randomized MAC addresses, even
while connected to an AP.

The third plot illustrates the overall number of distinct MAC addresses observed
throughout the entire experiment duration. This graph bears a connection to the last
graph in Figure 2.11, indicating that MAC address changes occur with each new
burst of packets. For example, when not connected to an AP, 117 distinct MAC
addresses are observed out of a total of 213 packets, corresponding to approximately
half of the packets. This reflects that MAC addresses change every two packets, in
alignment with the subsequent revelation that packets are transmitted in bursts of
two, with each burst employing a unique randomized MAC address. Interestingly,
when connected to the AP, the number of distinct MAC addresses within each burst
diminishes.

The fourth plot demonstrates occurrences of each access point SSID as observed
in the probe requests. Three distinct values are evident: the wildcard SSID and the
two preset SSIDs. Following the device’s connection to an AP, it tends to actively
search for the specific AP to which it is connected and includes the SSID in plaintext
within the probe request. However, when unconnected, it frequently employs the
wildcard value.

The fifth plot portrays the length, in bytes, of probe request messages over time.
Notably, when the phone connects to an AP, the probe request frame length increases
as it now includes the SSID and additional tags for vendor specification.

The final diagram in Figure 2.10 illustrates the frequency of HT (High Through-
put) capabilities values in the transmitted packets. It is evident that the value “0x402d”
predominates most of the time, even when the device is connected to the AP.

34

WiFi Probe Request for Crowd Monitoring

Analysis on vendor-related date and burst characterization

Figure 2.11 delves deeper into additional insights gleaned from the analysis. The
first plot mirrors the one found in Figure 2.10 and serves as a temporal reference.
The second plot, however, focuses on packet occurrences where the vendor ID
(OUI=00:17:F2) is explicitly specified. Notably, it illustrates that the vendor ID
starts to emerge after the device has connected to an access point, even when the
device’s MAC address continues to be randomized. Indeed, the OUI 00:17:F2 is
associated with Apple Inc. as per the OUI (Organizationally Unique Identifier)
list [45]. This signifies that when the device establishes a connection with an access
point, it maintains the first half of its MAC address fixed with one of the OUIs owned
by Apple, while continuing to randomize the second half of the MAC address. This
behavior reflects Apple’s strategy of preserving a consistent organizational identifier
while introducing variability to enhance user privacy and security.

The last three plots provide further details:

• inter-packet time in burst: This represents the time between packets within
the same burst. When the device is not connected to an access point, the
inter-packet time is consistently 20ms.

• burst length: This indicates the duration of a burst in milliseconds.

• packets per burst: It measures the burst’s length in terms of the number of
packets it contains.

From these observations, it becomes apparent that when a device is connected to
an access point, probe request bursts tend to be of longer duration. Upon scrutinizing
Wireshark [14] traces, it was discovered that this lengthening is due to the inclusion
of additional tags containing information about the vendor ID.

Prior to connecting to an access point, all bursts consist of 1 or 2 packets, each
with a distinct MAC address. This implies that MAC randomization operates at the
burst level rather than at the packet level.

Additionally, a study of the temporal progression of sequence numbers revealed
that they increment by one or a few units within the same burst (with the same
random MAC address). In contrast, the initial sequence number for a new burst is
chosen randomly or follows an unpredictable pattern. This observation underscores

35

WiFi Probe Request for Crowd Monitoring

Fig. 2.11 Comprehensive analysis of vendor-related data and probe requests packets burst
characterization sent from an Apple iPhone 11, highlighting the bursts and the vendor field
as a function of time, for different usage phases and for different connection states.

36

WiFi Probe Request for Crowd Monitoring

the deliberate countermeasures adopted by iPhone devices to mitigate fingerprinting
attempts.

Analysis on RSSI power field

Regarding the power at which packets are received by the sniffer, it can be concluded
that there is no distinct correlation with the different phases of the test. As illustrated
in Figure 2.12, the Received Signal Strength Indicator (RSSI) fluctuates over time.
However, these variations are primarily a result of minor movements made by the
experimenter when the phone is in an active state. During the Locked phase, the
device remains stationary in the same location. In contrast, during the Active phase,
the user interacts with the device’s screen using their fingers, which introduces
changes in the propagation conditions. Based on our experimental findings, it is
evident that RSSI values are highly erratic, even when the smartphone is positioned
in a fixed location. Therefore, RSSI alone cannot reliably serve as a unique identifier
for a device or determine the specific phase it is in.

Fig. 2.12 Comprehensive analysis of RSSI power field for an Apple iPhone 11 as a function
of time, for different usage phases and for different connection states.

37

WiFi Probe Request for Crowd Monitoring

2.6.2 Analysis and comparison between different devices

Throughout our analysis, we also made efforts to compare the behaviors of different
devices, whether they belong to the same family or category (e.g., smartphones,
tablets, or laptops).

Figures 2.13, 2.14, and 2.15 present the results obtained with the Apple iPhone
6. It is worth noting that, in contrast to the captured data from the Apple iPhone
11, we intentionally left the WiFi interface enabled during the configuration of the
hotspot for the second part of the experiment. This allowed us to observe the effects
at the boundaries during the connection to an AP.

It is intriguing to observe how the behavior of devices from the same manufac-
turer has evolved over the years. A striking example of this evolution can be seen
when comparing the Apple iPhone 6 (released in 2014) and the Apple iPhone 11
(released in 2019). Notable changes are evident in the second graph of Figure 2.13,
where occurrences of the original MAC address can be found. This suggests that in
2014, there was no randomization for Apple devices when they were connected to
access points (APs); randomization was active only when they were not connected.
This same behavior was also observed for Android 7.0, specifically when analyzing
the Huawei P9 Lite. Furthermore, the number of distinct MAC addresses aligns with
the results discussed in the previous Section. In terms of the SSID field and frame
length, the behavior remains consistent with the previous analysis. However, a more
substantial difference emerges in the last graph of Figure 2.13, specifically related to
the HT (High Throughput) capabilities. In this case, the HT capabilities appear to
remain constant throughout the experiment. This observation may be connected to
the fact that newer generations of iPhones possess more complex wireless interfaces,
enabling them to establish a broader range of connection types, while older genera-
tions lack this capability. Consequently, older devices may continue to send probes
with the same HT capabilities value due to their more limited wireless capabilities.

Regarding the burst analysis of the iPhone 6, we observe that there are not signif-
icant differences compared to the iPhone 11. Figure 2.14 illustrates this similarity,
with only a few traits that distinguish it from the previous device. Notably, the
vendor-specific data appears more frequently in the iPhone 6 analysis compared to
the iPhone 11. Additionally, the time duration of the bursts and inter-packet times
appear to be higher for the iPhone 6 in comparison to its newer counterpart.

38

WiFi Probe Request for Crowd Monitoring

Fig. 2.13 Comprehensive analysis of probe request packets sent from an Apple iPhone 6 for
different usage phases and for different connection states.

39

WiFi Probe Request for Crowd Monitoring

Fig. 2.14 Comprehensive analysis of vendor-related data and probe requests packets burst
characterization sent from an Apple iPhone 6, highlighting the bursts and the vendor field as
a function of time, for different usage phases and for different connection states.

40

WiFi Probe Request for Crowd Monitoring

Fig. 2.15 Comprehensive analysis of RSSI power field for an Apple iPhone 6 as a function
of time, for different usage phases and for different connection states.

The power analysis of the iPhone 6, as depicted in Figure 2.15, reveals no
significant differences when compared to the iPhone 11. There are a few packets
between the Active and the Awake phases that arrived with slightly higher power,
but these observations do not provide substantial grounds for making assumptions or
drawing conclusions.

41

WiFi Probe Request for Crowd Monitoring

Finally, we have undertaken the task of summarizing and comparing the ex-
perimental results obtained for all the devices. The key characteristics have been
consolidated and presented in Tables 2.3, 2.4, and 2.5. This comprehensive compari-
son encompasses the following features:

• MAC address randomization;

• Burst characteristics;

• Sequence number;

• High Throughput (HT) Capabilities;

• Management (MGT) Frame;

• SSID Field;

• Vendor Field.

In Tables 2.3, 2.4, and 2.5 the “connected/unconnected” label indicates the
device’s connection status to the AP.

As evident, virtually every device displays distinctive behaviors within each of
the aforementioned categories, thereby adding complexity to the challenge of estab-
lishing guidelines for quantifying the number of unique devices, and consequently,
the individuals carrying them, within a given area. To sum up, in Section 2.6.4, we
will provide a summary of our research findings.

42

WiFi Probe Request for Crowd Monitoring

OnePlus Nord 5G
(2021)

Samsung Note 20
Ultra (2020)

Apple iPhone 11
(2019)

MAC ad-
dress Ran-
domization

randomized at each
burst

unconnected:
changes at each
burst; connected:
constant random
MAC address

unconnected:
changes at each
burst; connected:
constant random
MAC address

Burst length about 3/5 packets unconnected:
about 3/5 packets;
connected: large
bursts with same
MAC address

unconnected:
2/3 packets; con-
nected: longer

Sequence
Number

increases inside the
burst, random start-
ing number in dif-
ferent bursts

unconnected:
changes randomly;
connected: in-
creases constantly

unconnected:
changes randomly;
connected: in-
creases (almost)
constantly

HT Capabili-
ties

same text in each
packet

same text in each
packet

mostly same text in
each packet

Management
(MGT)
Frame

unconnected: vari-
able frame lengths;
connected: con-
stant length

unconnected: vari-
able frame lengths;
connected: con-
stant length

unconnected: vari-
able frame lengths;
connected: length
depends with AP

SSID Field never specified SSID in plaintext
in some packets;
in others, strings
not traceable to any
SSID name used in
the experiment

SSID in plaintext
when connected;
wildcard used to
look for other APs

Vendor Field Vendor ID present,
but sometimes un-
defined

Vendor ID always
specified

Vendor ID in
clear only when
connected

Table 2.3 Smartphones behaviour comparison.

43

WiFi Probe Request for Crowd Monitoring

Xiaomi Redmi
Note 8T (2019)

Huawei P9 Lite
(2016)

Apple iPhone 6
(2014)

MAC ad-
dress Ran-
domization

unconnected:
changes at each
burst; connected:
same random
address for each
AP

always original,
not randomized
MAC address

unconnected:
changes at each
burst; connected:
original, not ran-
domized MAC
address

Burst length unconnected:
3/4 packets; con-
nected: longer

1 packet about 3/5 packets

Sequence
Number

unconnected:
changes randomly;
connected: in-
creases (almost)
constantly

increases con-
stantly

increases con-
stantly

HT Capabili-
ties

same text in each
packet

changes depending
on AP

same text in each
packet

Management
(MGT)
Frame

unconnected: vari-
able frame lengths;
connected: length
depends on associ-
ated AP

frame length con-
stant except for
some packets when
connecting

unconnected: vari-
able frame lengths;
connected: length
depends on associ-
ated AP

SSID Field unconnected:
wildcard; con-
nected: SSID in
plaintext; wildcard
used to look for
other APs

connected: SSID
in plaintext; uncon-
nected not in plain-
text

SSID in plaintext
when connected

Vendor Field Vendor ID always
specified

Vendor ID always
specified

Vendor ID always
specified

Table 2.4 Smartphones behaviour comparison.

44

WiFi Probe Request for Crowd Monitoring

Apple iPad 8
(2020)

Lenovo ThinkPad
X13 Gen1 (2021)

Apple Mac-
BookAir M1
(2020)

MAC ad-
dress ran-
domization

randomized at each
burst

none unconnected:
changes at each
burst; connected:
original MAC
address

Burst length 2/4 packets 1 packet 2/4 packets

Sequence
Number

always changes
randomly

always changes
randomly

always changes
randomly

HT Capabili-
ties

same text in each
packet

same text in each
packet

same text in each
packet

Management
(MGT)
Frame

constant length,
which changes
only when connect-
ing to AP

constant length
when looking for
APs, then changes
when SSID field is
specified

constant length
when looking for
APs, then changes
when SSID field is
specified

SSID Field wildcard, except
when connecting
to AP

SSID specified
a few times also
when connected to
AP

wildcard, except
when connecting
to AP

Vendor Field Vendor ID speci-
fied in clear only at
the moment of con-
nection to the AP

Vendor ID never
specified

Vendor ID speci-
fied in clear only at
the moment of con-
nection to the AP

Table 2.5 Tablet and laptops behaviour comparison.

45

WiFi Probe Request for Crowd Monitoring

2.6.3 Results comparison between different years and OS version

Utilizing the findings from the second set of experiments conducted in 2023, we can
now compare the performance of the Apple iPhone 11 over the span of a year and
with an updated operating system, transitioning from iOS 15.0.1 to iOS 16.3.1.

Figures 2.16, 2.17, and 2.18 present analyses of received packets, vendor-related
data with burst analysis, and power-related insights for the 2023 experiments. These
figures can be juxtaposed with their counterparts from the 2022 experiments, show-
cased in Figures 2.10, 2.11, and 2.12. It is important to note that the results extracted
in 2023 should be compared specifically with the “Non Connected” part of the
graphs, approximately the first half of each graph before the vertical green dotted
line, in the 2022 counterpart.

Examining the number of packets sent during the experiments, the newer version
of the operating system appears to send fewer packets compared to its predecessor.
Instead, the consistent use of randomized MAC addresses and the inclusion of
a Wildcard value in the SSID list are confirmed. Additionally, the length of the
management frame and the HT capabilities value remains unchanged.

Shifting the focus to vendor-related data, a similar packet count per burst is ob-
served, but higher burst length and inter-packet time in bursts are detected compared
to the older experiments. This suggests that the newer OS of the Apple iPhone 11
tends to send probe request packets less frequently, with a longer time gap between
consecutive packets within the same burst.

Regarding power analysis, the notion that RSSI values are highly erratic is
confirmed. Figure 2.18 illustrates that the RSSI set of values ranges between -
36 dBm and -69 dBm, even when the smartphone is positioned in a fixed location in
a large park without any obstacles around.

46

WiFi Probe Request for Crowd Monitoring

Fig. 2.16 Comprehensive analysis of probe request packets sent from an Apple iPhone 11,
during 2023 experiments, for different usage phases and for different connection states.

47

WiFi Probe Request for Crowd Monitoring

Fig. 2.17 Comprehensive analysis of vendor-related data and probe requests packets burst
characterization sent from an Apple iPhone 11, during 2023 experiments, highlighting the
bursts and the vendor field as a function of time, for different usage phases and for different
connection states.

48

WiFi Probe Request for Crowd Monitoring

Fig. 2.18 Comprehensive analysis of RSSI power field for an Apple iPhone 11, during 2023
experiments, as a function of time, for different usage phases and for different connection
states.

2.6.4 Experimental findings

In summary, the main takeaway from our analysis is that each device has a distinct
behavior when it comes to sending probe request messages. There are notable
differences among the tested devices.

The number of probe requests varies significantly, i.e., Xiaomi sends only a few
packets, while OnePlus sends the highest number.

MAC randomization processes differ substantially across devices. Randomiza-
tion is typically applied on a per-burst basis, and burst length increases slightly when
transitioning from iOS to Android. Notably, MAC randomization is not consistent
within models from the same manufacturer, as seen in the transition from Apple
iPhone 6 to iPhone 11. In some instances, like the Huawei P9 Lite and Lenovo
ThinkPad, MAC addresses are not randomized at all, and the real MAC address
appears in plaintext in every probe request.

Moreover, we found that the SSID field is an unreliable unique identifier, as
devices do not transmit it regularly, and for example, OnePlus never transmits it.

49

WiFi Probe Request for Crowd Monitoring

Similar behavior for the sequence numbers in packet bursts that vary a lot. Older
phones display linear increases, while newer ones exhibit random increments, making
unique device identification challenging.

Some features, such as HT capabilities, remain relatively consistent in many
devices, with the exception of the iPhone 11, which rarely changes them. In contrast,
the Huawei P9 changes its HT capabilities whenever connected to different access
points (APs). Finally, when a device is connected to an AP, its probe request includes
information about the connected AP, such as Vendor ID, resulting in a larger probe
request size than when not connected.

2.6.5 Limitations

One notable limitation to our study is the rapidly evolving landscape of the smart-
phone market. New devices are continually being introduced, each with unique
broadcasting strategies and message formats. The devices tested in this study repre-
sent only a snapshot of the smartphone ecosystem at the time of experimentation.
Therefore, it is reasonable to expect that newer devices, not included in this study,
may exhibit different behaviors, potentially impacting the generalizability of our
findings. Furthermore, the dynamics of mobile operating systems play a significant
role in shaping device behavior. Updates and revisions to operating systems can
introduce changes in how devices handle probe requests, affecting their broadcasting
strategies.

It worth mentioning that while efforts were made to select a diverse set of devices,
it is impossible to test every device model available in the market comprehensively.
Despite these limitations, it is essential to recognize the valuable insights gained
from this study. Understanding how device usage influences the frequency of probe
request transmissions provides valuable knowledge for optimizing the estimation of
device counts. Moreover, the calibration of parameters based on observed behaviors
enables more accurate device counting by defining appropriate capturing windows.

50

WiFi Probe Request for Crowd Monitoring

2.7 Conclusions and future works

In light of the widespread adoption of mobile phones and various smart devices,
the capacity to track their presence through data messages they broadcast, such as
WiFi probe requests, carries significant implications. This capability allows for the
estimation of the number of individuals within a particular area and holds promise
for a range of applications, including security enhancements and the optimization
of public services. However, achieving this goal is challenging due to the diverse
broadcasting strategies and message formats employed by these devices, despite
standardization efforts.

In this study, we have undertaken an extensive analysis of the behavior of various
device types and operating systems. Our findings reveal that numerous strategies,
including MAC address randomization, pose obstacles to accurate device quantifi-
cation. Nevertheless, by considering additional parameters, such as the duration
of beacon bursts or specific fields within the beacons themselves, it becomes feasi-
ble to devise more comprehensive approaches for approximating individual device
broadcasts.

This research represents the initial phase in the ongoing journey towards imple-
menting a system capable of accurately counting the number of devices within its
coverage area and gaining valuable insights into the flow of people across various
access points. The motivation behind this study was rooted in the necessity to gain a
deeper understanding of probe request message behavior to enhance counting algo-
rithms. This investigation serves as the foundational groundwork for the activities
detailed in Chapter 3. It provides the essential knowledge required to develop and
deploy our custom solution, along with a tailored counting framework, as elucidated
in Chapter 4. The culmination of these efforts aims to offer an advanced and effective
solution for device counting and provide invaluable insights into user behavior in a
variety of scenarios.

51

Chapter 3

Probe Request Generator and
Privacy-Aware People Flow
Monitoring through Bloom Filters

Accurate estimation of the number of individuals within a specific area plays a
vital role in the fields of crisis management and disaster response. This capability
enables the precise monitoring of crowd dynamics and supports effective decision-
making processes. However, when we leverage the WiFi fingerprint technique,
which relies on the MAC addresses of mobile devices as a proxy for people counting,
it introduces privacy concerns. The stringent European General Data Protection
Regulation (GDPR) [39] and the proactive measures taken by leading smart device
vendors, such as MAC randomization, led to a reevaluation and reconfiguration
of most techniques explored in the past. In this Chapter, we present a specialized
WiFi traffic generator designed to mimic the authentic behavior of WiFi cards.
This generator serves as a crucial tool for establishing the ground truth against
which counting algorithms can be evaluated. Additionally, we introduce a novel
crowd monitoring technique that utilizes Bloom filters to ensure a formal deniability
property, thereby safeguarding users’ privacy.

52

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.1 Research motivation and State of the Art

In recent years, companies and organizations have undergone a significant shift in
their approach towards safeguarding users’ privacy. This transformation has been
particularly pronounced within the European Union, where a crucial milestone was
achieved in 2018 with the implementation of the General Data Protection Regulation,
commonly known as GDPR [39]. This legislative initiative has empowered individ-
uals with greater control over their personal data and has placed stringent ethical
and responsible data management obligations upon organizations. The GDPR frame-
work comprises meticulously crafted rules that encompass all facets of data-related
activities, spanning from data collection to utilization and sharing. In response to
the privacy-enhancing measures introduced by vendors, Machine Learning (ML)
techniques have emerged as a viable solution to enhance counting accuracy by at-
tempting to infer whether different WiFi probe requests belong to the same device.
This approach necessitates a substantial volume of data with ground truth information
to train these models effectively. Furthermore, in compliance with GDPR’s stringent
regulations, there is a mandatory shift in the way MAC addresses are stored and
managed.

In the document [10], the Italian Data Protection Officer (DPO) underscores the
classification of MAC addresses as personal data under GDPR, necessitating the
implementation of robust privacy protection mechanisms.

Numerous solutions have been put forth in the existing literature to tackle this
issue, including references [91–93]. These solutions collectively address privacy
concerns by harnessing Bloom filters for the storage of MAC address information
and by employing an asymmetric homomorphic encryption system, which is applied
to the data within the Bloom filter. Homomorphic encryption (HE) [78] represents a
specific encryption paradigm that permits mathematical operations to be executed
directly on encrypted data without necessitating decryption. The outcomes of these
operations, also encrypted, are identical to the results obtained from performing the
same operations on unencrypted data. Homomorphic encryption not only upholds the
security of sensitive information but also retains the ability to compute intersections
between distinct Bloom filters. This capability is pivotal in the computation of crowd
flow trajectories, maintaining a robust level of privacy protection throughout the
process.

53

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

As demonstrated in [21], Bloom filters offer a means of preserving the privacy of
stored data. However, to achieve the formal level of anonymity mandated by GDPR,
it is imperative to have a minimum number of data insertions. In other words, a
small quantity of inserted data does not guarantee the desired level of anonymity. It
is important to note that this observation is not addressed in [91–93], rendering their
proposed solutions applicable primarily for sufficiently large crowds. Furthermore, in
cases where the Bloom filters are only encrypted when transmitted over the network,
there is a risk of exposing the data contained within the sniffer device to potential
privacy breaches.

Moreover, the work presented in [21] introduces two crucial concepts pertaining
to anonymity protection: γ-deniability and γ-K-anonymity. The first concept posits
that an element stored in the Bloom filter is considered “deniable” if it can be
substituted with other elements not initially inserted into the filter, all without
altering the Bloom filter bitmap. The second concept extends the first by asserting
that an element in a Bloom filter attains γ-K-anonymity if it can be “covered”, with
a probability of γ , by K−1 other elements that were not originally included in the
filter. These principles are fundamental for achieving the desired level of privacy and
anonymity in data storage and analysis.

3.2 Main contributions

The current study, the details of which are outlined in [83, 86], undertakes a com-
prehensive exploration of two primary facets. Firstly, it focuses on the development
of a WiFi probe request generator capable of producing numerous datasets in the
form of .pcap traces, all equipped with invaluable ground truth data and various
accompanying statistics. Building upon the insights provided in [85], this generator
enables the emulation of the probe request behaviors of the analyzed devices, as
well as those analyzed subsequently. Furthermore, the study delves into the effective
storage of MAC addresses, ensuring compliance with the regulatory constraints
imposed by GDPR [39]. It introduces the novel concept of anonymization noise as a
means to fulfill these regulatory requirements.

Our work makes significant contributions to the current literature in the following
key areas:

54

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• Probe Request Generator: We have developed a unique and pioneering
probe request generator, capable of accurately emulating the real behavior of
multiple devices that were subject to testing. This tool enables the creation
of diverse scenarios, facilitating the generation of realistic .pcap traces along
with their corresponding ground truth data.

• Anonymization noise applied to Bloom Filters: We introduce the novel
concept of anonymization noise, a crucial addition to Bloom filters. This
innovative approach ensures that all the MAC addresses stored into the Bloom
filter are 1-deniable, signifying that they can be deniable with probability equal
to one.

In the following Sections, our approach will involve a thorough examination
of prevalent anonymization techniques currently in use. Following this, we will
furnish an extensive and in-depth account of our newly developed probe request
generator, drawing from insights obtained in [85]. Subsequently, we will unveil our
privacy-conscious solution for the analysis of people flows, harnessing the power of
Bloom filters and the γ-deniability property. In closing, we will present the outcomes
derived from both of these contributions, offering a comprehensive overview of the
results and some final remarks.

3.3 Anonymization techniques for storing MAC ad-
dresses

Anonymization techniques are a set of strategies and processes employed to eliminate
or modify identifying information within personal data. Their primary purpose is
to render data either fully anonymous or pseudo-anonymous, thereby diminishing
the risk of individual recognition. These techniques aim to strike a delicate balance
between facilitating the use of data for legitimate purposes such as research and
analysis while simultaneously upholding the rights and privacy of individuals.

In this Section, we embark on an exploration of the General Data Protection
Regulation (GDPR) [39] by elucidating its core principles and identifying the key
stakeholders within its framework. Subsequently, we delve into an exhaustive
analysis of diverse anonymization techniques. Our focus will be on describing

55

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

various types of hash functions and the versatile Bloom filter data structure. By
doing so, we aim to provide an in-depth understanding of these techniques and their
applications in preserving data privacy and security.

3.3.1 GDPR

In the digital age, the General Data Protection Regulation (GDPR) [39], or RGPD in
Italian, stands as a cornerstone of data protection. This comprehensive European reg-
ulation seeks to harmonize and fortify rules governing the collection and processing
of personal data, with the overarching goal of safeguarding individual privacy

GDPR’s core mission revolves around ensuring the privacy and security of
personal data. The regulation divides data into two categories: sensitive data and
identifying data. Sensitive data encompasses deeply personal information, such
as an individual’s race, religious beliefs, political affiliations, sexual orientation,
health status, and economic and social standing. Identifying data includes personal
details, residential addresses, and digital identifiers like email addresses, cookies, IP
addresses, and geolocation data. These distinctions are pivotal, as they provide a
foundation for different levels of protection based on data sensitivity.

One of GDPR’s remarkable features is its broad applicability. It extends its
protective umbrella over a wide range of entities, encompassing not only individuals
but also professionals and companies, regardless of their location. GDPR governs
the processing of personal data belonging to European citizens, whether it occurs
inside or outside the European Union and in both online and offline contexts.

To fulfill its mission effectively, GDPR identifies four key actors in data protec-
tion:

• Data Subjects: These individuals are the rightful owners of the data being
processed, empowered with certain rights to access, rectify, or erase their data.
This hands control back to the individuals, aligning with GDPR’s philosophy
of data privacy as a fundamental human right.

• Data Controllers: These are typically companies to whom users willingly
entrust their data. Data Controllers determine the objectives and procedures
for data processing and are responsible for implementing measures to ensure

56

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

compliance with privacy regulations, emphasizing the principle of privacy by
design.

• Data Processors: Individuals appointed by Data Controllers who work col-
laboratively on implementing technical and organizational measures to ensure
data security. They play a pivotal role in responsible data handling.

• Data Protection Officers (DPOs): Responsible for ensuring adherence to
GDPR, DPOs must possess specialized knowledge of data protection regula-
tions.

In the context of employing WiFi probe requests for people counting, even when
MAC addresses are partially randomized, concerns about privacy persist. While
measures such as de-identification, encryption, or pseudonymization are often used
to protect personal data, it is important to recognize that data that can still be used
to re-identify an individual falls within the scope of the GDPR. In a document
referenced as [10], the Italian Data Protection Officer (DPO) has underlined this
classification of MAC addresses as personal data. As a result, the GDPR necessitates
the implementation of robust privacy protection mechanisms when dealing with such
data.

3.3.2 Hash function

Hash functions are cryptographic algorithms utilized to transform data of varying
sizes, called message, into a consistent, fixed-length value known as hash. These
algorithms are engineered to operate in a one-way fashion, implying that it should, in
theory, be infeasible to reverse the function and deduce the original plaintext data. In
Figure 3.1, we can observe a practical example of how these hash functions operate.

The process begins by segmenting the input data into uniform, fixed-sized blocks,
aptly named data blocks. If the data blocks are not sufficiently large, padding may
be introduced to ensure they reach the required size. Subsequently, the hash function
is iterated for as many times as there are data blocks, and with each iteration, the
output of the preceding data block serves as the input for the subsequent block.
Consequently, the final output represents the cumulative value of all the processed
blocks. It is noteworthy that even a single alteration in one bit anywhere within the
message will result in a completely different hash value, highlighting the sensitivity

57

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.1 Hash function algorithm.

and effectiveness of hash functions in detecting even the slightest modifications in
the input data.

Hash functions possess several crucial characteristics, each contributing to their
effectiveness and utility:

• Uniqueness: When the same hash function is applied to a specific input, it
will unfailingly produce the same output. However, two distinct inputs should
result in entirely dissimilar hash values. This characteristic is essential for the
integrity and consistency of the hash function.

