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Abstract

We investigate the use of the so-called Variably Scaled Kernels (VSKs)
for learning tasks, with a particular focus on Support Vector Machine
(SVM) classifiers and Kernel Regression Networks (KRNs). Concerning
the kernels used to train the models, under appropriate assumptions, the
VSKs turn out to be more expressive and more stable than the standard
ones. Numerical experiments and applications to breast cancer and COro-
naVIrus Disease 19 (COVID19) data support our claims. For the practical
implementation of the VSK setting, we need to select a suitable scaling
function. To this aim, we propose different choices, including for SVMs a
probabilistic approach based on the Naive Bayes (NB) classifier. For the
classification task, we also numerically show that the VSKs can be seen
as an alternative to the sometimes computationally demanding feature
extraction procedures.

1 Introduction

In the context of approximation theory, the Variably Scaled Kernels (VSKs)
were introduced in 2015 by [6]. The basic idea behind them is to map the
initial set of examples via a scaling function and construct an augmented ap-
proximation space. In this sense, they can be seen as a generalisation of feature
augmentation strategies. Indeed, all methods based on feature augmentation, as
e.g. zero padding and feature replication [9, 21, 26], fall into the general VSK
setting that we are going to investigate.

Focusing on kernel learning methods and specifically on KRNs and SVMs
(see e.g. [16, 41]), we give a very general formulation of feature augmentation
schemes via VSKs. In doing so, we drive our attention towards the Gaussian



and linear kernels, being truly popular for learning issues. We provide theoret-
ical results concerning their practical implementation, expressiveness [13] and
we further analyze the spectrum of the kernel matrices constructed via VSKs.
This study reveals the effectiveness of the proposed approach especially for the
Gaussian kernel, indeed the condition number of the VSK kernel matrix is less
than or equal to the condition number of the matrix constructed via the stan-
dard kernel. This fact turns out to be meaningful for KRNs, where one may
require to compute the inverse of the kernel matrix, which is usually affected
by severe ill-conditioning. Moreover, for the selection of the scaling function of
the KRN-VSK, one can refer to the available literature in the context of ap-
proximation theory [10, 35]. Indeed, the scaling function might be selected so
that it mimics the samples and this might lead to an improvement in terms of
accuracy and/or stability (see e.g. [6, 10, 11]). Here in particular we propose to
use a non-linear fitting of the function itself as augmented feature.

While for the KRN-VSK we can refer to some available literature for se-
lecting the scaling function, for SVM-VSK we need to take into account also
probabilistic solutions. More precisely, focusing on binary classification prob-
lems, we first note that the VSK setting induces new feature maps and spaces
that depend on the scaling function associated to the VSK. For being compet-
itive with the accuracy of the classical SVMs, as well as with other common
classifiers, we have to select a suitable scaling function for the VSKs. To this
aim, we remark that the SVM is characterized by a geometric point of view.
Nevertheless, methods based on probability distributions, as the NB classifiers,
might outperform SVM. For that reason, many efforts are devoted to investi-
gate which classifier performs better and under which conditions; for a general
overview refer e.g. to [7, 30, 46]. In this work we thus fuse SVM and NB
classifiers by means of VSKs, so that the mixed approach takes into account
the probabilistic features of the NB algorithm and classifies geometrically with
SVM. In view of this, our method can also be substituted to feature extraction
schemes; refer e.g. to [19, 44]. Indeed, we numerically show that we are able
to randomly reduce the dataset and then encode the missing information via
SVM-VSK.

The paper is organized as follows. In Section 2, we briefly review the use of
kernels in machine learning literature. In Section 3, we investigate the VSKs for
two learning methods, specifically SVM and KRNs. Then, in Sections 4 and 5,
we drive our attention towards the Gaussian and linear VSKs as well as towards
the problem of selecting the scaling function. Section 6 is devoted to numerical
experiments with both toy models and real datasets. The last section deals with
conclusions and work in progress.

2 Preliminaries

We consider a learning problem with training examples

Y ={(z1,p1):---, (&N, yN)},



where x; € Q@ C R™ and y; € R. For the particular case of the classification
setting, we fix y; € {—1,+1}.

For both SVMs and KRNs, we drive our attention towards (strictly) posi-
tive definite kernels x : 2 x Q@ — R, where 2 is a bounded set, that can be
decomposed via the Mercer’s Theorem as explained below (see e.g. Theorem
2.2. [15] p. 107 or [25]).

Theorem 2.1 Let k : Q x Q@ — R be a continuous (strictly) positive definite
kernel that satisfies

/ k(z,y)v(x)v(y)dedy >0, Yv e La(Q),xz,y € Q,
Q

then the kernel can be expressed as

H(may) = Z )\kpk(w)Pk(y)7 T,y < Q7
k>0

where {Ag}r>0 are the (non-negative) eigenvalues and {pi}r>0 are the (La-
orthonormal) eigenfunctions of the operator T : La(Q)) — L2(Q), given by

Tlol(@) = [ sl y)o(w)dy.
Q
Moreover, such expansion is absolutely and uniformly convergent.