• Speed: Hash functions must exhibit efficiency and rapidity in calculating
the digest. This attribute is pivotal when dealing with large volumes of data,
ensuring that the processing of information remains expeditious.

• Collision Resistance: Collisions occur when two distinct inputs yield the
same hash output. Hash functions are meticulously engineered to minimize the
likelihood of collisions as much as possible. This robust collision resistance
makes it arduous, if not practically impossible, to find two different input
values that generate the same hash value.

• Data Sensitivity: Even minor alterations in the input data should result in a
significantly distinct hash value. This property, often referred to as diffusion,
bolsters the security of the hash function, making it highly responsive to
changes in the input data.

Ideally, hash functions are designed to be irreversible, implying that while it is
relatively quick and straightforward to compute the hash when the input message

58

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

is known, it should be exceedingly challenging to reverse the process and deduce
the original input message when only the hash value is available. The process of
computing the input message from the output hash value, although feasible, requires
substantial computational power and is typically accomplished through a “brute force”
search. This method involves employing trial and error to identify a message that
matches the given hash value, which is an intricate and resource-intensive process.

Some common hashing algorithms include MD5, SHA-1, SHA-2, LANMAN,
and NTLM.

MD5

MD5 is the fifth version of the Message Digest algorithm, producing 128-bit hash
outputs. Initially, MD5 was a widely adopted hashing algorithm, but it fell out of
favor due to the emergence of vulnerabilities, notably collisions. Consequently, it
was gradually phased out.

SHA-1

SHA-1, the second version of the Secure Hash Algorithm standard (following SHA-
0), generates 160-bit hash outputs. In response to the vulnerabilities discovered in
MD5, SHA-1 gained prominence as a replacement.

SHA-2

SHA-2 represents a suite of hashing algorithms that introduces significant improve-
ments over its predecessor, SHA-1. The SHA-2 family comprises six distinct hash
functions, each producing digests (hash values) of varying lengths, including 224,
256, 384, or 512 bits. These specific members of the SHA-2 family are SHA-224,
SHA-256, SHA-384, and SHA-512.

LANMAN

Microsoft LANMAN (LAN Manager) served as a hashing algorithm for storing
passwords on legacy Windows systems. It employed DES (Data Encryption Stan-
dard) algorithms for hashing. Unfortunately, the DES implementation in LANMAN

59

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

is not very secure, making it susceptible to brute force attacks. Password hashes
in LANMAN can be cracked in just a few hours. Microsoft no longer defaults to
LANMAN as the storage mechanism, although it remains available but is turned off
by default.

NTLM

NTLM, which stands for NT LAN Manager, is an algorithm used for password hash-
ing during authentication. It succeeded LANMAN and was subsequently followed
by NTLMv2, which employs an HMAC-MD5 algorithm for hashing.

3.3.3 Salted hash

One of the challenges posed by hash functions is their deterministic nature, where
the same input consistently yields the same output. This predictability becomes a
security concern when multiple users select the same password because their hashed
passwords will be identical. This predictability can aid attackers in their efforts to
discover the original plaintext corresponding to a particular hash. Once the password
is uncovered, it can potentially be used to gain access to all accounts using that
particular hash.

One effective solution to counter this issue is the utilization of a technique called
salted hashing. Salted hashing enhances security by introducing an extra layer of
randomness into the hashing process, as depicted in Figure 3.2. This involves the
inclusion of a randomly generated string known as the salt into the input before
performing the hash operation. This addition of salt makes it considerably more
challenging for an attacker to deduce the original plaintext without access to both
the salt and the hashed value.

Moreover, the length of the salt plays a critical role in fortifying the security of the
hashing process. A longer salt substantially increases the computational complexity
involved in attacking the hash, thereby increasing the candidate set exponentially.
Furthermore, a longer salt also augments the storage space required for hash tables,
diminishing the likelihood that such tables exist in the wild. This combination of
factors significantly bolsters the security of the salted hashing approach.

60

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.2 Salted hash function.

The practice of salting offers several crucial advantages for data security. Primar-
ily, it serves as an effective defense against common attacks like rainbow table ones.
In these attacks, pre-computed tables of hashed values are employed to accelerate
the process of reversing hashes. The introduction of a salt disrupts the predictability
of these tables, making them significantly less effective in compromising hashed
data.

Additionally, salting provides a robust defense against brute-force attacks, where
attackers attempt to guess the plaintext by exhaustively trying various potential
inputs. The presence of a salt introduces an additional layer of complexity, making
the hash function appear non-deterministic. This is a desirable characteristic as
it helps prevent the disclosure of duplicates through the hashing process, thereby
enhancing the security of sensitive data.

3.3.4 Truncated hash

Another variation of hash functions is known as truncated hashing. This type of
hashing involves the process of shortening the output of a hash function to a specific
number of bits. Instead of producing the complete hash value, only a portion of it is
retained, as illustrated in Figure 3.3. It is essential to recognize that when a hash is
truncated, its theoretical collision-resistance is reduced. In other words, there is a
higher probability that different inputs will produce the same truncated hash.

It is noteworthy to mention that within the SHA-2 family of hash functions,
there exist simplified truncated variants of their full counterparts. These include
SHA-256/224, SHA-512/224, SHA-512/256, and SHA-512/384. The notation, for
instance, SHA-X /Y , signifies a full-length SHA-X hash truncated to Y bits. These

61

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.3 Truncated hash function.

truncated variants provide a way to balance computational efficiency with the desired
level of security.

3.3.5 Bloom filter

A Bloom filter is a probabilistic data structure, well known in the literature [95, 27],
employed to represent a set of elements. It is implemented using an array of bits,
denoted as BF ∈ 0,1m, where m is the length of the array, and k independent hash
functions, labeled as H1,H2, . . . ,Hk. These hash functions map an input element x to
one of the m bits within the bit array. We denote the ith bit of BF as BF [i]. Initially,
all bits are set to 0. When inserting an element x into the Bloom filter (a graphical
representation can be found in Figure 3.4), the k hash functions are applied to x, and
the bits in BF corresponding to the positions generated by the hash functions are set
to 1:

BF [Hi(x)] = 1 ∀i = 1, . . . ,k (3.1)

To verify if an element is present in a Bloom filter, the element is hashed through
the same set of k hash functions, and the output is compared to the current values of
the corresponding bits in the Bloom filter (BF). If all the 1s in the output match the
corresponding bits in BF (i.e., both are set to 1), the element is considered probably
present in the Bloom filter. However, if even a single bit in the match is set to 0, the
element is considered definitely not present in the Bloom filter.

One notable limitation of Bloom filters is their inability to delete elements from
the filter, as there is no guarantee that the element is present in the filter. However, in

62

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.4 Bloom filter algorithm.

our specific use case, this limitation is not a concern as our primary need is to add
MAC addresses to the filter without the requirement to remove any of them.

False Positive

It is important to note that a Bloom filter can potentially provide false positives,
meaning that it may mistakenly indicate that an element is present when it is not.
However, it does not provide false negatives, meaning that it cannot mistakenly
indicate that an element is not present when it actually is.

By mapping elements from a larger universe to a smaller universe represented by
a bit-vector, there is a calculable probability that an element x not belonging to set S
experiences collisions for each output of the k hash functions. When such collisions
occur, it is referred to as a “false positive”. (3.2) provides a way to compute this
probability.

Pr(false positive) = (1− p)k =

(
1−
(

1− 1
n

)mk
)k

≃
(

1− e
−km

n

)k
(3.2)

where n is the number of bits set to 1 in the Bloom filter.

63

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Privacy

The evaluation of the privacy protection offered by Bloom filters, as discussed in
work [94], involves an analysis of the extent to which an adversary can gather
information in different scenarios. This assessment encompasses three distinct attack
scenarios, each varying in terms of the adversary’s level of knowledge. Importantly,
in all of these scenarios, the adversary does not possess specific knowledge about the
elements contained in the stored dataset. The three attack scenarios are the following:

• Agnostic Outsider: In this scenario, the adversary has absolutely no knowl-
edge of the algorithms, data structures, data format, or any concealed secrets
used in the scheme. This situation may occur if data is unintentionally dis-
closed by an insider, and an external adversary captures the data without
understanding its content. In such cases, it is critical that the data does not
reveal any information about its inherent composition. However, because
data often comes with contextual information and metadata, such as data
origin or file names, an adversary might attempt to gather more information
about the scheme using publicly available data or through reverse engineer-
ing. Consequently, the feasibility of this scenario is limited due to practical
constraints.

• Outsider: In this scenario, the attacker understands the algorithms, data struc-
tures, and data format implemented within the scheme but lacks knowledge
of any concealed secrets. This scenario commonly arises when an external
adversary targets the system’s networks, potentially extracting data from an
employee’s laptop. In such situations, the adversary might gain access to doc-
umentation, applications, or even metadata associated with the data structure
and algorithms if they are accessible within the system.

• Insider: In this scenario, the adversary is aware of the algorithms, data struc-
tures, data format, and the shared secrets employed in the scheme. However,
they remain unaware of the actual entries within the data set. This situation
is frequently encountered when dealing with an internal adversary, such as
a curious or disgruntled employee, or when a powerful external adversary
targets various systems and networks.

64

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.4 Probe request generator

In this Section, our primary focus is on the development and validation of a so-
phisticated probe request generator. This generator has the capability to faithfully
replicate the behavior of various devices that we have thoroughly analyzed. It is
important to highlight that the primary goal of the probe request generator lies in
its ability to produce as many as we need dataset comprising not only probe request
messages in the form of .pcap traces but also their corresponding ground truth. This
capability enables us to create datasets that can be used, together with real ones, to
train sophisticated machine learning models. Once these models are trained, they
have the potential to significantly improve performance in tasks like people counting,
effectively overcoming challenges associated with MAC address randomization.

In the subsequent parts of this Section, we will delve into different aspects of
the probe request generator. Section 3.4.1 outlines the crucial back-end data that the
generator utilizes to construct and emulate the real behavior of the devices under
examination with exceptional precision. Moreover, it catalogues the array of de-
vices we have examined and incorporated into our unique generator. Sections 3.4.2
and 3.4.3 offer an overview of the event-driven finite-state machine generator we
have developed, with a particular focus on the various states and transitions within
the generator. Furthermore, Section 3.4.4 highlights one of the prominent challenges
encountered when emulating the behavior of actual packets: the issue of collisions
between multiple packets arriving simultaneously. Section 3.4.5 describe the process
of generating a probe request packet in Python. Finally, in Section 3.4.6, we thor-
oughly explore the validation aspect of the generator, demonstrating its exceptional
ability to faithfully emulate the real behavior of probe request messages.

3.4.1 Back-end data

In this Section, we provide an introduction to the key components of our investigation.
Specifically, we first present the devices that have undergone testing, then we delve
into the analysis of probe request characteristics for each device in its three primary
states: locked, awake, and active. The comprehensive insights presented in this
Section collectively contribute to the back-end data used by our probe request
generator. This data is instrumental in enabling the generator to emulate the realistic

65

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

behavior of devices when transmitting probe request messages with a high level of
accuracy.

Devices

Our investigation commenced with the devices analyzed in [85]. Then we further
expanded our dataset by including newer devices and meticulously replicating all the
experiments outlined in Chapter 2. To accomplish this, we followed the methodology
elucidated in Section 2.5.

Table 3.1 provides a comprehensive overview of all the devices that were sub-
jected to testing and analysis. These devices collectively contribute to the population
of our probe request generator database. Each entry in Table 3.1 includes information
such as the device type (e.g., smartphone, tablet, or laptop), vendor, model, operating
system, and year of production. It is important to note that our approach was not
limited to a single family of devices or a specific type. Instead, we sought to examine
a diverse array of combinations, encompassing various device types, production
years, ranging from the latest high-end models to older or more affordable devices.
Furthermore, the database can easily be extended by incorporating newer devices,
thereby enhancing the capabilities of our generator.

Analyzed characteristics

For each device present in Table 3.1 we characterize the following metrics:

• whether a randomized MAC address is used;

• number of packets inside a burst (burst length);

• 802.11 VHT capabilities;

• 802.11 Extended capabilities;

• 802.11 HT capabilities;

• sequence number;

• WiFi Protected Setup (WPS);

66

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• Universally Unique Identifier-Extended (UUID-E);

• time between packets inside the same burst (inter-packet time);

• time between different bursts (inter-burst time).

Type Vendor Model OS Year

SmartPhone Apple iPhone 14 Pro iOS 16.4 2022

SmartPhone Apple iPhone 13 Pro iOS 16.3 2021

SmartPhone OnePlus Nord 5G Android 11.0 2021

SmartPhone Samsung Note 20 Ultra Android 12.0 2020

SmartPhone Xiaomi Mi9 Lite Android 10.0 2020

SmartPhone Apple iPhone 11 iOS 15.0.1 2019

SmartPhone Apple iPhone 11 iOS 16.3.1 2019

SmartPhone Xiaomi Redmi Note 8T Android 10.0 2019

SmartPhone Apple iPhone 7 iOS 15.2 2016

SmartPhone Huawei P9 Lite Android 7.0 2016

SmartPhone Apple iPhone 6 iOS 12.5.5 2014

Tablet Apple iPad 8 iPadOS 14.8.1 2020

Laptop Lenovo ThinkPad X13 Gen1 Windows 11 2021

Laptop Apple MacBookAir M1 macOS 12.1 2020

Laptop Apple MacBookPro macOS 11.6.2 2015

Table 3.1 Devices tested for our probe request generator database.

67

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Each time and burst feature, including inter-packet time, inter-burst time, and
the number of packets per burst, is not represented as a single value, but rather as
a series of values along with associated probabilities. This approach facilitates the
assignment of specific weights to individual values during the selection process
inside the generator. Notably, we leverage the capabilities of the Python library
called Numpy [64], which allows us to make random selections from a set of values,
associating each value with its respective weight. In our specific case, the weights
correspond to the probabilities associated with the values obtained from real probe
request data. Through this method, the system can accurately replicate the time
and burst behaviors of the device when sending probe requests. For instance, let us
consider the inter-packet time for the Apple iPhone 6 during the locked phase. It
can be represented as a pair comprising a value and its associated weight, as shown
below:

0.02:0.833 - 0.06:0.167

In this example, the device is expected to exhibit an inter-packet time of 0.02 seconds
with an approximately 83% probability, while there remains a 17% probability of
experiencing an inter-packet time of 0.06 seconds.

3.4.2 Finite-State machine

The structure of the probe request generator follows a state machine, also referred to
as a Finite-State Machine (FSM). In the realm of computer science and engineering,
an FSM serves as a computational model to represent the behavior of systems that can
exist in a finite number of states. It operates as an abstract machine that transitions
from one state to another in response to external inputs, internal conditions, or a
combination of both.

Usually, a state machine is characterized by four key components:

• States: These are distinct conditions or configurations that a system can
assume at any given moment. Each state encapsulates a specific behavior
or operational mode, defining how the system responds and functions under
particular circumstances.

68

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• Transitions: Transitions define the conditions under which the state machine
shifts from one state to another. These transitions are triggered by events or
input signals and determine the next state of the system.

• Events: Events are external inputs or signals that induce the state machine to
transition from one state to another. They can encompass user inputs, sensor
readings, or any other triggers that influence the system’s behavior.

• Actions: Actions represent the activities carried out when transitioning from
one state to another and are closely linked with transitions. They detail the
changes that occur in the system’s state, or in the environment, during a
transition.

Building upon this computational model, the probe request generator was devel-
oped to align with environmental conditions and system characteristics related to
probe request transmission and monitoring.

A visual representation of the finite-state machine used to construct the generator
is presented in Figure 3.5. The complete implementation of the generator was carried
out in Python [71], with the use of Scapy [87] for the generation of probe request
packets.

Fig. 3.5 Event-driven finite-state machine diagram.

69

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Inputs

Our probe request generator provides users with a considerable degree of flexibility
when it comes to input parameters. Specifically, users have the ability to customize
the following parameters:

• Script time: This corresponds to the capturing window of the final .pcap trace.

• Average device number: This parameter allows users to specify the average
number of active devices at any given time.

• Average permanence time: This parameter signifies the average duration
during which a device is considered to be within the coverage of the antenna.
We model this feature as it reflects the state of a device being reachable by the
scanner when within range, or powered off when out of range.

Furthermore, with minor modifications to the generator code, users have the
option to create traces with specific subsets of devices. For instance, it is possible
to generate traces containing only specific types of devices, such as smartphones,
exclusively Apple/Samsung/etc. devices, or even a single device, among other
possibilities.

Outputs

In the generated output, our probe request generator comprises several important
elements. Firstly, it produces a .pcap trace file, which encompasses all the probe
request messages transmitted by the devices within the emulated time window.
Furthermore, the output includes the crucial Ground Truth dataset that precisely
indicates the number of devices that have dispatched at least one probe request. This
dataset serves as a reference for analysis.

Additionally, the generator furnishes supplementary statistics. An illustrative
example is shown in Figure 3.6. These statistics provide insights into each emulated
device, encompassing information about the device itself, the number of MAC
addresses employed during its stay within the generator, and various statistical
details concerning the volume of packets sent.

70

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.6 Example of statistics given in output from the probe request generator.

71

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.4.3 Event-driven generator

Each device can assume various states and perform distinct actions, some of which
may transition it to a new state. The orchestration of these actions is managed through
a priority queue. In computer science, a priority queue is a specialized data structure
that ensures quick access and removal of elements with the highest priority, which
may vary depending on the specific task. This data structure is particularly useful in
scenarios where tasks or items must be processed in order of their significance. In
our case, the priority key is the execution time of events. Each action is associated
with a specific time for its execution, a timing parameter determined within the
generator based on the prevailing circumstances and information extracted from the
generator’s database.

The possible events available inside the queue are:

• CreateDevice: This event initiates the creation of a new device. The initial
phase (e.g., locked, awake, or active) of the device is determined using a
carefully chosen probability distribution, as depicted in Figure 3.7. This event
is also responsible for generating other related events, such as DeleteDevice,
ChangePhase, CreateBurst, and CreateDevice. To determine the vendor and
model of the device to be generated, a specific reference was employed [61],
which provides statistics on device sales and usage.

• DeleteDevice: This event removes the device from the emulation environment.

• ChangePhase: When triggered, this event selects the next device phase,
based on the probabilistic distribution and the current phase. Subsequently, it
schedules the next ChangePhase and CreateBurst events for the device. The
primary goal is to emulate human behavior, and as such, the duration assigned
to each phase is not a constant value, but instead adheres to a probability
distribution. In particular, a negative exponential distribution is utilized to
model these variable durations.

• CreateBurst: This event generates a series of SendPacket events in accordance
with the device’s specified number of packets per burst, as retrieved from the
generator’s database. It then creates a new CreateBurst event.

72

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• SendPacket: This event contains the built probe request packet and saves it to
the output .pcap file.

Fig. 3.7 Probability transition values diagram for the device’s state.

The timing of each event is determined by the specific task at hand. For example,
consecutive SendPacket events are spaced according to the device inter-packet time,
while two CreateBurst events are spaced by the device inter-burst time. When a
new event is created, it is added to the priority queue. Subsequently, the event list is
sorted based on the execution times of the events, placing the event with the nearest
execution time at the head of the queue.

It is important to highlight that the execution time for the next CreateDevice event
is not a fixed value but is calculated dynamically when a device creation event is
required. The mathematical principle utilized for this calculation is Little’s Law [52]:

L = λW (3.3)

where:

L signifies the average number of customers or devices within the system at any
given moment.

λ stands for the average rate at which customers or devices enter the system
(measured in customers or devices per unit of time).

73

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

W represents the average time a customer or device spends within the system,
also referred to as the average permanence time.

In essence, Little’s Law articulates that the average number of entities present in
the system is equivalent to the product of the average arrival rate and the average
permanence time.

3.4.4 Messages collision avoidance

One of the primary challenges in packet trace generation is effectively managing
the timing of message arrivals. This challenge becomes especially pertinent in
densely populated environments, where the possibility of multiple probe requests
from different devices reaching the sniffer simultaneously cannot be dismissed. Such
occurrences, often referred to as collisions in real-world systems, require specialized
recovery mechanisms or network segmentation to resolve.

Within the probe request generator, every packet is written directly to the .pcap
file upon creation. To mitigate the potential for collisions and prevent the loss of
packets, an additional feature has been incorporated into the system. Specifically,
when a new SendPacket event is about to be added to the event list, a check is
performed on other events of the same type to detect any possible time overlaps. If
no collision is detected, the event is added to the list as usual. However, if a collision
is identified, a mechanism is triggered to adjust their timing.

In this adjustment process, the execution time of the new event is advanced
by a small increment of 0.001 seconds. This little adjustment is designed to exert
minimal influence on the originally scheduled arrival time of the packet. Following
this adjustment, the new event is inserted into the event list. This adjustment process
ensures that subsequent packets within the ongoing burst are synchronized with the
revised arrival time established for the preceding packet. Once these essential timing
adjustments are made, the event is added to the generator’s list of events.

3.4.5 Probe request packet generation

The CreateBurst event serves as a pivotal component, responsible for generating two
distinct types of events:

74

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• A specified number of SendPacket events, each separated by time intervals
equal to the device’s inter-packet time specific to the current phase;

• a new CreateBurst event, scheduled for execution within a time interval equiv-
alent to the device’s inter-burst time in the specific phase.

The number of SendPacket events created aligns with the chosen quantity of
packets that compose the burst. This number may vary based on the probability
distribution governing the number of packets per burst, which is device-specific. Each
SendPacket event is tasked with constructing a probe request packet with predefined
characteristics. It is noteworthy that the first SendPacket event in the sequence
shares the same execution time as the CreateBurst event, effectively synchronizing
the first packet’s arrival time with the CreateBurst execution time. To facilitate
the creation of network packets, a valuable Python library named Scapy [87] is
employed. Scapy provides the essential tools to ensure compliance with the 802.11
standard, simplifying the process of constructing network messages.

MAC address

Each device within the generator’s database is characterized by a flag that determines
whether it implements MAC address randomization. When a device does not employ
randomization, its MAC address is constructed using the specific vendor’s Orga-
nizationally Unique Identifier (OUI) for the initial 24 bytes, while the remaining
bytes are filled with random values. For models that utilize randomization, a new
random MAC address is generated for each burst, encompassing all packets within
that burst. This random MAC address consistently has its Globally/Locally bit set
to 1, designating it as a locally administered address. Furthermore, each packet is
transmitted with a destination MAC address of FF:FF:FF:FF:FF:FF, hence it is sent
in broadcast.

802.11 probe request fields

Probe request headers encompass numerous fields, some of which vary between
device models, while others depend on environmental factors. Yet, certain fields
maintain relatively consistent values. Variations across different device models are
documented and stored in the generator’s database. These include VHT capabilities,

75

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Extended capabilities, and HT capabilities. Fields influenced by environmental
conditions, such as signal power, have their values randomly assigned within the
packets. In contrast, for fields that remain constant across different probe requests, a
default value is consistently used.

3.4.6 Validation

This Section will elucidate the methods utilized to validate the probe request genera-
tor described in the preceding Sections. It is noteworthy to highlight that we have
provided an open-source implementation of the entire probe request generator to
the research community [79], simplifying the creation of new datasets, making it a
seamless and practical process.

The experiments conducted to validate the probe request generator were carried
out within a simulated environment designed to emulate real-world conditions. These
experiments were characterized by several key features:

• A fixed duration in terms of simulated time;

• a controlled environment with only one active device operating within the
generator;

• a comparison between real traces and simulated ones to assess accuracy;

• separate analyses for each distinct phase, namely, locked, awake, and active
phases;

• a 30 seconds observation window for all statistical measurements.

The main characteristic of the generator is to faithfully reproduce authentic traces
by emulating device behavior in a manner consistent with real-world traces. To
evaluate its performance, we have extracted various metrics from both real traces,
sourced from [85], and simulated ones. These metrics include:

• The quantity of packets generated within the observation window;

• the time interval between packets within the same burst, referred to as inter-
packet time;

76

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• the time difference between the arrival of the first and last packet within the
same burst, refereed to as burst duration;

• the count of packets per burst;

• the time elapsed between capturing the last packet of one burst and capturing
the first packet of the subsequent burst, refereed to as inter-burst time;

To compare real traces with simulated ones, we assess the mean (computed
using (3.4)) and the coefficient of variation (determined through (3.6)) for the five
aforementioned metrics.

x̄ =
∑

n
i=1 xi

n
(3.4)

More in detail, the coefficient of variation (CV) represents the ratio of the standard
deviation (as defined in (3.5)) to the mean of a dataset.

σ =

√
∑

n
i=1(xi− x̄)2

n
(3.5)

CV =
σ

x̄
(3.6)

For every device within the generator’s dataset, we calculated the mean and
coefficient of variation for each of the five metrics mentioned earlier. We repeated
the emulation four times, each lasting three hours, with one hour dedicated to each
phase. The results for the real trace metrics and the simulated metrics for all three
phases are documented in Tables 3.2, 3.3, and 3.4, where we focus on the Apple
iPhone 11 results. The entries in these tables are annotated using a set of acronyms:

• PO: Packet Occurrences.

• IPT: Inter Packet Time.

• BL: Burst Length.

• PPB: Packets Per Burst.

• IBT: Inter Burst Time.

77

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Metric Real
PO [occurrences] (3.11, 2.52)

IPT [ms] (20.38, 0.02)
BL [ms] (16.3, 0.52)

PPB [occurrences] (1.8, 0.23)
IBT [s] (16.49, 1.62)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (3.42, 1.33) (3.32, 1.36) (3.29, 1.29) (3.25, 1.34)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.73, 0.44) (16.5, 0.46) (16.76, 0.44) (16.85, 0.43)

PPB [occurrences] (1.84, 0.2) (1.83, 0.21) (1.84, 0.2) (1.84, 0.2)
IBT [s] (16.07, 1.59) (16.48, 1.57) (16.74, 1.56) (17.01, 1.55)

Table 3.2 Locked phase results for an Apple iPhone 11 (mean, coefficient of variation).

Metric Real
PO [occurrences] (7.54, 1.46)

IPT [ms] (20.33, 0.02)
BL [ms] (17.94, 0.37)

PPB [occurrences] (1.88, 0.17)
IBT [s] (7.2, 2.32)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (7.46, 1.15) (7.74, 1.18) (7.79, 1.13) (7.42, 1.11)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.68, 0.45) (16.55, 0.46) (16.66, 0.45) (16.5, 0.46)

PPB [occurrences] (1.83, 0.2) (1.83, 0.21) (1.83, 0.2) (1.83, 0.21)
IBT [s] (7.35, 2.26) (7.06, 2.33) (7.04, 2.3) (7.36, 2.27)

Table 3.3 Awake phase results for an Apple iPhone 11 (mean, coefficient of variation).

Based on the obtained results, it is evident that the traces generated by the probe
request generator closely resemble the real traces in terms of mean and coefficient of
variation for the metrics. This indicates that out probe request generator is able to
produce realistic traces with a very high accuracy.

The probe request generator aims to create a varied dataset of .pcap traces with
associated ground truth for training and testing ML algorithms for enhancing the
accuracy of people counting. Initial tests involved training a three-layer neural

78

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Metric Real
PO [occurrences] (11.16, 1.06)

IPT [ms] (20.27, 0.02)
BL [ms] (16.6, 0.47)

PPB [occurrences] (1.82, 0.21)
IBT [s] (4.81, 2.41)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (10.47, 0.89) (10.85, 0.91) (10.87, 0.89) (10.71, 0.85)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.4, 0.47) (16.85, 0.43) (16.62, 0.45) (16.61, 0.45)

PPB [occurrences] (1.82, 0.21) (1.84, 0.20) (1.83, 0.2) (1.83, 0.21)
IBT [s] (5.2, 2.39) (5.08, 2.42) (5.03, 2.38) (5.11, 2.27)

Table 3.4 Active phase results for an Apple iPhone 11 (mean, coefficient of variation).

network using synthetic and real-world data. While the synthetic data yielded
promising results with an MSE range of 0.5 to 2, testing with real traces showed
increased MSE, indicating limitations as discussed in Section 2.6.5. To address this,
future works will focus on diversifying the dataset with more real-world traces and
refining the generator to better emulate real-world complexities, aiming to enhance
the reliability of ML algorithms for people counting.

It is worth mentioning that extending the dataset of devices available within
the probe request generator is relatively straightforward. This is why we have
publicly released the code of the generator, the dataset, and the methodology used to
collect the data on GitHub [79]. This release enables future extensions by adding
new devices with different operating systems, fostering community contributions
and improvements to the tool. This collaborative approach ensures the continual
enrichment and relevance of the generator, aligning with the evolving landscape of
mobile device technologies.

79

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.5 Bloom filters for flow analysis

In this Section, our primary focus revolves around the Bloom filter and the intro-
duction of the anonymization noise. This addition ensures the privacy of stored
MAC addresses while still allowing for the intersection of different Bloom filters for
flow analysis. We cover various aspects of this topic in the following subsections.
Section 3.5.1 outlines the proper sizing of a Bloom filter, taking into account the
specific application use case. Section 3.5.2 provides an overview of the privacy
properties that can be applied to Bloom filters. Section 3.5.3 and Section 3.5.4
elaborates on our proposed solution for guaranteeing the privacy of elements stored
in the Bloom filter, aligning with the principles of GDPR (General Data Protection
Regulation). Lastly, in Section 3.5.5 and 3.5.6 we delve into the counting process,
elucidating how we can precisely determine the number of elements inserted in a
Bloom filter and efficiently compute the intersection between multiple Bloom filters.

Table 3.5 provides a comprehensive summary of the notations and definitions
that will be utilized throughout the entire Section.

Notation Definition
U Set of elements in the universe
S Set of elements stored in the Bloom filter

BF(S) Bloom filter storing a set S
n = |S| Number of elements stored in the Bloom filter

m Size in bit of the Bloom filter
k Number of hash functions
ti Number of bits set to 1 in the Bloom filter BFi
V Hiding Set

Table 3.5 Definitions and notations for Bloom filters.

3.5.1 Bloom filter sizing

To size a Bloom filter effectively, an analysis of the usage context is essential. This
analysis involves making appropriate assessments to determine the optimal number
of bits and hash functions to use, all while ensuring that the probability of false
positives remains below an acceptable threshold. Failing to do so can lead to one of
these two scenarios:

80

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

• A Bloom filter that is too small will result in an elevated probability of false
positives, rendering it ineffective.

• A Bloom filter that is too large will lead to space wastage, a critical concern in
resource-constrained contexts.

To minimize the occurrence of false positives, it is possible to compute the
optimal value of k based on the available memory m. This computation is done in
a way that achieves a desired probability of false positives. The selection of the
optimal k depends on factors such as the number of elements to be stored in the
Bloom filter and the acceptable false positive rate. The equation for determining the
optimal value of k is presented in (3.7).

kopt =
m
n

log(2) (3.7)

It is important to note that:

• A small value of k increases the fraction of 0 bits in the array, making them
available for elements that are not part of the set S.

• A large value of k enhances the probability of finding at least one 0 bit for an
element that is not a member of S.

Let us consider an illustrative use case: we aim to capture WiFi probe requests
within a 120-second time window, with the goal of accommodating roughly 1,000
insertions into the Bloom filter. This implies that we anticipate detecting a maximum
of 1,000 distinct MAC addresses within the defined time frame. Additionally, we
set the size of the Bloom filter to 10,000 bits. Once we have fixed the values of n
and m, trough (3.7), we can ascertain that the optimal value for k, which denotes the
number of hash functions, is 7.

To confirm the result, we showed in Figure 3.8 the variation of the false pos-
itive probability in relation to the change of parameter k. For the creation of this
graph (3.2) was utilized, where parameters m remained fixed at 10,000, and n was
maintained at 1,000. As it can be observed, the point of minimum is obtained for
k = 7.

81

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.8 False positive probability with different values of k.

Figure 3.9 illustrates the evolution of the false positive probability in a Bloom
filter configured with k = 7 and m= 10,000 during the insertion of elements. Notably,
the false positive probability remains consistent up to 1,000 insertions, after which
it enters a phase of increasing consistency.

In Figure 3.10, we present the results of an analysis that explores the impact of
the parameter k on the probability of false positives. Using a Bloom filter with m
set to 10,000, we chart the trend of the false positive probability in relation to the
number of MAC addresses while varying the value of k. Notably, it is evident that
higher values of k necessitate fewer insertions to attain an equivalent probability of
false positives.

82

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.9 False positive probability vs. number of inserted MAC addresses into a Bloom filter.

Fig. 3.10 False positive probability vs. number of inserted MAC addresses into different
Bloom filters. Each Bloom filter is configured with m = 10,000 and a different values of k.

83

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.5.2 Bloom filter privacy properties

In this Section, we introduce three primary privacy definitions that are applied to
Bloom filters. These definitions, proposed by [21], serve as the foundation for the
anonymization noise discussed in Section 3.5.3.

Definition 1

A set V is called Hiding Set for a Bloom filter BF(S) if V contains all the elements
vi ∈U s.t. vi /∈ S and a query for vi in the Bloom filter returns 1. In other words,
a hiding set is a set of elements not present in the filter’s stored set S that, when
queried, falsely indicate their presence in the filter, which is often referred to as a
“false positive”.

Equation 3.8, proposed in [21], allows the calculation of the cardinality of the
hiding set V , represented by the random variable Nv, using a binomial probability
distribution

P{Nv = v}=
(
|U |−n

v

)
ψ(m,k,n)v(1−ψ(m,k,n))|U |−n−v (3.8)

and mean value E[Nv] = (|U |−n)ψ(m,k,n).

Figure 3.11 illustrates an example of a “Hiding Set” where a 10-bit Bloom
filter, employing 2 hash functions, has been used to insert 3 elements x1,x2,x3.
Simultaneously, 3 elements v1,v2,v3 appear as false positives because a query to the
filter would incorrectly yield a positive result for these elements.

Fig. 3.11 Elements v1,v2,v3 belonging to the hiding set of a 10-bit BF, storing x1,x2,x3.
Arrows indicate the bits that are set to one according to the two hash functions H1 and H2.

84

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Definition 2

An element x ∈ S inserted in BF(S) is defined deniable if ∀i ∈ {1..k} exist at least
one element v∈V , such that ∃ j ∈ {1..k} s.t.Hi(x) =H j(v). A BF(S) is γ−deniable
whenever a randomly chosen element x ∈ S is deniable with probability γ .

In other words, an element is considered deniable if it can be replaced with items
that were not originally part of the Bloom filter’s stored set, all while maintaining
the integrity of the bit map without any changes.

Using (3.9), introduced in [21], it is possible to calculate the size of the hiding
set.

γ(BF(S))≃
(

1− exp
(

hk
m(1− e−kn/m)

))k

(3.9)

with
h = (|U |−n)ψ(m,k,n) = (|U |−n)(1− e−kn/m)k (3.10)

depicting the mean number of elements in the hiding set.

Definition 3

Considering a Bloom Filter BF(S) and x ∈ S inserted in BF(S), x is K−Anonymous
if exists at least K− 1 hiding set elements ⟨v1...vK−1⟩ ∈ V , with K ≥ 2, such that
∀i∈ {1 . . .k} ∃⟨ j1... jK−1⟩ ∈ 1..k s.t. Hi(x) =H j1(v1) = ...=H jK−1(vK−1). Hence, it
is accurate to state that a Bloom filter BF(S) is γ-K-anonymous if, for each randomly
chosen element, there is a probability γ that is K-anonymous.

Equation (3.11), extracted from [21], provides a method to compute the γ-K-
anonymity for a particular Bloom filter configuration.

γ(K,BF(S))≃

1− exp
(
− hk

m(1− e−kn/m)

)K−2

∑
i=0

(
hk

m(1−e−kn/m)

)i

i!

k

(3.11)

85

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

3.5.3 Anonymization noise

In light of the definitions introduced in Section 3.5.2, we propose the utilization of
the γ-deniability property to ensure the ability to deny the membership of all inserted
elements in a Bloom filter. However, as delineated in Section 3.5.2, γ signifies the
likelihood of being able to disclaim the presence of a randomly chosen element
using another element that is not genuinely part of the stored set. To establish this
capability for all elements within the Bloom filter, it is imperative for γ to attain
its maximum value, which is 1. This ensures that any inserted element can be
unequivocally denied.

Nonetheless, at the outset, the value of γ is equal to 0. In fact, when the Bloom
filter is entirely empty and the configuration parameters m and k, which are constants,
are disregarded, the value of n (equal to 0) renders (3.10) ineffective, consequently
setting the value of (3.9) to 0. To elevate the value of γ it becomes imperative to
insert elements into the Bloom filter, and after a certain number of insertions, γ will
eventually reach 1.

However, to safeguard privacy, it is impractical to employ MAC addresses
captured before γ attains its maximum value. Therefore, we introduce the concept
of anonymization noise. This noise comprises nmin randomly generated elements,
which are exempt from privacy constraints, and are inserted as soon as the Bloom
filter is created to expedite the achievement of a γ value of 1.

Let us revisit the same example previously discussed in Section 3.5.5, where we
have m = 10,000 and k = 7. Starting with an empty filter, we began inserting one
random MAC address at a time and subsequently calculate the value of γ , using (3.9).
The outcome, as depicted in Figure 3.12, reveals that for the adopted Bloom filter
configuration, approximately 30 insertions are adequate to reach a γ value of 1.

In this scenario, to adhere to privacy standards, when a new Bloom filter is
created, it can be promptly filled with a minimum of 30 random MAC addresses.
This approach guarantees the privacy of insertions without the necessity of relying
on cryptographic functions, which could potentially strain the system and introduce
additional complexities associated with the safeguarding and administration of
encryption keys.

86

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.12 γ-deniability value vs. number of inserted MAC addresses into a Bloom filter.

3.5.4 Multiple anonymity

The concept of anonymization noise, as introduced in Section 3.5.3, ensures that
there is always at least one element that is not part of the Bloom filter, covering an
actually inserted element.

To further enhance the provided protection, we can leverage the definition out-
lined in Section 3.5.2. By selecting a specific value for K and optimizing (3.11)
to reach its maximum value (i.e., 1), it is possible to achieve coverage of at least
K− 1 elements that were not actually inserted, rather than just a single element.
In this context, like in the earlier scenario described, it remains crucial to employ
anonymization noise to ensure that from the very first insertion of detected MAC
addresses, each of them is shielded by at least K−1 additional elements.

In a manner akin to the example presented in Section 3.5.3, once a specific
value for K is determined, it becomes imperative to define the value of nK

min in a
way that, for each element randomly drawn from the filter, there are K− 1 non-
inserted elements available to provide cover. Figure 3.13 illustrates the outcome of
applying (3.11) to a Bloom filter with m = 10,000 and k = 7 for various values of K.

87

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.13 γ-deniability value vs. number of inserted MAC addresses into a Bloom filter, for
different values of K.

3.5.5 Counting elements stored in a Bloom filter

In this Section, we focus on the data extraction from the Bloom filter and in detail on
how to count the number of inserted elements in a Bloom filter.

The task of counting elements within a Bloom filter can be accomplished using
the well-known formula (3.12), derived from [22].

c1 =−
m
k

ln
(

1− t
m

)
(3.12)

where m is the size of the filter, k the number of hash functions and t the number
of bits set to one.

Let us revisit the same example involving a Bloom filter with m = 10,000 and
k = 7. Figure 3.14 illustrates the accuracy of counts derived from (3.12) when
a total of 10,000 elements are inserted into the Bloom filter. It is worth noting
that this number significantly surpasses the originally intended value of n = 1,000.
Following each insertion, (3.12) yields a count of the contained elements, which is
then compared to the actual number of elements present. As depicted in Figure 3.14,

88

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

the count is not notably overestimated or underestimated, despite the fact that the
number of insertions exceeds the initial design value for the filter.

Fig. 3.14 Accuracy evaluation of (3.12) when comparing number of elements inserted in the
Bloom filter and counted ones.

We will now delve into the counting procedure within a Bloom filter while
maintaining 1-deniability through the introduction of the anonymization noise. The
pseudocode in Algorithm 1 illustrates the essential steps involved, encompassing
Bloom filter initialization, insertion, and count estimation.

To elaborate further, at the onset of each iteration, the Bloom filter undergoes
initialization, where all bits are set to 0. Subsequently, random noise, comprised
of nmin “fake” MAC addresses, is introduced into the Bloom filter. Importantly,
leveraging the properties of independent hash functions employed in Bloom filters,
an efficient implementation of this step necessitates generating nmin× k random
positions in the Bloom filter. This equivalence arises from adding nmin elements with
k hash functions. Following this initialization phase, with each newly detected probe
request, the MAC address is incorporated into the filter by setting the corresponding
bits to 1. The indices of these bits are determined by the output of the k hash functions
applied to the MAC address. Upon the conclusion of the capturing window, the initial
operation involves counting the number of ones in the Bloom filter. Subsequently,

89

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Algorithm 1 Counting algorithm with anonymization noise
Input: Bloom filter (BF) of size m bit, Number of elements cmin for the anonymization
noise, k independent hash functions
Output: Estimated count of elements inserted

procedure RESET(BF,cmin)
for i = 1, . . . ,m do

BF [i] = 0 ▷ Reset each bit
end for ▷ Add the anomization noise
for c = 1, . . . ,cmin× k do

i =random-int(1,m) ▷ Choose a random bit to set
BF [i] = 1 ▷ Update the bit

end for
end procedure

procedure INSERT(BF , mac)
for i = 1, . . . ,k do

BF [Hi(mac)] = 1 ▷ Set bit to 1 in the Hi index
end for

end procedure

procedure COUNT(nmin)
t = 0 ▷ Init t
for i = 1, . . . ,m do

if BF [i] = 1 then
t = t +1 ▷ Count number of 1 in BF

end if
end for
c =−m

k
log
(

1− t
m

)
▷ Apply (3.12)

return c−nmin ▷ Compensate for the anonymization noise
end procedure

equation (3.12) is applied to estimate the number of elements present in the filter.
Ultimately, the estimated value undergoes subtraction of a nmin value, accounting for
the anonymization noise introduced at the beginning.

3.5.6 Intersection of different Bloom filters

Monitoring crowd flows across various scanners becomes possible by recognizing
shared MAC addresses within different Bloom filters. This involves the intersection
of these Bloom filters and the extraction of valuable count information.

90

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Let us consider two subsets, S1 and S2, which are represented by their respective
Bloom filters, denoted as BF(S1) and BF(S2). These Bloom filters share the same
configuration parameters. To find the intersection between them, a bitwise logical
AND operation is necessary, resulting in a combined Bloom filter BF(S3). From
this intersection Bloom filter, we can calculate the number of elements it contains
using two distinct equations. The first formula, expressed in (3.12), can be applied
replacing t with t3. The second formula, proposed in the work [67] and presented
in (3.13), offers an alternative approach for counting.

c2 =
ln
(

m− t3×m−t1×t2
m−t1−t2+t3

)
− ln(m)

k× ln(1− 1
m)

(3.13)

where t1 denotes the count of bits set to 1 in BF1, t2 signifies the number of bits
set to 1 in BF2, and t3 represents the count of bits set to 1 in BF3.

Our objective is to facilitate anonymous tracking and counting of devices passing
through and detected by various scanners. To achieve this, we conducted a series
of comparisons to determine the accuracy of the proposed formulas, namely (3.12)
and (3.13).

Similar to the examples proposed in the previous Sections we used two Bloom
filters, namely BF1 and BF2, with the configuration of m = 10,000 and k = 7. Our
experiment began with the two initially empty Bloom filters, and we proceeded
through the following steps:

1. Insert 500 random MAC addresses into BF1.

2. Insert 500 random MAC addresses into BF2.

3. Insert 1 identical MAC address into both BF1 and BF2.

4. Compute a new Bloom filter BF3, by finding the intersection of BF1 and BF2.

5. Count the elements within this intersection using both Equations 3.12 and 3.13.

6. Iterate again from step 3 until 500 MAC addresses are commonly inserted.

In Figure 3.15, the results obtained from our experiment are displayed, allowing
us to compare the two equations. Notably, the two curves exhibit a nearly parallel

91

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

relationship. However, it is worth mentioning that (3.12) consistently tends to
overestimate the count of elements within the intersection.

Fig. 3.15 Comparison of flow monitoring accuracy between (3.12) denoted as c1 and (3.13)
denoted as c2.

To further validate our earlier observations, Figure 3.16 provides a comparison
of the relative errors associated with the two equations. Notably, the relative error
for c1 is significantly higher when dealing with a smaller number of stored MAC
addresses. It only becomes acceptable (falling below 100%) when more than 100
MAC addresses are stored. In contrast, the relative error of c2 remains consistently
low, even with a small number of stored MAC addresses. Indeed, this observation is
in line with the findings in [67]. It underscores a distinct trade-off between accuracy,
complexity, and privacy when calculating the count of MAC addresses within the
intersection of BF1 and BF2.

92

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

Fig. 3.16 Comparison of flow monitoring relative errors between c1 and c2.

3.6 Conclusions and future works

Given the stringent European General Data Protection Regulation and the proactive
measures adopted by leading smart device manufacturers, like the implementation of
MAC randomization, counting the number of people in an area or event track people
movements in various settings has grown increasingly challenging. This challenge
not only pertains to the complexity of developing effective algorithms but also to the
critical aspect of ensuring privacy.

Within the scope of this study, we have developed a sophisticated WiFi traffic
generator that accurately simulates the behavior of actual devices, particularly in
generating probe request messages. This generator possesses the capability to
generate realistic traffic patterns that span several minutes in a matter of seconds for a
single device. Furthermore, it allows for the concurrent emulation of multiple devices,
even in the hundreds. This achievement holds significant practical importance as
it facilitates the creation of a ground truth scenario, where the number of devices
is known in advance. This environment becomes instrumental in evaluating the
accuracy of different counting algorithms based on probe requests.

93

Probe Request Generator and Privacy-Aware People Flow Monitoring through
Bloom Filters

To address privacy concerns, we have leveraged Bloom filters in our approach,
which can guarantee the 1-deniability property, thanks to the introduction of the
anonymization noise. We have established a comprehensive methodology for con-
figuring this noise effectively. Additionally, we have assessed the impact of various
formulas, drawn from existing literature, for estimating the number of individuals
transitioning from one WiFi scanner to another. This estimation is performed while
ensuring that MAC addresses remain protected within privacy-preserving Bloom
filters.

The combination of these two contributions sets the stage for the development of
innovative counting algorithms that can effectively deal with MAC randomization and
the associated privacy considerations. Detailed analysis of these aspects can be found
in Chapter 4, providing insights and solutions for addressing these contemporary
challenges.

94

Chapter 4

People counting and crowd
monitoring in real use cases

The COVID-19 pandemic and its aftermath have underscored the critical need for
monitoring and ensuring community safety by detecting gatherings of people and
accurately counting individuals in transit areas. In this context, the role of Internet of
Things (IoT) devices has become indispensable. Safety applications and services
tailored for the convenience of mobile users now rely heavily on the ability to detect
and analyze patterns in people’s movements at various times of the day and week, as
well as assessing the density of individuals in specific areas. This Chapter introduces
two comprehensive solutions deployed in distinct use cases and environments. The
knowledge acquired from these applications, coupled with the evolving privacy
measures related to MAC address randomization, has paved the way for the in-depth
investigation documented in Chapter 2 and Chapter 3. This research culminates
in an enhanced version of the crowd monitoring solution. Leveraging advanced
machine learning techniques, this solution surpasses the performance of state of the
art counting algorithms while remaining fully compliant with GDPR regulations.

4.1 Research motivation

In November 2018, the Italian National Institute of Statistics (ISTAT) conducted a
comprehensive study on the daily commuting habits of Italians [15]. Leveraging data
from the preceding year’s national census, this research shed light on the preferences

95

People counting and crowd monitoring in real use cases

and choices of Italian commuters when it comes to transportation. The findings
from this investigation revealed a multifaceted landscape: more than 40% of the
Italian population opted not to use private transportation as their primary means of
daily travel. Instead, 19% of the population preferred the eco-friendly alternatives
of walking or cycling, while 23% relied on public transportation options, including
buses, trams, trains, school buses, and subways.

Additionally, in May 2022, ISTAT released another noteworthy study [16],
shedding light on the shifting trends in transportation preferences following the
COVID-19 pandemic. The findings revealed a remarkable transformation in com-
muter behavior. Specifically, more than 80% of the Italian population indicated a
preference for private cars as their primary mode of transportation. However, this
preference started to wane in the subsequent months, paralleling the decline in the
risk of COVID-19 infection and the concurrent escalation in fuel prices.

These statistics underscore the adaptive nature of the Italian populace in response
to the pandemic. Before the outbreak of COVID-19, many Italians relied on non-
private forms of transportation for their daily commutes. However, the pendulum has
swung back towards private car usage as people sought to minimize potential health
risks. As the situation has improved and concerns over infection have diminished,
the pendulum is once again shifting, this time toward a resurgence in the utilization
of public transportation. The driving force behind this shift lies in the rising costs
associated with private car ownership and operation, emphasizing the significant
impact of economic factors on transportation choices. This dynamic transformation
in transportation preferences calls for adaptable and data-driven urban planning to
cater to the evolving needs and concerns of the Italian population. To maintain a
high level of service and uphold the ideals of a smart city, continuous and precise
monitoring of public transportation users, as well as other modes of transportation,
is an imperative.

As we have discussed in earlier Chapters and corroborated by existing literature,
numerous solutions have been proposed to address the challenge of people counting.
Despite the wealth of ideas and technologies explored, the majority of these solutions
remain in the realm of Proof of Concept (PoC) or theoretical frameworks. Only a
handful of them have transitioned into practical implementations, often tailored to
specific use cases. This underscores the need for further research and the development

96

People counting and crowd monitoring in real use cases

of tangible real-world applications, to effectively monitor and enhance transportation
services in an era of growing urbanization and mobility.

4.2 Main contributions

The present study, as detailed in [43, 82], introduces two initial solutions and an
innovative framework that utilizes machine learning techniques and probe request
messages to monitor crowds while prioritizing privacy preservation. Firstly, one
of our implemented solutions focuses on quantifying the number of individuals
within the coverage area of six commercial access points, along with tracking the
flows between them. This monitoring is achieved through the deployment of a 5G
infrastructure in the “innovation mile” of Turin, providing valuable insights into
crowd dynamics over a span of more than two years and the detection of over 100
million probe requests. In response to the unique challenges posed by the COVID-19
pandemic, our second solution was designed and deployed on a bus to ascertain the
number of passengers onboard. Additionally, it offers real-time information to the
bus driver, aiding compliance with strict Italian government regulations regarding
maximum indoor/closed space occupancy during the pandemic. Building on the
knowledge garnered from these initial projects and our comprehensive study of probe
request behavior, we present a wholly redesigned solution. Our framework harnesses
probe request messages to address the challenges of MAC address randomization
and GDPR-induced privacy concerns. It integrates machine learning techniques and
employs a Bloom filter data structure while upholding the essential 1-deniability
property.

Our work significantly contributes to the existing body of literature in the follow-
ing key areas:

• Real-time presence sensing on a 5G infrastructure: We offer a robust people
counting and crowd monitoring solution using commercial scanners in Turin’s
“innovation mile”. This solution provides valuable insights by analyzing more
than two years of data collection, comprising over 100 million detected probe
requests.

• Passive crowd monitoring inside a bus: We conduct experiments on people
counting inside a bus, leveraging not only probe request messages but also

97

People counting and crowd monitoring in real use cases

additional data from the bus’s infonet to enhance people detection within the
boundaries of a bus. This has proven especially valuable during the COVID-19
pandemic.

• Machine learning driven privacy-preserving framework for crowd man-
agement: Our enhanced framework addresses the challenges of MAC address
randomization and privacy concerns by integrating advanced machine learning
techniques and the Bloom filter data structure, fortified with anonymization
noise. This approach represents a significant stride towards safeguarding user
privacy in crowd monitoring applications.

In the upcoming Sections, our attention turns to the various WiFi sniffers at
our disposal for detecting probe request messages, where we dissect the principal
advantages and disadvantages of each. Subsequently, we embark on a comprehensive
exploration into the array of de-randomization techniques existing in literature,
shedding light on their efficacy and applicability. Moving forward, we transition to a
discussion of the two implemented solutions, offering an in-depth analysis of their
outcomes. These solutions have been instrumental in our ongoing involvement in a
European-funded project, where a novel framework is currently under development
and in the testing phase. This framework represents our commitment to advancing the
state of the art in the field. Lastly, we draw our exploration to a close, summarizing
the key findings and insights gained throughout the study.

4.3 WiFi probe request sniffers

In this Section, we introduce two distinct WiFi probe request sniffing devices,
delving into the software options available and highlighting their primary strengths
and weaknesses. In Section 4.3.1, we explore the commercial access point known
as Meshlium, developed by Libelium [59]. Additionally, in Section 4.3.2, we delve
into the more cost-effective Raspberry Pi [74] solution.

98

People counting and crowd monitoring in real use cases

4.3.1 Meshlium scanner by Libelium

The Meshlium scanner, is a commercial WiFi and Bluetooth probe request detector
developed by Libelium [59], boasts several noteworthy features. Encased in a rugged
IP67 waterproof housing, it is well-suited for outdoor applications. The device offers
versatile connectivity with both an Ethernet port, facilitating Power over Ethernet
(PoE) for system power, and a nano SIM slot for 3G/4G cellular connectivity.

In terms of antennas, it is equipped with two dipole antennas rated at 5 dBi, used
for Bluetooth, BLE, WiFi, and Xbee-PRO 802.15.4 applications, as depicted by the
white antennas in Figure 4.1. Additionally, it includes a 4.5 dBi Dipole antenna,
suitable for XBee 868LP and XBee-PRO 900HP, along with two antennas designed
for 4G/GPS functionality.

About hardware specifications, Meshlium scanner features a 1 GHz Quad-Core
(x86) processor, 2 GB of DDR3 unified memory, and 16 GB of disk storage. It
operates on a Debian-based Linux operating system. Furthermore, it offers a wide
operating temperature range, from -20 degrees Celsius to 50 degrees Celsius, and
when housed in its enclosure, it has a weight of approximately 2.2Kg.

Fig. 4.1 Meshlium scanner by Libelium [59].

99

People counting and crowd monitoring in real use cases

4.3.2 Raspberry Pi

The Raspberry Pi, often referred to as Raspi [74], is a single-board computer devel-
oped by Raspberry Pi Ltd in collaboration with Broadcom. While there are various
Raspberry Pi models with varying specifications, we will focus on the most powerful
iteration to date, which is the Raspberry Pi 4B.

The Raspberry Pi 4B boasts impressive hardware components compared to
the low cost price, featuring a 1.8 GHz Quad-core Cortex-A72 (ARM v8) 64-bit
processor produced by Broadcom. Depending on the model, it can be configured
with up to 8 GB of LPDDR4 unified memory. The available disk space depends on
the micro SD card used, with support for micro SD cards offering more than 1TB of
storage capacity.

In terms of connectivity, the Raspberry Pi 4B is well-equipped, providing two
USB 2.0 ports and two USB 3.0 ports for versatile peripheral connections. It
also includes two micro-HDMI ports for video output, offering great flexibility.
Wireless connectivity options encompass support for both 2.4 GHz and 5.0 GHz
IEEE 802.11ac wireless standards, in addition to Bluetooth 5.0 and BLE (Bluetooth
Low Energy). Furthermore, it is equipped with a Gigabit Ethernet port that can
also support Power over Ethernet (PoE) for streamlined power delivery, along with
a USB-C connector. For a visual reference, Figure 4.2 displays an image of the
Raspberry Pi 4B.

Fig. 4.2 Raspberry Pi 4B [74].

100

People counting and crowd monitoring in real use cases

4.3.3 Meshlium vs Raspberry Pi

Table 4.1 provides an insightful comparison of the advantages and disadvantages
of Meshlium by Libelium and the Raspberry Pi 4B, aiding in making an informed
choice between these two compelling solutions for various applications.

Meshlium by Libelium Raspberry Pi 4B

Price Cons:
- Very expensive

Pros:
- Low budget solution
- Excellent price-to-
performance ratio

Performance Pros:
- Optimized for packet
capture
- Hardware acceleration
for specific tasks

Pros:
- Powerful quad-core pro-
cessor (1.8 GHz)
- Up to 8 GB of RAM for
multitasking

Connectivity Pros:
- Built-in 3G/4G support
- Waterproof and rugged
casing
Cons:
- No HDMI or USB ports
for direct GUI interaction

Pros:
- Multiple USB ports for
peripherals
- Micro-HDMI ports for
displays
Cons:
- Not waterproof by de-
fault

Wireless Capabilities Pros:
- WiFi
- Bluetooth 2.1 and BLE
- Xbee-PRO 802.15.4

Pros:
- Dual-band WiFi support
(2.4 GHz & 5 GHz)
- Bluetooth 5.0 and BLE

Operating System Cons:
- Limited to Debian-based
Linux

Pros:
- Versatile OS options, in-
cluding Raspbian OS

Customization Cons:
- Limited to predefined
use cases

Pros:
- Highly customizable and
expandable

Weight Cons:
- Relatively heavy (2.2 Kg
with enclosure)

Pros:
- Lightweight and easy to
carry

Table 4.1 Comparison between Meshlium by Libelium and Raspberry Pi 4B.