For such kernels that admit a Mercer expansion (also called valid kernels
according to the definition given by [41]), it is worth to note that we can interpret
the series representation in terms of an inner product in the so-called feature
space F', which is a Hilbert space. Indeed,

K($ay) - <(I)($),(I)(y)>p, z,y € Q, (21)

where ® : ) — F is a feature map. For a given kernel, the feature map
and space are not unique. A possible solution is the one of taking the map
®(x) = (-, x), which is linked to the characterization of F' as a reproducing
kernel Hilbert space; see [16, 41] for further details.

In the classification context, many studies are devoted to investigate and
measure the complezity of a chosen model, such as the so-called VC dimension
[43] and the empirical Rademacher complexity [4]. The complexity of a method
is usually referred to as capacity or expressiveness. Indeed, complex models have
the capability to perform complex tasks, by determining elaborated decision
functions, and thus to express sophisticated links between the data. In any
case, the capacity of a method needs to be tailored to the considered task, in
order to avoid overfitting; for a general overview, we refer e.g. the reader to
[38].

To better investigate the concept of expressiveness in the kernel setting, we

introduce the kernel matrix K constructed via the dataset & = {x1,...,xn} C
), i.e. the matrix of entries
Kij :/Q(:Bi,mj), Z,j: 1,...,N, (22)



where £ is a (strictly) positive definite kernel. Note that if x is a strictly positive
definite kernel then K is positive definite, while it is positive semi-definite if s
is a positive definite kernel.

Remark 2.1 The expressiveness of a kernel-based model is related to the num-
ber of dichotomies achievable by a linear separator in the feature space. More-
over, concerning the rank of the kernel matriz, we have the following result [13,
Theorem 2, p. 7].

Theorem 2.2 Let K be the kernel matriz as in (2.2) constructed via Z =
{z1,...,xn} C Q, let us denote by rank(K) its rank. Then, there exists at
least one subset of examples of size rank(K) that can be shattered by a linear
Sfunction.

As capacity measure dedicated to the kernel setting, we consider the spectral
ratio that has been introduced in [13]. It is defined as

s(k) = 8K >icy Kii

- IRl vV szil Z;’V:I K?j.

According to the following definition, see [13, Definition 1, p. 8], such quantity
is an expressiveness measure for kernels. As a remark, we also point out that it
is connected to the empirical Rademacher complexity [13, Theorem 4, p. 9].

Definition 2.1 Let k;,k; : @ x Q@ — R, be two (strictly) positive definite
kernels. We say that r; is more specific (or more expressive) than k; whenever
for any dataset = = {x1,...,xn} C Q, we have

S(K') < S(K),

where K* and K7 are the kernel matrices on = obtained via k; and Kj, Tespec-
tively.

Being the spectral ratio an expressiveness measure, it is related to the rank of
the kernel matrix (see also Remark 2.1), indeed

1 < S(K) < 4/rank(K).

We conclude this brief review on kernels for machine learning by point-
ing out that the kernel matrices introduced above might suffer from severe
ill-conditioning. In order to partially overcome instability issues in the approx-
imation framework, a possible solution comes from the use of VSKs (see below
for their definition), which have been recently introduced in [6]; refer also to
[10, 11].



Definition 2.2 Let A C R be a bounded set. Let k : OxQ— R, Q=0xA -
R+ be a continuous (strictly) positive definite kernel. Given a scaling function
Y Q — A, a variably scaled kernel k¥ : Q x Q — R is defined as

&Y (x,y) = k(@9 (), (v, ¢(y)),
for x,y € Q.

When dealing with Mercer’s kernels, the construction of a VSK as in Defi-
nition 2.2 provides a valid kernel. We now extend this general setting to work
with KRNs and SVMs.

3 Learning with VSKs

To have a clear theoretical framework, we investigate the use of VSKs as a
feature augmentation algorithm, where new features are added to the original
dataset in order to possibly increase the performances of learning schemes.

At first, we give a multidimensional extension of the scaling function. Thus,
let A CR™ m >0 € N be a bounded set. Given x € Q, let ¢ : @ — A be
a function that extracts m features from @. Then, letting = Q x A, we can
define a function ¥ : Q@ — Q as

U(z) = (z,¢(x)).

The function ¥ extends the data vector & € (2, including m features that depend
on the original ones.

Thus, in the VSK setting, we define the (strictly) positive definite kernel
kY Q x Q — R, given by

Y (@, y) =k (U(), U(y)),

where k : Q x Q — R is a (strictly) positive definite kernel. The kernel x¥ is
a valid kernel, namely that it corresponds to an inner product in the associated
feature space F, (see [41, Proposition 3.22, page 75]). Moreover, it induces a
new feature map © : Q@ — F); so that

kY (2,y) = (0(2), O(y))F,. (3.1)

Referring to equation (2.1), because of [6, Theorem 3.1], the spaces F,, and the
classical feature space F', associated to k : Q x QO — R and induced by the
feature map T : Q) —» F, are isometric; see also [10, Proposition 2.3].

We now investigate the use of the VSKs for both SVMs and KRNs.

3.1 SVM-VSK

In this section, we present the VSK setting in the SVM algorithm. For this
general overview, we also refer the reader to [16, 41].



We take = = {x;, i = 1,...,N} C Q, where Q@ C R” is a bounded set.
The associate function values are so that y; € {—1,4+1}, i = 1,..., N. Indeed,
for the binary classification problem via VSKs we need to find a predictor, i.e.
a decision function s¥ : Q — {—1,+1}, that assigns appropriate labels, i.e.
¥; € {—1,+1}, to other unknown samples &;, i = 1,...,¢.

Given x € ), we define a non-linear SVM classifier that makes use of VSKs
via the following decision function:

sV (x) = sign(h¥ (x)) = sign(O(x)wT + b),

where © : Q — F), is the VSK feature map, w = (w1,...,w,) € R” and b € R
are given by

N
i=1

and
N
b:yi_zaj“qj(miamj)- (3.2)
j=1
The coefficients & = (a1, ...,ay) € RY are the solution of the following soft

margin problem [16]

. Il N N N
MMaery 5 >izt Zj:l aayiyiRY (@i, @) — 30,0

st SN oy =0,
OSO[ZSCa izla"'7N7

where ¢ € R} = [0, +00) in known as bounding box. The equation of the SVM
decision function s¥ : Q@ — {—1,+1}, i.e. w and b as in equation (3.1) and
(3.2), is then found by imposing the Karush Kuhn Tucker conditions (see e.g.
[28]) and thanks to (3.1), for = € Q, it reads as follows

N
s¥(x) = sign(h¥ (x)) = sign(0O(x)wT + b) = sign (Z yiaik" (x,x;) + b> .
i=1

Note that in equation (3.2) ¢ denotes the index of an a; so that 0 < a; < ¢. For
stability purposes, b is usually evaluated as an average among all candidates.
If one uses the standard kernel x :  x 3 — R, then we recover the classical
SVM setting.

As a second test case for the use of VSKs in machine learning context, we
investigate regression networks.

3.2 KRN-VSK

For the purposes of KRN, given 2 = {x;, i = 1,..., N} C Q, where Q C R" is
a bounded set, we fix the output variables y; € R, ¢ = 1,..., N. Indeed, KRNs



are used for regression/interpolation purposes, hence, e.g. they turn out to be
meaningful for studying the behaviour of longitudinal data.

Concerning supervised learning networks, the simplest strategy consists in
learning the trend between inputs and outputs via a predictor s¥ : O — R
which is a linear combination of some basis functions, in this case VSKs. For a
general overview on KRNs, we refer the reader to [16, 29].

We keep the general framework of KRNs and we adapt them to the use
of VSKs. Here, we focus on kernels with centers at locations Z = {z;, i =
1,...,M} C Q, and thus our KRN-VSK predictor s¥ : @ — R is of the form

M
sV (x) = Zcm‘l’(ar:,zi), (3.3)

for (strictly) positive definite kernels k¥ : Q x @ — R and for some real

coefficients ¢y, ..., cpr. The learning function (3.3) is thus the simplest neural
network which involves only one linear combination of basis functions, i.e. one
layer.

For KRN-VSK, we compute ¢ = (ci,...,cy) € RM via the following mini-
mization problem [15]

N

2
M M

. ¥ 2

min, E Yi — E cik” (x5, 25) | +v E cj
e j=1 j=1

i=1

where v € R, is a regularization parameter.
In the following we may take the set of kernel centres Z = Z. In that case
the kernel matrix K¥ of entries

K%:K‘P(miamj)v 7:,]':1,...,]\77

is square. Furthermore, if a strictly positive definite kernel as the Gaussian
function is used, then the matrix is non-singular. Therefore, we may look to
the special setting for which » = 0. In that case, the solution can be found as
c™ = (KY)~1yT, where y = (y1,...,yn) and ¢ = (c1,...,cn).

In general, computing the inverse of the kernel matrix K might lead to serious
instability issues due to the typical ill-conditioning of the kernel matrix. This
problem may be somehow overcome by selecting a safe shape parameter -,
formally introduced below, and/or by using stable bases; refer e.g. to [20, 33].
Moreover, we will point out both numerically and theoretically in the incoming
sections that a performing alternative to reduce the ill-conditioning comes from
the use of VSKs.

4 Gaussian and linear VSKs

In this section, we focus on specific kernels providing the practical implementa-
tion of the variably scaled setting. Furthermore, we also study the expressiveness
and the conditioning induced by the VSKs.



4.1 Gaussian kernel

Radial kernels are truly common. They are kernels for whom there exists a
Radial Basis Function (RBF) ¢ : [0,00) — R and (possibly) a shape parameter
~ > 0 such that, for all z,y € Q,

(@, y) = £y (2, 9) = o (|2 — yll2) == o(r).

Among all radial kernels, we remark that the Gaussian is given by
k(@ y) = hy (@, y) = e 1=V = e = ().

We now discuss its practical implementation in the variably scaled setting. We
point out that the Gaussian kernel is strictly positive definite and thus its as-
sociated kernel matrix turns out to be positive definite; see e.g. [16].

Practical implementation for the Gaussian VSK

Throughout this section we take N distinct data = = {x;, i =1,...,N} C
Q, where Q2 C R™ is a bounded set. Moreover, let A C R™ be a bounded set.

The Gaussian VSK matrix can be seen as a Hadamard product, indeed we
have the following result.