101

People counting and crowd monitoring in real use cases

Sniffing software

In the realm of network packet capture, there exists a range of software tools de-
signed to effectively capture and manage packet data. These tools are invaluable
for monitoring network activity, allowing users to capture packet data from a live
network or extract data from previously saved capture files. The captured data can
then be presented in a decoded format, either displayed on the standard output or
saved to a file for further analysis.

Among the numerous options available, three notable command-line tools are
commonly used for packet capture and analysis:

• tcpdump [96]: A versatile and widely recognized packet capture utility,
tcpdump offers powerful capabilities for monitoring network traffic.

• tshark [99]: Tshark is a command-line packet analyzer based on Wireshark.
It provides robust packet capture and analysis features, making it a favorite
among those who prefer a command-line interface.

• Airodump-ng [17]: Specifically tailored for wireless network analysis, Airodump-
ng is a component of the Aircrack-ng suite. It excels in capturing and analyzing
packets in wireless environments, making it indispensable for wireless security
assessments and troubleshooting.

4.4 WiFi probe requests people counting algorithms

In this Section, we present an overview of crowd monitoring systems that rely on
WiFi probe requests. We will begin by discussing older methods used before the
implementation of MAC address randomization and progress to the latest techniques.
These systems all share the common goal of estimating the number of devices within
a specific area, effectively gauging the presence of individuals. These methodologies
typically operate under the assumption that each person possesses a single device,
simplifying the process of estimating the number of people present based on the
count of detected devices.

It is worth noting that there are certain exceptions to this assumption. For
instance, some elderly individuals and babies may not have smart devices, while

102

People counting and crowd monitoring in real use cases

some people may carry multiple devices. However, this simplifying assumption
proves highly valuable in contexts such as crisis management and urban traffic
analysis. In such scenarios, the goal is to estimate a figure that closely approximates
the actual number of individuals present, rather than achieving perfect accuracy. This
is why the one-device-one-person assumption remains a pragmatic and effective
approach.

4.4.1 Naive algorithms

Before the advent of MAC address randomization techniques, tracking individuals
through the sniffing of probe request messages was a relatively straightforward
process. Simply tallying the count of unique MAC addresses detected sufficed for
the task of headcount.

An example implementation of this algorithm is detailed with the provided
pseudo-code in Algorithm 2.

Algorithm 2 Algorithm to compute the device counting with a Naive approach.
Require: .pcap file with the capture

MACadresses_list← empty_list
for packet in capture do

MAC_address← getMACaddress(packet)
if MAC_address is not already in MACadresses_list then

MACadresses_list← insert(MAC_address)
end if

end for
number_o f _devices← length(MACadresses_list)

By running this algorithm iteratively across all captures, the count of detected
devices was easily obtainable by simply tallying the elements within the list of MAC
addresses. However, with the introduction of MAC address randomization, these
straightforward methods could no longer be applied. This represented a crucial step
forward in safeguarding user privacy. Nevertheless, it substantially complicated the
feasibility of monitoring crowds through probe requests.

103

People counting and crowd monitoring in real use cases

4.4.2 De-randomization algorithms

In the realm of WiFi probe requests, there have been concerted efforts to tackle the
issue of MAC address randomization. The primary objective is not to uncover the
original MAC addresses, as this would demand extensive computational resources.
Instead, the focus is on developing methods that allow to discern which MAC
addresses are more likely to be linked to the same device. This is what we refer to
when discussing de-randomization algorithms.

Non-ML-driven algorithms

Among the early algorithms developed for MAC addresses de-randomization, one
notable solution is known as iABACUS [63]. Unlike traditional approaches that
focus on MAC addresses, this algorithm leverages basic computer science constructs
like if-then-else statements, loops, cycles, and recursion. What sets it apart is its
consideration of fields other than the MAC address, particularly the capabilities
found in the header sections of probe requests. The iABACUS system employs a
recursive algorithm to investigate the header’s fields and assigns a probability to
a probe request with a randomized MAC address belonging to a set of previously
observed probe requests. In essence, it estimates the likelihood that the probe request
corresponds to a device that has already been counted. By the end of this process,
it can provide an accurate count of the number of devices present in the captured
environment.

While methods based on conventional algorithms and capabilities fields have
demonstrated their effectiveness in device counting, they do come with certain
limitations. Firstly, they can demand significant computational power, especially
when recursion is involved. In cases where the message trace contains a substantial
number of probe requests, there is a risk of overwhelming the memory of the devices
running these algorithms.

Unsupervised ML-driven algorithms

In recent years, the emergence of machine learning techniques has given rise to new
de-randomization algorithms that capitalize on clustering methods. Clustering, an
unsurvised machine learning approach, is designed to categorize similar objects or

104

People counting and crowd monitoring in real use cases

data points based on their intrinsic characteristics or attributes. The primary objective
is to uncover patterns, structures, or natural groupings within a dataset. Importantly,
this process is carried out without any predefined labels, making it a crucial part of
unsupervised methods. Clustering aids in uncovering insights, identifying similarities
or dissimilarities between data points, and structuring extensive datasets into more
manageable groups. To illustrate this, Figure 4.3 provides a representation of a
clustering schema where data is depicted as points on a plane. These data points are
clearly grouped into distinct clusters, each assigned a label.

The clustering process is usually made of some key steps:

1. Data representation: The data is formatted in a convenient way, allowing the
algorithm to discern relationships between data points.

2. Selection of distance measurement: A distance metric is employed to deter-
mine the proximity of two data points. The most common distance metric is
the Euclidean distance.

3. Determination of the number of clusters: When the number of clusters to
be created is established in advance we call it hard clustering, instead, when it
is determined automatically by the algorithm, we call it soft clustering.

Fig. 4.3 Example of clustering.

105

People counting and crowd monitoring in real use cases

4. Selection of a clustering algorithm: Various clustering algorithms are avail-
able, each with its unique strengths and weaknesses. Some popular ones
include k-means, hierarchical clustering, density-based clustering, Gaussian
Mixture Models (GMM), and others.

5. Clustering process: The clustering algorithm is applied to each data point, and
it iteratively assigns data points to clusters based on their similarity evaluated
trough the distance measure selected.

6. Evaluation process: Once the clustering process is complete, the resulting
clusters are evaluated to gauge their quality and coherence. Different evaluation
metrics may be used, depending on the nature of the data and the specific task
objectives.

In crowd monitoring systems, clustering can be employed with a straightforward
mechanism: grouping the probe requests, with each request representing a device,
and subsequently counting the number of clusters formed to extrapolate the number
of devices. Instead, the selection of attributes to use for forming clusters is indeed
a non-trivial task and often a critical aspect of the clustering process. The choice
of attributes significantly influences the quality and meaningfulness of the clusters
produced.

In the domain of clustering algorithms, there exists a notable category known
as density-based clustering, a part of the soft clustering group. Two prominent
density-based clustering algorithms are DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) and OPTICS (Ordering Points To Identify the Clustering
Structure). While DBSCAN can encounter challenges with datasets containing
clusters of varying densities and irregular shapes, OPTICS addresses these issues by
establishing a hierarchical data representation, thereby enhancing the flexibility and
robustness of cluster identification. Research endeavors, exemplified in studies [90]
and [100], have harnessed these algorithms to achieve precise device counting and
crowd analysis across diverse scenarios.

In the case of [90], the authors initiate the process by dividing detected probe
requests into two categories: those with global MAC addresses and those with locally
administered MAC addresses. They then focus exclusively on packets featuring
locally administered MAC addresses and extract essential fields and frame capabil-
ities. Subsequently, they apply two clustering methods, DBSCAN and OPTICS,

106

People counting and crowd monitoring in real use cases

to allocate the probe requests into distinct clusters. In the final phase, the clusters
undergo a matching algorithm that attempts to link a cluster with one of the globally
administered MAC addresses detected. In cases where no matches are found, the
group is considered an individual device.

Conversely, in [100], the authors opt not to consider the values of the fields but
rather their lengths. Building upon the framework previously described, they initially
categorize probe requests into two groups: one based on globally administered MAC
addresses and the other based on locally administered MAC addresses. Subsequently,
they further subdivide the probe requests based on burst value. From these burst-
based groups, they extract information such as burst rate and inter-packet time.
Finally, they apply the clustering algorithm, factoring in the time-based features
extracted. The overall device count is then determined by adding the number of
clusters to the count of distinct globally administered MAC addresses identified at
the outset of the analysis.

In the following three Sections, we offer real-world use case examples showcas-
ing the implementation of techniques, including both non-machine learning-driven
and machine learning-driven approaches.

4.5 Real-time presence sensing on a 5G infrastructure

In this Section we represents the first use case within our commitment to the European
project known as 5G EVE [60]. Our objective was to address an outdoor scenario,
with a specific focus on the detection and counting of people traversing various
modes of transportation within a designated area in Turin, Italy. Within this testbed,
a multitude of off-the-shelf scanners, detailed in 4.3.1, were strategically deployed
along a stretch referred to as the innovation mile. This mile spanned the distance
between the Politecnico di Torino university campus and Porta Susa train station,
which stands as the primary transit hub in Turin.

Within this area, as illustrated in Figure 4.4, we not only successfully identified
pedestrians commuting daily to our campus but also tracked a substantial influx and
efflux of individuals utilizing diverse transportation modes, such as bicycles, electric
scooters, cars, and motorcycles.

107

People counting and crowd monitoring in real use cases

Fig. 4.4 WiFi scanner coverage map in the innovation mile in Turin.

4.5.1 Implemented architecture

Figure 4.5 illustrates the architecture of the testbed we established to address our
use case. It encompasses an edge cloud, housing two applications realized by
integrating multiple Virtual Network Functions (VNFs). The WiFi scanners are
interconnected via the Radio Access Network (RAN) with the OneM2M server [9],
an open architecture catering to IoT service provisions. An MQTT broker facilitates
the connection between the OneM2M server and the edge cloud, hosted within a
data center at Politecnico di Torino.

The architecture’s scalability is greatly empowered by the utilization of the edge
paradigm. It can expand horizontally as the number of deployed scanners increases.
Moreover, the use of Virtual Network Functions (VNFs) to orchestrate the entire
mobility application confers a high degree of flexibility concerning the requisite
hardware resources.

Through MQTT connectivity, data residing in the OneM2M server is retrieved
by the MOBility tracking (MOB) VNF and subsequently stored in a local MySQL
database, enhancing performance for subsequent data analyses. Finally, users or
experimenters have real-time access to all data collected by the scanners through the
VISualization (VIS) VNF, featuring a web-based visualization tool.

As portrayed in Figure 4.4, we installed six Meshlium by Libelium WiFi scan-
ners [59]. Two of these were placed on our campus near entry gates, while the
remaining scanners were positioned atop traffic light poles. Each scanner is linked to
the platform developed within the 5G EVE EU project [60] via a cellular connection.

108

People counting and crowd monitoring in real use cases

Fig. 4.5 Edge cloud architecture in the 5G EVE Eu project.

Notably, all MAC addresses identified are anonymized using an SHA-224 function
immediately upon collection.

4.5.2 Mobility framework

The core mobility framework comprises two integral components known as MOB
and VIS. MOB is the Mobility VNF responsible for the retrieval, cleaning, and
storage of data collected by the sensors. VIS, on the other hand, is tasked with
visualizing the data stored in MOB’s database.

MOBility VNF

The MOB VNF is primarily responsible for retrieving data from the OneM2M
platform using an MQTT (Message Queuing Telemetry Transport) client. MQTT is
a lightweight, open transport protocol founded on the publish-subscribe model. This
protocol operates over TCP/IP, ensuring reliability and preventing data delivery in
the wrong order.

When the scanners transmit a new message to the remote platform, it is initially
saved in the server’s local database. Subsequently, it is relayed to the MQTT client,

109

People counting and crowd monitoring in real use cases

where the message undergoes parsing, analysis, and eventual storage within the
MySQL database of MOB.

Before the data is preserved in the MOB database, two sequential operations take
place:

• Address Digesting: This step reduces the data’s footprint in the database,
optimizing storage efficiency.

• Stationary Device Removal: Here, devices classified as stationary objects
(e.g., access points, fixed computers, etc.) are identified as outliers and elimi-
nated from the dataset.

VISualization VNF

The VIS VNF offers a comprehensive overview of all the meticulously collected and
analyzed data. These data are accessible through a standard web browser via two
distinct means: an interactive, real-time visualization dashboard integrated trough
Grafana [50] tool, and a dynamic web page with a Python backend.

Grafana [50] is a versatile, open-source analytics and interactive visualization
web application that operates across multiple platforms. It empowers the creation
of sophisticated monitoring dashboards by employing interactive query builders
linked to databases. Grafana enables the generation of interactive charts, graphs, and
alerts, making it possible to establish threshold values for alerts—both above and
below—which trigger notifications.

4.5.3 Results

Now, let us delve into some of the results stemming from the copious data collected
via our testbed. Over the span from October 2019 to May 2022, we recorded a
staggering total of 97,728,830 detection events, signifying 51,255,486 distinct MAC
addresses. Notably, due to MAC address randomization, this latter figure represents
an upper limit concerning the number of detected devices. It is worth to mention
that, our inability to access the Meshlium software has hindered our capacity to
implement any de-randomization procedures on the collected data.

110

People counting and crowd monitoring in real use cases

In a more detailed examination, Figures 4.6 and 4.7 provide a comparative
analysis of data captured during the month of March for three consecutive years:
2020, 2021, and 2022.

Figure 4.6 employs a logarithmic scale heatmap to illustrate the detection occur-
rences for each scanner across various hours of the day. Scanner 7 data is excluded
due to outages. The impact of COVID-19 restrictions is evident. In March 2020, a
strict lockdown led to significantly reduced outdoor mobility, reflected in the dimin-
ished numbers of smart devices detected. In March 2021, as restrictions began to
ease, more devices appeared. Finally, in March 2022, with schools, universities, and
companies returning to normal operations, the graph depicts a substantial increase in
the presence of individuals in the testbed area.

Figure 4.7 continues to reflect the aforementioned trend but provides a more
consolidated view of the overall detections for each scanner in the month of March
across the three years. As anticipated, the three curves do not align but exhibit gaps
between them. Notably, scanner 6, located near the Porta Susa train station, detected

Fig. 4.6 Heatmap illustrating hourly log-scale detection frequencies for March 2020, 2021,
and 2022.

111

People counting and crowd monitoring in real use cases

Fig. 4.7 Count of unique MAC addresses identified by each scanner throughout March for
2020, 2021, and 2022.

a consistent number of devices in both 2020 and 2021 but recorded a considerably
higher count compared to other scanners in 2022.

4.6 Passive crowd monitoring inside a bus

In this Section, our focus shifts to a more complex real-world scenario: onboard
a bus. In this research, we undertook the challenging task of counting passengers
aboard buses in the city of Turin. To achieve this, we employed a cost-effective
Raspberry Pi 3B, a cutting-edge de-randomization algorithm, and leveraged the WiFi
probe request messages emitted by passengers’ devices.

4.6.1 Capturing framework

To uphold privacy and data security, the probe requests intercepted by our sniffer
(depicted in Figure 4.8) are processed in real-time. This processing involves directing

112

People counting and crowd monitoring in real use cases

Fig. 4.8 Sniffer solution featuring a Raspberry Pi 3B, a USB WiFi dongle, and a USB LTE
modem.

the output of the network sniffer from two interfaces - one capturing WiFi probe
request packets and the other gathering internal bus information via Ethernet - into
scripts designed for message analysis. Our analysis consists of four distinct steps,
each executed sequentially within a processing pipeline.

1. Probe request sniffing

To determine the optimal capturing timeframe, we developed a script that monitors
the bus door status obtained via UDP from the bus’s Local Area Network (LAN).
We initiated the capture process as soon as the bus doors closed following a door
opening status, and terminated it as soon as the doors opened again. This approach
ensures that we capture a continuous sample encompassing the entire duration
between two consecutive door openings, corresponding to two consecutive bus stops.
This methodology streamlines our passenger counting task, eliminating the need to
account for noise stemming from people waiting at bus stops.

2. Probe request filtering

In our pursuit of detecting only onboard devices, it is imperative to employ filtering
mechanisms that restrict our data capture to the boundaries of the bus. It is quite
common for our sensor to capture probe request frames originating from devices
outside the bus. This can occur frequently, especially when the bus halts at traffic
lights or is surrounded by other vehicles, but it is a scenario that can unfold at any time

113

People counting and crowd monitoring in real use cases

during the journey. To address this challenge, we establish two crucial parameters:
the power level threshold, denoted as Pl , and the occurrence level threshold, referred
to as Ol . These thresholds are defined as follows:

• Pl (Power Level Threshold): Pl signifies the minimum acceptable average
power level of a burst of probe requests. A lower average power level is an
indicator that a device might be in proximity to the bus for a brief moment,
implying that it is not onboard.

• Ol (Occurrence Level Threshold): Ol establishes the minimum count of
times a MAC address must appear within a specified sample window to be
recognized as a valid onboard device. A lower number of frames within a burst
may suggest that a device is merely passing by, necessitating its exclusion
from our analysis.

If the average power of a burst of probe requests falls below Pl , or if the burst
contains fewer than Ol frames, the respective input record is discarded. It is crucial
to emphasize that the values of Pl and Ol should be fine-tuned for each unique
environment, such as each individual bus. These thresholds require recalibration
when transitioning to different bus settings to ensure accurate filtering and detection
of onboard devices.

3. De-randomization algorithm

At the core of our probe request counting procedure lies the MAC address de-
randomization method. This technique endeavors to determine if two sets of probe
requests, each containing randomized MAC addresses, likely originate from the
same device. Our input data comprises a series of bursts of probe request frames,
all sharing an identical MAC address. We rely on the iABACUS method [63], as
elaborated in Section 4.4.2, to underpin our de-randomization process. The output
of the iABACUS algorithm, which we have implemented following the flowchart
available in [63], comprises a collection of lists, each containing various randomized
MAC addresses assumed to be linked to a single device. In the final step, we
ascertain the count of distinct devices on board by tallying the number of separate
lists generated through the de-randomization process. This approach enables us to

114

People counting and crowd monitoring in real use cases

accurately count the number of onboard devices by discerning and grouping probe
requests originating from the same source.

4. Counting, storage, and visualization

The preceding step yields the crucial result: the count of individuals on board the
bus. The final script within our pipeline is responsible for transmitting this count,
along with the detection timestamp, to our server through the LTE dongle integrated
into the Raspberry Pi. On the server side, a script continually awaits incoming UDP
datagrams. Upon receiving new data, it diligently stores the detected count and its
corresponding timestamp in a local SQL database.

To provide real-time insights and visual representation of the data, we employ a
Grafana dashboard [50]. This dashboard allows us to visualize the data originating
from the sniffer as it arrives, offering a real-time perspective on the passenger count
and enabling us to monitor passenger activity and trends as they occur.

4.6.2 Validation and parameter tuning

To ensure the accuracy and effectiveness of our system, it was essential to compare
the results of our counting process with ground truth data. We scheduled numerous
manual counting sessions to establish the precise count of individuals on board a
public bus while our system was actively in operation. This critical step allowed
us to align our system parameters with the capturing environment accurately. In
Figure 4.9, we can observe the mean relative error for various combinations of
power and occurrence thresholds. By using specific values such as Ol = 1 and
Pl =−75 dBm as thresholds, we effectively filter out spurious detection occurrences.
This minimizes the mean relative error across the board, as evident in Figure 4.9.

4.6.3 Performance evaluation

With our parameter tuning efforts, we can provide rather precise estimates of the
number of passengers on a bus. Our findings demonstrate that we can predict the
actual passenger count with a high degree of accuracy, particularly for scenarios
where we had access to ground truth data.

115

People counting and crowd monitoring in real use cases

(a) October 16, 2020

(b) October 19, 2020

Fig. 4.9 Mean relative error comparison for two metrics: power filter and MAC occurrence
filter.

116

People counting and crowd monitoring in real use cases

Figure 4.10 illustrates the comparison between our passenger count predictions
and the manual counts conducted on two different days, October 16 and October 19,
2020. In summary, we achieved an accuracy level of approximately 85% for the first
day and 90% for the second. These results reflect the effectiveness of our system in
accurately estimating the number of passengers on board, demonstrating its potential
for reliable real-time passenger counting on public buses.

(a) October 16, 2020

(b) October 19, 2020

Fig. 4.10 Performance evaluation with manual counting for two days.

117

People counting and crowd monitoring in real use cases

4.7 Machine learning-driven privacy-preserving frame-
work for crowd management

In this Section, our focus shifts to the refinement of the de-randomization algorithm,
a fundamental component of our people counting technique that leverages probe
request messages. Building upon the insights gained from our analysis in Chap-
ter 2 and the probe request generator introduced in Chapter 3, we now introduce
our innovative machine learning-driven privacy-preserving framework for crowd
monitoring.

4.7.1 DBSCAN clustering method

Our crowd monitoring framework harnesses the power of the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm. DBSCAN is employed
to classify probe requests into distinct categories based on specific criteria related to
device or model differentiation. Unlike traditional clustering methods, DBSCAN
excels at effectively handling noisy data points, i.e., those that fail to meet the
density criteria required for inclusion within a cluster. As outlined at the outset of
this Chapter, clustering algorithms follow unsupervised learning techniques. They
involve training models on unlabeled data, lacking access to explicit target values or
predefined categories for the input. Instead, they aim to unveil underlying patterns
and relationships within the data sets.

Key components and parameters of the DBSCAN algorithm include:

• Epsilon (ε): This represents the cluster radius.

• Min samples: It signifies the minimum number of data points required to
form a cluster.

• Evaluation metric: This metric is used to calculate the distance between data
points.

• Core points: Data points considered core points must have a specified number
of other data points (as defined by the min samples parameter) within a certain
radius (expressed by the epsilon parameter). These core points serve as central
components of clusters.

118

People counting and crowd monitoring in real use cases

• Border points: Data points not classified as core points but falling within the
radius of a core point are designated as border points.

• Noise points: Data points that neither qualify as core points nor border points
are identified as noise points or outliers.

In our case, we employ the Euclidean distance as the evaluation metric, applied
in an N-dimensional space. Each probe request is regarded as a point, with its unique
features determining its coordinates along each dimension. Among the various
features contained in probe request frames, we specifically focus on VHT, HT, and
Extended capabilities. The epsilon and min samples parameters play pivotal roles in
the effectiveness of counting algorithms, and their calibration is contingent upon the
specific scenario and expected traffic. Typically, epsilon is minimized to maximize
differentiation between clusters, while min samples is tailored based on the expected
average number of probe requests within the designated time window.

To facilitate the clustering process, it is essential to generate distinct model
identifiers for each probe request. These identifiers serve as coordinates within the
space in which the clustering method will be subsequently applied. The pseudo-code
for the method used to generate these model identifiers is provided in Algorithm 3.
The Algorithm is designed to create individual identifiers for each probe request,
allowing for the unique recognition of its model. The deliberate separation of the
three capabilities serves a specific purpose: it mitigates potential problems that
could arise if messages from different models share the same identifier after the
aggregation, despite possessing differing capability values. This separation of fields
ensures a more robust and effective approach.

4.7.2 DBSCAN clustering algorithm

To ensure the precision of probe request analysis, it is crucial to confine these requests
within a predefined capture area, typically in close proximity to the sniffer device.
Occasionally, probe requests from devices located outside this designated region
may be captured. To address this, a signal power threshold of -70 dBm is applied to
compare the strengths of probe requests signals. The specific value of this threshold
can be adjusted to tailor the capture area according to the particular use case at hand.

119

People counting and crowd monitoring in real use cases

Algorithm 3 Algorithm to compute the probe requests model identifiers.
Require: .pcap file with the capture

ids_list← empty_list
for packet in capture do

HT _counter← 0
V HT _counter← 0
Extended_counter← 0
for f ield in packet do

if f ield contains HT info then
HT _counter← HT _counter+ value

else if f ield contains VHT info then
V HT _counter←V HT _counter+ value

else if f ield contains Extended info then
Extended_counter← Extended_counter+ value

end if
end for
ids_list← insert(HT _counter,V HT _counter,Extended_counter)

end for

Before employing clustering techniques to group probe requests based on de-
vice models, it is essential to handle devices that do not employ MAC address
randomization. These are the devices that transmit their original MAC addresses,
and distinguishing them from those using randomized MAC addresses is achieved by
inspecting the Globally/Locally unique bit. Counting the devices utilizing globally
unique MAC addresses is straightforward; a Python set can be employed to store
these addresses, ensuring uniqueness. The size of this set, as revealed during the
parsing of the .pcap file, provides the count of devices not implementing MAC
address randomization.

For probe requests coming from devices employing randomization techniques,
a model identifier is computed as detailed in Algorithm 3. These model identifiers
represent the data points used in the DBSCAN clustering algorithm, with the pri-
mary goal of grouping probe requests based on the device models from which they
originated.

By default, DBSCAN assigns the label -1 to items classified as noise. Since this
group may contain probe requests from various models, it is not representative for
our crowd monitoring analysis, and thus, it is discarded. To determine the number
of devices for each model within the clusters formed by the clustering algorithm,

120

People counting and crowd monitoring in real use cases

probe request rates are taken into consideration. Each model sends probe requests
at a specific frequency, depending on the phase it is in. Instead of attempting to
separate clusters by phase, this framework focuses on the average sending rate for
each model. In cases where crowd monitoring is conducted in environments where
a particular phase predominates over others, it may be useful to consider message
rates for each phase separately.

The formula employed for this purpose is the (4.1).

N = K ·L ·T (4.1)

Where: N represents the total number of probe requests sent by devices of a specific
model, K denotes the count of devices belonging to the model, L signifies the average
probe request rate for the model, and finally T represents the time window in which
the packets were sent.

It is important to emphasize that while parameters N and T are readily available,
while the rate L must be determined from a reliable data source. Finding a specific
L value for each formed cluster is essential, as each model exhibits significantly
different rates during the experiments.

4.7.3 Counting pipeline

The core concept behind the counting pipeline is that when two models share similar
identifiers, there is a higher probability that their probe request rates are also alike.
Our probe request generator’s database contains multiple models, each with its unique
identifiers and rates. This approach facilitates the comparison of each generated
cluster with all models in the database based on their identifiers. This, in turn,
enables the identification of the most similar model, from which the rate can be
extracted as the parameter L. To obtain these values, the probe request generator
(referenced in 3.4) allows for simulations with individual devices from the database.
This simulation makes it possible to calculate the message rate associated with a
specific model.

The counting pipeline is illustrated in Figure 4.11. To provide a more detailed
overview, the system initialization process begins by configuring all the necessary
environment variables and executing a wireless interface configuration script through

121

People counting and crowd monitoring in real use cases

Fig. 4.11 Counting pipeline.

the rc.local file. This script serves the purpose of switch off the onboard WiFi
interface of the Raspberry Pi and switch on the one connected with the USB WiFi
dongle. This is a crucial step because the embedded WiFi interface cannot be placed
in promiscuous mode. After all configurations are set, the primary sniffing script
is initiated. Using tshark [99], we begin the process of capturing probe request
messages within a two-minute time window. Following this, the resulting .pcap file
is handed off to the subsequent stage of the processing pipeline, while the tshark
script restarts for another capture cycle.

Each time a new .pcap file is generated, a script commences the analysis of
all the detected probe requests. All messages are categorized into two groups
based on the global/local bit in the MAC address. For each probe request with a
locally administered MAC address, we proceed with generating model identifiers.
Specifically, we utilize the throughput capabilities to construct 3-dimensional data
points that are then fed into the DBSCAN clustering algorithm, as discussed in
Section 4.7.1. After this clustering process, the pipeline then splits into two separate
paths, as highlighted in Figure 4.11 using distinct colors: green for the single scanner
counting pipeline and orange for the multi-scanner flows analysis.

In the first scenario, we obtain the initial timestamp of the time window and
a numerical value representing the count within that specific time window. In the
multi-scanner analysis case, the resulting MAC addresses are stored in a Bloom
filter. This filter is specially initialized with n random MAC addresses to meet the
1-deniability requirement, necessary for ensuring GDPR compliance. Consequently,
we obtain the initial timestamp of the time window and the populated Bloom filter.

Both sets of results are subsequently transmitted to a server and saved in a local
database.