Theorem 4.1 LetE = {x;, i=1,...,N} C Q be a set of distinct data. Let 1 :
Q — A be the scaling function for the VSK setting. Let : Q2 x Q2 — R be the
Gaussian kernel. Then, the VSK matriz constructed on = via k¥ : Q x Q@ — R
18 given by

KY = KoKY,

where Kf} = e*W(wi)’w(mj)“g, i,7 = 1,...,N, and o denotes the Hadamard
matriz product.

Proof: For x,y € ), we have that

K (2, y) = o (P I3HIv@ v @I3) — o~lle-yl} o~ Iv@ V@3

Therefore, the entries of the VSK matrix built on & = {x;, i = 1,..., N} are
given by
KY = o llmimli o-lv@)—v@)I] j j=1 N,
and thus
KY = Ko KY.

O
About the Hadamard product, we report here a result that can be traced

back to 1911 by Schur [39]. It will be helpful in what follows; refer also to [14,
Lemma A.5] and [18, Lemma 2.1].



Theorem 4.2 If E and M € RVNXN qare positive definite matrices, denoting by
Amin and Amax the smallest and largest eigenvalue of a matriz, we have that

Amin(E) min My < XN (EoM) < Apax(E) max  My;.
i=1,.. N i=1,..N

[RREE)

This result allows us to infer about the spectrum of the kernel matrix (see
[12]) and to show that with the Gaussian VSK we gain both in terms of stability
and expressiveness of the kernel.

Spectral ratio for the Gaussian VSK

We now give upper and lower bounds for the Frobenius norm || - ||¢ of the
kernel matrix K in terms of its variably scaled setting. This turns out to be
helpful when comparing the spectral ratio of the two matrices (K and K¥),

Theorem 4.3 Let & = {x;, i = 1,...,N} C Q be a set of distinct data. Let
¥ : Q — A be the scaling function for the VSK setting. Let k: Q x Q — R be
the Gaussian kernel. Given the VSK matriz KY = Ko KY constructed on = via
kY Q x Q — R, we have that

1KY [l < 1Kl < [IKIFlIKlF-

Proof: Being the RBF ¢ : @ — R associated to the Gaussian kernel x non-
increasing, for &,y € ), we obtain

¢ (Il —yll3) = ¢ (Il —yll3 + (@) —v(y)l3)
which in particular implies that

Kij >2K¥ >0, 4,j=1,...,N.

)

Thus, we get
K[l > [IK[|F-

Moreover, since ¢(0) = 1, i.e. K;@ =1,i=1,...,N, we obtain

)= VN(@(0))2 > 1,

and therefore
IKY[[e < K[l < [IK][EIKY e

O

From this theorem, we can easily infer on the spectral ratio in the VSK
setting.

Corollary 4.1 Let = = {x;, i =1,...,N} C Q be a set of distinct data. Let
¥ : Q —> A be the scaling function for the VSK setting. Let Kk : 2 x  — R be
the Gaussian kernel, then the VSK kernel k¥ : Q x Q@ — R is more expressive
than k.



Proof: Let K¥Y = K o K¥ be the VSK matrix constructed on = via &Y :
Q x Q — R, we have that

tr(KY) = tr(K) = Ny(0) = N,

where ¢ :  — R is the RBF associated to the Gaussian kernel x : @ xQ — R.
Taking into account Theorem 4.3, we obtain

N _ N
1Kl — [[K¥[lF

S(K) = = S(KY).

O

On one side, the fact that the Gaussian VSK is more expressive than the
standard one tells us that the VSK-based learning might be able to deal with
more complex tasks. In the next subsection, we focus on the stability of the
kernel matrix.

Spectrum of the Gaussian VSK
The smallest eigenvalue of a positive definite kernel matrix is of course linked

to the ill-conditioning. Moreover, given = = {x;, i = 1,...,N} C , the
stability is also related to the separation distance

1 .
q= = 5 Iln;éjn ||a3z - wj”%

which only depends on the data. As shown in e.g. [6], we have that

<q

1]

q

(1

)

where 1
qE‘I’ = 5 Igé]n W (x;) — \I/(mj)H%

is the separation distance in the VSK setting. This gives the intuition of the
fact that the VSKs might lead to possible improvements in terms of stability [6].
Indeed, in general, it is well-known that the smallest eigenvalue of the kernel
matrix is related to the separation distance, meaning that the ill-conditioning
usually grows as the separation distance decreases; refer e.g. to [27], where the
authors make use of a result from [3] on the eigenvalues of distance matrices.
These facts are the fruits on many studies on the so-called trade-off or un-
certainty principle [36, 37], which could be summarized in a conflict between
accuracy and stability.

As already mentioned, the VSKs are helpful for improving the stability,
especially in view of the following property. We also refer the reader to [42,
Corollary 3.1]. For a given matrix M, we focus on the 2-condition number
defined as

cond(M) = [[M[[[|M .

10



Proposition 4.1 Let Z={x;, i=1,...,N} CQ be a set of distinct data. Let
¥ : Q —> A be the scaling function for the VSK setting. Let k: 2 x 2 — R be
the Gaussian kernel. Given the VSK matriz KY = Ko KY constructed on Z via
kY Q x Q — R, we have that

cond(K¥) < cond(K).

Proof: First note that, since in this case the matrix is positive definite, the
condition number can be computed as

)\max(K\I})
)\min<K\II> '
Moreover, from Theorem 4.2 and since the RBF ¢ : 2 — R associated to the

Gaussian kernel £ : Q x @ — R is so that ©(0) =1, i.e. K;ﬁ =1,i=1,...,N,
we obtain

cond(KY) =

Amax(KY)
Amin(K‘I})

cond(KY) =

A

Amax (K) ) _
= )\min(K‘Il) - )\min(K) - Cond(K).

O
This result turns out to be meaningful especially for the KRN-VSK approach.

As a second case study, we now consider the linear kernel, which is truly popular
for classification tasks.

4.2 The linear VSK

For x,y € €, the linear kernel k : Q x Q@ — R is given by

k(x,y) =xyT.

As for the Gaussian kernel, its implementation in the variably scaled setting
turns out to be trivial. We remark that the linear kernel is positive definite and
thus its associated kernel matrix turns out to be positive semi-definite; see e.g.
[16].

Practical implementation for the linear VSK

The linear VSK can be written as sum of matrices, indeed we have the
following result.

Theorem 4.4 Let = = {x;, i = 1,...,N} C Q be a set of distinct data. Let
¥ : Q —> A be the scaling function for the VSK setting. Let k: Q x Q — R be
the linear kernel. Then, the VSK matriz constructed on Z via k¥ : Qx Q — R
s given by

KY =K+KY,

where K?’j =¢(x)Y(x;)T, 4,5 =1,...,N.

11



Proof: For x,y € Q we have that:

v yT T T
and thus the kernel matrix is given by
KY = K+ KY.

O
We now drive our attention towards the expressiveness of the linear VSK.

Spectral ratio for the linear VSK

Depending on the function 1, we might have that the linear VSK is less
expressive than the standard linear kernel, indeed we have the following propo-
sition.

Proposition 4.2 Let Z={x;, i=1,...,N} CQ be a set of distinct data. Let
¥ Q — A be the scaling function for the VSK setting. Let k : 2 x @ — R
be the linear kernel. Let us suppose that the associated kernel matriz K is non-
negative, i.e. so that all the entries of K are non-negative. Given the VSK
matriz KY = K+ K¥ constructed on = via k¥ : Q x Q — R, if ¢ is so that K¥
18 non-negative, then:

() _ SK) K[l
(KY) = 5(KY) = (K]l

Proof: Under our assumptions, if 1) : Q — A is so that K¥ is non-negative,
we have that

oK)

tr(KY) —
Moreover, since we suppose K non-negative, we get

o

LI

[KIle
Finally, taking into account the definition of the spectral ratio, the statement
follows. O

Note that the requirements of Proposition 4.2 are satisfied e.g. if 2 C R"}
and A C R

Spectrum of the linear VSK

Being Gramiam matrices, K¥ and K are positive semi-definite. Concerning
the spectrum of the VSK matrix K¥, by virtue of Weyl’s inequality (see e.g. [5,
Section II1.2, p. 62]), we obtain that:

Arﬂin(K) S Amin(K + Kw) = Aliﬁlll(K\I})

As for the Gaussian kernel, one can make many different choices for the function
1. Some of them are discussed in the next section.

12



5 Choices for the scaling function

In the framework of approximation theory, as well as for KRNs, the choice
of the scaling function can be guided by some characteristics concerning the
data distribution or the underlying function that needs to be reconstructed (see
e.g. [34, 35]). In the classification setting the VSKs can be seen as feature
augmentation methods. More precisely, our aim is to adopt this strategy to
encode possible a priori information in the kernel. Let us take N distinct data
E={x;,i=1,...,N} C Q, where Q C R" is a bounded set. Moreover, let
A C R™ be a bounded set, we now propose some techniques to define the scaling
function of the VSK framework.

5.1 Scaling function for SVM-VSK

Depending on the task and on the available knowledge, different choices for the
scaling function could be taken into account. Here, we construct the scaling
function v :  — A as follows. Given the dataset

E:{(wzayl)v i:Ow",Nv Ty 697 Yi € {_13+1}}3

we introduce the classes C7 and Cs, associated to the labels y = —1 and y = +1,
respectively. Let & = (Z1,...,%,) be a new example that we need to classify.
Treating the features as mutually independent, the NB classifier (see e.g. [1, 24])
computes

P(Cj) I1;, P(#C;)

Py (@) = P(@ € Cyff) = — R L,

classifying
C(z) = argmax;_, , P;(Z).

The likelihood [, P(;|C;) and the prior P(C;) are typically estimated from
the dataset 3. In other cases, especially when the dataset is not too large,
they could be obtained as a priori knowledge, for example by consulting the
literature.
In this view, for the SVM-VSK we propose the scaling map ¥ : Q —
defined by
U(x) = (x, Pr(z)),

and the kernel k¥ : QO x Q — R
Y (x,y) =k (V(z), V(y)).

For « € Q, since Py(x) = 1 — Py (x) is correlated to P;(x), we observe that it is
sufficient to consider one of the two probabilities.