122

People counting and crowd monitoring in real use cases

4.7.4 Counting results

Our primary goal in these studies is to conduct an extensive analysis of crowd moni-
toring system performance under various environmental conditions. By employing
the probe request generator, we can generate a range of scenarios, including those
highlighting a limited number of devices with a diverse set of distinct models, as
well as scenarios featuring the opposite condition. Additionally, we explore scenar-
ios characterized by mixed situations. Moreover, the algorithms have undergone
extensive testing using genuine .pcap traces, with associated ground truth data. The
list of some of the datasets used in our analysis is the following:

• Simulated traces:

– Dataset A: 60 devices, all of which exclusively pertain to a single vendor-
model.

– Dataset B: 6 devices, each representing a distinct vendor-model.

– Dataset C: contains only one device.

– Dataset D: medium-crowded situation, with 70 devices of various vendor-
models.

– Dataset E: large-crowded situation, with 120 devices of various vendor-
models.

• Real Traces:

– Dataset F: contains the captures conducted within an anechoic chamber
as part of the research detailed in [69].

– Dataset G: comprises a collection of 10 two-minute captures performed
within room 14 at Politecnico di Torino, on the first day of the 2023/2024
academic year.

The experiment results have been organized into Table 4.2, where each row
corresponds to a specific set of tests conducted using a .pcap file simulating a
particular environment. The columns in the table present various details, including
the dataset identifier, the ground truth (i.e., number of devices), and the count of
detected and accuracy, for two different frameworks (our and an implementation
of iABACUS [63]). To calculate the accuracy, we employ a method that takes

123

People counting and crowd monitoring in real use cases

Dataset Ground truth Our framework iABACUS [63] implementation

A 60 52 (86.66%) 36 (60%)

B 6 7 (83.33%) 88 (-1266.70%)

C 1 1 (100%) 45 (-4400%)

D 70 58 (82.85%) not able to compute

E 120 110 (91.66%) not able to compute

F 22 23 (95.45%) not able to compute

G up to 121 overall 91.48% overall 27.63%

Table 4.2 Crowd monitoring results.

into account the difference between the obtained result and the ground truth. More
precisely, the counting error is determined by computing the absolute difference
between the ground truth and the obtained result, which is then normalized relative
to the ground truth. Accuracy can be readily obtained by subtracting this error from
one.

In Table 4.2, we present the results derived from our framework and compare
them to the outcomes obtained using an implementation of the framework proposed
in [63]. It is noteworthy that the authors of [63] introduced a de-randomization
framework renowned for its high accuracy in their experiments. This framework
employs multiple if-then-else constructs and incorporates several levels of recursion
to assess the likelihood that multiple MAC addresses belong to the same device.

During our experiments, we ran our implementation of the iABACUS framework,
following the flow chart outlined in [63], on an Apple MacBook Pro laptop equipped
with the M1 Pro CPU. However, despite the substantial computational power at our
disposal, we encountered challenges when processing datasets D, E, and F. The script
failed to complete its execution due to recursion errors, surpassing the maximum
recursion depth.

124

People counting and crowd monitoring in real use cases

Real-life scenario counting results

To evaluate our framework within a real-life scenario, we introduced Dataset G. This
dataset comprises a twenty-minute recording, with capturing windows spanning two
minutes each. The recording took place in Room 14 at the University of Politecnico
di Torino, Italy, during the first day of the academic year 2023/2024.

What sets this dataset apart is its dynamic nature. Instead of a static use case, we
aimed to capture a scene a few minutes before the start of a lesson and continued
recording for a few minutes afterward. As a result, at the outset of the scenario, a
few individuals were already present in the room. Over the next twelve minutes,
more people entered the room, seeking seats. In the final three capturing windows,
the lesson commenced, with only a handful of additional individuals arriving. This
dynamic recording scenario allowed us to simulate the gradual entry of people into
the room, mirroring a real-world situation.

Table 4.2 provides an overall accuracy for both frameworks under consideration.
Additionally, Figure 4.12 offers a detailed representation of the results obtained.

The progressive presence of individuals in the room is clearly evident when
examining the ground truth line in Figure 4.12. Our framework’s results are presented
in red, while the results obtained with the implemented version of the iABACUS

Fig. 4.12 Comparison between ground truth and results obtained from our framework and an
implementation of iABACUS one, for Dataset G.

125

People counting and crowd monitoring in real use cases

framework are shown in green. The x-axis represents the various captured windows,
while the y-axis indicates the number of detected people/devices. Notably, our
framework outperforms the iABACUS framework, which tends to significantly
underestimate the number of detected devices.

It is important to note that during the initial seven capture windows, people
were often in motion, using their phones, or engaged in conversations while their
smartphones were in a locked state. In such cases, we calculated an average rate that
considered both the locked, awake, and active phases. However, starting from the
eighth capture, corresponding to the beginning of a lesson, using the average rate is
no longer an accurate choice, as it tends to underestimate the count. Instead, focusing
solely on the locked rate yields greater accuracy. This underscores the significance
of considering the context in which these captures are conducted, as it is crucial for
achieving even better results.

Our framework consistently achieves over 90% accuracy for nearly every time
window, resulting in an impressive overall accuracy of 91.48%. This highlights
the effectiveness of our approach in accurately detecting and tracking the presence
of people/devices in the room, particularly during dynamic scenarios like the one
presented in Dataset G.

4.8 Conclusions and future works

Detecting human presence in both outdoor and indoor settings holds significant
utility in a variety of contexts. It aids in the design of urban spaces, facilitates public
transportation planning, and supports the implementation of mobility restrictions,
such as those enacted during the COVID-19 pandemic.

In the course of our study, we have developed several solutions, each tailored to
tackle diverse and challenging environments. Moreover, we have been adapting to
the continuous evolution of privacy techniques, always with a commitment to keep
safe user privacy. Our cumulative experience from these projects has culminated
in the creation of a machine learning-driven privacy-preserving framework. This
framework serves a dual purpose: accurate people counting and in-depth flow
analysis.

126

People counting and crowd monitoring in real use cases

Looking ahead, we are currently in the final stages of refining the hardware
solution that will run the crowd monitoring framework described in Section 4.7. In
the near future, we are preparing to deploy this solution in a real testbed scenario,
which is the core component of our participation in the TrialsNet EU project [13].
This project presents an opportunity to validate both our people counting algorithm
and the comprehensive flows analysis, facilitated by the deployment of two scanners
strategically positioned at opposing ends of a spacious events area.

127

Chapter 5

Federated Learning Empowered
Vehicular Networks

The relentless evolution of automobiles has consistently revolved around two fun-
damental objectives: enhancing safety for both passengers and pedestrians, and
concurrently, improving the overall quality of life within urban centers, with a partic-
ular emphasis on the driving experience for drivers. This progressive journey has
brought forth an era where vehicles come equipped with an extensive array of sen-
sors, capable of meticulously monitoring both their internal operations and external
surroundings. As we approach the future, the trend appears to be unambiguously
directed towards an exponential increase in the volume of data amassed by these
vehicles. Such data holds the key to delivering services that are not only highly
utilitarian but also exceedingly efficient. Inevitably, this exponential data growth
calls for advanced technologies to process and extract valuable insights. In this
context, machine learning models are poised to play an instrumental role. However,
it is essential to acknowledge that the effective training of these models demands
substantial computing and energy resources.

Within this Chapter, we embark on a journey to explore innovative solutions
centered around cooperative learning, specifically focusing on the application of
Federated Learning (FL). Our primary goal is to harness the power of FL in an
urban environment, where numerous vehicles work together. In this collaborative
paradigm, vehicles, each functioning as a node, securely keep their data onboard
while collectively training a Neural Network (NN) model. This approach not only

128

Federated Learning Empowered Vehicular Networks

ensures data privacy but also leverages the collective intelligence of an interconnected
fleet of vehicles, with a server positioned at the network’s edge orchestrating the
cooperative learning.

5.1 Research motivation and State of the Art

According to the most recent report from the World Health Organization, road acci-
dents continue to claim the lives of approximately 1.3 million individuals annually,
with a substantial portion of these tragic events attributed to human errors [66].
Moreover, a study conducted by the European TRACE project underscores the sig-
nificance of intersections, where around 43% of all road injuries occur [89]. These
distressing statistics emphasize the pressing need for the development of more robust
trajectory prediction systems to enhance road safety.

In the contemporary era, the proliferation of automated vehicles has resulted
in the generation of a prodigious amount of data – around 25 GB per hour. This
data emanates from a plethora of onboard sensors integrated into modern vehicles.
Furthermore, the imminent future promises an even more staggering data volume,
with autonomous vehicles poised to produce up to 3 TB of data per hour. This wealth
of data holds immense potential for the realization of data-driven solutions, thereby
raising the bar for safety and comfort standards while facilitating the effective im-
plementation of convenience applications. However, it is essential to acknowledge
that the utilization of machine learning models, particularly Neural Networks (NNs),
which are instrumental in these applications, often demands substantial computa-
tional and energy resources for their training. Consequently, a pivotal challenge
arises around how a network of interconnected vehicles can contribute to the efficient
training of neural networks.

In the landscape of potential solutions explored in existing literature, one ap-
proach shines as particularly well-suited for this scenario: Federated Learning (FL).
Federated learning is an innovative machine learning paradigm in which multiple
clients collaboratively engage in the iterative training of a model, all under the
coordination of a central server. A defining advantage of FL, setting it apart from
other distributed learning approaches, is its capacity for localized model training
at each client, with only the resultant training outcomes, i.e., the updated model
parameters, being transmitted to the server. This ensures that clients’ private data

129

Federated Learning Empowered Vehicular Networks

remains shielded, a crucial feature, especially in an open and distributed environment
like a network of vehicles.

Several studies have begun to explore the implementation of FL in a vehicular
context, delving into the intricacies of this emerging distributed machine learning
paradigm. Works such as [32] and [103] focus on the client selection process
in FL. In particular, [32] introduces a data distribution-aware FL orchestration
specifically tailored for vehicular networks, establishing protocols based on the
Vehicular Knowledge Query format, initially introduced in [33]. These protocols
empower the server to glean insights into potential client candidates and make more
informed selections based on factors like the requisite training environment or the
nature of the training data held by these candidates. Similarly, [103] endeavors
to identify the most suitable vehicles to participate in learning tasks, optimizing
resource allocation while taking into account the positions and velocities of the
vehicles.

In contrast, research explored in [106] and [107] delves deeply into the aspect of
parameter aggregation. The former, [106], proposes a selective model aggregation
approach, leveraging two-dimensional contract theory as a distributed framework
to facilitate interactions between the central server and vehicular clients. This
approach yields promising results, especially with datasets like MNIST [31] and
BelgiumTSC [98], outperforming the traditional FedAvg [58] aggregation method.
In [107], a novel multi-layer heterogeneous model selection and aggregation scheme
is introduced, based on a two-layer FL model designed to harness the capabilities of
a 6G network architecture.

Several other studies are oriented toward designing edge-based frameworks
tailored for vehicular applications. For instance, [54] presents an enhanced service for
collision avoidance deployed at the network’s edge, effectively minimizing latency in
Cellular Vehicle-to-Infrastructure (C-V2I) communication. Meanwhile, the authors
of [108] propose a framework that employs deep learning to predict vehicle density
to be served by a Multi-access Edge Computing (MEC) host, thereby determining
the optimal computing resources required for collision avoidance applications.

130

Federated Learning Empowered Vehicular Networks

5.2 Main contributions

The present study, as detailed in [49], introduces an innovative application of feder-
ated learning within a vehicular context. In our scenario, vehicles collect trajectory
data at specific intersections using their onboard sensors, and this data is used for
local training of a trajectory prediction model within a federated learning process
coordinated by the server located at the edge of the network. For a concrete imple-
mentation, we adopted the Long Short-Term Memory (LSTM) model for trajectory
prediction, as recently presented in [88]. To model the behavior of vehicles, we
utilized real-world mobility traces [73] specific to the city of Turin, Italy. Finally, our
federated learning process is implemented through the well-established FLOWER
platform [20].

Our work makes significant contributions to the existing body of literature in the
following key areas:

• Federated learning in a vehicular context: We introduce a novel application
of federated learning in a vehicular context where vehicles collaboratively
train an LSTM model for trajectory prediction.

• Real-world mobility traces: We apply the federated learning algorithm
in a real-world scenario, harnessing actual mobility traces pertaining to the
innovation mile in the city of Turin, Italy.

In the upcoming sections, our focus shifts towards the federated learning ap-
proach, where we elaborate on the various implementations available, including
synchronous vs. asynchronous and centralized vs. decentralized methodologies. Fol-
lowing this, we introduce vehicular networks, emphasizing the trajectory prediction
algorithm and the urban environment simulator at our disposal, which enables the
high-fidelity simulation of urban environments in a safe manner.

Subsequently, we provide an exhaustive and detailed description of the vehicular
framework we have implemented, leveraging federated learning. Finally, we present
a performance evaluation obtained from our framework and we conclude this Chapter
with our final remarks.

131

Federated Learning Empowered Vehicular Networks

5.3 Federated Learning

Federated Learning, as introduced in [105], represents a decentralized approach to
machine learning. This method harnesses data residing on diverse clients’ devices to
collaboratively train a shared model, in stark contrast to the conventional distributed
ML paradigm. In distributed ML, a central server partitions the dataset among multi-
ple servers, thereby distributing the computational load. Furthermore, distributed
ML allows for manual allocation of dataset portions to various servers. Conversely,
in FL, a key distinction is that the central server does not have access to the raw data
of clients.

At the heart of federated learning lies the principle that participant clients main-
tain privacy and do not reveal their individual datasets. They independently train
a local model using their local data and subsequently transmit model parameter
updates to a central server (in the case of centralized federated learning). When
the server receives these parameters from the clients, it employs a predetermined
aggregation strategy to construct an updated global model, which is then transmitted
back to the clients. This iterative process continues until predefined performance
metrics, such as achieving a specific accuracy level, are met. A visual representation
of the federated learning framework can be observed in Figure 5.1.

Federated learning encompasses two primary network topologies: centralized and
decentralized. The former involves a central entity responsible for coordinating the
training process, aggregating local model parameters from each federated client. The

Fig. 5.1 Federated learning architecture overview.

132

Federated Learning Empowered Vehicular Networks

latter relies solely on direct communication among participating clients to coordinate
the training process. A more in-depth examination of these network topologies is
provided in Section 5.3.1.

Furthermore, federated learning can be classified as either synchronous or asyn-
chronous, depending on whether the server waits for results from all clients before
starting a new iteration. The synchronous mode corresponds to the former, while
the asynchronous mode pertains to the latter. A comparative analysis of these two
execution modalities is discussed in Section 5.3.2.

5.3.1 Centralized vs. Decentralized

As previously outlined, the federated learning literature explores two primary network
topologies:

• Centralized topology: In this centralized architecture (depicted in Figure 5.2a),
a central server takes charge of coordinating a group of available clients. The
server assumes the roles of both a controller and coordinator, selecting which
devices will participate in each training round and overseeing the communi-
cation and aggregation processes. This centralized approach provides several
advantages. Notably, the server offers a more dependable connection, as it is
typically located at a fixed point, often at the network’s edge. Moreover, the
server’s substantial computational power allows for rapid aggregation of model
parameters, minimizing delays. However, a notable drawback is the single
point of failure inherent to this topology. If the central server experiences any
issues or goes offline, the entire federated learning network comes to a halt.

• Decentralized topology: In the decentralized network topology (illustrated
in Figure 5.2b), there is no central coordination unit. Instead, devices are
interconnected through peer-to-peer links. In each training round, every client
conducts its local training without enforced client selection, and the global
model update is generated by collecting model parameters from neighboring
devices. The decentralized approach eliminates the single point of failure
concern. Each client can communicate directly with all other clients, enhancing
network robustness. However, it is important to note that this network topology
can introduce complexities that may impact the performance of the learning
process.

133

Federated Learning Empowered Vehicular Networks

(a) Centralized (b) Decentralized

Fig. 5.2 Comparison between centralized and decentralized federated learning.

5.3.2 Synchronous vs. Asynchronous

Now, we will explore the two operational modes in federated learning: synchronous
and asynchronous.

• Synchronous Federated Learning: Synchronous federated learning follows
a coordinated, time-locked approach. In this setting, the central server orches-
trates training rounds that are synchronized across all participating clients.
During each round, clients perform their local training and send their model
updates to the central server. The central server waits until it receives up-
dates from all the involved clients before proceeding with aggregation and
model update distribution. This mode offers a clear advantage in terms of
synchronization, as it ensures that all clients’ contributions are processed simul-
taneously, potentially leading to a more consistent and predictable convergence
of the global model. However, it does have some drawbacks. Synchronous
federated learning may result in higher communication and computation over-
head, especially when some clients experience delays, leading to potential
bottlenecks.

• Asynchronous Federated Learning: Asynchronous federated learning takes
a more flexible and decentralized approach. In this configuration, there is no
strict synchronization of training rounds among clients. Each client indepen-
dently conducts its local training and transmits its model updates to the central

134

Federated Learning Empowered Vehicular Networks

server whenever it is ready. The central server aggregates these updates as
they arrive, without waiting for the other clients’ results, and continuously
updates the global model. The key advantage of this mode is its flexibility, as
it avoids the need for strict synchronization, which can be especially beneficial
in scenarios with varying client capabilities and network conditions. However,
the trade-off is that asynchrony can lead to more challenging coordination and
convergence issues. Inconsistent update timings can make it harder to achieve
a consistently accurate global model.

5.3.3 Federated learning frameworks and implementations

The landscape of federated learning is rich with various frameworks and implemen-
tations, catering to both research and real-world deployment needs. Let us delve into
the most noteworthy options, each offering unique features and capabilities:

• FLOWER [20]: FLOWER stands out as an open-source, platform-independent
framework renowned for its exceptional customizability in all facets of feder-
ated learning. With FLOWER, it is possible to modify client/server behavior,
message exchanges, learning strategies, and even the overall system archi-
tecture. FLOWER’s versatility makes it a valuable asset for innovation and
experimentation in the FL domain.

• IBMFL [53]: IBMFL, a black-box Python framework developed by IBM,
streamlines the customization process by focusing on two key elements: the
dataset and the neural network model. This framework is designed to offer
rapid startup times for real-world application deployment and provides a
straightforward experimental environment for testing machine learning models
within a federated setting.

• FLSlim [51]: FLSlim, supported by Facebook research, is a standalone library
that simplifies federated learning through high-level API calls. It is known for
its scalability and open-source nature, allowing for straightforward customiza-
tion. What sets FLSlim apart is its foundation on the PyTorch library, which
takes an object-oriented approach.

• Astraea [35]: Astraea introduces a unique system architecture for federated
learning, departing from the conventional client-server model. It introduces

135

Federated Learning Empowered Vehicular Networks

an intermediary role, known as mediators, positioned between the clients and
the server. Mediators facilitate and moderate client-server communication.
Astraea’s distinctive approach includes a pre-training scheduling phase where
clients are dynamically assigned to mediators, aiming for diverse and represen-
tative client datasets. The objective is to reduce bias and enhance the quality of
the federated learning process. In this framework, the server supports a global
model with synchronous updates from the mediators, while the mediators
handle asynchronous updates from their connected clients.

5.4 Methodology

In this Section, we delve into the methodology used to conduct experiments within
a simulated urban environment, where various vehicles harness federated learning
for trajectory prediction. Section 5.4.1 provides an extensive overview of the im-
plemented architecture, encompassing all the pertinent software components and
stakeholders, while also elucidating the primary objective of our study. Section 5.4.2
introduces the simulated environment, offering a comprehensive description of the
specific area under consideration and the mobility traces employed. Lastly, in Sec-
tion 5.4.3, we explore the federated learning process, elucidating how the clients (i.e.,
vehicles) collaboratively train the machine learning model in a privacy-compliant
manner, without disclosing any data to the server, only sharing the model’s parame-
ters.

5.4.1 Implemented architecture

The implemented architecture, depicted in Figure 5.3, comprises three key compo-
nents: urban simulation, the federated learning process, and the interface connecting
these two elements.

Urban simulation

The primary goal of the urban simulator is to create custom mobility traces within
the area of interest. To achieve this, we harnessed ns-3 [8], a discrete-event network
simulator, in conjunction with SUMO (Simulation of Urban MObility) [18], a

136

Federated Learning Empowered Vehicular Networks

Fig. 5.3 Implemented architecture.

microscopic and continuous traffic simulator. Specifically, we utilized the ms-van3t
framework [55], which constructs and simulates ETSI-compliant VANET (V2X)
applications using SUMO and ns-3.

Federated learning process

In implementing the federated learning process, we made use of the FLOWER
framework [20]. The FLOWER framework is an open-source Python library that
streamlines the development of federated learning. It offers a high-level API for
federated learning workflows, making it easy to construct and manage machine
learning models across a network of decentralized clients while upholding data
privacy and security.

TraCI

To bridge the FLOWER platform with the mobility traces, we employed TraCI,
SUMO’s built-in Traffic Control Interface. TraCI functions as an interface that allows
external applications and tools to interact with and control the traffic simulation
within SUMO. This interface provides access to real-time data and enables the
manipulation of various aspects of the simulation, including vehicle movement,
traffic signals, and environmental conditions.

137

Federated Learning Empowered Vehicular Networks

The primary objective of this study is to assess the performance of federated
learning in two distinct scenarios: a real-world setting and a synthetic one. In
the real-world scenario, we aim to employ actual vehicles operating in an urban
environment as clients within the federated network. The synthetic scenario, on the
other hand, represents a more controlled environment, where clients change with a
fixed periodicity and less frequently compared to their real-world counterparts.

The purpose of this comparative analysis is to gain insights into how the dynamics
of an urban mobility scenario can influence the performance of federated learning.
To evaluate the real-world scenario, we intend to establish a connection between
the behavior of real vehicles entering and leaving a specific area and the actions of
simulated federated clients. This approach will allow us to explore the impact of
real-world urban dynamics on the efficacy of federated learning processes.

5.4.2 Urban Environment simulation

To replicate a real urban environment using SUMO, we utilized a dataset known as
TuST (Turin SUMO Traffic), as detailed in [72]. This dataset was created to model
the traffic patterns in the metropolitan area of Turin and its adjacent regions, drawing
from 24 hours of data collected by 5T, a public information mobility company in
Turin.

Specifically, we focused on a specific segment within the comprehensive TuST
coverage area, encompassing an area of 3.5 square kilometers surrounding the
Politecnico di Torino university, as illustrated in Figure 5.4. Our analysis was
centered on the vehicles operating within this city section during the two-hour
morning traffic peak, from 7 a.m. to 9 a.m. The geographical coordinates defining
this area are as follows:

• Latitude: [45.054223, 45.073081]

• Longitude: [7.651316, 7.672293]

This area also boasts the radio signal coverage of seven cellular base stations
(eNBs), which were configured to mirror the actual real-world cellular deployment,
as depicted in Figure 5.5. To construct the network topology, we employed the ns-3
framework, creating a star network configuration with the central node comprising

138

Federated Learning Empowered Vehicular Networks

Fig. 5.4 Considered area in Turin.

the edge server, and the connecting nodes representing the seven eNBs. Then each
vehicle was emulated as straightforward client nodes equipped with an On-Board
Unit (OBU) capable of packet exchange with the seven eNBs and, consequently, the
single edge server. The choice of the TCP network protocol was deliberate, ensuring
reliable and controlled packet transmission for the exchange of parameters in both
local and global machine learning models, a crucial consideration for trajectory
prediction applications.

Throughout the entire mobility simulation, we captured each vehicle’s dwelling
time, which signifies the duration a vehicle spends within a specific area, in our case,
the time it remains within the coverage of at least one of the seven antennas. This
dwelling time information is invaluable for simulating real traffic conditions, which,
in turn, can be leveraged to train a model within our federated learning framework.

139

Federated Learning Empowered Vehicular Networks

Fig. 5.5 Considered area in Turin with seven eNBs.

It is worth noting that obtaining accurate dwelling time data require conducting
several experiments. Ultimately, we determined that using antennas with a 500-meter
signal radius, vehicles could reliably be considered within coverage. This setup
provided a stable bandwidth, low delay, and virtually negligible packet loss.

The result of the entire simulation process is a file that records, at 100-millisecond
intervals over the two-hour duration, each vehicle’s unique ID, and its remaining
dwelling time within the coverage area. An example of this output is illustrated in
Figure 5.6. It is important to mention that if a vehicle has less than 60 seconds of
dwelling time remaining, it is excluded from the dataset, as this duration is deemed
insufficient to complete the training phase and transmit the results back to the server
during the federated learning process.

140

Federated Learning Empowered Vehicular Networks

Fig. 5.6 Urban mobility simulation output file.

5.4.3 Federated learning framework

As previously introduced in Section 5.4.2, we rely on the FLOWER framework [20]
to implement our customized federated learning framework.

Federated learning operates through a series of rounds during which clients and
the server exchange the parameters of trained machine learning models. While
the conventional federated learning setup assumes a static and ideal scenario with
stationary, always-connected, and reliable clients, our scenario introduces unique
challenges. In our case, the clients are mobile, constantly on the move during the
federated learning simulation. Consequently, the server must dynamically select
different groups of clients in each iteration based on different parameters, such
as higher dwelling time, better connectivity quality, higher computation resources
available, clients recently used, and others.

In the real-world scenario, client behavior is emulated through the utilization
of the ms-van3t framework. In contrast, in the synthetic scenario, clients exhibit a
more fixed periodicity and lower frequency of movement when compared to their
real-world counterparts.

Figure 5.7 illustrates a schema of the federated learning process. Typically, the
simulation comprises K federated learning cycles, each intended to achieve a desired
level of accuracy or another termination criterion (e.g., max available time, max

141

Federated Learning Empowered Vehicular Networks

Fig. 5.7 Federated learning schema.

number of FL cycles, etc.). Each cycle consists of N rounds, where the trained model
parameters are exchanged between the server and clients to facilitate collaborative
learning. This dynamic and adaptive approach ensures the federated learning process
effectively accommodates the mobility and behavior of clients in a real-world setting.

142

Federated Learning Empowered Vehicular Networks

Federated learning enhancements

We started from the base implementation available of FLOWER framework and
subsequently we introduced several key enhancements. These enhancements include:

• Early stopping: To prevent overfitting and optimize model training, two
early stopping criteria have been implemented. The first criterion assesses the
variation of the val_loss variable between two consecutive epochs during an
FL round. If the variation falls below a defined threshold, denoted as mindelta,
it signals a lack of improvement, prompting the round to terminate. The
second criterion operates similarly but is applied at the level of the FL cycle,
comparing the val_loss of the current cycle with the value from the preceding
cycle.

• Consecutive FL cycles: The default behavior of the FLOWER framework
allows for the execution of only a single cycle of federated learning before
concluding model training. However, in many use cases, a single cycle may not
be sufficient to attain the desired model accuracy. To address this limitation,
we implemented a while loop to facilitate multiple consecutive FL cycles.
Each cycle, except the initial one, commences training from the final global
model of the preceding cycle. This approach ensures that model refinement
can continue iteratively until the desired performance level is achieved.

5.5 Results

In this Section, we present the results of our experiments, which encompass a
performance evaluation in two distinct client selection scenarios within the federated
learning process. Section 5.5.1 introduces the trajectory dataset utilized in the
machine learning training process and the LSTM trajectory prediction algorithm.
Section 5.5.2 details the experimental setup, including the number of participating
clients in the federated learning process, the policies employed, and the network
configuration for both scenarios. Finally, in Section 5.5.3, we delve into a discussion
of the obtained results and their implications.

143

Federated Learning Empowered Vehicular Networks

5.5.1 Trajectory dataset and LSTM algorithm

The dataset used for training and evaluating the neural network is the TLS Dataset [5].
As depicted in Figure 5.8, this dataset was generated from an aerial drone shot
captured over a busy intersection in Cyprus during peak hours. Post-processing of
this shot yielded trajectory data for 5,105 vehicles. Of these, 2,699 vehicles, roughly
53% of the total, were recorded as traveling straight through the intersection, while
the remaining 2,406 vehicles were categorized as turning vehicles. This near-even
distribution of vehicle types ensures that the model is trained consistently for both
behaviors at the intersection.

To facilitate federated learning, the dataset is further divided into multiple subsets,
each allocated to federated clients. For the LSTM NN evaluation phase, a dataset
comprising 200 car trajectories was created, sampled from the larger pool of 5,105
vehicles. During the training phase, the remaining dataset was divided into 170
subsets, each containing 30 vehicle trajectories. When a new client joins the FL
process, it is assigned one of these subsets, selected randomly from the 170 available
subsets.