Concerning the effectiveness of this scaling function ¥ : Q —s Q for the
Gaussian VSK, we refer to the notation introduced in Theorem 4.1 and we
point out that, for x;, z; € =,

K?’J — e*(Pl(mi)*Pl(wj))z’ ,j=1,...,N.
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We observe that if P, (x;) =~ Pi(«;), then K;@ ~ 1 and so K}; ~ K;;. Considering
instead the linear VSK ¥ : © x @ — R described in Section 4.2, we get

K{ = P(z)Pi(x;), i,j=1,....N.

We remark that, according to to Proposition 4.2, with the linear VSK we con-
struct kernels that might be less expressive than the standard ones.

For both kernels, this means that the matrices change according to our a
priori knowledge on the dataset, leading to a different, possibly easier, learning
task for SVM.

5.2 Scaling function for KRN-VSK

Here we take again N distinct data = = {x;, i = 1,..., N} C Q, where Q C
R™ is a bounded set, and the associated measurements y; € R, i = 1,..., N.
Moreover, let A C R™ be a bounded set, we now propose some ideas to define
the scaling function for KRNs.

Regression networks are also used to learn longitudinal data, i.e. time series,
see e.g. [8]. This allows to extrapolate the evolution of samples and consequently
to give short time predictions on the dynamics of the considered process. There-
fore, concerning the choice of the scaling function ¢ : Q@ — A, we suppose to
know the trend of data, which can be modelled via a specific class of functions,
ie. a model M : Q x Rl — R depending on = € €, and on [ parameters
B=(p1,...,0:). To determine 3, we compute:

N

B* =min Y (y; — M(z;,8))>

peR! i
Then, one possible solution to define the function ¢ : Q — A is
P(x) = M(z,B%). (5.1)

Of course, this gives a recipe for the selection of the scaling function which is
not unique. Moreover, thinking of time series, one usually disposes of other
available and correlated data sampled at the same locations which can be used
as additional features. For instance, when studying the evolution of a tumor
mass in time, usually also other bio-markers are available and can be taken into
account; see e.g. [40].

6 Numerical tests

Experiments have been carried out in PYTHON using also the scientific module
scikit-learn [31] on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
For the classification setting, we provide a freely available software that can be
downloaded at https://github.com/emmaA89/SVM-VSK. For KRN-VSK, we
refer the reader to [16, Program 18.1, p. 340].
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6.1 Tests for SVM-VSK

We present two examples of binary classification. In the first one, we consider

different toy datasets of various sizes, with precise probability information con-

cerning the features distributions, and we compare our SVM-VSK approach with

standard SVM and NB classifiers. For the second experiment, we take a real

dataset and we show a feature extraction strategy inspired by our framework.
In both the examples, the hyperparameters are validated by taking

cef{27%27° ... 2%},

v € {107%,1075,...,10%}.

Moreover, in the validation and in the test steps, we evaluate the performance of
the considered methods by means of the f;-score, weighted with respect to the
classes. We remind that the f;-score is defined as the harmonic mean between
precision and recall. More precisely, given the number of True Positive (TP),
False Positive (FP) and False Negative (FN) cases,

precision - recall

fi-score = 2 - — ,
precision + recall

h ision = =~ and recall = =2
whnere precision = TP + FP and recall = TP + FN

Test 1: Simulated datasets and a priori knowledge

Here we construct 12 toy datasets that differ in terms of number of features
and examples. We now fix n = 64. Letting 2 C R"”, where 2 is a bounded set,
they are extracted from the dataset

I'= {(‘Bi,yi); t=1,...,5000, x; € Q, Y; € {*1,4’1}},

where the two classes C7 and C5 are exactly balanced. The construction of such
dataset is explained in the following steps.

1. Bach class C, j = 1,2, is characterized by two vectors

B = (,u;,...,u?), oj = (0},...,0;”).
More precisely, let us denote by U(a,b) a univariate uniform random dis-
tribution on the interval (a,b) C R and by p ~ U(a, b) a real measurement
sampled from such distribution. Then, pj and 0}, ¢ =1,...,n, j = 1,2
are determined as follows:



2. We denote by N (p, o) the univariate normal distribution with mean p and
standard deviation o. Let ), = (z4,...,z}) be an example in  belonging
to a class Cj, j = 1,2. The elements z% of xx € Q,i=1,...,n, are then
randomly generated as samples of A/ (u?, cré-).

3. Finally, Gaussian white noise, distributed according to N(0,1), is added
to each feature and example.

From the so-constructed T', letting Qx be a bounded set of R+, ny, € {2,4, 16,64},
we extract the datasets

F£ = {(aci,yi), 1=1,.. .,]\fq7 x; € Qk, Yi € {—1,—‘,—1}}7

with N, € {100, 500, 2500}, £ = (NN, ng), and preserving the balance among the
two classes. Fixed N, and ny, we point out that the examples and the features
are randomly selected. Moreover, since all combinations examples-features are
taken into account, we obtain 12 different datasets.

In the following description, we fix one of the extracted datasets I'¢ for some
value of N, and nj. We divide such a dataset in a training set ¥¢ and a test
set Te. These sets are so that card(Xg) ~ 2card(Tg).

In this experiment, we suppose to have a priori information and to encode
it in the SVM-VSK method by means of the NB algorithm. More precisely,
the NB classifier is trained considering both X¢ and T'¢, which is defined as the
dataset containing the examples of I' that are not in I'g, i.e.

f‘g = F\Fg.

Therefore, in this test we compare the performances on T¢ of the three methods
constructed as follows.

1. The NB classifier, which is trained on T¢ U Z¢. Given & = (21,...,2y, ),
we adopt the Gaussian likelihood [32]

i 2
(=)
P(zi]C)) = ——e \ 7/

fori=1,...,n%, 7=1,2.
2. The standard SVM method, which is trained on Y.

3. The SVM-VSK classifier, which is trained on ¥¢ and whose scaling map 1 :
Q — A, constructed as explained in Section 5, considers the probabilistic
outcomes of the NB classifier.

In order to tune the SVM hyperparameters ¢ and +, the latter in case of
RBF kernel, we consider a 5-fold cross validation on ¥g.

We carry out the test for each dataset I'¢ and we show the obtained results
in Figure 1. The proposed SVM-VSK algorithm is competitive with the best
among SVM and NB methods, slightly outperforming both in some cases.
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Figure 1: The f;-score of the experiments performed on various datasets using
the linear (lin.) and Gaussian kernel (RBF). The considered number of examples
and features are displayed on the top.
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For the Gaussian kernel, we numerically verify Corollary 4.1 by reporting in
Table 1 the spectral ratios related to the matrices K and K¥, obtained from the
training sets ¥¢ with Ny = 100, 500, 2500 and nj = 2. The results numerically
confirm what theoretically observed, i.e. the Gaussian VSK is more expressive
than the standard one.

Moreover, for the linear kernel, we are in the hypothesis of Proposition
4.2 since in our experiments the data are normalized in [0,1]. In order to
numerically verify its consistency, we also evaluate the quantities involved in
such proposition. They are reported in Table 2. The results show once more
what theoretically observed.

[ S(K) SKY) |

50  1.3782 E4-00 1.5756E4-00
500 1.3222 E400 1.5197E+00
2500 1.2770 E4-00 1.4954E4-00

Table 1: The spectral ratios of the matrices K and K related to the normalized
training sets ¥¢, varying N, = 100, 500, 2500. We set n, = 2 and we considered
a Gaussian kernel with v = 1.
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[N u®/u®") SK/SKY [KTe/KF |

50 6.1373 E-01 8.8640E-01 1.4443E4-00
500  5.2890 E-01 8.8021E-01 1.6642E4-00
2500  5.5705 E-01 8.8461E-01 1.5880E4-00

Table 2: The ratios of the norms involved in Proposition 4.2 obtained via the
linear kernel. The matrices K and K¥ are related to the normalized training
sets X¢, varying N, = 100, 500, 2500 and with n, = 2.

Test 2: Feature selection with a real dataset

The Wisconsin Breast Cancer Database [22, 23] consists of 699 instances
described by 9 features, extracted from a digitized image of a fine needle aspirate
of a breast mass. The task consists in predicting if the mass is benign or
malignant. From the original dataset, we exclude 16 instances that present
missing values. The two classes are not equally distributed, presenting 444
benign instances and 239 malignant instances.

In this section, we propose a feature extraction method directly inspired by
the presented variably scaled setting, which can be used as an alternative to
other possible expensive feature extraction algorithms. To this aim, at first, we
divide the dataset into a training set, consisting of 226 benign and 116 malignant
cases, and a test set, which is composed by 218 benign and 123 malignant cases.

Then, we compare the performances on the test set of the following four
methods.

1. A NB classifier with Gaussian likelihood.

2. A standard SVM classifier, whose hyperparameters ¢ and v (in the Gaus-
sian case) are validated by means of 5-fold cross validation on the training
set.

3. A SVM classifier constructed after a feature selection process, as explained
in what follows.
Analyzing the resulting weights of the SVM classifier (in the linear case),
we can rank the features by their influence in the classification; see e.g.
[17]. Then, we choose the 7 more relevant features, here we fix i = 2,
and we consequently reduce our training and test sets by restricting to
the two most relevant features. Finally, we take both linear and Gaussian
kernels, we train a SVM classifier via 5-fold cross validation on the reduced
training set and we evaluate the results on the reduced test set.
We denote this method with SVM-Selection (SVM-S).

4. A SVM classifier constructed after a VSK-like feature extraction process,
as described in the following lines.
We randomly select n—1 features (here n = 2). The training set restricted
to the remaining 8 features is used to train a Gaussian NB classifier.
Reduced training and test sets are obtained by juxtaposing the previously
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selected n — 1 features to the probabilistic output of the NB classifier.
Then, we take both linear and Gaussian kernels, we train a SVM classifier
via 5-fold cross validation on the reduced training set and we evaluate the
results on the reduced test set.

We denote this method with SVM-Extraction (SVM-E).

We point out that both SVM-S and SVM-E consider reduced training and
test sets that are characterized by the same number of features n. Moreover, the
SVM-E presents some advantages in terms of computational complexity with
respect to SVM-S, since training an auxiliary NB classifier to perform feature
extraction is cheaper than training a SVM classifier to carry out the feature
selection.