The criteria governing the number and size of these subsets are based on the
necessity to ensure that each client’s round duration is approximately one minute,
given the use of 2 vCPUs per client. The pivotal factor guiding this decision is
the simulation timing, intrinsically tied to the subset’s size. Given that vehicles are
mobile and remain within the coverage of eNBs for a limited timeframe, the timing
of the federated learning process must be meticulously calibrated. If the round time
is too extended, some vehicles may exit the base station’s coverage area before
completing their training, rendering their local models ineffective in contributing to
the aggregation of the global model. On the other hand, overly brief round times
result in shorter FL cycles, leading to poorly trained models with reduced accuracy.

The LSTM trajectory prediction algorithm employed in federated learning is
detailed in [88]. Notably, this LSTM algorithm, when applied to trajectory prediction
training, demonstrates results that surpass the outcomes of other tests performed in a
less demanding scenario.

144

Federated Learning Empowered Vehicular Networks

Fig. 5.8 Frame of the video footage took by a drone in Cyprus.

5.5.2 Federated learning framework setup

We have established a federated learning framework, as illustrated in Figure 5.1.
In this framework, each individual vehicle, referred to as a client in our context,
possesses its own local dataset and the computational resources required for training
a neural network (NN) model. While the specific process of creating the vehicle
dataset lies beyond the scope of this work, we can conceptualize a procedure in which
a vehicle, while passing through an intersection, gathers trajectory data from other
vehicles at that intersection through vehicle-to-vehicle (V2V) data exchange. The
central server, situated at the network’s edge, assumes several critical responsibilities
within the FL process. These include coordination of the entire FL framework,
aggregation of the local models trained by the clients, and dissemination of the
updated global model to initiate a new iteration or for inference purposes.

To generate our experimental results, we explored two distinct scenarios, denoted
as the Synthetic and Real world settings. In both scenarios, a fixed number of vehicles,
hereafter referred to as clients, are engaged in the federated learning process.

In the first scenario, named the Synthetic setting, we examine an ideal condition
in which the set of clients designated for participation in the FL process remains
constant for an entire FL cycle. In a simpler way, a group of clients is chosen at
the outset of the FL cycle and remains unchanged throughout the cycle, conducting
all rounds. Between successive cycles, a new group of N clients is selected by
randomly sampling N sub-datasets from a larger main dataset, comprising a total
of 170 sub-datasets. To prevent the repetition of the same subset in consecutive or
closely spaced rounds, we maintain a record of the selected sub-datasets in a list.
Once all 170 sub-datasets have been used, the list is reset and refilled, cycle by cycle.

145

Federated Learning Empowered Vehicular Networks

Conversely, in the second scenario, we opt for a fixed number of clients for
each round. The selection of clients follows a mobility trace derived from a traffic
simulation within the Simulation of Urban MObility (SUMO) environment, simu-
lating real-world vehicular traffic in Turin, Italy. This mobility trace is seamlessly
integrated with the FLOWER platform via SUMO’s built-in Traffic Control Interface
(TraCI). More precisely, we identify vehicles predicted to have the longest dwelling
time, indicating their suitability for carrying out FL operations. If the initially speci-
fied number of clients for a given round is not readily available, the file is continually
read until the desired number of clients is reached. The composition of clients may
remain consistent from one round to the next, partially change, or undergo a complete
overhaul, depending on the mobility trace, particularly with regard to the dwelling
time of each client.

Regarding the experimental settings, we have two set of parameters configura-
tions: one related to federated learning and the other concerning the network and
system settings.

Regarding the network settings, we assume the following:

• the bandwidth between each eNB and the server is set to 1 Gbit/s bidirectional;

• the eNB-server link has zero delay and no packet loss;

• the emulated network is managed by Docker.

To conduct our runs on the FLOWER platform, we utilized a Linux virtual
machine (VM) equipped with 16 virtual CPUs (vCPUs), with both the server and
clients running within individual Docker containers.

In terms of FL configuration, the following assumptions are made:

• each client is allocated a maximum of 2 vCPUs. Given the machine’s available
computational resources, we concurrently run between 2 to 6 clients, alongside
the server. It is worth noting that the server has practically no limitations
regarding vCPU usage, as it consumes computational resources primarily
when the clients are idle, awaiting the next round;

• the maximum number of rounds for every FL cycle is set to 10;

• the maximum number of epochs for each round is set to 10;

146

Federated Learning Empowered Vehicular Networks

• the strategy to aggregate clients’ model parameters is FedAvg [58];

• the accuracy evaluation is conducted at the end of every round, and at the end
of each FL cycle.

In order to evaluate the accuracy of the trained model, we assess the actual level
of accuracy against a testing dataset that encompasses the total number of features
observable across all clients’ training datasets. The accuracy evaluation is carried
out at the end of each FL cycle, and the FL process concludes when a predefined
threshold value, representing the target accuracy level, is attained. The evaluation of
accuracy is primarily based on the Mean Euclidean Distance (MED) metric. MED
is determined during the evaluation phase of the neural network after the training
phase. It involves comparing the car trajectories predicted by the NN (in meters) to
the real car trajectories. Given a testing dataset comprising 200 car trajectories, this
comparison is performed for all 200 trajectories, and the results are averaged to yield
the final MED. In accordance with [88], we set the MED threshold at 1.299 meters,
as this value is preferred for more challenging scenarios.

Moreover, as introduced in 5.4.3, each round features an early stopping criterion.
Specifically, an FL cycle is considered complete when the average validation loss
(val_loss) among all clients, at the end of a round, reaches 0.001. The threshold
value of 0.001 is adopted, in line with the choice made for the original LSTM model.
Similar to the early stopping criterion for rounds, there is also an early stopping
criterion for epochs. In this case, a round concludes if the val_loss between the last
two epochs reaches 0.001.

Figure 5.9 shows the final experimental setup schema comprising SUMO for the
mobility trace creation, FLOWER for the federating learning process and TraCi for
the connection between the two.

147

Federated Learning Empowered Vehicular Networks

Fig. 5.9 Experimental setup scheme.

5.5.3 Numerical results

As explained in Section 5.5.1, our focus lies on scenarios where a single simulation
round does not exceed 1 minute. Examining Table 5.1, specifically the Time per round
column, we find that the first case, involving a subset of 30 vehicles’ trajectories per
client, appears to be the most suitable for meeting the simulation time requirements.
The second case exhibits round and simulation parameter times that are generally
too prolonged to be adaptable in a vehicular dynamic scenarios. This extended
timing implies the presence of identical vehicles for an extended duration within the
coverage area, a condition that is more challenging to achieve. Consequently, this
leads to a diminished availability of vehicles for federated learning training.

Num. vehicles’ Time per round Avg. num. of rounds FL cycle time
trajectories per FL cycle

30 50 seconds 2.3 3 minutes
120 190 seconds 4.7 15 minutes

Table 5.1 Simulation outcomes varying with different sizes of vehicle trajectories.

The experimentation involved testing both synthetic and real-world scenarios
under three different conditions, wherein the maximum number of clients selected for
a federated learning round varied. Due to constraints in the available computational
resources of the virtual machine, the scenarios were characterized by 2, 4, and
6 maximum clients per FL round. In the next Figures, the Synthetic scenario is
represented in blue, while the real-world scenario, based on a trace file derived from
a realistic traffic simulation in SUMO, is depicted in yellow.

148

Federated Learning Empowered Vehicular Networks

Fig. 5.10 Comparison of replacement rates in synthetic and real-world scenarios across three
distinct client selections.

Specifically, Figure 5.10 illustrates the average number of clients replaced after
each FL cycle. In the synthetic scenario, where clients change every FL cycle, the
values are fixed at 2, 4, and 6. In contrast, for the real-world scenario, the values
depicted are determined at the simulation’s conclusion by dividing the number of
clients used by the number of FL cycles required to achieve the target accuracy.

The high replacement rate in the real-world scenario is attributed to clients
changing over time. In each round, the server selects vehicles traveling over the
considered area with the highest remaining dwelling time as FL clients. Consequently,
the results in Figure 5.10 indicate that, in the real-world scenario, the selection of a
new group of clients at each round is more frequent than the usage of the one used in
the previous round. It is essential to note that each vehicle or client corresponds to
a different dataset, and changing the client results in a change of the dataset. The
increased variety of different datasets used in an FL cycle in the real-world scenario
allows for training the model with a broader range of information, ultimately leading
to a lower MED at the end of the FL cycle when evaluating the model on the server
side.

Analyzing the statistics related to the number of federated learning cycles, FL
rounds, and training time provides a clearer understanding of the results.

149

Federated Learning Empowered Vehicular Networks

Fig. 5.11 Comparison of training times in synthetic and real-world scenarios across three
distinct client selections.

Figures 5.11, 5.12, and 5.13 reveal a consistent pattern. Real-world scenarios
consistently demonstrate quicker achievement of model accuracy, requiring fewer
FL rounds and cycles compared to synthetic settings.

The shared characteristic among these graphs is the inverse relationship with
the replacement rate. As the total number of clients used in an FL cycle increases,
training incorporates a larger quantity of data, resulting in the utilization of a more
diverse dataset at each FL cycle. This, in turn, enhances accuracy within a shorter
timeframe, indicating fewer rounds per cycle.

Figure 5.11 highlights an interesting observation: both synthetic and real-world
scenarios exhibit similar training times with 6 clients, while training times with 2
and 4 clients differ significantly. The discrepancy arises from the insufficient data
available in the training session with only two clients. Repeating rounds with the
same two clients becomes futile, as model performance plateaus early. Consequently,
the synthetic case requires more FL cycles compared to the real-world scenario,
where clients change every round, allowing for more substantial improvements in
each FL cycle. In contrast, with 6 clients, the neural network has enough data in each
cycle, eliminating the need for an early stop, and accuracy consistently improves
round after round.

150

Federated Learning Empowered Vehicular Networks

Fig. 5.12 Comparison of FL cycle counts in synthetic and real-world scenarios needed to
reach a set threshold across three distinct client selections.

Figure 5.13 corroborates this trend, demonstrating that real-world settings neces-
sitate fewer FL rounds per cycle than synthetic settings, contributing to the overall
lower execution time in the real-world scenario.

Fig. 5.13 Comparison of FL round counts in synthetic and real-world scenarios to attain a
specified threshold across three distinct client selections.

151

Federated Learning Empowered Vehicular Networks

In summary, real-world scenarios exhibit a proportional increase in the number
of clients participating in an FL cycle relative to the maximum number of federated
participants in an FL round. This trend underscores the efficiency of real-world
scenarios in achieving model accuracy within shorter timeframes, highlighting their
practical viability for federated learning applications.

Additionally, it is noteworthy that through federated learning, we can attain equiv-
alent accuracy, as evidenced by achieving MED = 1.299 m, akin to the centralized
ML approach detailed in the study [88]. Notably, this accomplishment is achieved
within a reasonable timeframe while preserving data privacy.

5.6 Conclusions and future works

Advancements in automotive technology highlight a dual commitment: a persistent
dedication to enhancing safety for both vehicle occupants and pedestrians, paired
with a focused effort to improve the urban mobility experience. Modern vehicles
seamlessly integrate state of the art sensors and technologies, leading us towards
an era where cars will produce extensive data. This growing data landscape holds
potential insights and transformative possibilities, significantly influencing service
delivery and user experiences. As we actively explore advanced methodologies like
federated learning to unlock this data potential, it is crucial to acknowledge the asso-
ciated challenges. Notably, addressing the computational power and energy resource
requirements demands careful consideration. Therefore, in this era of innovation
and evolution, finding a balanced approach between technological advancement and
sustainable resource utilization becomes imperative.

In the course of our study, we delved into innovative solutions, with a specific
focus on applying FL in an urban environment where vehicles collaboratively func-
tion as nodes. This cooperative paradigm ensures data privacy, allowing vehicles
to securely keep their data localized while collectively training a NN model. The
orchestration of this collaborative learning occurs at the network’s edge, with a server
overseeing the entire process. Utilizing a realistic vehicle trace, we implemented the
proposed system using the FLOWER [20] platform, employing federated learning to
study its performance with varying numbers of vehicles acting as FL clients.

152

Federated Learning Empowered Vehicular Networks

Looking ahead, our focus will be on overcoming existing hardware limitations
to create a more comprehensive emulation scenario. This involves investigating
diverse client selection and replacement criteria to further optimize the FL process.
Our ongoing research is committed to extending the application of FL in vehicular
networks and other domains where there is a demand to distribute the load among
different clients while ensuring the privacy preservation of the data used to train
machine learning models.

153

Chapter 6

Radio Frequency mobility scenario
for wireless channel emulators

In the contemporary landscape of wireless communication, the surge in large-scale
wireless emulation has become a pivotal force, offering substantial potential for
advancing the development and deployment of sophisticated use cases within the
realm of next-generation wireless networks. This burgeoning field has given rise
to various innovative applications, notably encompassing massive Multiple Input
Multiple Output (MIMO), millimeter wave beamforming, and Artificial Intelligence
(AI)-driven Vehicle-to-Everything (V2X) optimized communication. The endeavor
to develop and test wireless applications, particularly when dealing with mobile nodes
on a significant scale, encounters multifaceted challenges that extend beyond the
capabilities of simulation frameworks alone. As a result, the emergence of massive-
scale channel emulators has become imperative, providing the means to emulate
realistic scenarios by harnessing authentic hardware and radio signals. However, the
complexity of this task is underscored by the scarcity of realistic scenarios grounded
in actual datasets.

In this Chapter, we present a novel framework tailored for the design and genera-
tion of channel emulation scenarios derived from authentic mobility traces—whether
generated through dedicated tools or collected in real-world settings. Our primary
goal is to offer a pragmatic approach to the generation of mobility scenarios featuring
diverse entities such as vehicles, pedestrians, drones, and other mobile elements.
Furthermore, we demonstrate the efficacy of our proposal by designing and con-

154

Radio Frequency mobility scenario for wireless channel emulators

structing a vehicular 5G scenario, and we validated it using the Colosseum channel
emulator [24].

6.1 Research motivation and State of the Art

The advent of 5G and the ongoing exploration of the forthcoming 6G network
generation have propelled wireless channel emulators into a central role as catalysts
for the evolution of mobile networks. Researchers are increasingly directing their
focus towards harnessing Artificial Intelligence (AI) and advanced Deep Machine
Learning techniques to bolster wireless solutions, particularly in the context of
applications such as Massive MIMO, wireless signal beamforming, and Vehicle-to-
Everything (V2X) communications.

In response to the stringent demands set by flagship communities like Hexa-X [7]
for B5G/6G development, the conventional approach of creating synthetic testbeds
with simulated datasets has become impractical. The complexity of developing,
deploying, and on-field testing applications necessitates a paradigm shift toward
reliable simulation and emulation of networks using real data, especially in the
pre-deployment phase and in scenarios involving large-scale networks.

While simulation frameworks offer a viable means of evaluating wireless net-
works, particularly those involving mobile nodes, they are constrained by mathemat-
ical models that focus on essential aspects of real environments, often relying on
probabilistic considerations. As such, they fall short in capturing the full spectrum of
variables in complex environments. Consequently, there is a need for a progressive
move towards the emulation of large-scale Radio Frequency (RF) scenarios, involv-
ing real hardware and physical radio signals processed by Software Defined Radios
(SDRs) in dedicated testbed environments.

Flexibility and repeatability emerge as pivotal features sought in testbeds by
researchers, a need underscored by the authors of [104], where an FPGA-based
network channel emulator was developed to support real-time emulation of the
interaction of different RF nodes. However, as the demand for large-scale exper-
iments increased, challenges arose, including the proper emulation of numerous
signals without depleting available computational resources and the prohibitive cost
associated with simulating large-scale scenarios using dedicated hardware.

155

Radio Frequency mobility scenario for wireless channel emulators

To address these challenges, DARPA (Defense Advanced Research Projects
Agency is USA) developed Colosseum [24], the world’s most powerful wireless
network emulator, which combines 128 Standard Radio Nodes (SRNs) with a Mas-
sive digital Channel Emulator (MCHEM) supported by an extensive FPGA routing
fabric. Colosseum, made available to industry, universities, and research groups by
Northeastern University, stands as the largest RF emulator globally, enabling the
emulation of up to 256 independent radio nodes and 65,535 wireless channels in
expansive operational environments. At the heart of Colosseum are RF and traffic
scenarios, which emulate not just the channels between transmitters and receivers
but also replicate the typical effects of the wireless propagation environment.

Colosseum provides publicly-available experimental scenarios, such as (i) the
alleys of Austin, which engages 50 nodes (comprising 45 pedestrian users and 5
Unmanned Aerial Vehicles) in the exchange of voice traffic or file transmission,
and (ii) SCE Qualification, involving 10 nodes in the exchange of UDP packets at
a constant bitrate. Additionally, cellular scenarios are accessible, featuring 8 to 10
base stations serving four mobile users each. These scenarios simulate both moving
and stationary pedestrians under the coverage of the base stations.

Recently the work in [102], presented a synthetic V2X scenario for the Colos-
seum emulator, depicting an area around Tampa, FL. Their scenario, based on a
tap and channel approximation framework previously presented in [97], mirrors the
foundation of our work. This V2X scenario involves one Road Side Unit (RSU)
and three On Board Units (OBUs or vehicles) moving on a straight path at a con-
stant speed, with routes and trajectories simulated using the commercial ray-tracing
software, Wireless InSite ® [11].

6.2 Main contributions

The current study, as detailed in [84], pioneers a framework for the practical genera-
tion of RF scenarios, originating from real collected data. Additionally, we delineate
the comprehensive steps essential for crafting V2X RF scenarios within Colosseum,
basing our scenario on a recently-released open dataset [75], featuring traces from
19 vehicles navigating an urban environment.

156

Radio Frequency mobility scenario for wireless channel emulators

Our research contributes significantly to the existing literature in the following
key domains:

• Data-driven framework for RF mobility scenario creation: We introduce a
a groundbreaking framework that initiates RF scenario creation from authentic
mobility traces, embracing a data-driven paradigm.

• Comprehensive Mobility Scenario for Vehicular Network Emulation in
Colosseum [24]: Utilizing our framework, we have crafted the inaugural
V2X scenario tailored for Colosseum, integrating real mobility traces and
employing a cutting-edge ray-tracing algorithm for precise channel path loss
computations.

In the subsequent Sections, we pivot our focus towards elucidating the concept
of a wireless channel emulator and highlighting the most renowned and potent
options available today. Following this, we present our framework, which employs a
data-driven approach and real-world data, for designing an RF mobility scenario.

Ultimately, we furnish a thorough and detailed account of the implementation of
a V2X scenario, utilizing the developed framework within the Colosseum emulator,
encompassing every aspect from design to rigorous validation.

6.3 Wireless channel emulators

The complexities inherent in wireless communication systems necessitate a refined
methodology for testing and validating their performance. Central to this undertaking
are wireless channel emulators—sophisticated instruments meticulously crafted to
replicate the unpredictable and dynamic characteristics of real-world communication
channels. This emulation process enables to test wireless devices and protocols to
meticulously controlled yet authentic conditions, facilitating a thorough exploration
of their capabilities and constraints.

Moreover, the significance of channel emulators lies in their ability to deliver
reproducible results. Every test is conducted within a consistent channel environ-
ment, eliminating the impact of external variables such as weather conditions and
interferences. This consistency ensures that experiments are not swayed by ex-
traneous factors, allowing for precise and reliable assessments of wireless system

157

Radio Frequency mobility scenario for wireless channel emulators

performance. In essence, wireless channel emulators serve as indispensable tools,
not only unraveling the intricacies of communication systems but also providing a
stable and controlled platform for the systematic evaluation of devices and protocols.

The main characteristics of a wireless channel emulator include:

• Fading models: A defining characteristic of wireless channels is the phe-
nomenon of signal fading. As signals traverse the air, they are susceptible to
variations in amplitude and phase due to factors such as multipath propagation,
atmospheric conditions, and obstacles in the transmission path. To mimic
these real-world dynamics, wireless channel emulators incorporate fading
models. These models, simulate the fluctuations in signal strength that occur
in practical scenarios.

• Path loss: Wireless signals experience attenuation as they propagate through
space, a phenomenon known as path loss. Wireless channel emulators repli-
cate this distance-dependent signal attenuation to emulate the realistic effects
of signal propagation. This capability enables the possibility to study how
different devices and protocols perform under varying signal strengths and
distances, crucial for optimizing communication systems.

• Interference generation: In real-world scenarios, wireless devices must con-
tend with interference from other signals and external noise sources. Emulators
simulate interference to evaluate a system’s resilience in the presence of com-
peting signals. This aspect is particularly crucial in crowded frequency bands
where multiple devices coexist. By introducing controlled interference, it is
possible to assess the performance and reliability of wireless systems under
challenging conditions.

• Multipath effects: Multipath propagation, resulting from signal reflections,
can introduce delays and variations in signal amplitude. Emulators recreate
these multipath effects, giving the possibility to analyze the impact on signal
integrity.

• Reproducibility: Channel emulators offer reproducibility by maintaining
consistent channel conditions across multiple tests. This characteristic ensures
that experiments yield comparable results, allowing for meaningful compar-
isons and analyses. External factors such as weather conditions, atmospheric

158

Radio Frequency mobility scenario for wireless channel emulators

changes, and other environmental variables are minimized or eliminated, con-
tributing to the stability and reliability of the testing environment.

• Flexibility and configurability: Many modern emulators adopt a software-
defined radio (SDR) approach, providing flexibility for researchers to configure
and customize the emulation environment based on specific testing require-
ments. Furthermore, emulators are designed to scale, accommodating a broad
range of testing scenarios and evolving with advancements in wireless tech-
nologies.

In recent years, various platforms have emerged in response to the growing
demand for high-fidelity testing of wireless channels within the research community.

POWDER [26]: POWDER represents a highly adaptable, remotely accessible,
end-to-end software-defined platform designed to support a diverse spectrum of
wireless and mobile research. This platform empowers researchers to construct their
own 5G networks using open-source software stacks like OpenAirInterface [3] and
srsRAN [12]. Offering end-to-end programmability, POWDER provides complete
control over both the Radio Access Network (RAN) and core components, along
with the services running within. Whether in a confined indoor setting or an ex-
pansive outdoor environment with multiple gNodeBs and authentic mobile devices,
experimenters can build and evaluate networks.

Drexel Grid [30]: Drexel Grid integrates physical Software-Defined Radios
(SDRs) to establish a cohesive experimental framework for the swift prototyping
and assessment of a diverse array of wireless systems. This is achieved through
the utilization of field measurements, which allow for the real-time evaluation
of transceiver and channel-specific effects. Additionally, the platform employs
network emulation to scrutinize systems on a large scale, presenting controllable and
repeatable propagation channels.

Arena [19]: Arena stands out as an open-access wireless testing platform struc-
tured around a grid of antennas positioned on the ceiling within a spacious office
environment. Each antenna is intricately linked to programmable SDRs, providing
the capability for research in the sub-6 GHz 5G and beyond spectrum. This setup
facilitates comprehensive investigations into various wireless scenarios.

Colosseum [24]: Colosseum, distinguished by its assembly of 256 SDRs and 128
remotely accessible SRNs and GPUs, offers a robust platform for testing full-protocol

159

Radio Frequency mobility scenario for wireless channel emulators

stack solutions at scale. It supports experimentation with real hardware devices and
provides emulated and realistic environments with intricate channel interactions,
including path loss, fading, and multipath effects. Beyond its experimentation
capacities, Colosseum serves as an innovative space for AI exploration and functions
as a wireless data factory, enabling the creation of large-scale datasets, mobility RF
scenarios and the training/testing of solutions within a secure and controlled setting.

6.4 Methodology

In this Section, we delve into the methodology we proposed in order to create mobile
radio frequency scenarios for wireless channel emulators.

6.4.1 Framework

We introduced a framework designed for the creation of RF scenarios intended for
large-scale channel emulators. The generation process leverages real mobility data,
sourced either from specialized tools or directly gathered on the field.

The workflow of our solution encompasses distinct steps for input, processing,
and output, as illustrated in Figure 6.1. In this Figure, various elements have been

Real-world traces
● Timestamp
● Latitude
● Longitude
● [Speed]

Pre-processing
and pruning

Coverage
area

Ray-tracing
for each timestamp

Radio parameters,
.osm file with terrain

and buildings

 Clustering

Channel Matrix

Scenario creation
toolchain RF scenario

Validation
Experiments

input

processing

output

+ Channel
Emulator

Fig. 6.1 Overview of the proposed framework for generating and validating RF mobility
scenarios.

160

Radio Frequency mobility scenario for wireless channel emulators

color-coded to provide a visual guide. Red rectangles denote the input compo-
nents, offering a clear distinction for real-world traces, coverage areas, and radio
parameters. Processing stages, represented by yellow boxes, showcase the tasks
where the framework manipulates the input data to build dynamic and realistic RF
scenarios. Finally, the green rectangle signifies the output stage. Additionally, the
MATLAB implementation of the entire framework is available in a public GitHub
repository [80].

Our framework mandates three primary inputs:

1. Real-world traces: The core dataset comprises real-world traces presented
in CSV format. These traces must include a timestamp accurate to the mil-
lisecond, along with the precise location of each node denoted by latitude and
longitude.

2. Coverage area: A well-defined coverage area is a critical input for the frame-
work. This spatial parameter delineates the region within which the RF sce-
nario will be generated, ensuring that the emulation accurately reflects the
intended operational environment.

3. Radio parameters: The generation of RF scenarios requires specific radio
parameters. This includes crucial details such as transmission power for
User Equipment (UE) and base stations (eNB or gNB), or the equivalent
parameters for WiFi-based scenarios involving mobile nodes and Road Side
Units (RSU). Additionally, the set encompasses operating frequency details
(e.g., 1 GHz for generic cellular-based scenarios or 5.9 GHz for V2X DSRC
scenarios), the spatial positioning of any base station, and the antenna height.
An OpenStreetMap (.osm) file can also be incorporated to provide terrain
and building information within the designated coverage area, enriching the
scenario with realistic channel interactions.

The framework’s output manifests as a channel matrix, structured as Number of
nodes × Number of nodes × Number of timestamps. This matrix encapsulates, for
each link and timestamp, the Finite Impulse Response (FIR) filter delay and In-phase
and Quadrature (IQ) coefficients, elucidating the path gain and phase shift of every
signal.

161

Radio Frequency mobility scenario for wireless channel emulators

The interplay within the framework involves various tasks leading to this output,
with key steps highlighted in yellow boxes in Figure 6.1.

Task 1 - Pre-processing and pruning

The initial phase entails pre-processing a set of traces, hereafter referred to as
the dataset, and pruning mobile nodes that do not enter the coverage area during
specific time instances. It is noteworthy that, despite the capabilities of the channel
emulators, usually the coverage area is limited to a few squared kilometers, thus the
selection of a meaningful coverage area is crucial. Consequently, the pre-processing
module empowers users to discern the temporal distribution of nodes, aiding in the
judicious choice of a geographic area. This is exemplified in Figure 6.2, where all
vehicles’ GPS coordinates are represented for a specific timestamp. The green and
red dots indicate whether a vehicle is inside or outside the coverage area delineated
by the square with blue borders.

Task 2 - Ray-tracing

Commencing from the input radio parameters the framework engages in ray-
tracing to calculate path loss gain and phase shift — essential inputs for subsequent

Fig. 6.2 Visualization of vehicles on a map for a specific timestamp, marking with green dots
if the vehicle is inside the coverage area (blue borders) and red dots if outside.

162

Radio Frequency mobility scenario for wireless channel emulators

tasks. Optionally, users can specify building and terrain materials, along with the
maximum number of reflections. If unspecified, the latter defaults to the third order, a
configuration found, through our tests, to yield realistic scenarios without introducing
excessive low-power reflections. A noise level can also be configured to prune less
significant rays.

Ray-tracing stands out as a pivotal task, particularly in wireless communication
systems where signals traverse multiple propagation paths, encountering reflections,
diffractions, and unpredictable penetration patterns from ground and buildings.
Consequently, radio waves taking distinct paths reach the receiver at varying times,
each path inducing diverse phase conditions owing to different lengths. Thus, at
the receiver, disparate power levels are observed for each frequency component.
Figure 6.3 visually illustrates the output of the ray-tracer, designating the antenna
(receiver) with a blue point and the vehicle (transmitter) with a red point. Each ray
represents reflections and diffractions of the signal and the different color indicate
the different power level.