In Table 3, we present the results obtained considering the SVM, NB and
SVM-S methods. In Table 4, we report the results concerning the SVM-E
algorithm. For completeness, we vary the randomly selected feature, taking
into account all the possibilities.

Linear Gaussian

NB | SVM SVM-S | SVM SVM-S
0.965 | 0.968  0.959 | 0.965  0.953

Table 3: The f;-score for the Wisconsin Breast Cancer Database via the SVM,
NB and SVM-S methods.

Random Feature | Linear | Gaussian
1 0.965 0.965
2 0.962 0.968
3 0.959 0.977
4 0.962 0.965
5 0.965 0.965
6 0.965 0.962
7 0.965 0.962
8 0.959 0.956
9 0.968 0.965

Table 4: The f;-score for the Wisconsin Breast Cancer Database via the SVM-E
method.

We observe that the best score is achieved by the SVM-E algorithm. More-
over for this dataset, we point out that such a method prefers the Gaussian
kernel with respect to the linear one, while the standard SVM and SVM-S ob-
tain better classification scores when the linear kernel is considered.
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6.2 Tests for KRN-VSK

As an example for KRNs, we focus on the Italian data of the 2020 COVID19

pandemic. The task we consider consists in learning the longitudinal data, i.e.

Q C R, of people that in Italy were hospitalized as Intensive Care Unit (ICU)

patients from 24/02/2020 to 26/04/2020. The dataset, provided by the “Dipar-

timento della Protezione Civile”, is available at

https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale.
The dataset I' consists of 63 samples and it is divided as follows. The first

58 days are used as training set ¥ and we test the model on the last ¢t = 5

days, &;, i = 1,...,t. Referring to Subsection 3.2 we take the set of kernel

centres Z as the set of available data in = and we focus on the Gaussian kernel.

The feature augmentation strategy outlined in (5.1) is carried out considering
M :Q xR — R defined as

M(z, B) = e—ﬁlw—ﬁ\’

where p = 42 is the peak of the considered time series. The model M is
constructed on X.

Furthermore, we encode into the kernel also other available data. Specifi-
cally, we take the total number of COVID19 infected (included death and recov-
ered people), the daily number of new infected and the total number of infected
(excluded death and recovered people). Of course, this selection of the scaling
function means that we are adding a priori knowledge to the selected time series.
Therefore, the scaling function 1 is so that ¢ : @ — A, where A C R,

To analyze the performances of the variably scaled setting, we take the
Gaussian kernel and we compute the condition number of the kernel matrix
and the Rounded Mean Error (RME). Precisely, since hospitalized patients are
involved in the dynamics, letting the Mean Error

t
1 -
ME = ;;hﬁ — A(y)],

where A is a decision function as defined in Subsection 3.2 obtained via classical
of variably scaled kernels, the RME is defined as

RME — { IME|, if ME-— |ME| <0.5,
[ME], if ME-— |ME| > 0.5.

In the first experiments, we set the parameter v = 0. We remark that for
regression networks the selection of the shape parameter pays a crucial role.
Therefore, to make a fair comparison between classical and VSK regression
networks, we report the condition numbers and the RME for 200 values of the
shape parameter « in the interval [0.5,20]. The results are reported in Figure
2. We observe that the computation carried out via VSKs is characterized
by a lower condition number of the kernel matrix, as theoretically observed in
Proposition 4.1. For such experiment, this directly reflects on the accuracy of
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Figure 2: Left: the condition numbers for different values of the shape parameter
of the classical kernel and VSK matrix denoted by red triangles and blue dots,
respectively. Right: the RME for different values of the shape parameter of
the classical KRN and KRN-VSK methods denoted by red triangles and blue
dots, respectively. Both plots are in semi-logarithmic scale and obtained by
considering the normalized dataset.
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Figure 3: The ICU patients curves reconstructed via KRN and KRN-VSK de-
noted by red triangles and blue dots, respectively. We fix v = 0 and v = 1le—04,
left and right respectively. The true solution is plotted with black solid line.

the computation, meaning that the safe interval for the shape parameter «y is
larger than for the classical method (see Figure 2, right).

In Figure 3, we report two graphical results corresponding to » = 0 and
v le — 04, left and right respectively. In both cases we take the optimal
shape parameter v*, meaning that it leads to the smallest RME, in the same
framework of Figure 2 (right). The associated RME is shown in Table 5. We
note that, the VSK setting outperforms the classical method for v = 0, while
for v = 1le — 04 the two approximations are comparable.
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v
Method v=0 v=1e—-04

KRN 116 13
KRN-VSK 33 9

Table 5: The RME for the optimal shape parameter by using KRN and KRN-
VSK in reconstructing the ICU curves.

7 Conclusions and future work

We presented an original approach for learning issues via VSKs. The proposed
methods turn out to be flexible and easy to implement. For KRNs, the use of
VSKs takes advantage of being stable and for classification of merging the prob-
abilistic features of NB and the geometric ones of SVM. This results in effective
algorithms that can be used for many tasks. Applications to real datasets show
the effectiveness of our approach.

Work in progress consists in extending this concept for support vector re-
gression and as well as for greedy methods [2, 45].
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