Accurately modeling the behavior of radio waves in mobile scenarios poses a
formidable challenge. Relying solely on simplistic path loss models, such as those
advocated by 3GPP [37], may fall short of achieving the desired emulation accuracy.
In contrast, a ray-tracing algorithm proves invaluable for determining the path loss
and phase shift of each ray, involving electromagnetic analysis and considering

Fig. 6.3 Visualization of the ray-tracing output, depicting the receiver with a blue point and
the transmitter with a red point. Each ray represents reflections and diffractions of the signal,
with varying colors indicating different power levels.

163

Radio Frequency mobility scenario for wireless channel emulators

horizontal and vertical polarization. This process entails tracing the propagation path
of signals transmitted from mobile nodes (transmitters) to the designated receivers,
whether fixed eNodeB (for 4G), gNodeB (for 5G), or other mobile devices.

Task 3 - Clustering

The ray-tracer output often yields numerous multi-path components, but due to
computational complexities and storage constraints, channel emulators accommodate
up to K non-zero-valued channel taps (i.e, usually K = 4). To curtail the number
of components while adhering to this limit, our framework incorporates a two-step
clustering procedure outlined in [97].

In the first sub-task of clustering, a machine learning clustering algorithm is ap-
plied to identify centroids — each corresponding to a channel tap — that effectively
capture the characteristics of components within the cluster. We employ a K-means
algorithm utilizing the Multi-path Component Distance (MCD) as distance function.
As demonstrated by the authors of [29], MCD outperforms classical Euclidean dis-
tances (e.g., Squared Euclidean Distance — SED — and Joint SED [97]) in channel
data clustering, considering both time of arrival and angles of arrival/departure of
multiple paths.

Subsequently, an approximate taps re-sampling step aligns each centroid with
the specific FIR tap of the channel emulator, as detailed in [97]. This ensures
synchronization of the centroid’s time of arrival with the channel emulator’s FIR
filter indexes.

Algorithm 4 and 5 present the core aspects of the clustering algorithm. Notably,
we enhance the code compared to [97] by introducing a random permutation of
centroid positions during initialization (line 20). This guarantees that each centroid,
representing the approximated position of a channel tap, is assigned at least one path.
Subsequently, for reconstructing the approximated taps, the gain of each centroid is
computed as the sum of all multi-path components within its cluster. This process
iterates for each pair of transmit-receive nodes and for every available timestamp in
the set of traces.

Task 4 - Scenario creation and installation

The clustering algorithm produces a channel matrix structured as Number of
nodes × Number of nodes × Number of timestamps. For each link and timestamp

164

Radio Frequency mobility scenario for wireless channel emulators

Algorithm 4 K-means MCD clustering algorithm.
1: Input: K = number of channel taps, rays= output rays from ray-tracing, P_th=

power level threshold, T XPOWER = transmitter power, Nrep = number of
iterations, tx = transmitter, rx = receiver

2: Output: taps = approximated taps

3: Create table X_table with columns:
4: PropagationDelay, PathLoss, AngleOfArrival_az, AngleOfArrival_el,
5: AngleOfDeparture_az, AngleOfDeparture_el, hi
6: and values extracted by rays

7: if height(X_table)> K then
8: X_l = mcdkmeans(X_table,K,P_th,T XPOWER,Nrep, tx,rx,)
9: for k = 1, . . . ,K do

10: Hck(k) = sum of all multi-path components X_l within the cluster
11: end for
12: Construct table taps from Hck with columns: delay, h
13: else
14: K = height(X_table)
15: X_l = X_table
16: Construct table taps from X_l with columns: delay, h
17: end if

18: procedure MCDKMEANS(X ,K,P_th,Ptx_dB,Nrep, tx,rx)
19: Create X_l by filtering X based on P_th
20: Initialize cluster centroids cik with a random permutation
21: for nr = 1, . . . ,Nrep do
22: for xli = 1, . . . ,height(X_l) do
23: Update X_l based on MCD distances
24: end for
25: for k← 1 to K do
26: Update cluster centroids cik
27: end for
28: end for
29: return X_l
30: end procedure

165

Radio Frequency mobility scenario for wireless channel emulators

Algorithm 5 CIR re-sampling algorithm.
1: Input: taps = approximated taps
2: Output: tap_delays and tap_gains

3: ds = 10−9

4: f s = 1/ds ▷ f s is the FIR filters sampling frequency
5: N = 512 ▷ N is the number of FIR filters
6: Initialize arrays tap_delays and tap_gains with zeros
7: for n = 1, . . . ,N do ▷ Initialization of tap_delays and tap_gains
8: tap_delays(n) = n×ds
9: tap_gains(n) = 0+0i

10: end for
11: for k = 1, . . . ,height(taps) do
12: i = round(taps(k).delay/ds)
13: tap_gains(i) = tap_gains(i)+ taps(k).h
14: end for

within this matrix, it encapsulates the FIR filter delay and IQ coefficients, elucidating
the path gain and phase shift of individual signals.

Subsequently, this channel matrix feeds into a specialized scenario generation
toolchain tailored for the designated channel emulator. The outcome is an RF
scenario ready to be installed into the emulator. Once the RF scenario is installed, it
facilitates realistic experimentation with interconnected mobile nodes, such as WiFi
clients or UEs, through the channel emulator.

A relevant example of toolchain, designed explicitly for the Colosseum emulator,
is the Channel Emulation Generator and Sounder Toolchain, abbreviated as CaST, as
introduced in [102]. Taking the previously defined channel matrix as its input, CaST
outputs and installs the provided Colosseum scenario.

6.5 V2X scenario in Colosseum

In this Section, we elucidate the development of a realistic V2X scenario within
the Colosseum emulator, leveraging our innovative methodology and a recently
published, high-precision open dataset [75]. Section 6.5.1 provides an in-depth
introduction to the vehicular dataset essential for extracting authentic real-world
traces. Section 6.5.2 meticulously outlines the comprehensive processing pipeline

166

Radio Frequency mobility scenario for wireless channel emulators

employed to transform these mobility traces into a channel matrix. This matrix is
pivotal for configuring the RF scenario within the Colosseum emulator. Finally,
in Section 6.5.3, we delve into the validation of the V2X scenario showing the
effectiveness of our approach when crafting, implementing, and harnessing a realistic
communication environment featuring mobile nodes.

6.5.1 Vehicular dataset

At the heart of our scenario lies a comprehensive vehicular dataset, capturing the
traces of 19 vehicles navigating across both urban and suburban terrains, around the
city of Pinerolo, Italy. This dataset, aptly named the Synthetic Accurate Multi-Agent
RealistiC Assisted-gNss Dataset, abbreviated as SAMARCANDA, has been graciously
provided to the research community by the authors referenced in [75].

Each vehicle’s dynamic information is stored in CSV files, encompassing metrics
such as latitude, longitude, heading, speed, acceleration, and precise timestamps
corresponding to each data point. A visual representation of this data structure is
available for reference in Figure 6.4.

agentId 1

timeStamp_posix 1597257836.22373

latitude_deg 44.8842784801

longitude_deg 7.3299942539

speed_ms 0.057801

heading_rad 4.713

heading_deg 270.031

accel_ms2 -0.003947

agentId 12

timeStamp_posix 1597257836.22373

latitude_deg 44.8910248716

longitude_deg 7.3540971415

speed_ms 3.084745

heading_rad 1.571

heading_deg 89.991

accel_ms2 0.0074

Fig. 6.4 A sample of the data available within the open dataset [75] leveraged for the creation
of our V2X scenario.

167

Radio Frequency mobility scenario for wireless channel emulators

The dataset captures updates for each of the 19 vehicles at a frequency of
approximately 100 ms, setting the minimum time granularity achievable within
our scenario. This granularity proves sufficient for emulating the majority of V2X
use cases that necessitate frequent dynamic data updates. Additionally, the 10 Hz
periodic message frequency aligns with the maximum frequency stipulated by the
European Telecommunications Standards Institute (ETSI) [38].

Employing real traces ensures that the dataset authentically mirrors the behavior
of actual vehicles, empowering researchers to evaluate V2X applications with a
level of precision that surpasses conventional mathematical mobility models. The
data collection process leveraged a sophisticated Global Navigation Satellite Sys-
tem (GNSS) device operating at a 10 Hz update rate, complemented by Real-Time
Kinematic (RTK) corrections and an Inertial Measurement Unit (IMU). This config-
uration enhances the dataset’s granularity, capturing nuanced dynamic information
like acceleration.

The emulated scenario encapsulates an urban environment centered around
Pinerolo’s city center, exemplifying the characteristics of a mid-sized city with a
bustling downtown area. Given Colosseum’s capability to define an area spanning
up to 1km2, we judiciously selected Pinerolo’s city center as the coverage zone.
This locale predominantly houses a significant concentration of vehicles, thereby
facilitating a more nuanced emulation of urban dynamics, particularly the impact
of architectural structures. This central area choice further refines the emulation’s
fidelity, especially when juxtaposed with the more rural regions encompassed by the
SAMARCANDA dataset.

As previously highlighted, our framework necessitates a choice between emu-
lating a cellular-based or DSRC-based scenario, thereby setting the requisite input
radio parameters. Given the prevalent requirements of innovative V2X services,
characterized by low latency and high throughput, our emphasis gravitates towards
leveraging 5G connectivity facilitated through a centralized base station, specifically
a central gNB.

The adoption of centralized methodologies for automated and connected vehi-
cles, including techniques like centralized Federated Learning (FL) and advanced
automated maneuver management, has garnered significant attention. Numerous
European Projects have substantiated the efficacy of these centralized approaches,
particularly when synergized with a dependable 5G infrastructure [1]. Moreover, we

168

Radio Frequency mobility scenario for wireless channel emulators

posit that such centralized strategies hold substantial appeal for the research commu-
nity. Centralized frameworks often yield a more refined and precise understanding
of road dynamics compared to their purely decentralized counterparts [76]. Consid-
ering the reasonable range for a 5G base station, when focusing on centralized V2X
scenarios, a 1km2 square appears to be technically sound as maximum emulation
area, out of which vehicles can be considered out of coverage.

In light of the operational parameters inherent to a 5G base station, a coverage
area encompassing a 1km2 square emerges as a judicious choice for maximum
emulation. This delineation ensures that vehicles positioned beyond this boundary
are pragmatically considered to be outside the coverage ambit, aligning with the
technical constraints and objectives of centralized V2X scenarios.

For visual clarity, Figure 6.5 illustrates the primary area encompassed by the
SAMARCANDA traces in conjunction with the designated 1km2 coverage zone.

Fig. 6.5 SAMARCANDA traces with 1 km2 square area in blue. Reproduced from [75].

169

Radio Frequency mobility scenario for wireless channel emulators

6.5.2 Scenario creation

We will now explore the step-by-step process of generating the channel matrix using
the SAMARCANDA dataset of real-world vehicle traces.

Task 1 - Dataset pre-processing and refinement

When crafting the Colosseum scenario, our foundation rested upon the mobility
traces sourced from the SAMARCANDA dataset. Given Colosseum’s current
limitations, which cap the emulation to geographical regions not exceeding 1km2,
we judiciously pruned our dataset to fit this criterion. The selected area, delineated
based on our previously discussed rationale, is visually denoted by the blue square
in Figure 6.5.

Following an initial pre-processing phase, we embarked on refining the dataset
further. A pivotal step involved filtering out vehicles that never ventured beyond
the designated 1km2 area. This selective removal culminated in a pruned dataset
that featured 13 vehicles. Additionally, to optimize the dataset’s efficiency, times-
tamps—along with their associated dynamic data—corresponding to periods devoid
of vehicular activity within our specified area were systematically expunged. While
these instances constituted a minuscule fraction of the overall timestamps, their
elimination streamlined the dataset, priming it for subsequent ray-tracing phases.
Consequently, the final pruned dataset encompasses data from 13 vehicles, spanning
5,200 timestamps per vehicle, translating to an approximate emulation duration of
8.7 minutes.

While configuring the scenario, we strategically positioned a 5G antenna within
the confines of the 1km2 area, precisely at the geographic midpoint as depicted by the
blue marker in Figure 6.2. This placement mirrors the coordinates of a real Vodafone
LTE antenna, as corroborated by data in [2], pinpointed at [44.88338;7.33152].
Moreover, aligning with Colosseum’s operational parameters, which predominantly
focus on the 1 GHz frequency band, we designated this as our foundational frequency.
Nevertheless, it is worth highlighting that our framework’s versatility allows seamless
adaptation to alternate frequency bands. For instance, orchestrating a scenario
centered on the 5G N77 band at 3.7 GHz necessitates merely tweaking the transmitter
frequency parameter, underscoring the flexibility inherent in our approach.

170

Radio Frequency mobility scenario for wireless channel emulators

Task 2 - Ray-tracing

We utilized the ray-tracing feature within the MATLAB Communications Tool-
box, recognizing its exceptional versatility compared to other available software
solutions. We employed the raytrace function provided by MATLAB, as referenced
in [4], tailoring its settings based on the radio parameters outlined in Table 6.1. Our
configuration specified a 1 GHz transmitter frequency and a transmission power of
23 dBm, equivalent to 199.53 mW as indicated by [47]. Furthermore, we established
the maximum reflection order to the third level and designated the building and
terrain material as concrete.

The raytrace function produces a Ray object, encapsulating all detected rays
originating from the designated transmitter to its corresponding receiver. Each ray is
characterized by specific attributes such as PathLoss, PhaseShift, PropagationDelay,
AngleOfArrival, and AngleOfDeparture. Subsequently, this collected data was
integrated into the clustering phase to formulate the channel matrix.

Figure 6.6 illustrates a representation of these propagation rays, accompanied by
their respective power levels, as delineated in the adjacent legend, linking a vehicle
to the antenna.

Parameters Value
Transmitter Power 23 dBm

Transmitter Frequency 1 GHz
Transmitter Antenna Height 1.5 m
Transmitter Antenna Gain 0 dBi
Receiver Antenna Height 30 m
Receiver Antenna Gain 0 dBi

Max Number of Reflections 3
Buildings and Terrain Material Concrete

Ray-tracing method SBR
Noise level -89.1 dBm [97]

Table 6.1 MATLAB simulation parameters.

Task 3 - Clustering

We employed the refined K-means algorithm, as elaborated in 6.4.1, utilizing
the MCD as the distance metric on the results of the ray-tracing phase. Figure 6.7

171

Radio Frequency mobility scenario for wireless channel emulators

Fig. 6.6 Ray-tracing output for a specific timestamp between vehicle 9 and the antenna.

showcases the outcomes of this algorithm when applied to the multi-path components
obtained from the ray-tracer process. Specifically, the algorithm yielded K clusters,
where we set K = 4.

Figure 6.7 represents each multi-path component, plotting path loss (in dB)
against its respective propagation delay (in seconds). The x symbols on the plot indi-
cate the centroids of individual clusters, pinpointed by the K-means algorithm. Upon
consolidating all multi-path contributions, the resulting channel matrix exhibited up
to K = 4 delay values, accompanied by IQ parameters for each connection directed
towards the gNB across all the timestamps. Given our objective to emulate a central-
ized environment, we focused on capturing all link interactions between vehicles and
the base station. Consequently, we omitted values pertaining to vehicle-to-vehicle
links within this matrix.

Task 4 - Scenario creation and installation

Upon finalizing the channel matrix generation, the next pivotal step involved
leveraging this data as the primary input for the CaST toolchain [102]. Finally, after
few days of processing the scenario was installed inside Colosseum emulator with
id = 33013.

In the subsequent Section, we validate the efficacy of the constructed V2X
scenario by evaluating two critical metrics: Round-Trip Time (RTT) and Signal-to-
Noise Ratio (SNR).

172

Radio Frequency mobility scenario for wireless channel emulators

Fig. 6.7 Visualization of the K-means algorithm applied to a collection of rays from the
ray-tracing process.

6.5.3 Scenario validation

To validate the scenario developed using our framework, we executed multiple
experiments within the Colosseum emulator, utilizing the implemented RF sce-
nario. Specifically, each SRN was set up to operate with SCOPE [23], simulating a
comprehensive cellular network system on both the base station and the 13 vehicles.

SCOPE environment automates the instantiation processes for the base station
and the Evolved Packet Core (EPC), along with the user equipment (UE) association
procedures, which in our context are the vehicles. By default, SCOPE designates the
SRN with the lowest identification number as the base station, and the remaining
nodes function as UEs, given that the correct number of UEs is defined in the .config
file. Given that our scenario designates the 14th SRN as the base station, we adjusted
this default setting to ensure the 14th node assumes the role of the base station,
designating all other nodes as UEs.

173

Radio Frequency mobility scenario for wireless channel emulators

Upon initializing the scenario, we captured various metrics, encompassing the
RTT as vehicles navigated within the coverage area and the downlink SNR over time.
Subsequently, these metrics were juxtaposed with each vehicle’s position and their
respective distance from the gNB, utilizing coordinates from the SAMARCANDA
dataset.

Figure 6.8 delineates the relationship between the distance from the gNB over
time, juxtaposed with the RTT metrics between the vehicle and the base station, as
gauged by the ping utility. The dotted lines in purple demarcate intervals wherein
the vehicle remains within the coverage area (the 1km2 area). Concurrently, ver-
tical black lines segment the time instances encompassed in the pruned dataset,
representing the authentic emulated timestamps (from 250 s to 770 s).

As expected, effective communication is observed only when the vehicle remains
within the coverage zone, hence inside the 1km2 area. Notably, the average RTT
improves as the vehicle’s distance decreases, owing to enhanced SNR and received
power metrics. Given the emulation of a genuine urban setting, fluctuations in both
parameters are evident, influenced by multi-path effects and structures that either
obstruct or reflect signals.

Fig. 6.8 Comparison between RTT and distance from the base station. Data refer to vehicle
9 of SAMARCANDA [75].

174

Radio Frequency mobility scenario for wireless channel emulators

Figure 6.9 illustrates the SNR over time juxtaposed with the vehicle’s proxim-
ity to the gNB. The presented data represents averaged results from five different
experiments, accompanied by 99% confidence intervals. Echoing the prior observa-
tions, the graph underscores that a diminished distance from the gNB corresponds to
elevated SNR levels, punctuated by terrain and structural variables, realistically cap-
tured through our framework and the Colosseum emulator. Additionally, Figure 6.9
underscores the necessity of an SNR surpassing approximately 3.0 to ensure a con-
sistently reliable communication link between the vehicle and the gNB. Importantly,
the minimal size of the confidence intervals underscores the repeatability of results
achievable with our chosen wireless emulation system. These findings validate both
our proposed framework and the ensuing 5G scenario, affirming the efficacy of our
methodology.

Fig. 6.9 Comparison between SNR and the distance from the base station. Data refer to
vehicle 9 of SAMARCANDA [75]. The blue line represents the average SNR over 5 different
experiments, with the 99% confidence intervals represented by orange dotted lines.

175

Radio Frequency mobility scenario for wireless channel emulators

6.6 Conclusions and future works

In the current dynamic landscape of wireless communication, the increasing use
of large-scale wireless emulation has become more than just a trend; it is a signif-
icant force influencing the development of next-generation wireless networks. As
we have observed, the combination of this growth with technologies like massive
MIMO, millimeter-wave beamforming, and AI-driven V2X communication has led
to various innovative applications. Despite the potential, addressing challenges in
exploring wireless applications, especially those involving numerous mobile nodes,
proves complex for traditional simulation frameworks alone. Understanding this gap
emphasizes the importance of our work.

Our effort has resulted in the development of an innovative framework specifically
designed for creating channel emulation scenarios based on real-world mobility
traces. Drawing inspiration and extending the groundwork presented in [102], our
methodology emphasizes a data-centric approach, utilizing real-world datasets to
emulate scenarios with unparalleled authenticity. With careful attention to detail, we
have outlined each procedural nuance, leading to the introduction of an open-source
MATLAB framework [80].

Our framework boasts remarkable versatility, serving as a facilitator for the
seamless creation and deployment of scenarios encompassing both cellular and
WiFi domains on expansive platforms like Colosseum [24]. To substantiate its
capabilities, we meticulously constructed a V2X 5G centralized scenario within the
Colosseum emulator, grounded in the comprehensive SAMARCANDA dataset [75].
The creation and evaluation of this scenario offered a tangible platform for validating
our methodology, showcasing the effectiveness of our solution in constructing and
deploying realistic communication environments with dynamic mobile nodes.

Looking forward, our focus will shift to implementing a federated learning
process atop the established V2X mobility scenario. In this undertaking, we will
utilize vehicles as federated learning clients, leveraging the high-fidelity mobility
scenario uniquely achievable through an emulator of Colosseum’s caliber.

176

Chapter 7

Conclusions

In recent years, there have been notable advancements in crowd monitoring, largely
driven by the necessity to manage large gatherings during the COVID-19 pandemic.
This progress has prompted academic exploration into new ways of monitoring
crowds, with a focus on enhancing user privacy and public safety. However, imple-
menting people counting algorithms and predicting traffic flow comes with its share
of challenges. One major concern revolves around privacy issues related to collecting
and storing sensitive data, especially when using WiFi probe request messages, along
with complexities arising from MAC address randomization.

Our journey into crowd monitoring and people counting began in early 2020,
coinciding with the escalating importance of crowd monitoring due to the COVID-19
pandemic. We recognized the need for passive people counting systems that op-
erate seamlessly, prompting us to develop systems leveraging WiFi probe request
messages. However, evolving privacy regulations and widespread MAC address
randomization practices posed new challenges to our research. To address these
challenges, we started from scratch and we found a gap in literature about the actual
behaviour of this methodology. Consequently, we delved into a comprehensive ex-
ploration of probe request message behavior, examining how user-device interactions
impact the frequency of message transmission, and how MAC address randomization
is actually implemented. With a clearer understanding, we realized that traditional
and simplistic de-randomizer algorithms previously utilized were no longer suffi-
cient. Consequently, we opted to transition towards exploring machine learning
methodologies to address these challenges more effectively.

177

Conclusions

The initial step involved developing a realistic probe request generator capable of
generating datasets with associated ground truth, allowing us to emulate diverse sce-
narios and behaviors in a fraction of the time. With the generated data, we proceeded
to create and test our first machine learning-driven de-randomizer. This utilized a
DBSCAN clustering algorithm, effectively grouping probe requests originating from
devices of the same model. Utilizing the refined counting pipeline, which had been
rigorously tested in controlled environments, we deployed multiple Raspberry Pi
devices in a public park situated in the heart of Turin. This deployment is part of our
commitment to the TrialsNet EU project [13].

During our journey we had also the opportunity to explore the potential of
federated learning in dynamic resource allocation tasks, particularly in urban mobility
solutions and vehicular trajectory prediction. Through a use case scenario, we
demonstrated the efficacy of federated learning in training ML models in a privacy-
compliant manner while minimizing network footprint and leveraging IoT device
computing capabilities. In our scenario we shown that, using real-world mobility
traces compared to a synthetic scenario, federated learning converge faster to the
predefined termination criterion, thus reaching the same accuracy of the same ML
model trained in a classic centralized manner.

Furthermore, we developed an innovative data-driven framework for radio fre-
quency mobility scenario generation, enhancing the realism of V2X scenarios and
fostering innovation in urban mobility solutions. By integrating real-world mo-
bility traces with advanced channel modeling techniques, this framework lays the
foundation for more accurate and reliable simulation environments.

Future works

Moving forward, our investigation into crowd monitoring, and federated learning
opens up numerous promising paths for future research and development.

We are currently investigating the usage of neural networks, particularly LSTM
networks to tackle the people counting task. We believe that there may exist temporal
patterns among different capturing windows that can be leveraged for improved
accuracy. At the same time as privacy concerns continue to escalate in significance,
future efforts will concentrate on refining anonymization techniques and exploring
the integration of differential privacy mechanisms.

178

Conclusions

In the realm of federated learning, further research drive towards the application
of federated learning to different use cases, particularly in scenarios where federated
learning can serve as a viable alternative to centralized machine learning approaches.
Additionally, we are delving into the accuracy and efficiency of the asynchronous
paradigm of federated learning. This involves exploring the concept of adding an
extra layer between clients and servers, akin to the concept proposed in [35], to
optimize the convergence time of the entire federated network.

179

List of acronyms

Acronyms / Abbreviations

AI Artificial Intelligence

AP Access Point

ARP Address Resolution Protocol

BLE Bluetooth Low Energy

C−V 2I Cellular Vehicle-to-Infrastructure

CA Collision Avoidance

CID Company Identifier

CV Coefficient of Variation

DARPA Defense Advanced Research Projects Agency

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DES Data Encryption Standard

DPO Data Protection Officer

DSRC Dedicated Short Range Communication

eNB eNodeB

EPC Evolved Packet Core

ET SI European Telecommunications Standards Institute

180

List of acronyms

FCS Frame Check Sequence

FIR Finite Impulse Response

FL Federated Learning

FPGA Field Programmable Gate Array

FSM Finite-State Machine

GA Globally Administrated

GDPR General Data Protection Regulation

GMM Gaussian Mixture Models

gNB gNodeB

GNSS Global Navigation Satellite System

GPS Global Positioning System

HE Homomorphic Encryption

HT High Throughput

IE Information Elements

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

IP Internet Protocol

IQ In-phase and Quadrature

ISTAT Italian National Institute of Statistics

LAA Locally Administrated

LAN Local Area Network

LANMAN LAN Manager

LiDAR Light Detection and Ranging

181

List of acronyms

LST M Long Short-Term Memory

M2M Machine to Machine

MAC Media Access Control

MCD Multi-path Component Distance

MCHEM Massive digital Channel Emulator

MD Message Digest

MEC Multi-access Edge Computing

MED Mean Euclidean Distance

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MQT T Message Queuing Telemetry Transport

MSE Mean Squared Error

NIC Network Interface Controller

NN Neural Network

NT LM NT LAN Manager

OBU On-Board Unit

OPT ICS Ordering Points To Identify the Clustering Structure

OS Operating System

OUI Organizationally Unique identifier

PHE Partially Homomorphic Encryption

PIR Passive Infrared sensors

PoC Proof of Concept

PoE Power over Ethernet

182

List of acronyms

POWDER Platform for Open Wireless Data-driven Experimental Research

PR WiFi Probe Request

RAN Radio Access Network

RF Radio Frequency

RNN Recurrent Neural Network

RSSI Received Signal Strength Indicator

RSU Road Side Unit

RT K Real-Time Kinematic

RT T Round-Trip Time

SAMARCANDA Synthetic Accurate Multi-Agent RealistiC Assisted-gNss DatAset

SBC Single-Board Computer

SDR Software Defined Radio

SED Squared Euclidean Distance

SHA Secure Hash Algorithm

SNR Signal-to-Noise Ratio

SRN Standard Radio Node

SSID Service Set Identifier

SUMO Simulation of Urban MObility

TCP Transmission Control Protocol

TraCI Traffic Control Interface

TuST Turin SUMO Traffic

UE User Equipment

UUID−E Universally Unique Identifier-Extended

183

List of acronyms

V 2V Vehicle-to-Vehicle

V 2X Vehicle-to-Everything

V HT Very High Throughput

V NF Virtual Network Function

WPS WiFi Protected Setup

184

Bibliography

[1] 5G-CARMEN. URL https://5gcarmen.eu/.

[2] Cell mapper. URL https://www.cellmapper.net/.

[3] OpenAirInterface. URL https://openairinterface.org.

[4] Reference manual for raytrace. URL https://www.mathworks.com/help/
comm/ref/txsite.raytrace.html.

[5] Traffic light status (tls) dataset. URL https://www2.kios.ucy.ac.cy/harpydata/
tlsdataset/.

[6] Dropper s.r.l. URL https://www.dropper.ai.

[7] Hexa-X. URL https://hexa-x.eu/.

[8] ns-3. URL https://www.nsnam.org.

[9] OneM2M. http://www.onem2m.org.

[10] Preliminary verification. collection, analysis and processing of data, through
the installation of equipment, for marketing and market research purposes.
URL https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/
9022068.

[11] Wireless EM Propagation Software - Wireless InSite - Remcom. URL https:
//www.remcom.com/wireless-insite-em-propagation-software.

[12] srsRAN. URL https://www.srslte.com.

[13] Trialsnet EU project. URL https://trialsnet.eu/.

[14] Wireshark - go deep. URL https://www.wireshark.org.

[15] Spostamenti Quotidiani e Nuove Forme di Mobilità. Statistical document,
ISTAT, Istituto Nazionale di Statistica, 2018.

[16] Dopo l’emergenza sanitaria il caro-energia: le intenzioni di mobilità nei
prossimi tre mesi. Statistical document, ISTAT, Istituto Nazionale di Statistica,
2022.

185

https://5gcarmen.eu/
https://www.cellmapper.net/
https://openairinterface.org
https://www.mathworks.com/help/comm/ref/txsite.raytrace.html
https://www.mathworks.com/help/comm/ref/txsite.raytrace.html
https://www2.kios.ucy.ac.cy/harpydata/tlsdataset/
https://www2.kios.ucy.ac.cy/harpydata/tlsdataset/
https://www.dropper.ai
https://hexa-x.eu/
https://www.nsnam.org
http://www.onem2m.org
https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
https://www.garanteprivacy.it/home/docweb/-/docweb-display/docweb/9022068
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.remcom.com/wireless-insite-em-propagation-software
https://www.srslte.com
https://trialsnet.eu/
https://www.wireshark.org

Bibliography

[17] Airodump-ng. Airodump-ng. [Online]. URL: https://www.aircrack-ng.org/
doku.php?id=airodump-ng.

[18] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann,
Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel,
Peter Wagner, and Evamarie Wießner. Microscopic traffic simulation using
sumo. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pages 2575–2582. IEEE, November 2018. URL https://elib.dlr.de/127994/.

[19] Lorenzo Bertizzolo, Leonardo Bonati, Emrecan Demirors, Amani Al-
shawabka, Salvatore d’oro, Francesco Restuccia, and Tommaso Melodia.
Arena: A 64-antenna sdr-based ceiling grid testing platform for sub-6 ghz
5g-and-beyond radio spectrum research. Computer Networks, 181:107436, 07
2020. doi: 10.1016/j.comnet.2020.107436.

[20] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-
Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pe-
dro Porto Buarque de Gusmão, and Nicholas D. Lane. FLOWER: A
FRIENDLY FEDERATED LEARNING FRAMEWORK. Open-Source,
mobile-friendly Federated Learning framework, March 2022. URL https:
//hal.science/hal-03601230.

[21] Giuseppe Bianchi, Lorenzo Bracciale, and Pierpaolo Loreti. ”Better than
nothing” privacy with bloom filters: To what extent? In Josep Domingo-
Ferrer and Ilenia Tinnirello, editors, Privacy in Statistical Databases, pages
348–363. Springer Berlin Heidelberg, 2012.

[22] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[23] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso Melodia.
SCOPE: An Open and Softwarized Prototyping Platform for NextG Systems.
In Proc. of ACM Intl. Conf. on Mobile Systems, Applications, and Services
(MobiSys), Virtual Conference, June 2021.

[24] Leonardo Bonati, Pedram Johari, Michele Polese, Salvatore D’Oro,
Subhramoy Mohanti, Miead Tehrani-Moayyed, Davide Villa, Shweta Shrivas-
tava, Chinenye Tassie, Kurt Yoder, Ajeet Bagga, Paresh Patel, Ventz Petkov,
Michael Seltser, Francesco Restuccia, Abhimanyu Gosain, Kaushik R. Chowd-
hury, Stefano Basagni, and Tommaso Melodia. Colosseum: Large-scale wire-
less experimentation through hardware-in-the-loop network emulation. In
Proc. of IEEE Intl. Symp. on Dynamic Spectrum Access Networks (DySPAN),
Virtual Conference, December 2021.

[25] Tomas Bravenec, Joaquín Torres-Sospedra, Michael Gould, and Tomas Fryza.
Exploration of user privacy in 802.11 probe requests with MAC address
randomization using temporal pattern analysis, 2022.

186

https://www.aircrack-ng.org/doku.php?id=airodump-ng
https://www.aircrack-ng.org/doku.php?id=airodump-ng
https://elib.dlr.de/127994/
https://hal.science/hal-03601230
https://hal.science/hal-03601230

Bibliography

[26] Joe Breen, Andrew Buffmire, Jonathon Duerig, Kevin Dutt, Eric Eide, Mike
Hibler, David Johnson, Sneha Kumar Kasera, Earl Lewis, Dustin Maas, Alex
Orange, Neal Patwari, Daniel Reading, Robert Ricci, David Schurig, Leigh B.
Stoller, Jacobus Van der Merwe, Kirk Webb, and Gary Wong. POWDER:
Platform for open wireless data-driven experimental research. In Proceedings
of the 14th International Workshop on Wireless Network Testbeds, Experi-
mental Evaluation and Characterization (WiNTECH), September 2020. doi:
10.1145/3411276.3412204.

[27] Andrei Broder and Michael Mitzenmacher. Network applications of bloom
filters: A survey. Internet Mathematics, 1(4):485–509, 2004. doi: 10.
1080/15427951.2004.10129096. URL https://doi.org/10.1080/15427951.2004.
10129096.

[28] Ziqing Chen, Wei Yuan, Ming Yang, Chunxiang Wang, and Bing Wang. SVM
based people counting method in the corridor scene using a single-layer laser
scanner. In IEEE International Conference on Intelligent Transportation
Systems (ITSC), pages 2632–2637, 2016. doi: 10.1109/ITSC.2016.7795979.

[29] N. Czink, P. Cera, J. Salo, Ernst Bonek, Jukka Nuutinen, and Juha Ylitalo.
Improving clustering performance using multipath component distance. Elec-
tronics Letters, 42, 2006.

[30] Kapil Dandekar, Simon Begashaw, Marko Jacovic, Alex Lackpour, Ilhaan
Rasheed, Xaime Rivas Rey, Cem Sahin, Sharif Shaher, and Geoffrey Mainland.
Grid software defined radio network testbed for hybrid measurement and
emulation. pages 1–9, 06 2019. doi: 10.1109/SAHCN.2019.8824901.

[31] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[32] Duncan Deveaux, Takamasa Higuchi, Seyhan Uçar, Chang-Heng Wang,
Jérôme Härri, and Onur Altintas. On the orchestration of federated learning
through vehicular knowledge networking. In 2020 IEEE Vehicular Networking
Conference (VNC), pages 1–8, 2020. doi: 10.1109/VNC51378.2020.9318386.

[33] Duncan Deveaux, Takamasa Higuchi, Seyhan Uçar, Jérôme Härri, and Onur
Altintas. A definition and framework for vehicular knowledge networking:
An application of knowledge-centric networking. IEEE Vehicular Technology
Magazine, 16(2):57–67, 2021. doi: 10.1109/MVT.2021.3066376.

[34] Laihui Ding, Shengke Wang, Rui Li, Long Chen, and Junyu Dong. PC-PINet:
Partial re-identification network for people counting with overlapping cameras.
In International Conference on Image, Vision and Computing (ICIVC), pages
66–71, 2021. doi: 10.1109/ICIVC52351.2021.9526965.

[35] Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao,
and Liang Liang. Astraea: Self-balancing federated learning for improving
classification accuracy of mobile deep learning applications. In 2019 IEEE

187

https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096

Bibliography

37th international conference on computer design (ICCD), pages 246–254.
IEEE, 2019.

[36] Fatih Erden, Ali Alkar, and Ahmet Cetin. A robust system for counting people
using an infrared sensor and a camera. Infrared Physics & Technology, 72, 08
2015. doi: 10.1016/j.infrared.2015.07.019.

[37] ETSI. ETSI TR 138 901 V15.0.0 (2018-07) - 5G; Study on channel model for
frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 15.0.0 Release
15). Standard ETSI TR 138 901 V15.0.0, European Telecommunications
Standards Institute, 2018.

[38] ETSI. ETSI EN 302 637-2 V1.4.1 (2019-04) - Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications; Part 2: Spec-
ification of Cooperative Awareness Basic Service. Standard ETSI EN 302
637-2 V1.4.1, European Telecommunications Standards Institute, 2019.

[39] European Parliament and Council of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council. URL https://data.
europa.eu/eli/reg/2016/679/oj.

[40] Julien Freudiger. How talkative is your mobile device? an experimental
study of Wi-Fi probe requests. ACM WiSec, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450336239.

[41] M.S. Gast. 802.11 Wireless Networks: The Definitive Guide, 2nd edition.
Sebastopol, CA, USA, 2005.

[42] M.S. Gast. 802.11 ac: A Survival Guide: Wi-Fi at Gigabit and Beyond.
Sebastopol, CA, USA, 2013.

[43] Kalkidan Gebru, Marco Rapelli, Riccardo Rusca, Claudio Casetti, Carla Fabi-
ana Chiasserini, and Paolo Giaccone. Edge-based passive crowd monitoring
through WiFi beacons. Computer Communications, 192:163–170, 2022. ISSN
0140-3664. doi: https://doi.org/10.1016/j.comcom.2022.06.003.

[44] Andrei Günter, Stephan Böker, Matthias König, and Martin Hoffmann.
Privacy-preserving people detection enabled by solid state LiDAR. In Inter-
national Conference on Intelligent Environments (IE), pages 1–4, 2020. doi:
10.1109/IE49459.2020.9154970.

[45] IEEE. Oui - standards. URL https://standards-oui.ieee.org.

[46] Apple Inc. Wi-fi privacy, 02 2021. URL https://support.apple.com/en-gb/
guide/security/secb9cb3140c/web.

[47] Paramananda Joshi, Fatemeh Ghasemifard, Davide Colombi, and Christer
Törnevik. Actual output power levels of user equipment in 5G commercial
networks and implications on realistic RF EMF exposure assessment. IEEE
Access, 8, 2020.

188

https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://standards-oui.ieee.org
https://support.apple.com/en-gb/guide/security/secb9cb3140c/web
https://support.apple.com/en-gb/guide/security/secb9cb3140c/web

Bibliography

[48] KimiNewt. Pyshark documentation. URL https://github.com/KimiNewt/
pyshark.

[49] G La Bruna, C Risma Carletti, R Rusca, C Casetti, CF Chiasserini, M Gior-
danino, and R Tola. Edge-assisted federated learning in vehicular networks.
In 2022 18th International Conference on Mobility, Sensing and Networking
(MSN), pages 163–170. IEEE, 2022.

[50] Grafana Labs. Grafana: The open observability platform. https://grafana.com/.

[51] Li Li, Jun Wang, and ChengZhong Xu. FLSim: An extensible and reusable
simulation framework for federated learning. In Houbing Song and Dingde
Jiang, editors, Simulation Tools and Techniques, pages 350–369, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-72792-5.

[52] John D.C. Little. A proof for the queuing formula: L = λW. Operations
Research, 2(4):447–457, 1954.

[53] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar,
Shashank Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish Verma,
Mathieu Sinn, et al. Ibm federated learning: an enterprise framework white
paper v0. 1. arXiv preprint arXiv:2007.10987, 2020.

[54] Marco Malinverno, Josep Mangues-Bafalluy, Claudio Ettore Casetti,
Carla Fabiana Chiasserini, Manuel Requena-Esteso, and Jorge Baranda. An
edge-based framework for enhanced road safety of connected cars. IEEE
Access, 8:58018–58031, 2020.

[55] Marco Malinverno, Francesco Raviglione, Claudio Casetti, Carla-Fabiana
Chiasserini, Josep Mangues-Bafalluy, and Manuel Requena-Esteso. A multi-
stack simulation framework for vehicular applications testing. In Proceedings
of the 10th ACM Symposium on Design and Analysis of Intelligent Vehicular
Networks and Applications, DIVANet ’20, page 17–24, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450381215. doi:
10.1145/3416014.3424603. URL https://doi.org/10.1145/3416014.3424603.

[56] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont
Brown, Chadwick Riggins, Erik Rye, and Dane Brown. A study of MAC
address randomization in mobile devices and when it fails. Proceedings on
Privacy Enhancing Technologies, 03 2017. doi: 10.1515/popets-2017-0054.

[57] Célestin Matte. Wi-Fi tracking: Fingerprinting attacks and counter-measures.
PhD thesis, Université de Lyon, 2017.

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Aarti Singh and Jerry Zhu, editors, Pro-
ceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages

189

https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://grafana.com/
https://doi.org/10.1145/3416014.3424603

Bibliography

1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

[59] Meshlium by Libelium. Meshlium by libelium. [Online]. URL: https://www.
libelium.com/iot-products/meshlium-scanner/.

[60] Fabrizio Moggio, Mauro Boldi, Silvia Canale, Vincenzo Suraci, Claudio
Casetti, Giacomo Bernini, Giada Landi, and Paolo Giaccone. 5g eve a eu-
ropean platform for 5g application deployment. In Proceedings of the 14th
International Workshop on Wireless Network Testbeds, Experimental Evalua-
tion & Characterization, WiNTECH ’20, page 124–125, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450380829. doi:
10.1145/3411276.3414696. URL https://doi.org/10.1145/3411276.3414696.

[61] MS Windows NT Kernel Description. MS Windows NT kernel descrip-
tion. [Online]. URL: https://gs.statcounter.com/vendor-market-share/mobile/
europe/yearly-2020-2023-bar.

[62] Ei Phyu Myint and Myint Myint Sein. People detecting and counting system.
In IEEE Global Conference on Life Sciences and Technologies (LifeTech),
pages 289–290, 2021. doi: 10.1109/LifeTech52111.2021.9391951.

[63] Michele Nitti, Francesca Pinna, Lucia Pintor, Virginia Pilloni, and Benedetto
Barabino. iabacus: A Wi-Fi-based automatic bus passenger counting system.
Energies, 13(6):1446, 2020.

[64] Numpy library. Numpy library. [Online]. URL: https://numpy.org/.

[65] Luiz Oliveira, Daniel Schneider, Jano De Souza, and Weiming Shen. Mobile
device detection through WiFi probe request analysis. IEEE Access, 7:98579–
98588, 2019.

[66] World Health Organization. Global status report on road safety 2018. geneva:
World health organization; 2018. licence: Cc bync-sa 3.0 igo. 2018. URL
https://www.who.int/publications/i/item/9789241565684.

[67] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardinality es-
timation and dynamic length adaptation for Bloom filters. Distributed and
Parallel Databases, 28:119–156, 2010.

[68] Cristian Perra, Amit Kumar, Michele Losito, Paolo Pirino, Milad Moradpour,
and Gianluca Gatto. Monitoring indoor people presence in buildings using
low-cost infrared sensor array in doorways. Sensors, 21(12), 2021. ISSN
1424-8220. doi: 10.3390/s21124062.

[69] Lucia Pintor and Luigi Atzori. A dataset of labelled device wi-fi probe requests
for mac address de-randomization. Computer Networks, 205:108783, 2022.
ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2022.108783. URL
https://www.sciencedirect.com/science/article/pii/S1389128622000196.

190

https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://www.libelium.com/iot-products/meshlium-scanner/
https://www.libelium.com/iot-products/meshlium-scanner/
https://doi.org/10.1145/3411276.3414696
https://gs.statcounter.com/vendor-market-share/mobile/europe/yearly-2020-2023-bar
https://gs.statcounter.com/vendor-market-share/mobile/europe/yearly-2020-2023-bar
https://numpy.org/
https://www.who.int/publications/i/item/9789241565684
https://www.sciencedirect.com/science/article/pii/S1389128622000196

Bibliography

[70] The Android Open Source Project. Implementing mac randomization, 11 2022.
URL https://source.android.com/docs/core/connect/wifi-mac-randomization.

[71] Python programming language. Python programming language. [Online].
URL: https://www.python.org/.

[72] Marco Rapelli, Claudio Casetti, and Giandomenico Gagliardi. Vehicular traffic
simulation in the city of turin from raw data. IEEE Transactions on Mobile
Computing, 21(12):4656–4666, 2022. doi: 10.1109/TMC.2021.3075985.

[73] Marco Rapelli, Claudio Casetti, and Giandomenico Gagliardi. Vehicular traffic
simulation in the city of turin from raw data. IEEE Transactions on Mobile
Computing, 21(12):4656–4666, 2022. doi: 10.1109/TMC.2021.3075985.

[74] Raspberry Pi. Raspberry pi. [Online]. URL: https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/.

[75] F. Raviglione, S. Zocca, A. Minetto, M. Malinverno, C. Casetti, C.F. Chi-
asserini, and F. Dovis. From collaborative awareness to collaborative in-
formation enhancement in vehicular networks. Vehicular Communications
(Elsevier), 36, 2022.

[76] Francesco Raviglione, Carlos Mateo Risma Carletti, Claudio Casetti, Filippo
Stoffella, Girma M. Yilma, and Filippo Visintainer. S-LDM: Server Local
Dynamic Map for vehicular enhanced collective perception. In 2022 IEEE
95th Vehicular Technology Conference: (VTC2022-Spring), 2022.

[77] Alessandro E.C. Redondi and Matteo Cesana. Building up knowledge through
passive WiFi probes. Computer Communications, 117:1–12, 2018. ISSN
0140-3664. doi: https://doi.org/10.1016/j.comcom.2017.12.012.

[78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.

[79] Riccardo Rusca. Probe request generator, . URL https://github.com/
riccardo-rusca/ProbeRequestGenerator.

[80] Riccardo Rusca. Mobile RF Scenario Design, . URL https://github.com/
riccardo-rusca/Mobile_RF_Scenario_Design.

[81] Riccardo Rusca. Probe request sniffing, . URL https://github.com/
riccardo-rusca/ProbeRequestSniffing.

[82] Riccardo Rusca, Claudio Casetti, and Paolo Giaccone. IoT for real time
presence sensing on the 5G EVE infrastructure. In 2021 19th Mediterranean
Communication and Computer Networking Conference (MedComNet), pages
1–8, 2021.

191

https://source.android.com/docs/core/connect/wifi-mac-randomization
https://www.python.org/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://github.com/riccardo-rusca/ProbeRequestGenerator
https://github.com/riccardo-rusca/ProbeRequestGenerator
https://github.com/riccardo-rusca/Mobile_RF_Scenario_Design
https://github.com/riccardo-rusca/Mobile_RF_Scenario_Design
https://github.com/riccardo-rusca/ProbeRequestSniffing
https://github.com/riccardo-rusca/ProbeRequestSniffing

Bibliography

[83] Riccardo Rusca, Alex Carluccio, Diego Gasco, and Paolo Giaccone. Privacy-
aware crowd monitoring and wifi traffic emulation for effective crisis manage-
ment. In 2023 International Conference on Information and Communication
Technologies for Disaster Management (ICT-DM), pages 1–6, 2023. doi:
10.1109/ICT-DM58371.2023.10286944.

[84] Riccardo Rusca, Francesco Raviglione, Claudio Casetti, Paolo Giaccone, and
Francesco Restuccia. Mobile rf scenario design for massive-scale wireless
channel emulators. In 2023 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), pages 675–680, 2023.
doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.

[85] Riccardo Rusca, Filippo Sansoldo, Claudio Casetti, and Paolo Giaccone. What
WiFi probe requests can tell you. In IEEE Consumer Communications &
Networking Conference (CCNC), pages 1086–1091, 2023. doi: 10.1109/
CCNC51644.2023.10060447.

[86] Riccardo Rusca, Alex Carluccio, Claudio Casetti, and Paolo Giaccone.
Privacy-preserving wifi-based crowd monitoring. Transactions on Emerging
Telecommunications Technologies, 35(3):e4956, 2024. doi: https://doi.org/10.
1002/ett.4956. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4956.

[87] Scapy library. Scapy library. [Online]. URL: https://scapy.net/.

[88] Dinesh Cyril Selvaraj, Christian Vitale, Tania Panayiotou, Panayiotis Kolios,
Carla Fabiana Chiasserini, and Georgios Ellinas. Edge learning of vehicular
trajectories at regulated intersections. In 2021 IEEE 94th Vehicular Technology
Conference (VTC2021-Fall), pages 1–7. IEEE, 2021.

[89] M. C. Simon, Thierry Hermitte, and Yves Page. Intersection road accident
causation: A european view. Proceedings: International Technical Conference
on the Enhanced Safety of Vehicles, 2009:–, 2009. URL http://dx.doi.org/.

[90] Aleš Simončič, Miha Mohorčič, Mihael Mohorčič, and Andrej Hrovat. Non-
intrusive privacy-preserving approach for presence monitoring based on WiFi
probe requests. Sensors, 23(5), 2023. ISSN 1424-8220. doi: 10.3390/
s23052588. URL https://www.mdpi.com/1424-8220/23/5/2588.

[91] Valeriu-Daniel Stanciu, Maarten van Steen, Ciprian Dobre, and Andreas
Peter. Privacy-preserving crowd-monitoring using Bloom filters and homo-
morphic encryption. In International Workshop on Edge Systems, Analytics
and Networking (EdgeSys), page 37–42. ACM, 2021.

[92] Valeriu-Daniel Stanciu, Maarten van Steen, Ciprian Dobre, and Andreas
Peter. Anonymized counting of nonstationary Wi-Fi devices when monitoring
crowds. In International Conference on Modeling Analysis and Simulation of
Wireless and Mobile Systems (MSWiM), page 213–222. ACM, 2022.

192

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4956
https://scapy.net/
http://dx.doi.org/
https://www.mdpi.com/1424-8220/23/5/2588

Bibliography

[93] Valeriu-Daniel Stanciu, Maarten van Steen, Ciprian Dobre, and Andreas
Peter. Privacy-friendly statistical counting for pedestrian dynamics. Computer
Communications, 211:178–192, 2023. ISSN 0140-3664. doi: https://doi.
org/10.1016/j.comcom.2023.09.009. URL https://www.sciencedirect.com/
science/article/pii/S0140366423003195.

[94] David Stritzl. Privacy-preserving matching using bloom filters: an analysis
and an encrypted variant, April 2019. URL http://essay.utwente.nl/77733/.

[95] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory
and practice of bloom filters for distributed systems. IEEE Communications
Surveys & Tutorials, 14(1):131–155, 2012. doi: 10.1109/SURV.2011.031611.
00024.

[96] tcpdump. tcpdump. [Online]. URL: https://www.tcpdump.org.

[97] Miead Tehrani-Moayyed, Leonardo Bonati, Pedram Johari, Tommaso Melo-
dia, and Stefano Basagni. Creating RF scenarios for large-scale, real-time
wireless channel emulators. In 2021 19th Mediterranean Communication and
Computer Networking Conference (MedComNet), 2021.

[98] Radu Timofte, Karel Zimmermann, and Luc Van Gool. Multi-view traffic sign
detection, recognition, and 3d localisation. Machine vision and applications,
25:633–647, 2014.

[99] tshark. tshark. [Online]. URL: https://www.wireshark.org/docs/man-pages/
tshark.html.

[100] Marco Uras, Enrico Ferrara, Raimondo Cossu, Antonio Liotta, and Luigi
Atzori. MAC address de-randomization for WiFi device counting: Combining
temporal- and content-based fingerprints. Computer Networks, 218:109393,
2022. ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2022.109393.
URL https://www.sciencedirect.com/science/article/pii/S1389128622004273.

[101] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S Cardoso, and
Frank Piessens. Why MAC address randomization is not enough: An analysis
of Wi-Fi network discovery mechanisms. In Proceedings of the 11th ACM on
Asia conference on computer and communications security, pages 413–424,
2016.

[102] D. Villa, M. Tehrani-Moayyed, P. Johari, S. Basagni, and T. Melodia. CaST:
A Toolchain for Creating and Characterizing Realistic Wireless Network
Emulation Scenarios. In ACM Workshop on Wireless Network Testbeds,
Experimental evaluation & CHaracterization (WiNTECH 2022), Sydney,
Australia, October 2022.

[103] Huizi Xiao, Jun Zhao, Qingqi Pei, Jie Feng, Lei Liu, and Weisong Shi. Vehicle
selection and resource optimization for federated learning in vehicular edge
computing. IEEE Transactions on Intelligent Transportation Systems, 23(8):
11073–11087, 2021.

193

https://www.sciencedirect.com/science/article/pii/S0140366423003195
https://www.sciencedirect.com/science/article/pii/S0140366423003195
http://essay.utwente.nl/77733/
https://www.tcpdump.org
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.sciencedirect.com/science/article/pii/S1389128622004273

Bibliography

[104] Justin Yackoski, Babak Azimi-Sadjadi, Ali Namazi, Jason H. Li, Yalin Sag-
duyu, and Renato Levy. Rfnest™: Radio frequency network emulator simula-
tor tool. In MILCOM 2011 Military Communications Conference, 2011.

[105] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 2019.

[106] Dongdong Ye, Rong Yu, Miao Pan, and Zhu Han. Federated learning in
vehicular edge computing: A selective model aggregation approach. IEEE
Access, 8:23920–23935, 2020.

[107] Xiaokang Zhou, Wei Liang, Jinhua She, Zheng Yan, I Kevin, and Kai Wang.
Two-layer federated learning with heterogeneous model aggregation for 6g
supported internet of vehicles. IEEE Transactions on Vehicular Technology,
70(6):5308–5317, 2021.

[108] Xiaokang Zhou, Wei Liang, Jinhua She, Zheng Yan, I Kevin, and Kai Wang.
Two-layer federated learning with heterogeneous model aggregation for 6g
supported internet of vehicles. IEEE Transactions on Vehicular Technology,
70(6):5308–5317, 2021.

194

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Publications
	1.2 Main contributions
	1.3 Outline

	2 WiFi Probe Request for Crowd Monitoring
	2.1 Research motivation and State of the Art
	2.2 Main contributions
	2.3 IEEE 802.11 connection procedure
	2.3.1 Interaction between device and access point
	2.3.2 IEEE 802.11 Probe Request frame
	2.3.3 IEEE 802.11 Probe Response frame

	2.4 MAC address and privacy
	2.4.1 MAC address
	2.4.2 MAC address randomization

	2.5 Methodology
	2.5.1 Hardware description
	2.5.2 Testing location
	2.5.3 Testing methodology
	2.5.4 Data analysis
	2.5.5 Experiment extension

	2.6 Results
	2.6.1 Experimental results
	2.6.2 Analysis and comparison between different devices
	2.6.3 Results comparison between different years and OS version
	2.6.4 Experimental findings
	2.6.5 Limitations

	2.7 Conclusions and future works

	3 Probe Request Generator and Privacy-Aware People Flow Monitoring through Bloom Filters
	3.1 Research motivation and State of the Art
	3.2 Main contributions
	3.3 Anonymization techniques for storing MAC addresses
	3.3.1 GDPR
	3.3.2 Hash function
	3.3.3 Salted hash
	3.3.4 Truncated hash
	3.3.5 Bloom filter

	3.4 Probe request generator
	3.4.1 Back-end data
	3.4.2 Finite-State machine
	3.4.3 Event-driven generator
	3.4.4 Messages collision avoidance
	3.4.5 Probe request packet generation
	3.4.6 Validation

	3.5 Bloom filters for flow analysis
	3.5.1 Bloom filter sizing
	3.5.2 Bloom filter privacy properties
	3.5.3 Anonymization noise
	3.5.4 Multiple anonymity
	3.5.5 Counting elements stored in a Bloom filter
	3.5.6 Intersection of different Bloom filters

	3.6 Conclusions and future works

	4 People counting and crowd monitoring in real use cases
	4.1 Research motivation
	4.2 Main contributions
	4.3 WiFi probe request sniffers
	4.3.1 Meshlium scanner by Libelium
	4.3.2 Raspberry Pi
	4.3.3 Meshlium vs Raspberry Pi

	4.4 WiFi probe requests people counting algorithms
	4.4.1 Naive algorithms
	4.4.2 De-randomization algorithms

	4.5 Real-time presence sensing on a 5G infrastructure
	4.5.1 Implemented architecture
	4.5.2 Mobility framework
	4.5.3 Results

	4.6 Passive crowd monitoring inside a bus
	4.6.1 Capturing framework
	4.6.2 Validation and parameter tuning
	4.6.3 Performance evaluation

	4.7 Machine learning-driven privacy-preserving framework for crowd management
	4.7.1 DBSCAN clustering method
	4.7.2 DBSCAN clustering algorithm
	4.7.3 Counting pipeline
	4.7.4 Counting results

	4.8 Conclusions and future works

	5 Federated Learning Empowered Vehicular Networks
	5.1 Research motivation and State of the Art
	5.2 Main contributions
	5.3 Federated Learning
	5.3.1 Centralized vs. Decentralized
	5.3.2 Synchronous vs. Asynchronous
	5.3.3 Federated learning frameworks and implementations

	5.4 Methodology
	5.4.1 Implemented architecture
	5.4.2 Urban Environment simulation
	5.4.3 Federated learning framework

	5.5 Results
	5.5.1 Trajectory dataset and LSTM algorithm
	5.5.2 Federated learning framework setup
	5.5.3 Numerical results

	5.6 Conclusions and future works

	6 Radio Frequency mobility scenario for wireless channel emulators
	6.1 Research motivation and State of the Art
	6.2 Main contributions
	6.3 Wireless channel emulators
	6.4 Methodology
	6.4.1 Framework

	6.5 V2X scenario in Colosseum
	6.5.1 Vehicular dataset
	6.5.2 Scenario creation
	6.5.3 Scenario validation

	6.6 Conclusions and future works

	7 Conclusions
	List of acronyms
	Bibliography

